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INTRODUCTION

Let X be a complex Banach space and B(X) be the Banach algebra of all
bounded linear operators on X. When we consider the operator structure of Ba-
nach spaces, an important and fundamental problem is: how to determine the
complete similarity invariants of operators. Two operators A, B ∈ B(X) are said
to be similar in B(X) if there exists an invertible operator S ∈ B(X) such that
SA = BS. When X is finite dimensional, the Jordan Standard Theorem indicates
that the eigenvalues and the generalized eigenspaces of an operator form a com-
plete set of similarity invariants. In 1978, M.J. Cowen and R.G. Douglas pointed
out that the problem has no general solution when X is a complex infinite dimen-
sional Banach space (see [3]). Thus people can only restrict attention to special
classes of operators.

In the paper, our main purpose is to characterize similarity invariants of
strongly irreducible operators on hereditarily indecomposable space by using K-
theory and Banach algebras. It is strongly inspired by the following two aspects:
Firstly, G. Elliott, G. Gong and many other mathematicians gave successful classi-
fication of a large class of C∗-algebras by applying K-theory and tracial state space
as an isomorphism invariant, which is called Elliott invariant (see [4], [5], [6], [7],
[9]). Secondly, the hereditarily indecomposable space constructed by W. Gowers
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and B. Maurey provided very nice structure of operators, i.e., each operator T on
hereditarily indecomposable space is of the form T = λ + S, where λ is a scalar
operator, S is a strictly singular operator.

An infinite dimensional Banach space X is called a hereditarily indecomposable
(H.I.) space if no infinite dimensional closed subspace of X is the complemented
sum of two further infinite dimensional closed subspaces. The first known exam-
ple of H.I. spaces was constructed by W.T. Gowers and B. Maurey [10]. Since then
the class of Gowers–Maurey spaces has been extensively studied.

An operator T ∈ B(X) is said to be strongly irreducible if there do not ex-
ist two non-trivial closed invariant subspaces M and N of T such that X is the
complemented sum of M and N.

The concept of strongly irreducible operators was raised as an approximate
replacement of Jordan blocks on infinite dimensional spaces. In the matrix the-
ory of finite dimensional spaces, the Jordan Standard Theorem sufficiently reveals
the internal structure of operators. Every operator on a finite dimensional space
is similar to a unique Jordan standard form. A Jordan standard form is the di-
rect sum of some fundamental elements — Jordan blocks. It is easy to prove that
every strongly irreducible operator on finite dimensional spaces admits a Jordan
block representation with respect to some basis. As far as we know, F. Gilfeather
[8] and Z.J. Jiang gave the concept of strongly irreducible operators, respectively.
Z.J. Jiang further pointed out that the strongly irreducible operators can be con-
sidered as the approximate replacement of Jordan blocks on infinite dimensional
spaces and hoped that a theorem similar to the Jordan Standard Theorem can be
set up with this replacement. The work of D.A. Herrero, S. Power and C.L. Jiang
have answered a number of questions about operator structure of Hilbert spaces
raised by D.A. Herrero and Z.J. Jiang (see [2], [11], [12], [13], [14], [15]).

The main result of this paper is that: let T1 and T2 be strongly irreducible
operators on a H.I. space. Then T1 and T2 are similar if and only if the K0-group
of the commutant algebra of the direct sum of T1 and T2 is isomorphic to integer
group Z. This result will appear in Section 1 as Theorem 1.1.

In order to support our main result, we show that every operator on sepa-
rable H.I. spaces with connected spectrum is strongly irreducible by a small com-
pact perturbation in Section 2.

On a H.I. space, an operator with connected spectrum is just a scalar op-
erator plus a quasi-nilpotent operator. In fact, we only need to show that each
quasi-nilpotent operator T is strongly irreducible by a small compact perturba-
tion. If the kernel of T is trivial, then T is naturally strongly irreducible. If the
kernel of T is of finite dimension, we could easily perturb T to kill kernel of T
while keeping the operator quasi-nilpotent. The key difficulty is the following
case: T is quasi-nilpotent and the dimension of kernel of T and the co-dimension
of the closure of the range of T are both infinite. The following example shows
that such an operator actually exists.
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EXAMPLE 0.1. Let X be a Banach space with a Schauder basis {ei} and let
{ fi} ⊆ X∗ be the sequence of coefficient functionals associated to the basis {ei},
where X∗ is the dual space of X. Let

T =
∞

∑
i=1

ai f2i ⊗ e2i+2,

where ai = 1/2i‖ f2i‖‖e2i+2‖. It is easy to prove that T ∈ B(X) is a quasi-
nilpotent operator, the kernel of T is span{e2i−1} and the range of T is contained
in span{e2i}.

Generally, when a Banach space X is separable, there still exists an operator
T ∈ B(X) such that T is quasi-nilpotent and the dimension of kernel of T and the
co-dimension of the closure of the range of T are both infinite. It can be referred
to Lemma 2.5 in this paper.

The difficulty to resolve the problem in the above case is that not all closed
subspaces are complemented in H.I. spaces. Thus the skills in Hilbert spaces can
not be used in H.I. spaces. So we consider the concept of quasi-complementary
subspaces and use a lot of lemmas to overcome the difficulty. Up to now, we have
not found a much easier way to prove it.

Now we give some definitions and notations.
In the paper, C denotes the complex number field, Z denotes the group of

integers, N = {1, 2, . . .} and N+ = {0, 1, 2, . . .}. Throughout, we assume that all
Banach spaces are complex. For an operator T ∈ B(X) denote by ker T and ranT
its kernel ker T = {x ∈ X : Tx = 0} and range ranT = {Tx : x ∈ X}, respectively.
We denote by ranT the norm-closure of ranT. Denote the spectrum of T, the point
spectrum of T and the compressed spectrum of T by σ(T) = {λ ∈ C : T − λ is
not invertible}, σp(T) = {λ ∈ C : ker(T − λ) 6= {0}} and σγ(T) = {λ ∈ C :
ran(T − λ) 6= X}, respectively.

For an operator T ∈ B(X) denote the commutant algebra of T by A′(T) =
{S ∈ B(X) : ST = TS}. It is obvious that A′(T) is a Banach algebra with unit I.
Denote the Jacobson radical of A′(T) by radA′(T) = {S ∈ A′(T) : σA′(T)(SS′) =
{0} for every S′ ∈ A′(T)}, where σA′(T)(S) = {λ ∈ C : S− λ is not invertible in
A′(T)} is the spectrum of S in A′(T). It is clear that radA′(T) is a closed ideal of
A′(T).

Let T ∈ B(X). A closed subspace M of X is said to be an invariant subspace
of T if T(M) ⊆ M. Denote by T|M the restriction of T to M. Denote by Red(T)
the set {(M, N) : X is a direct sum of two closed subspaces M and N, namely
X = M⊕ N, and M, N are invariant subspaces of T}. (M, N) ∈ Red(T) is said to
be non-trivial if M 6= {0} and N 6= {0}.

REMARK 0.2. Recall the definition of strongly irreducible operators: T ∈
B(X) is said to be strongly irreducible if there exists no non-trivial (M, N) ∈
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Red(T). Denote the set of strongly irreducible operators on X by (SI)(X) which
is abbreviated to (SI). We can obtain the following:

(i) T ∈ (SI) if and only if A′(T) has no non-trivial idempotent, namely if
P ∈ A′(T) with P2 = P, then P = 0 or P = I.

(ii) If T ∈ (SI), then λT + µ ∈ (SI) for every λ, µ ∈ C, λ 6= 0.

Let X be an infinite dimensional Banach space and let T ∈ B(X). T is said
to be strictly singular if there exists no infinite dimensional closed subspace M of
X such that the restriction of T to M is an isomorphism.

REMARK 0.3. Suppose that T is a strictly singular operator.
(i) σ(T) = {0} ∪ σp(T).

(ii) σ(T) is an at most countable set with 0 as the only possible point of accu-
mulation.

(iii) For every λ 6= 0, T − λ is a Fredholm operator with index 0, namely
dim(ker(T − λ)) = dim(X/ran(T − λ)) < ∞.

