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INTRODUCTION

Let R be a direct limit of a countable sequence of finite dimensional semisim-
ple real algebras. In [1] and [2] such algebras are classified using the invariant

Ko(R) "% k(R ©) “U™) k(R @ ),

together with order units in the unital case or generating intervals in the non-
unital one, where the groups are partially ordered, oy is the natural map from R
into R ® C, tg is the natural map from R ® C into R @ H and H is the algebra
of real quaternions. As a consequence, the invariant, together with the canon-
ical order units or generating intervals, is used to classify approximately finite
dimensional real C*-algebras.

The diagrams arising in the unital classification are of the form

(G1,u1) B (Gyu2) B (G, uz)

consisting of triples Gy, Gy, Gs of dimension groups with order units uy, up, us,
together with unit preserving ordered group homomorphisms g1, g2. Non-unital
direct limits are classified by a similar invariant using generating intervals rather
than order units. The memoir [1] contains many properties of the invariant in-
cluding a description of its range, using a complicated equational condition. In
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[1] the equational condition is simplified in two cases: where R is a direct limit
of direct sums of complex matrix algebras (with possibly real-linear connecting
maps) and where R is a direct limit of sums of real and quaternionic matrix al-
gebras. In this note we provide a simpler description of the range in the general
case, eliminating the equational condition and combining the two special cases
from [1].

1. THE UNITAL CASE

We start with a minor extension and a simple consequence of Lemma 10.2
of [1I.

LEMMA 1.1. Let H be a dimension group with an involution x and let G,K be
subgroups of ker(1 — x) such that GT + Kt = ker(1 — )*. Assume that, whenever
a,b € HY witha < band a* < b, then there exists ¢ = c* witha < c < b.

Given p1,p2, ... pm € row(Z) and x € col(H") with p;(x —x*) = 0 for 1 <
i < m, there exist y; € col(GT), y2 € col(H"), ys € col(K") and q1,92,93,94 €
mat(Z*) such that x = q1y1 + q2y2 + q3y3 + qays and pi(q2 —q3) = 0for 1 < i < m.

Proof. By Lemma 10.2 of [T] there exist y; € col(GT), yo € col(H"), ys €
col(K™) and g1, 92, 93,44 € mat(Z™) such that x = q1y1 + goy2 + g3y4 + qays and

(a2 —43) = 0.
Assume inductively that it has been shown that there exist z; € col(G"),

zp € col(H™), z4 € col(K™) and rq,72,73,74 € mat(Z™") such that
X =121 + tpzy + 1325 + 1424
and p;(rp —r3) =0for1 <i<n < m. Then
0= pni1(x —x7) = puy1((r2 = 13)(22 — 23))-

So, applying Lemma 10.2 of [1]], with p = p,,41(r2 — r3), there exist Z; € col(GT),
Zp € col(HT), Zy € col(KT) and Ry, Ry, R3, Ry € mat(Z™) such that

20 = R1Z1 + RoZy + R3Z5 + RyZy
and Pn+1 (1’2 - 1’3)(R2 - Rg) =0. Then, putting n = (;11 ), Y2 = Zz, Yqg = (Z ),

q1 = (r1,(r2+13)R1), g2 = 2Ry +13R3, 3 = 1Rz +13Ry and q4 = (14, (12 +
7"3)R4),

x=r121+712(R1Z1+Roya+R3y3 +RyZy ) +713(R1Z1 + Royo + Rays +RyZy) " +71424
=121+ (r2+73) R1Z1+ (12 Ro+713R3)y2+ (12 R3+713R2 ) y3 + 1424+ (124+713) Ry Zy
=qy1 + q2y2 + 43Y2 + 4ays
with

Pn+1(92—43) = Pus1((raRa+73R3) —(12R3+713R2)) = pry1(r2—73) (R2—R3) =0
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and also
pi(q2 —q3) = pi(ra —13)(Ra = R3) =0
forl<ig<n 1

LEMMA 1.2. Let H be a dimension group with an involution x and let G,K be
subgroups of ker(1 — ) such that GT + Kt = ker(1 — )*. Assume that, whenever
a,b € HY witha < band a* < b, then there exists ¢ = c* witha < ¢ < b.