In the paper, the sequences {xi}∞
i=1 ⊆ X and { fi}∞

i=1 ⊆ X∗ are abbreviated to
{xi} and { fi}, respectively. We denote by span{xi} and span{ fi} the linear span
of {xi} and { fi}, respectively. The norm-closure of span{xi} and the w∗-closure

of span{ fi} are denoted by span{xi} and span{ fi}
w∗

, respectively.
Let X1 and X2 be Banach spaces. Two operators A1 ∈ B(X1) and A2 ∈

B(X2) are said to be similar if there exists an invertible operator T from X1 onto

X2 such that T−1 A2T = A1, denoted by A1 ∼ A2. Let A1 ⊕ A2 =

(
A1 0
0 A2

)
denote the direct sum of A1 and A2 on X1 ⊕ X2. In the case where A1 = A2, we
write A(2)

1 instead of A1 ⊕ A1.
Let A1 and A2 be Banach algebras and let G1 and G2 be groups or semi-

groups. We write A1 ≈ A2 if A1 and A2 are algebraic isomorphic and G1 ≈ G2 if
G1 and G2 are group isomorphic.

1. SIMILARITY INVARIANTS

In this section we use K-theory to study the similarity invariants of opera-
tors on H.I. spaces. We show that two (SI) operators T1 and T2 on a H.I. space
are similar if and only if the K0-group of the commutant algebra of the direct sum
T1 ⊕ T2 is isomorphic to the integer group Z.

Now we give the definition of the K0-group of a unital Banach algebra.
Let A be a unital Banach algebra and let n ∈ N. We denote by Mn(A) the

set of (n× n)-matrices over A. The set of idempotents in A is denoted by P1(A),
namely P1(A) = {P ∈ A : P2 = P}. Accordingly the set of idempotents in
Mn(A) is denoted by Pn(A), namely Pn(A) = P1(Mn(A)). Two idempotents
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P, Q ∈ Pn(A) are said to be similar in Pn(A) if there exists an invertible element
U ∈ Mn(A) such that U−1PU = Q, denoted by P ∼ Q.

Define P∞(A) =
⋃

n∈N
Pn(A). We say that P ∈ Pn(A) and Q ∈ Pm(A)

are equivalent, written P ∼e Q, if there exists k > max {m, n} such that (P ⊕
0(k−n)) ∼ (Q⊕ 0(k−m)) in Pk(A).

Clearly,∼e is an equivalence relation on P∞(A). Therefore we may form the
quotient

∨
(A) = P∞(A)/ ∼e. Let [P] denote the equivalence class of P ∈ P∞(A)

in
∨
(A). One easily checks that the operation∨

(A)×∨(A) −→ ∨
(A),

([P], [Q]) 7−→ [P⊕Q].

is well-defined and turns
∨
(A) into a commutative semigroup.

We define K0(A) to be the Grothendieck group of
∨
(A) ([1]).

The following is the main theorem in this section.

THEOREM 1.1. Let X be a H.I. space, let A1, A2 ∈ (SI)(X) and let

A = A1 ⊕ A2.

Then A1 ∼ A2 if and only if K0(A′(A)) ≈ Z.

In order to prove the theorem, we need the following lemmas.

LEMMA 1.2. Let X1 and X2 be Banach spaces. Let Ai ∈ B(Xi) such that

A′(Ai)/radA′(Ai) ≈ C

for i = 1, 2 and A1 is not similar to A2. If there exist T ∈ B(X1, X2) and S ∈ B(X2, X1)
such that A2T = TA1 and A1S = SA2, then ST ∈ radA′(A1) and TS ∈ radA′(A2).

Proof. Since A2T = TA1 and A1S = SA2, then A1ST = SA2T = STA1. Thus
ST ∈ A′(A1). In the same way, TS ∈ A′(A2).

Suppose that ST /∈ radA′(A1) and TS /∈ radA′(A2). Since

A′(Ai)/radA′(Ai) ≈ C

for i = 1, 2, then ST = λ1 + R1 and TS = λ2 + R2, where 0 6= λ1, λ2 ∈ C, R1 ∈
radA′(A1), R2 ∈ radA′(A2). By the definition of Jacobson radical, σA′(A1)

(R1) =

σA′(A2)
(R2) = {0}. Then σ(R1) = σ(R2) = {0}, so σ(ST) = {λ1} and σ(TS) =

{λ2}. Since λ1 6= 0 and λ2 6= 0, then ST and TS are both invertible. So S and T
are both invertible and thus A1 ∼ A2, which is a contradiction.

From the above, ST ∈ radA′(A1) or TS ∈ radA′(A2). Without loss of
generality, we may assume that ST ∈ radA′(A1). Then σ(ST) = σA′(A1)

(ST) =
{0}, so σ(TS) = {0} by σ(ST)\{0} = σ(TS)\{0}. SinceA′(A2)/radA′(A2) ≈ C,
then TS = λ + R, where λ ∈ C, R ∈ radA′(A2). Since σ(R) = {0}, thus λ = 0,
so TS = R ∈ radA′(A2).
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LEMMA 1.3. Let X be a Banach space and let A ∈ B(X). Then

A′(A(2))/radA′(A(2)) ≈ M2(A′(A)/radA′(A)).

Proof. It is obvious that

A′(A(2)) =

{(
T11 T12
T21 T22

)
: Tij ∈ A′(A), i, j = 1, 2

}
.

Let

J =
{(

T11 T12
T21 T22

)
: Tij ∈ radA′(A), i, j = 1, 2

}
.

Claim 1. radA′(A(2)) ⊆ J.

For every T =

(
T11 T12
T21 T22

)
∈ radA′(A(2)), to show T ∈ J, we only need

to show Tij ∈ radA′(A) for i, j = 1, 2.

Since radA′(A(2)) is an ideal of A′(A(2)) and
(

I 0
0 0

)
∈ A′(A(2)), we

have (
T11 0
0 0

)
=

(
I 0
0 0

)(
T11 T12
T21 T22

)(
I 0
0 0

)
∈ radA′(A(2)).

Therefore T11 ∈ radA′(A). In the similar way, we can conclude that T22, T12, T21 ∈
radA′(A).

Claim 2. J ⊆ radA′(A(2)).

Let T =

(
T11 T12
T21 T22

)
∈ J, then Tij ∈ radA′(A) for i, j = 1, 2.

For every S =

(
S11 S12
S21 S22

)
∈ A′(A(2)), then S11 ∈ A′(A). Since radA′(A)

is an ideal ofA′(A) and T11 ∈ radA′(A), then T11S11 ∈ radA′(A). So σ(T11S11) =
{0}. Therefore

σ

((
T11 0
0 0

)(
S11 S12
S21 S22

))
= σ

((
T11S11 T11S12

0 0

))
= {0},

namely
(

T11 0
0 0

)
∈ radA′(A(2)). Similarly, we obtain(

0 T12
0 0

)
,
(

0 0
T21 0

)
,
(

0 0
0 T22

)
∈ radA′(A(2)).

Since radA′(A(2)) is a linear space, then T ∈ radA′(A(2)).
By Claim 1 and Claim 2, we conclude that radA′(A(2)) = J.

For every T =

(
T11 T12
T21 T22

)
∈ A′(A(2)), then Tij ∈ A′(A). Denote by T the

equivalence class of T inA′(A(2))/radA′(A(2)) and denote by Tij the equivalence
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class of Tij in A′(A)/radA′(A). Define a map

f : A′(A(2))/radA′(A(2)) −→ M2(A′(A)/radA′(A)),

T 7−→
(

T11 T12
T21 T22

)
.

It is clear that f is well-defined and f is an algebraic isomorphism from A′(A(2))

/radA′(A(2)) onto M2(A′(A)/radA′(A)). So

A′(A(2))/radA′(A(2)) ≈ M2(A′(A)/radA′(A)).

LEMMA 1.4. Let X1 and X2 be Banach spaces. Let Ai ∈ B(Xi) such that

A′(Ai)/radA′(Ai) ≈ C

for i = 1, 2 and A1 is not similar to A2. Put A = A1 ⊕ A2 ⊕ A2. Then

A′(A)/radA′(A) ≈ C⊕M2(C).

Proof. It is obvious that

A′(A) =

{ T11 T12 T13
T21 T22 T23
T31 T32 T33

 :
T11 ∈ A′(A1)
Tij ∈ A′(A2), i, j = 2, 3
T1i A2 = A1T1i, Ti1 A1 = A2Ti1, i = 2, 3

}
.

Let

J =

{ T11 T12 T13
T21 T22 T23
T31 T32 T33

 :
T11 ∈ radA′(A1)
Tij ∈ radA′(A2), i, j = 2, 3
T1i A2 = A1T1i, Ti1 A1 = A2Ti1, i = 2, 3

}
.

Claim 1. J is an ideal of A′(A).
It is easy to prove that J is a linear subspace of A′(A). Let

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ∈ J and S =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 ∈ A′(A).

We prove TS ∈ J in the following. ST ∈ J can be obtained in the same way.
Since T11 T12 T13

T21 T22 T23
T31 T32 T33

 S11 S12 S13
S21 S22 S23
S31 S32 S33


=

 T11S11 + T12S21 + T13S31 T11S12 + T12S22 + T13S32 T11S13 + T12S23 + T13S33
T21S11 + T22S21 + T23S31 T21S12 + T22S22 + T23S32 T21S13 + T22S23 + T23S33
T31S11 + T32S21 + T33S31 T31S12 + T32S22 + T33S32 T31S13 + T32S23 + T33S33

,

(T11S1i + T12S2i + T13S3i)A2 = T11 A1S1i + T12 A2S2i + T13 A2S3i

= A1(T11S1i + T12S2i + T13S3i)
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and

(Ti1S11 + Ti2S21 + Ti3S31)A1 = Ti1 A1S11 + Ti2 A2S21 + Ti3 A2S31

= A2(Ti1S11 + Ti2S21 + Ti3S3i)

for i = 2, 3, it suffices to prove

T11S11 + T12S21 + T13S31 ∈ radA′(A1)

and
Ti1S1j + Ti2S2j + Ti3S3j ∈ radA′(A2), i, j = 2, 3.

Since radA′(A1) is an ideal of A′(A1), T11 ∈ radA′(A1) and S11 ∈ A′(A1),
we have T11S11 ∈ radA′(A1). Similarly, since radA′(A2) is an ideal of A′(A2),
Tik ∈ radA′(A2) and Skj ∈ A′(A2), we have TikSkj ∈ radA′(A2), i, k, j = 2, 3.

Since T1i A2 = A1T1i and Si1 A1 = A2Si1, then T1iSi1 ∈ radA′(A1) for i = 2, 3
by Lemma 1.2. In the same way, we can conclude that Ti1S1j ∈ radA′(A2) for
i, j = 2, 3 from Ti1 A1 = A2Ti1 and S1j A2 = A1S1j.

From the above, since radA′(A1) and radA′(A2) are linear spaces, then
T11S11 + T12S21 + T13S31 ∈ radA′(A1) and Ti1S1j + Ti2S2j + Ti3S3j ∈ radA′(A2),
i, j = 2, 3.

Claim 2. radA′(A) ⊆ J.

For every T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ∈ radA′(A), similarly to the proof of

Claim 1 in Lemma 1.3, we can conclude that

T11 ∈ radA′(A1) and Tij ∈ radA′(A2)

for i, j = 2, 3. So T ∈ J.
Claim 3. J ⊆ radA′(A).
Since J is an ideal of A′(A), it suffices to prove σ(T) = {0} for every T ∈ J.

Let T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ∈ J. For every λ 6= 0, since T11 ∈ radA′(A1),

then σ(T11) = {0}. So T11 − λ is invertible and

(T11 − λ)−1 A1 = A1(T11 − λ)−1.

Let i, j = 2, 3. Since T1i A2 = A1T1i, we conclude that

(T11 − λ)−1T1i A2 = (T11 − λ)−1 A1T1i = A1(T11 − λ)−1T1i.

Notice that Tj1 A1 = A2Tj1, by Lemma 1.2,

Tj1(T11 − λ)−1T1i ∈ radA′(A2).

Since Tji ∈ radA′(A2), then

Tji − Tj1(T11 − λ)−1T1i ∈ radA′(A2).
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By Claim 2 in Lemma 1.3,(
T22 − T21(T11 − λ)−1T12 T23 − T21(T11 − λ)−1T13
T32 − T31(T11 − λ)−1T12 T33 − T31(T11 − λ)−1T13

)
∈ radA′(A(2)

2 ).

Hence(
T22 − T21(T11 − λ)−1T12 T23 − T21(T11 − λ)−1T13
T32 − T31(T11 − λ)−1T12 T33 − T31(T11 − λ)−1T13

)
− λ

=

(
(T22 − λ)− T21(T11 − λ)−1T12 T23 − T21(T11 − λ)−1T13

T32 − T31(T11 − λ)−1T12 (T33 − λ)− T31(T11 − λ)−1T13

)
is invertible.

Now notice that T11 − λ T12 T13
0 (T22 − λ)− T21(T11 − λ)−1T12 T23 − T21(T11 − λ)−1T13
0 T32 − T31(T11 − λ)−1T12 (T33 − λ)− T31(T11 − λ)−1T13


and  I 0 0

−T21(T11 − λ)−1 I 0
−T31(T11 − λ)−1 0 I


are both invertible and I 0 0
−T21(T11 − λ)−1 I 0
−T31(T11 − λ)−1 0 I

 T11 − λ T12 T13
T21 T22 − λ T23
T31 T32 T33 − λ


=

 T11 − λ T12 T13
0 (T22 − λ)− T21(T11 − λ)−1T12 T23 − T21(T11 − λ)−1T13
0 T32 − T31(T11 − λ)−1T12 (T33 − λ)− T31(T11 − λ)−1T13

,

then

T − λ =

 T11 − λ T12 T13
T21 T22 − λ T23
T31 T32 T33 − λ


is invertible and thus σ(T) = {0}.

By Claim 2 and Claim 3, we conclude that radA′(A) = J.

For every T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ∈ A′(A), where T11 ∈ A′(A1) and Tij ∈

A′(A2) for i, j = 2, 3, since A′(Ak)/radA′(Ak) ≈ C for k = 1, 2, then T11 =
λ11 + R11 with λ11 ∈ C, R11 ∈ radA′(A1) and Tij = λij + Rij with λij ∈ C,
Rij ∈ radA′(A2) for i, j = 2, 3. So

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 =

 λ11 0 0
0 λ22 λ23
0 λ32 λ33

+

 R11 T12 T13
T21 R22 R23
T31 R32 R33

,
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where

 R11 T12 T13
T21 R22 R23
T31 R32 R33

 ∈ J = radA′(A). Define a map

f : A′(A)/radA′(A) −→ C⊕M2(C),

T 7−→

 λ11 0 0
0 λ22 λ23
0 λ32 λ33

,

where T denotes the equivalence class of T in A′(A)/radA′(A). It is clear that
f is well-defined and f is an algebraic isomorphism from A′(A)/radA′(A) onto
A′(A)/radA′(A). So

A′(A)/radA′(A) ≈ C⊕M2(C).
Similarly to the proof of Lemma 1.4, we can obtain the following

LEMMA 1.5. Let {Xi : 1 6 i 6 k} be Banach spaces. Let Ai ∈ B(Xi) such that
A′(Ai)/radA′(Ai) ≈ C for i = 1, 2, . . . , k and Ai is not similar to Aj for i 6= j. Set

A =
k

∑
i=1

⊕
A(ni)

i on
k

∑
i=1

⊕
X(ni)

i . Then

A′(A)/radA′(A) ≈
k

∑
i=1

⊕
Mni (C).

Proof. In fact, we can prove the following results:

A′(A) = {(Tij)
k
i,j=1 : Tii ∈ A′(A(ni)

i ), Tij A
(nj)

j = A(ni)
i Tij, i, j = 1, 2, . . . , k}

and

radA′(A) = {(Tij)
k
i,j=1 : Tii ∈ radA′(A(ni)

i ), Tij A
(nj)

j = A(ni)
i Tij, i, j = 1, 2, . . . , k},

where
A′(A(ni)

i ) = {(tml)
ni
m,l=1 : tml ∈ A′(Ai), m, l = 1, 2, . . . , ni}

and

radA′(A(ni)
i ) = {(tml)

ni
m,l=1 : tml ∈ radA′(Ai), m, l = 1, 2, . . . , ni}.