Given p € row(Z), x; € col(G"), x, € col(H") and x4 € col(K") with
p(xa —x3) = 0, there exist y; € col(GT),y» € col(H'), ys € col(KT) and
1,54, 01,q2,93,94 € mat(Z") such that x1 = riy1, X2 = quy1 + q2y2 + q3Y5 + Gaya,
X4 = says and p(q2 — q3) = 0.

Proof. By Lemma 10.2 of [1] there exist Y; € col(G™), y» € col(H"), Yy €
col(K™) and Q1,92, 93, Q4 € mat(Z™) such that

x2=QY1+q2y2 + 935 + QsYs and p(q2 —q3) = 0.
The result then holds with

_[*x _ (%4
n (Yl) e <Y4) '
= 0), s4=( 0), q1=(0 Q1) and gqu=(0 Qu),
for suitably sized identity and zero matrices. 1
LEMMA 1.3. Let H be a dimension group with an involution x, let ker(1 + *) =
(1—x)(H), let (1+*)(H") = [(1+*)H]" and let F = ker(1 — ). Assume that,

whenever a,b € HY with a < b and a* < b, then there exists ¢ = ¢* witha < ¢ < b.
Let x1 € col(F1), x; € col(H") and ay, a3, a3 € row(Z) with

a1x1 + axxy + azx; = 0.

Then there exist yy € col(FT), yo €col(H™) and by, bya, bpy, baz, bos € mat(Z™) with

X1 bi1 by by n bi1 by by
x| = b by by | |y2| and (a1 ay a3) [bix by by | =0.
x5 bio by bn) \y; bip by by

Proof. From ayx1 + axy + azx; = 0 it follows that also a1x1 + ax3 +azx; =
0 and therefore 2a;x1 + (a2 + a3)(x + x3) = 0 and (ay — a3)(x2 — x3) = 0. The

first of these can be rewritten
*
)+ ()] -0
X7 X2

Lemma 10.3 of [1] implies the applicability of Lemma 10.1 of [1]], which yields
zp € col(H™") and ga1, 922,431,932 € mat(Z™") such that

Xy _ (492 q31) d q21 131\ _ .
(xz) (m) 2t (qu) @ ond (n @) <(qz2> i (5132>)

(a1 ap+a3)
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From g125 + 43125 = %1 = x] = q2125 + q3122 it follows that (g21 — g31)(2z2 —
z5) = 0. By Lemma |1.1jwith G = F and K = 0 it follows that there exist Z; €
col(F1),Z, € col(H™) and 11,72, r3 € mat(Z™) withzp = r1Zy +r2Z; +r3Z and
(921 — q31)(r2 = r3) = 0.

Let c11 = (921 +431)71, €12 = (922 +432)71, €21 = 2172 + 43173, €22 = q272 +
gaats and cp3 = gr3 + g3ot2. Using the fact that

q2172 + q3173 = 43172 + 42173

it follows that

X1 €11 €21 21 Zy Z
Xo | = | C12 Cop (23 Zz =C Zz and
x5 c12 ¢3 ) \Z; Z5

€11 €1
(2a1 a +as ap -+ a3) c1p ¢y o3| =0.
Cl2 C23 (22

The condition (a; — a3)(x — x3) = 0 can be rewritten as
0= (a2 — a3)(c2 — 23)(Z2 — Z3).

Applying Lemma (1.2l with G = F and K = 0 gives y; € col(F'), y» €
COI(H+) and sq, 8,11, 12,13 € mat(Zﬂ such that Z; = s1y7 + spy2 + Szyé, Zy =
t1y1 + tay2 + t3y; and (ﬂz — 113)((322 — C23)(i’2 — t3) = 0. Let

51 S2 S»
D=1t t t3
fp tz3 1t
Then
X1 W1
X2 =CD 2 and
X Y

(0 ap—as a3—ay)C= (0 (ap—az)(co2—c23) (a3 —az)(cr —c23)),
so (0 ay—az a3z —ay) CD = 0. Combining this with the earlier equation
(2ay apy+az ay+a3)C=0
gives (11 ap a3) CD =0, as required. &

The next two results are variants of Lemma 9.1 of [1]. The first result is a
variant of condition (III) in the proof of that lemma.