LEMMA 1.6. Let {Xi : 1 6 i 6 k} be Banach spaces. Let Ai ∈ B(Xi) such that
A′(Ai)/radA′(Ai) ≈ C for i = 1, 2, . . . , k and Ai is not similar to Aj for i 6= j. Set

A =
k

∑
i=1

⊕
A(ni)

i on
k

∑
i=1

⊕
X(ni)

i . Then

∨
(A′(A)) ≈ N(k)

+ , K0(A′(A)) ≈ Z(k).

Proof. From the proof of Lemma 1.3, we can obtain that

A′(A(n))/radA′(A(n)) ≈ Mn(A′(A)/radA′(A))

for every n.
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Define a map g :
∨
(A′(A)) −→ ∨

(A′(A)/radA′(A)) by

g([P]) = [P],

where P ∈ Mn(A′(A)) = A′(A(n)) is an idempotent and

P ∈ A′(A(n))/radA′(A(n)) ≈ Mn(A′(A)/radA′(A))

denotes the equivalence class of P in A′(A(n))/radA′(A(n)).
In the following, we show that g is well-defined and it is an isomorphism

from
∨
(A′(A)) onto

∨
(A′(A)/radA′(A)).

If [P] = [Q], where P ∈ A′(A(n)) and Q ∈ A′(A(m)) are idempotents, then
there exist k > max{m, n} and an invertible element U ∈ A′(A(k)) such that

U(P⊕ 0(k−n))U−1 = Q⊕ 0(k−m).

So U is invertible and

U · P⊕ 0(k−n) ·U−1
= U(P⊕ 0(k−n))U−1 = Q⊕ 0(k−m).

Thus [P] = [Q], namely g([P]) = g([Q]). Hence g is well-defined.
Now we show that g is injective. If P ∈ A′(A(n)) and Q ∈ A′(A(m)) are

idempotents such that

g([P]) = [P] = [Q] = g([Q]),

then there exist k > max{m, n} and an invertible element

U ∈ A′(A(k))/radA′(A(k))

with U ∈ A′(A(k)) such that

U · P⊕ 0(k−n) ·U−1
= Q⊕ 0(k−m).

Since U is invertible, there exists S ∈ A′(A(k))/radA′(A(k)) with S ∈ A′(A(k))
such that

US = U · S = I = S ·U = SU.

Then US = I − R1 and SU = I − R2 for some R1, R2 ∈ radA′(A(k)). Since
σ(R1) = σ(R2) = {0}, then SU and US are invertible. Therefore U is invertible
and thus

U(P⊕ 0(k−n))U−1 = U · P⊕ 0(k−n) ·U−1
= Q⊕ 0(k−m).

So
U(P⊕ 0(k−n))U−1 = (Q⊕ 0(k−m)) + R

for some R ∈ radA′(A(k)). Let W1 = 2(Q⊕ 0(k−m))− I. Since σ(Q⊕ 0(k−m)) ⊆
{0, 1}, then W1 is invertible. From the fact that R ∈ radA′(A(k)) and W−1

1 ∈
A′(A(k)), then RW−1

1 ∈ radA′(A(k)), so I + RW−1
1 is also invertible. Let

W = 2(Q⊕ 0(k−m))− I + R = W1 + R = (I + RW−1
1 )W1.
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Then W is invertible. Since P⊕ 0(k−n) is an idempotent, then U(P⊕ 0(k−n))U−1

is an idempotent, namely (Q⊕ 0(k−m)) + R is an idempotent, so

(Q⊕ 0(k−m))2 + (Q⊕ 0(k−m))R + R(Q⊕ 0(k−m)) + R2 = (Q⊕ 0(k−m)) + R.

Since Q⊕ 0(k−m) is an idempotent, then

(Q⊕ 0(k−m))R + R(Q⊕ 0(k−m)) + R2 = R.

So

W((Q⊕0(k−m))+R)=(Q⊕0(k−m))+R(Q⊕0(k−m))+2(Q⊕0(k−m))R−R+R2

=(Q⊕ 0(k−m)) + (Q⊕ 0(k−m))R = (Q⊕ 0(k−m))W.

Thus

U(P⊕ 0(k−n))U−1 = (Q⊕ 0(k−m)) + R = W−1(Q⊕ 0(k−m))W.

Therefore P ∼e Q, namely [P] = [Q]. Hence g is injective.
Next we show that g is surjective. For every

[P] ∈
∨
(A′(A)/radA′(A))

with P ∈ A′(A(n))/radA′(A(n)), P ∈ A′(A(n)) and P2
= P, we have P2− P = R0

for some R0 ∈ radA′(A(n)). Since A(n) =
k

∑
i=1

⊕
A(nni)

i , by Lemma 1.5, P is of the

form P = B + R, where R ∈ radA′(A(n)) and B ∈ A′(A(n)) is a block-diagonal

(∑k
i=1 nni × ∑k

i=1 nni)-matrix over C, namely B ∈
k

∑
i=1

⊕
Mnni (C). Then B = P

and

R0 = P2 − P = (B + R)2 − (B + R) = B2 − B + (BR + RB + R2 − R).

Since radA′(A(n)) is an ideal ofA′(A(n)), B ∈ A′(A(n)) and R, R0 ∈ radA′(A(n)),
we can conclude that B2 − B ∈ radA′(A(n)). By the fact that B2 − B is a block-
diagonal matrix over C, B2 = B. Then we have g([B]) = [P]. So g is surjective.

Finally, we show that g is a homomorphism. In fact, for [P], [Q] ∈ ∨(A′(A)),
where P ∈ A′(A(n)) and Q ∈ A′(A(m)) are idempotents, we have

g([P] + [Q]) = g([P⊕Q]) = [P⊕Q]

= [P⊕Q] = [P] + [Q] = g([P]) + g([Q]).

From the above, we have proved that g is an isomorphism, so∨
(A′(A)) ≈

∨
(A′(A)/radA′(A)).

By Lemma 1.5,

∨
(A′(A)/radA′(A)) ≈

∨ ( k

∑
i=1

⊕
Mni (C)

)
≈

k

∑
i=1

⊕∨
(Mni (C)).
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Since
∨
(Mn(C)) ≈

∨
(C) ≈ N+ for every n (see [1]), then∨

(A′(A)) ≈ N(k)
+

and thus K0(A′(A)) ≈ Z(k).

LEMMA 1.7. Let X be a H.I. space and let T ∈ B(X). Then A′(T)/radA′(T) ≈
C if and only if T ∈ (SI).

Proof. “⇒” If T /∈ (SI), there exists a non-trivial idempotent P ∈ A′(T),
obviously σ(P) = {0, 1}. Since A′(T)/radA′(T) ≈ C, there exist λ ∈ C and
S ∈ radA′(T) such that P = λ + S. Since σ(S) = {0}, then σ(P) = {λ} is a
singleton, a contradiction.

“⇐” Firstly we show that σ(S) is a singleton for every S ∈ A′(T). Since X
is a H.I. space, σ(S) is an at most countable set. If σ(S) is not a singleton, then
there exists an open-and-closed proper subset τ of σ(S). Let E(τ) be the spectral
projection of S corresponding to τ. Then E(τ) is a non-trivial idempotent. Since
S ∈ A′(T), E(τ) ∈ A′(T), which contradicts to T ∈ (SI). So σ(S) is a singleton.

In the following, we prove that A′(T)/radA′(T) ≈ C. We only need to
show that there exists λ ∈ C such that S− λ ∈ radA′(T) for every S ∈ A′(T).
From the above, we can assume σ(S) = {λ}. For every S′ ∈ A′(T), we have
(S− λ)S′, S′(S− λ) ∈ A′(T). So σ((S− λ)S′) and σ(S′(S− λ)) are all singletons
from the above. Since σ((S − λ)S′)\{0} = σ(S′(S − λ))\{0}, we can conclude
that σ((S− λ)S′) = σ(S′(S− λ)) = {t} for some t ∈ C. If t 6= 0, then both (S−
λ)S′ and S′(S− λ) are invertible. Hence S− λ is invertible, which contradicts to
σ(S) = {λ}. It follows that σ((S − λ)S′) = {0}. Since S′ ∈ A′(T) is arbitrary,
S− λ ∈ radA′(T). Then A′(T)/radA′(T) ≈ C.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. “⇒” Since X is a H.I. space and Ai ∈ (SI), then

A′(Ai)/radA′(Ai) ≈ C,

for i = 1, 2 by Lemma 1.7. Since A1 ∼ A2, then A ∼ A(2)
1 . So

K0(A′(A)) ≈ K0(A′(A(2)
1 )) ≈ Z

by Lemma 1.6.
“⇐” If A1 is not similar to A2, then K0(A′(A)) ≈ Z(2) by Lemma 1.6, a

contradiction.

2. SMALL COMPACT PERTURBATION OF STRONGLY IRREDUCIBLE OPERATORS

In this section we discuss the small compact perturbation of strongly irre-
ducible operators on separable H.I. spaces.



372 CHUNLAN JIANG, YUNNAN ZHANG AND HUAIJIE ZHONG

THEOREM 2.1. Let X be a separable H.I. space and let T ∈ B(X) with connected
spectrum σ(T). Then, for given ε > 0, there exists a compact operator K ∈ B(X) with
‖K‖ < ε such that T + K ∈ (SI).

Before we begin the proof of Theorem 2.3, we need some lemmas. The fol-
lowing lemma is useful, but its proof is a routing work. Thus, we are not going
to prove it.

LEMMA 2.2. Let X be a H.I. space and let T ∈ B(X) with σ(T) = {0}. If T
satisfies one of the following conditions

(i) dim ker T < ∞,
(ii) dim(X/ranT) < ∞,

then for given ε > 0, there exists a compact operator K ∈ B(X) with ‖K‖ < ε such that
T + K ∈ (SI).

In order to overcome the essential difficulty (i.e. dim ker T = ∞ and dim(X/
ranT) = ∞), we need a series of lemmas. Firstly, we need the concept of quasi-
complementary subspaces. Two closed subspaces X1, X2 of a Banach space X
are said to be quasi-complementary if X1 ∩ X2 = {0} and X = X1 + X2. In
this case, each of X1 and X2 is called a quasi-complement of the other of them.
Corollary 8.2 of [17] shows that every closed subspace of separable Banach spaces
admits a quasi-complement.

LEMMA 2.3. Let X be an infinite dimensional separable Banach space, let X1 be
a closed subspace of X with dim(X/X1) = ∞ and let X2 be a quasi-complement of
X1. Then there exist { fi} ⊆ X⊥1 ⊆ X∗ and {xi} ⊆ X2 such that fi(xj) = δij and

span{ fi}
w∗

= X⊥1 , where δij =

{
1 i = j,
0 i 6= j,

and X⊥1 = { f ∈ X∗ : f (x) = 0 for all

x ∈ X1}.
Proof. Since dim(X/X1) = ∞, then dim X2 = ∞. Since X is separable, X/X1

is separable. Then (X/X1)
∗ is w∗-separable, so X⊥1 is also w∗-separable. Hence

there exists {gi} ⊆ X⊥1 , gi 6= 0 such that span{gi}
w∗

= X⊥1 .
Let f1 = g1. Then f1 ∈ X⊥1 . Therefore there exists y1 ∈ X2 such that

f1(y1) = 1. Otherwise f1|X2 = 0. By the fact that f1|X1 = 0 and X = X1 + X2,
f1 = g1 = 0, which is a contradiction.

Set x1 = y1. Then x1 ∈ X2 and f1(x1) = 1.
Let h2 = min{n : gn /∈ span{ f1}}.
Let f2 = gh2 − gh2(x1) f1. Then f2(x1) = 0. Since f2 ∈ X⊥1 , there exists

y2 ∈ X2 such that f2(y2) = 1. Otherwise f2|X2 = 0. By the fact that f2 ∈ X⊥1 and
X = X1 + X2, f2 = 0, which contradicts to the choice of h2.

Set x2 = y2 − f1(y2)x1. Then x2 ∈ X2, f1(x2) = 0 and f2(x2) = 1.
Let h3 = min{n : gn /∈ span{ f1, f2}}. It is obvious that h3 > h2.
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Let f3 = gh3 − gh3(x1) f1 − gh3(x2) f2. Then f3(x1) = f3(x2) = 0. Since
f3 ∈ X⊥1 , there exists y3 ∈ X2 such that f3(y3) = 1.

Set x3 = y3 − f1(y3)x1 − f2(y3)x2. Then x3 ∈ X2, f1(x3) = f2(x3) = 0 and
f3(x3) = 1.

Continuing in the same way, we can obtain { fi} ⊆ X⊥1 ⊆ X∗ and {xi} ⊆ X2
such that fi(xj) = δij. From the choice of hi, we can see that gi ∈ span{ f j : 1 6

j 6 k} for hk 6 i < hk+1, where k > 1 and h1 = 1. Then span{ fi}
w∗

= X⊥1 by the

fact that span{gi}
w∗

= X⊥1 .

LEMMA 2.4. Let X be an infinite dimensional separable Banach space, let X1 be a
closed subspace of X with dim(X/X1) = ∞ and let X2 be a quasi-complement of X1.
Then there exists a compact operator K ∈ B(X) such that σ(K) = {0}, ker K = X1 and
ranK ⊆ X2.

Proof. By Lemma 2.5, there exist { fi} ⊆ X⊥1 ⊆ X∗ and {xi} ⊆ X2 such that

fi(xj) = δij and span{ fi}
w∗

= X⊥1 . Let

K =
∞

∑
i=1

ai fi ⊗ xi+1,

where ai =1/2i‖ fi‖‖xi+1‖. Then K∈B(X) is a compact operator and ranK⊆X2.
Now we show that X1 = ker K. On the one hand, X1 ⊆ ker K by the fact

that { fi} ⊆ X⊥1 . On the other hand, if Kx = 0, namely
∞

∑
j=1

aj f j(x)xj+1 = 0, then

fi(x) =
1
ai

fi+1

( ∞

∑
j=1

aj f j(x)xj+1

)
= 0

for each i. Hence x ∈ (span{ fi}
w∗

)⊥ = (X⊥1 )⊥ = X1, where A⊥ = {x ∈ X :
f (x) = 0 for all f ∈ A} for a subset A of X∗. So ker K ⊆ X1. Therefore ker K = X1.

Finally, we show that σ(K) = {0}. Since K is compact, it is enough to prove
that K− λ is injective for every λ 6= 0.

If Kx = λx for some x ∈ X, then Knx = λnx. Therefore

x =
1

λn Knx =
1

λn

∞

∑
i=1

(ai · · · ai+n−1) fi(x)xi+n ∈ span{xi : i > n + 1}.

Hence fn(x) = 0 for every n. Then x ∈ (span{ fi}
w∗

)⊥ = (X⊥1 )⊥ = X1. By the
fact that x ∈ ranK and ranK ∩ X1 ⊆ X2 ∩ X1 = {0}, we have x = 0. Therefore
K− λ is injective. It follows that σ(K) = {0}.

LEMMA 2.5. Let X be a separable H.I. space and let T ∈ B(X) with σ(T) = {0}.
If dim(X/ranT) = ∞, then for given ε > 0, there exists a compact operator K ∈ B(X)
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with ‖K‖ < ε such that σ(T + K) = {0} and
∞⋃

i=1

ker(T + K)i + ran(T + K) 6= X.

Proof. Since X is separable, ranT is a quasi-complementary subspace in X.
Then there exists a closed subspace X0 of X such that ranT ∩ X0 = {0} and X =

ranT + X0. Since dim(X/ranT) = ∞, then dim X0 = ∞. By Lemma 2.4, there
exists a compact operator K ∈ B(X) with ‖K‖ < ε such that σ(K) = {0}, ker K =
ranT and ranK ⊆ X0.

In the following, we show that the operator T + K satisfies this lemma.
Firstly we show that σ(T + K) = {0}. Since X is a H.I. space and σ(T) =

{0}, then T is a strictly singular operator. And since K is a compact operator,
then T + K is also a strictly singular operator. By Remark 0.3, for every λ 6=
0, T + K − λ is a Fredholm operator with index 0. Therefore in order to prove
σ(T + K) = {0}, it suffices to show that T + K− λ is injective for every λ 6= 0.

If (T + K)x = λx for some x ∈ X, by the fact that Tx ∈ ranT = ker K,

K(Kx) = K(T + K)x = λ(Kx).