LEMMA 1.4. Let H be a dimension group with an involution x, let ker(1 + %) =
(1—x)(H),let (14 *)(H") = [(1+ *)H]" and let G, K be subgroups of F = ker(1 —
) suchthat GNK = (1+*)Hand Gt + K™ = F*. Assume that, whenevera,b € H*
with a < band a* < b, then there exists c = ¢* witha < ¢ < b.
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Let z € col(F') and c1,c4 € mat(Z™1) such that c1z € col(G1) and cyz €
col(K™). Then there exist wy € col(G1), wp € col(H), wy € col(K™) and dy,d,dy
€ mat(Z") such that z = dywy + dp(wy + W) + daws while cydy and c4dy are even.

Proof. Firstly it will be shown by induction on the number of rows in cy4
that, when z; € col(G") with ¢4z € col(K"), then there exist w; € col(G™),
wy € col(H") and dy,dy € mat(Z") such that zy = dywy + dp(wy + w}) while
c4dq is even. To start the induction, following Lemma 9.1 of [1]], first let ¢4 €
row(Z"%)and z; € col(G") withcyzy € K. Thencyzy € GTNKT = (1+%)(H™)
and so c4z1 = zp + z5 for some z; € H'. Applying Lemma with x1 = 2z,
Xp = zp,41 = ¢g and a; = a3 = —1, there exist y; € col(FT), y, € col(H") and
b11,b21,b12, b0, b3 € mat(Z*) with

z1 bit by b\ (w1 bir by by
2| = (b2 b b | |y and (cy —1 —1) by by by | =0.
z5 bip by bn) \y; bip by by

Then c4byq is even. Let y; = wy + wy where wy € col(G") and wy € col(K™).
Then z1 = bllwl + b11w4 + b21 (]/2 + y;) where b117U4 = Z1 — b11w1 — b21 (y2 +
y3) € col(GT) Necol(KT), so that byjwy = v+ v* for some v € col(H™). Therefore

(5)-)]
v v
with c4bq71 even.

To implement the inductive step, again follow Lemma 9.1 of [1] by letting
z1 € col(G) with cyzy € col(KT) and ¢y = (}1) where py € row(Z"), psz; €
Kt and g4z1 € col(K™). By the inductive hypothesis, there exist u; € col(G1),
up € col(H") and e1,e; € mat(Z*) such that z; = equy + ex(up + uj) while gaeq
is even. Then pge; € row(Z") and u; € col(G™) with pyeruy = pyz1 — paea(un +
u3) € K so, by the first part of the proof, there exist v; € col(G*), v, € col(H™)
and fi, f, € mat(Z") such that uy = f1v1 + fo(vz + v3) with pse; f1 even. Then

. v v\
z1 = equq +€2(u2 +u2) = 61f101 + (€1f2 62) <(ui> + (u§> >

with ggeq, pse1 f1 and hence cqeq f1 even.

By symmetry it now follows that when z4 € col(K™) with ¢1z4 € col(G"),
then there exist w, € col(H"), wy € col(K") and dp,dy € mat(Z™) such that
z4 = dp(wy + w}) + dywy while c1dy is even. These two results can be combined
to prove the lemma by letting z € col(F') = zj + z4, where z; € col(G") and
z4 € col(K™) and noting that ¢1z4 = ¢1z — c1z1 € col(G™1). Applying the second
case gives zy = dp (v + v3) + dgvg with vy € col(H™), vg € col(KT) and dy, dy €
mat(Z™") with ¢1ds even. Then z = z1 + dp(vy + v5) + dsvs where z; € col(G™)
with csz1 = c4z — cada(vp + v5) — cadgvs € col(KT) so that, by the first case,
z1 = eywy + ex(wy +wh) withw, € col(HT), wy € col(GT), e1,e, € mat(Z™) and