Therefore Kx = 0 by σ(K) = {0}, thus Tx = λx. Since σ(T) = {0}, then x = 0.
Thus T + K− λ is injective.

Next we show that
∞⋃

i=1

ker(T + K)i ⊆ ranT.

It only needs to show that ker(T + K)i ⊆ ranT for every i.
We proceed by induction.
For every x ∈ ker(T + K), since Tx + Kx = 0, then

Tx = −Kx ∈ ranT ∩ ranK ⊆ ranT ∩ X0 = {0}.

Therefore Kx = 0, namely x ∈ ker K = ranT. Thus ker(T + K) ⊆ ranT.
Suppose that ker(T + K)j ⊆ ranT. We show that ker(T + K)j+1 ⊆ ranT. For

every x ∈ ker(T + K)j+1,

Tx + Kx ∈ ker(T + K)j ⊆ ranT,

so Kx ∈ ranT ∩ ranK = {0}, thus x ∈ ker K = ranT. This shows that ker(T +
K)j+1 ⊆ ranT.

Now we have proved ker(T + K)i ⊆ ranT for every i, so
∞⋃

i=1

ker(T + K)i ⊆

ranT.
Since ran(T + K) ⊆ ranT + ranK, then

∞⋃
i=1

ker(T + K)i + ran(T + K) ⊆ ranT + ranK.
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Therefore in order to show that
∞⋃

i=1

ker(T + K)i + ran(T + K) 6= X, it is enough to

show that ranT + ranK 6= X.
Since K is a compact operator, it follows that X0 * ranK. We choose y ∈

X0\ranK, then y /∈ ranT + ranK. In fact, if y = y1 + y2 ∈ ranT + ranK for y1 ∈
ranT and y2 ∈ ranK, then y− y2 = y1 ∈ ranT ∩ X0 = {0}. Hence y = y2 ∈ ranK,
which is a contradiction.

LEMMA 2.6. Let X be a Banach space, let T ∈ B(X) with σ(T) = {0} and let

(M, N) ∈ Red(T) with dim M < ∞. If
∞⋃

i=1

ker Ti + ranT 6= X, then
∞⋃

i=1

ker(T|N)i +

ranT|N 6= N.

Proof. Since σ(T) = {0}, then σ(T|M) = {0}. Therefore, by dim M < ∞,

T|M is a nilpotent operator, thus
∞⋃

i=1

ker(T|M)i = M. If
∞⋃

i=1

ker(T|N)i + ranT|N =

N, then

∞⋃
i=1

ker(T|M)i + ranT|M +
∞⋃

i=1

ker(T|N)i + ranT|N = M + N = X.

It is obvious that
∞⋃

i=1

ker Ti + ranT =
∞⋃

i=1

ker(T|M)i +
∞⋃

i=1

ker(T|N)i + ranT|M + ranT|N = X,

which is a contradiction, so

∞⋃
i=1

ker(T|N)i + ranT|N 6= N.

LEMMA 2.7. Let X be a H.I. space and let T ∈ B(X) with σ(T) = {0}. If
there exists a (M, N) ∈ Red(T) such that dim M = n < ∞, T|N ∈ (SI) and
∞⋃

i=1

ker(T|N)i + ranT|N 6= N, then for given ε > 0, there exists a compact operator

K ∈ B(X) with ‖K‖ < ε such that T + K ∈ (SI).

Proof. Step 1. If n = 0, then T ∈ (SI). We can take K = 0.

Step 2. If n > 0, we have T =

(
T1 0
0 T2

)
, where T1 = T|M and T2 = T|N .

Without loss of generality, we can assume that T1 admits a (lower triangular)
Jordan block representation with respect to some basis {ei}n

i=1 of M, namely{
T1ei = ei+1 i = 1, . . . , n− 1,
T1en = 0.
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It is obvious that there exists f ∈ X∗ satisfying
f (ei) = 0 i = 1, . . . , n− 1,
f (en) = 1,
f |N = 0.

Put

X0 =
∞⋃

i=1

ker Ti
2 + ranT2.

Then X0 6= N. We choose y ∈ N\X0 with ‖y‖ = ε/2‖ f ‖. Let K = f ⊗ y. Then
K ∈ B(X) is a compact operator with ‖K‖ < ε. Denote f1 = f |M. Then

K =

(
0 0

f1 ⊗ y 0

)
and T + K =

(
T1 0

f1 ⊗ y T2

)
.

In the following, we show that T + K ∈ (SI).
Otherwise there exists a non-trivial (M′′, N′′)∈Red(T+K) with 0<dim M′′

< ∞. Then (T + K)|M′′ admits a Jordan standard form representation. We can
select a subspace M′ of M′′ such that M′′ = M′ ⊕ M′′′, M′ and M′′′ are invari-
ant subspaces of T + K and (T + K)|M′ admits a (lower triangular) Jordan block
representation with respect to some basis {e′i}m

i=1 of M′, namely{
(T + K)|M′ e′i = e′i+1 i = 1, . . . , m− 1,
(T + K)|M′ e′m = 0.

Let N′ = M′′′ ⊕ N′′. Then (M′, N′) ∈ Red(T + K).
Put

e′1 = a1e1 + a2e2 + · · ·+ anen + x,

where x ∈ N, ai ∈ C, i = 1, 2, . . . , n.
We proceed the proof by considering the following three cases.
Case 1. m > n. Then

e′2 = (T + K)e′1 = a1e2 + a2e3 + · · ·+ an−1en + any + T2x,

· · · · · · · · · · · · · · · · · · ,

e′n = (T + K)e′n−1 = a1en + a2y + · · ·+ anTn−2
2 y + Tn−1

2 x,

e′n+1 = (T + K)e′n = a1y + a2T2y + · · ·+ anTn−1
2 y + Tn

2 x,

· · · · · · · · · · · · · · · · · · ,

e′m = (T + K)e′m−1 = a1Tm−n−1
2 y + a2Tm−n

2 y + · · ·+ anTm−2
2 y + Tm−1

2 x,

0 = (T + K)e′m = a1Tm−n
2 y + a2Tm−n+1

2 y + · · ·+ anTm−1
2 y + Tm

2 x.

Hence
a1y + a2T2y + · · ·+ anTn−1

2 y + Tn
2 x ∈ ker Tm−n

2 ,
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so a1y ∈ ker Tm−n
2 + ranT2 ⊆ X0. By the fact that y /∈ X0, we have a1 = 0.

Therefore
a2Tm−n+1

2 y + · · ·+ anTm−1
2 y + Tm

2 x = 0.

In the similar way, we can obtain a2 = a3 = · · · = an = 0, so e′i = Ti−1
2 x ∈ N, 1 6

i 6 m and Tm
2 x = 0.

Case 2. m = n. Then

e′2 = (T + K)e′1 = a1e2 + · · ·+ an−1en + any + T2x,

· · · · · · · · · · · · · · · · · · ,

e′n = (T + K)e′n−1 = a1en + a2y + · · ·+ anTn−2
2 y + Tn−1

2 x,

0 = (T + K)e′n = a1y + a2T2y + · · ·+ anTn−1
2 y + Tn

2 x.

Since y /∈ ranT2, then a1 = 0. Therefore

a2y + a3T2y + · · ·+ anTn−2
2 y + Tn−1

2 x ∈ ker T2,

so a2y ∈ ker T2 + ranT2 ⊆ X0. By the fact that y /∈ X0, we have a2 = 0. In the
similar way, we can conclude a3 = · · · = an = 0, so e′i = Ti−1

2 x ∈ N, 1 6 i 6 n
and Tn

2 x = 0.
Case 3. m < n. Then

e′2=(T + K)e′1 = a1e2 + · · ·+ an−1en + any + T2x,

· · · · · · · · · · · · · · · · · · ,

e′m =(T + K)e′m−1 = a1em + · · ·+ an−m+1en + an−m+2y + · · ·+ anTm−2
2 y + Tm−1

2 x,

0=(T+K)e′ma1em+1+· · ·+an−men+an−m+1y+an−m+2T2y+· · ·+anTm−1
2 y+Tm

2 x.

Hence

−(a1em+1 + · · ·+ an−men) = an−m+1y + an−m+2T2y + · · ·+ anTm−1
2 y + Tm

2 x

∈ M ∩ N = {0}.