z1 = byywy + (b1 1)
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c4e1 even. Combining these two results gives

z =ejwy + (dg 62) ((;JJZZ) + (Z;) ) + dyvy

with ¢1d4 and c4eq even. 1

LEMMA 1.5. Let H be a dimension group with an involution x, let ker(1 + %) =
(1—=x)(H),let (1+=)(H") = [(1+*)H|" and let G, K be subgroups of F = ker(1 —
*) such that GNK = (14 *)Hand Gt + K = F*. Assume that, whenever a,b € H"
with a < band a* < b, then there exists c = ¢* witha < c < b.

Let x1 € col(GT), xp € col(H"), x4 € col(KT) and ay, ap, a4 € row(Z) such
that aix1 + ap(xp + x3) + asxg = 0. Then there exist y; € col(GT), y» € col(H™),
Ya € col(KT) and byy, by1, b1, b1o, bao, 23, bag, ba, bos, bagy € mat(ZT) such that by,
and by are even while

X1 bi1 by by by "
X2 bio by by by | [y

_ d
x5 bip by by by ||y a
X4 bia by by b/ \ya

bir by by by
bip by by by
a1 ap a, a =0.
(a1 a2 a2 ) bip bz byp by
big by by by
Proof. By Lemmal(l.3|applied to

X
(al a4) <xi> +axxy + a2x§ =0

there exist UAS COI(F+), Y2 € COl(H+) and bq1, b1, ba1, bao, bos € mat(Z+) with

X

( xi) b1 ba by [y bi1 by by

o |7 by by by || v2 and ((a1 a4) ax ap)| bz bxn by |=0.
2 *

x bia by bxn) \y; bi by by

Splitting the first row according to the number of rows in x; and x4, reordering the

rows and renaming, there exist y € col(F"),y, € col(H") and 11, ¢12, €21, €22, €23,
C14,Co4 € mat(Z™) with

X1 €11 €21 C21 y €11 €21 ¢21
X c c c c c c
3 12 €2 €23 v and ( 4 @ a a4) 12 €2 €23 _
X Cl2 C23 (22 v Cl2 C23 (22
X4 Cla C24 C4 2 Cla C24 C24

From x1 = c11y + ¢ (yz + y;) and GNK = (1 + *)(H) it follows that cj1y €
col(G™) and similarly c14y € col(K™). It therefore follows from Lemma [1.4] that
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there exist wy € col(G"), w; € col(H*) wy € col(K1) and dy,d,, dy € mat(Z™)
such that y = dywq + d(wy 4+ w3) + dywy while c11d4 and c14d; are even. Thus

X c c c
1 11 21 21 O dz ( 0dy ) d4 (]/21 )
Xo | _ 12 €22 (23 0 0 Wy
x5 c12 €23 2 (10) 0 ()
X4 Cl4 C24 C24 Wy
c11d1 C11( d2)+C21(IO) C11(0d2>+C21(IO) c11ds w1
Y2
| endi cn(om)+en(10) cp(0d)+en(10) cndy | [ (i)
c1od1 C12(0d2)—|—C23(10) C12(0d2)—|—C22(10) C12dy (%22
C14d1 C14(0d2)—|—C24(IO) C14(0d2>—|—C24(IO) C14dy Wy

with c¢11d4 and c14d7 even and

211 E21 E21 4 (0 d2) (0 dz) d,
(a7 ay ap ag) |72 "2 "B lo (1 0) 0 0] =0 1
12 €23 €22 0 0 (I 0) 0
Cl4 C24 C24
The following lemma is required in Corollary [1.8| and Theorem I am
grateful to Professor Ken Goodearl for pointing this out and for supplying the
proof.

LEMMA 1.6. Let H be a dimension group with an involution * such that, whenever
a,b € H" witha < band a* < b, then there exists c = ¢* witha < ¢ < b. Then
F = ker(1 — ) is a dimension group.

Proof. The non-obvious condition is interpolation, which it suffices to check
within F*. So let x1,x2,y1,y2 € F with x; < y; for all i,j. By interpolation
in H there exists z € H with x; < z < Y for all 4,j and then x; < z* < Y.
By interpolation again, there exists w & HT with z,z* < w < y1,Y2. Then, by
assumption, there exists ¢ € F™ with z < ¢ < w and therefore x; < ¢ < Y for all
i,f, as required. 1

It is shown in Theorem 8.4 of [1]] that the classifying invariants from [1] and
[2] for unital real approximately finite dimensional C*-algebras are sequences of
the form

(G,v) — (H,v) 23 (K, 2v),

where H is a countable dimension group with order unit v and involution * and
G and K are subgroups of Fix(*) containing (1 + *)(H) such that v € G. In the
simplicial situation, where H = Z' x Z* with * = 1 x f for f(a,b) = (b,a),
there exist u,v with u +v = r such that G = 2Z" X Z x D; and K = Z" x
277 x D¢, where D, = {(m,m) : m € Z°}. The sequences which arise in the
range of the classifying invariant are the inductive limits of sequences of these
special simplicial cases. The next result gives conditions on H ensuring that all
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the sequences
(G,v) -5 (H,v) 25 (K, 2v)

described above arise in this way. Note that when * = 1 (so that the sequence
corresponds to an algebra of type rh by Theorem 7.9 of [1]]), the result reduces
to Theorem 9.2 of [1]. When ker(1 — %) = (1 + *)H (and therefore G = K =
ker(1 — %)), the sequence corresponds to an algebra of type ¢ by Theorem 7.13 of
[1] and the result reduces to Theorem 10.6 of [1].

THEOREM 1.7. Let H be a countable dimension group with an order unit v and
an involution x, let ker(1+ x) = (1 —*)(H), let (1+*)(H") = [(1+ *)H]" and let
G, K be subgroups of ker(1 — %) withv € G, GNK = (1 +*)(H) and Gt + Kt =
ker(1 — *)*. Assume that, whenever a,b € H' with a < b and a* < b, then there
exists c = c* witha < c < b.

Then the sequence

(G,v) -5 (H,v) 25 (K, 2v)

is in the range of the classifying invariant for unital real approximately finite dimensional
C*-algebras.

Proof. By Theorem 8.4 and Proposition 8.5 of [1] it suffices to show that if
x1 € col(GT), xo € col(H"), x4 € col(K") and ay,ay,4a3,a4 € row(Z) such that
a1x1 + axy + a3xh + agxy = 0 then there exist y; € col(GT), y» € col(H"),
Y4 € COI(K+) and bll/ b21, b41, b12, bzz, b23, l’J42, b14, l’J24, b44 S mat(Z*) such that b14
and by, are even while

X1 b1 b by b\ [
X2 bip by by by | |y

= d
x5 bip by by by ||y an
X4 bia bog by bas) \ya

bir by by by
bip bn by bn| _
bip by bxn by ’
bia byy by by

The condition a;x1 + axxy +azx; +asx, = 0implies a1 x1 +axx; +azxp +asx, =0
and hence 2a1x1 + (ax 4 a3) (xp + x5) + 2a4x4 = 0 and (a, —a3)(x2 — x3) = 0.
Applying Lemmal(I.5|to the first of these produces a matrix

C11 €21 €21 C41
Cc— |2 22 B
Cl2 C23 (22 C42
Cla C24 C24 Cyq
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and z; € col(G"), zp € col(H™), z4 € col(K™) such that c14 and ¢4 are even,

X1 21
X2 Z2
1 =C " and (2&1 ap +az da; +as 26!4) Cc=0.
*2 2
X4 Z4

From (a; — a3)(x2 — x3) = 0 it follows that (a, — a3)(c22 — ¢23)(z2 — z3) = 0 and
therefore, by Lemma there exist y; € col(G1),y, € col(H"), y4 € col(K™T)
and 71,54, 91,92,93,94 € mat(Z+) such that (Elz — a3)(c22 — Cz3)((]2 — Q3) =0and