Then a1em+1 + · · ·+ an−men = 0 and

an−m+1y + an−m+2T2y + · · ·+ anTm−1
2 y + Tm

2 x = 0.

Since {ei}n
i=1 is a basis of M, then a1 = a2 = · · · = an−m = 0. And similar to the

proof of Case 2, we can obtain an−m+1 = · · · = an = 0, so e′i = Ti−1
2 x ∈ N, 1 6

i 6 m and Tm
2 x = 0.

From the above proof, we have e′i = Ti−1
2 x ∈ N, 1 6 i 6 m and Tm

2 x = 0.
Then {

T2e′i = e′i+1 i = 1, . . . , m− 1,
T2e′m = 0.

So M′ ⊆ N and T2M′ ⊆ M′.
Let Y = N ∩ N′. Then N = M′ ⊕ Y. In fact, for every x ∈ N, since X =

M′ ⊕ N′, assume that x = m + n with m ∈ M′, n ∈ N′. Since M′ ⊆ N, then
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n = x−m ∈ N ∩ N′ = Y. Thus N = M′ + Y. From M′ ∩Y ⊆ M′ ∩ N′ = {0}, we
can conclude that N = M′ ⊕Y.

Since (T + K)|N = T2, then

T2Y = (T + K)Y ⊆ (T + K)N′ ⊆ N′.

It is obvious that
T2Y ⊆ T2N ⊆ N.

Thus
T2Y ⊆ N ∩ N′ = Y.

Therefore (M′, Y) ∈ Red(T2). It is clear that (M′, Y) is non-trivial, which contra-
dicts to T2 ∈ (SI), so T + K ∈ (SI).

LEMMA 2.8. Let X be an infinite dimensional separable Banach space and let X1 be
an infinite dimensional closed subspace of X. Then there exist { fi} ⊆ X∗ and {xi} ⊆ X1

such that span{ fi}
w∗

= X∗, span{xi} = X1 and fi(xj) = δij.

Proof. Since X is separable, then X1 is also separable. By Proposition 1.f.3 of

[16], there exist {h′i} ⊆ X∗1 with ‖h′i‖ = 1 and {xi} ⊆ X1 such that span{h′i}
w∗

=

X∗1 , span{xi} = X1 and h′i(xj) = δij. Let hi ∈ X∗ with hi|X1 = h′i and ‖hi‖ = 1.
Since X/X1 is separable, then (X/X1)

∗ is w∗-separable. So X⊥1 is also w∗-

separable. Thus there exist {gi} ⊆ X⊥1 , gi 6= 0, such that span{gi}
w∗

= X⊥1 .
We divide the set of natural number into countable mutually disjoint infinite

subsets, that is, N =
∞⋃

i=1

Ni, where Ni is an infinite subset of N and Ni ∩ Nj = ∅

for i 6= j. Write Ni = {ni1, ni2, . . .} and let fnij = jgi + hnij .
If there exists x such that fnij(x) = 0 for every i, j, namely jgi(x) + hnij(x) =

0, then gi(x) = 0 for every i. Otherwise gi0(x) 6= 0 for some i0. It follows
that ‖x‖ > |hni0 j(x)| = j|gi0(x)| for every j, which is a contradiction. So x ∈

(span{gi}
w∗

)⊥ = (X⊥1 )⊥ = X1. Since span{h′i}
w∗

= X∗1 and h′nij
(x) = hnij(x) =

−jgi(x) = 0 for every i, j, then x = 0. Therefore span{ fi}
w∗

= X∗.
Since gi ∈ X⊥1 and hi(xj) = δij, it is obvious that fi(xj) = δij.

LEMMA 2.9. Let X be an infinite dimensional separable Banach space and let X1
be an infinite dimensional closed subspace of X. Then there exists a compact operator
K ∈ B(X) satisfying σp(K) = ∅ and ranK ⊆ X1.

Proof. By Lemma 2.8, there exist { fi} ⊆ X∗ and {xi} ⊆ X1 such that fi(xj) =

δij and span{ fi}
w∗

= X∗. Let

K =
∞

∑
i=1

ai fi ⊗ xi+1,
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where ai =1/2i‖ fi‖‖xi+1‖. Then K∈B(X) is a compact operator and ranK⊆X1.
In the following we show that σp(K) = ∅. For every λ ∈ C, if there exists

x ∈ X such that
∞

∑
i=1

ai fi(x)xi+1 = Kx = λx, then

0= f1

( ∞

∑
i=1

ai fi(x)xi+1

)
=λ f1(x) and aj−1 f j−1(x)= f j

( ∞

∑
i=1

ai fi(x)xi+1

)
=λ f j(x)

for j > 2.
Step 1. If λ = 0, then f j−1(x) = (λ/aj−1) f j(x) = 0 for j > 2. Since

span{ fi}
w∗

= X∗, then x = 0.
Step 2. If λ 6= 0, then f1(x) = 0 and f2(x) = (1/λ)a1 f1(x) = 0, inductively,

fi(x) = 0 for every i. Since span{ fi}
w∗

= X∗, then x = 0.
From the above, σp(K) = ∅.

LEMMA 2.10. Let X be a H.I. space and let T ∈ B(X) with σ(T) = {0}. If
there exists no (M, N) ∈ Red(T) such that dim M = n < ∞ and T|N ∈ (SI), then
for given ε > 0, there exists a compact operator K ∈ B(X) with ‖K‖ < ε such that
σ(T + K) = {0} and

dim(ker(T + K)/(ker(T + K) ∩ ran(T + K))) = ∞.

Proof. By hypothesis, T /∈ (SI). By the definition of strongly irreducible
operators and the definition of H.I. spaces, there exists a non-trivial (X′11, X′12) ∈
Red(T) with 0 < dim X′11 < ∞. Then T|X′11

admits a Jordan standard form rep-
resentation. We can select a subspace X11 of X′11 such that X′11 = X11 ⊕ X′′11, X11
and X′′11 are invariant subspaces of T and T|X11 admits a (lower triangular) Jordan
block representation. Let X12 = X′′11 ⊕ X′12. Then (X11, X12) ∈ Red(T). Let

T =
(

T11 0
0 T12

)
X11
X12

.

By hypothesis, T12 /∈ (SI). In the similar way, we can assume that

T12 =
(

T21 0
0 T22

)
X21
X22

with 0 < dim X21 < ∞ satisfies that T12|X21 admits a (lower triangular) Jordan
block representation. By hypothesis again, T22 /∈ (SI). Otherwise (X11 ⊕ X21,
X22) ∈ Red(T) satisfies dim(X11 ⊕ X21) < ∞ and T|X22 = T22 ∈ (SI), which is a
contradiction. Continuing in the same way, we can assume that

T =
(

T11 0
0 T12

)
X11
X12

, T12 =
(

T21 0
0 T22

)
X21
X22

,

T22 =
(

T31 0
0 T32

)
X31
X32

, · · · · · · · · ·
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where Xi1 = [eij]
ni
j=1 and{
T(eij) = ei,j+1 j = 1, 2, . . . , ni − 1,
T(eini ) = 0,

i = 1, 2, . . . .

For every i,{
if ni = 1, let K′i = 0, the operator from Xi1 into Xi+1,1,
if ni > 1, let K′i be the operator from Xi1 into Xi+1,1,

satisfies{
K′i(ei,ni−1) = ei+1,1,
K′i(eij) = 0, j 6= ni − 1, 1 6 j 6 ni.

Let K′′i ∈ B(X) be the natural extension of K′i to X, that is,
K′′i |Xj1 = 0 j = 1, 2, . . . , i− 1,

K′′i |Xi1 = K′i ,
K′′i |Xi2 = 0.

Let ai =

{
0 K′i = 0,
ε/2i‖K′′i ‖ K′i 6= 0.

Denote Ki = aiK′i . Put

K =
∞

∑
i=1

aiK′′i .

Then K ∈ B(X) is a compact operator with ‖K‖ < ε.
For each m > 1,

(2.1) T+K=



T11

K1
. . .
. . . T2k−2,1

K2k−2 T2k−1,1
K2k−1 T2k,1

K2k T2k+1,1

K2k+1
. . .
. . . Tm1

Km Tm2 + Qm



,

where Qm =
( ∞

∑
i=m+1

aiK′′i
)
|Xm2 .