Z1 1 r 0 0 0
Zi =D |Y i whereD = [Tt 92 43 44
2 Y2 q1 93 42 44
Z4 y4 0 0 0 S4

The condition (a; — a3)(co2 — ¢23) (92 — g3) = 0 implies

(0 ap —asz dsz —ap O)CD

(i1 e ¢ e (1 0 0 0
Cl2 C» €3
—(0 ay—as as—ay 0) 12 Cn (3 Capf fq1 92 43 G4 | _
€12 €3 (2 C42 g1 43 42 44
Cl4 C24 Co4 Caq 0 0 0 s

Combining this with
(2011 ap +az ap—+as 2614) CcC=0

gives
(a1 ap as 114) CD =0.
Also
X1 Y1
X
X4 Ya

where B = CD has the required form. &

It is noted in [1]] that the condition that whenever a,b € H* witha < b and
a* < b, then there exists ¢ = ¢* with a < ¢ < b may possibly be a consequence of
the other conditions of Theorem [1.7]and it is shown there that this is indeed the
case when H is simple.

COROLLARY 1.8. Let H be a simple countable dimension group with an order unit
v and an involution x satisfying ker(1 + %) = (1 — x)(H) and let G, K be subgroups of
ker(1 — *) with GNK = (1 + %) (H) and G + K = ker(1 — *). Then the sequence

(G,v) — (H,v) 2% (K, 2v)
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is in the range of the classifying invariant for unital real approximately finite dimensional
simple C*-algebras.

Proof. It is shown in Lemma 10.7 of [1] and the following comment that a
simple countable dimension group H with an involution * satisfies (1 + *)(H™)
= [(14 *)H]" and the condition that, whenever a,b € H' witha < band a* < b,
then there exists ¢ = ¢* witha < ¢ < b.

Note that if H is simple then F = ker(1 — %) is also simple, because the ideal
in H generated by anideal Iin Fis | = {h € H: —x < h < x for some x € [}
and ] N F = I. It therefore follows from Lemma 9.3 of [1] and Lemma[I.6]that the
condition G* + K™ = Ker(1 — *) " can be weakened to G + K = ker(1 — ). 1

The example on page 78 of [1]] shows that the condition ker(1 + %) = (1 —
*)(H) cannot be omitted from the statement of Corollary

2. THE NON-UNITAL CASE

As in Theorem 13.13 of [1]], the non-unital case can be deduced from the uni-
tal one. Let H be a dimension group with involution * and let D be a generating
interval in H". Define H® = Z x H with the involution (m, h)* = (m,h*) and the
positive cone H°" = {(m,h) : m > 0 and ma+h > 0 for some a € D} and note
from Proposition 12.6 of [1] that H® is a dimension group, (1,0) is an order unit
for H°and that D = {h € H: 0 < (0,h) < (1,0)}.

LEMMA 2.1. Let H be a dimension group with involution *, let E be the kernel of
1+ %: H — H and let E° be the kernel of 1 + * : H® — H°.
() IfE = (1 — %)H, then E® = (1 — *)H".
@) If 1+ =*)(H') = [(1+*)H]* then (1 + *)(H°") = [(1 + *)H°] .

Proof. (i) We have:
E° ={(m,h): (2m,h+h") = (0,0)}
={(0,(1—%)x):x€ H} ={(m,x) — (m,x)*: (m,x) € H°} = (1 — *)H°.

(i) Let (1+*)(H") = [(1+ *)H]" and let (2m,h + h*) € (1 + *x)H® with
2m > 0and 2ma+h+h* > 0 forsomea € D. Then (ma+h)+ (ma+h)* € [(1+
«)H]" = (14 *)(H") so (ma+h)+ (ma+h)* = y+y* forsome y > 0. It follows
from ma + (y — ma) > 0 that (m,y — ma) > 0. Therefore (2m,h + h*) = (1+
*)(m,y —ma) € (14 x)(H°"), which shows that [(1+ *)H®]" C (1 + *)(H°").
The reverse inclusion is clear. 1

LEMMA 2.2. Let H be a dimension group with involution * and assume that,
whenever a,b € H witha < b and a* < b, there exists ¢ = c* witha < ¢ < b. Then,
whenever (m,a), (n,b) € H°" with (m,a) < (n,b) and (m,a)* < (n,b), there exists
(p,e) = (p,e)* € H°" with (m,a) < (p,e) < (n,b).
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Proof. Let (m,a),(n,b) € H*" with (m,a) < (n,b) and (m,a)* < (n,b), so
n—m > 0 and there exist ¢,¢’ € D with (n —m)c+b—a > 0and (n —m)c' +
b—a*>0.Letd € D be an upper bound for c and ¢’. Then (n —m)d+b—a >0
and (n —m)d+b—a* > 0. Let f = f* € Hwitha+f > 0,a*+ f > 0and
(n—m)d+ b+ f > 0so that there exists ¢/ = ¢* € Hwitha+ f < ¢ < (n—
m)d + b+ f and thereforee = ¢/ — f withe = e¢*anda < e < (n —m)d+b. Then
(m,a) < (m,e) < (n,b). 1

The following extension of Theorem 13.13 of [1] now follows with an almost
identical proof.

THEOREM 2.3. Let H be a countable dimension group with an involution *, let D
be a generating interval in H™, let ker(1+ ) = (1 — ) (H), let (1+=*)(H') = [(1+
«)H] " and let G, K be subgroups of ker(1 — ) with GNK = (1+ x)(H), Gt + Kt =
ker(1 — %) and each element of D bounded above by an element of D N G. Assume that,
whenever a,b € HT with a < band a* < b, then there exists c = ¢* witha < ¢ < b.

Then the sequence

(G,DNG) - (H,D) 5 (K,2DNK)

is in the range of the classifying invariant for real approximately finite dimensional C*-
algebras.

Proof. Let G° = Z x G and K° = 2Z x K. Then G° and K° are subgroups of
H° such that v = (1,0) € G. Using Lemma 1.6} the proof of Theorem 13.13 of [I]
shows that GOt + K°T = FOT, where F° is the kernel of 1 — * : H® — H°. Also

G°NK°={(2m,g) : g€ GNK}={(m,h) + (m,h)* : (m,h) € H°} =(1 + *)H°.

The conditions of Theorem [1.7] therefore apply to yield a unital algebra S corre-
sponding to the diagram

1

L5 (H°,(1,0))

Y: (G°(1,0)) 5 (K°,(2,0)).

Let W be the diagram
W: (Z,1) -2 (Z,2) 25 (Z,4)

and let ¢ be the morphism from Y to W with t;(m,x) = m for all (m,x) € G°,
ta(m,x) = 2m for all (m,x) € H® and t3(m,x) = 2m for all (m, x) € K°. As in [1]
there exists an R-algebra map ¢ : S — H giving rise to t. Let R be the ideal ker(1)
of S, which is also a direct limit of finite dimensional real algebras, and note that
if S/R = C then t, factors as

(H°, (1,0)) -2 (22,(1,1)) “"224*" (7,2).

Forh > 0, t,(0,h) = 0 and r2(0,h) > (0,0), so 72(0,h) = (0,0). Thus rp(H®) =
{(m,m) : m € Z}. However, since K; (R ® C) = 0, the map ry, arising from the
surjection from S ® C to C?, is surjective, giving a contradiction. Thus S/R = R
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or S/R = H. Lemma 13.12 of [I]] therefore applies to show that the diagram
associated with R is
(ker(t1), E1) — (ker(t2), E2) —5 (ker(t3), E3)
where E; = {x € ker(#1) : 0 < x < (1,0)}, E; = {x € ker(tp) : 0 < x < (1,0)}
and E3 = {x € ker(#3) : 0 < x < (2,0)}. Asin [I]] the diagram is isomorphic to
(G,DNG) -5 (H,D) 3 (K,2DNK),

as required. 1
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