In the following, we show that T + K satisfies this lemma.
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Since

(2.2) T+
m

∑
i=1

aiK′′i =



T11

K1
. . .
. . . T2k−2,1

K2k−2 T2k−1,1
K2k−1 T2k,1

K2k T2k+1,1

K2k+1
. . .
. . . Tm1

Km Tm2



,

then

σ
(

T +
m

∑
i=1

aiK′′i
)
⊆
( m⋃

i=1

σ(Ti1)
)
∪ σ(Tm2) = σ(T) = {0}.

Hence σ
(

T +
m

∑
i=1

aiK′′i
)
= {0} is connected.

Since

T +
m

∑
i=1

aiK′′i → T + K

as m→ ∞ and the set {T ∈ B(X) : σ(T) is connected} is a closed subset of B(X),
then σ(T + K) is connected. Since X is a H.I. space and σ(T) = {0}, then T
is a strictly singular operator. Since K is a compact operator, then T + K is also a
strictly singular operator. By Remark 0.3, σ(T +K) is an at most countable set and
0 ∈ σ(T + K). Since σ(T + K) is not only connected but also at most countable,
then σ(T + K) is a singleton. So σ(T + K) = {0}.

It is obvious that eknk
∈ ker(T + K). In order to show that

dim(ker(T + K)/(ker(T + K) ∩ ran(T + K))) = ∞,

it suffices to show that {e2k,n2k
+ (ker(T + K) ∩ ran(T + K))}∞

k=1 is linearly inde-
pendent in ker(T + K)/(ker(T + K) ∩ ran(T + K) ).

If
l

∑
k=1

bk(e2k,n2k
+ (ker(T + K) ∩ ran(T + K))) = 0

for some {bk}l
k=1 ⊆ C, then

l

∑
k=1

bke2k,n2k
∈ ran(T + K),

so there exist

x(n) = x(n)1 + · · ·+ x(n)2k−2 + x(n)2k−1 + x(n)2k + x(n)2k+1 + · · ·+ x(n)2l+1 + y(n), n ∈ N
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such that

(T + K)x(n) →
l

∑
k=1

bke2k,n2k

as n→ ∞, where

{
x(n)i ∈ Xi1 i = 1, 2, . . . , 2l + 1,
y(n) ∈ X2l+1,2.

For each 1 6 k 6 l, according to the matrix (2.2) and the construction of Ki,
we can obtain the following assertions:

K2k−2x(n)2k−2 + T2k−1,1x(n)2k−1 → 0 (n→ ∞),(2.3)

K2k−1x(n)2k−1 + T2k,1x(n)2k → bke2k,n2k
(n→ ∞),(2.4)

K2kx(n)2k + T2k+1,1x(n)2k+1 → 0 (n→ ∞),(2.5)

where K0 = 0 and x(n)0 = 0.
We prove bk = 0 by two cases.
Case 1. K2k 6= 0. By the construction of K2k, n2k > 1. We may assume that

x(n)2k ∈ α
(n)
2k e2k,n2k−1 + span{e2k,j : j 6= n2k − 1, 1 6 j 6 n2k},

where α
(n)
2k ∈ C. By (2.4), α

(n)
2k → bk as n → ∞. And by (2.5), α

(n)
2k → 0 as n → ∞,

so bk = 0.
Case 2. K2k = 0. By the construction of K2k, T2k,1 = 0.
If K2k−1 = 0, by (2.4), bk = 0.
If K2k−1 6= 0, by the construction of K2k−1, n2k−1 > 1. We may assume that

x(n)2k−1 ∈ α
(n)
2k−1e2k−1,n2k−1−1 + span{e2k−1,j : j 6= n2k−1 − 1, 1 6 j 6 n2k−1},

where α
(n)
2k−1 ∈ C. By (2.3), α

(n)
2k−1 → 0 as n → ∞. And by (2.4), α

(n)
2k−1 → bk as

n→ ∞, so bk = 0.
In a word, bk = 0 for each 1 6 k 6 l, so

{e2k,n2k
+ (ker(T + K) ∩ ran(T + K))}∞

k=1

is linearly independent in ker(T + K)/(ker(T + K) ∩ ran(T + K) ).

LEMMA 2.11. Let X be a separable H.I. space and let T ∈ B(X) with σ(T) = {0}.
If dim(ker T/(ker T ∩ ranT)) = ∞, then for given ε > 0, there exists a compact
operator K ∈ B(X) with ‖K‖ < ε such that T + K ∈ (SI).

Proof. Since X is separable, then ker T is separable. Thus ker T ∩ ranT is a
quasi-complementary subspace in ker T, so there exists a closed subspace X1 of
ker T such that

X1 ∩ (ker T ∩ ranT) = {0} and ker T = X1 + (ker T ∩ ranT).
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Since dim(ker T/(ker T ∩ ranT)) = ∞, then dim X1 = ∞. By Lemma 2.9, there
exists a compact operator K ∈ B(X) with ‖K‖ < ε such that σp(K) = ∅ and
ranK ⊆ X1.

In the following, we show that σp(T + K) = ∅.
For every λ 6= 0, if (T + K)x = λx for some x ∈ X, by the fact that Kx ∈

ranK ⊆ X1 ⊆ ker T,
T(Tx) = T(T + K)x = λTx.

Since σ(T) = {0} and thus Tx = 0, then Kx = λx. And since σp(K) = ∅, then
x = 0. We conclude that λ /∈ σp(T + K).

If (T + K)x = 0, then

Tx = −Kx ∈ X1 ∩ (ker T ∩ ranT) = {0}.
Thus Kx = 0. Since σp(K) = ∅, then x = 0. Hence 0 /∈ σp(T + K).

From the above, σp(T + K) = ∅. By the definition of strongly irreducible
operators and the definition of H.I. spaces, it is easy to see that T + K ∈ (SI).

We are now in a position to prove Theorem 2.3.

Proof of Theorem 2.3. Since X is a H.I. space, the operator T can be written as
a sum of a scalar and a strictly singular operator. By Remark 0.3, σ(T) is an at
most countable set. Since σ(T) is connected, we conclude that σ(T) is a singleton.
Suppose that σ(T) = {λ}. Then σ(T − λ) = {0}. We consider the following two
cases:

Case 1. dim(X/ran(T − λ) ) < ∞. By Lemma 2.4, there exists a compact
operator K ∈ B(X) with ‖K‖ < ε such that T− λ + K ∈ (SI). Then T + K ∈ (SI).

Case 2. dim(X/ran(T − λ) ) = ∞. By Lemma 2.5, there exists a compact
operator K1 ∈ B(X) with ‖K1‖ < ε/3 such that σ(T − λ + K1) = {0} and

∞⋃
i=1

ker(T − λ + K1)
i + ran(T − λ + K1) 6= X.

To finish the proof, we consider the following two cases again:
Case 2.1. There exists a (M, N) ∈ Red(T − λ + K1) with dim M < ∞ and

(T− λ + K1)|N ∈ (SI). By Lemma 2.6 and by the fact that
∞⋃

i=1

ker(T− λ + K1)
i +

ran(T − λ + K1) 6= X,
∞⋃

i=1

ker((T − λ + K1)|N)i + ran(T − λ + K1)|N 6= N.

Then T − λ + K1 satisfies the condition of Lemma 2.7. Therefore there exists a
compact operator K2 ∈ B(X) with ‖K2‖ < ε/3 such that T − λ + K1 + K2 ∈ (SI),
so T + K1 + K2 ∈ (SI). We take K = K1 + K2.

Case 2.2. There exists no (M, N) ∈ Red(T − λ + K1) with dim M < ∞ and
(T − λ + K1)|N ∈ (SI). From Lemma 2.10, there exists a compact operator K3 ∈
B(X) with ‖K3‖ < ε/3 such that σ(T − λ + K1 + K3) = {0} and dim(ker(T −
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λ + K1 + K3)/(ker(T − λ + K1 + K3) ∩ ran(T − λ + K1 + K3) )) = ∞. And from
Lemma 2.11, there exists a compact operator K4 ∈ B(X) with ‖K4‖ < ε/3 such
that T − λ + K1 + K3 + K4 ∈ (SI), so T + K1 + K3 + K4 ∈ (SI). We take K =
K1 + K3 + K4.
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