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ABSTRACT. To a measured space carrying two group actions, we associate a
Hilbert C∗-module in a way that generalises Rieffel’s construction of induc-
tion modules. This construction is then applied to describe the generalised
principal series of a semisimple Lie group. We provide several realisations
of this module, corresponding to the classical pictures for the principal series.
We also characterise a class of bounded operators on the module which satisfy
some commutation relation, and interpret the result as a generic irreducibil-
ity theorem. Finally, we establish the convergence of standard intertwining
integrals on a dense subset of this module.
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1. INTRODUCTION

1.1. MOTIVATION AND OUTLINE. In [20], M.A. Rieffel developed a general the-
ory of induced representations for C∗-algebras by means of Hilbert modules.
Namely, in the special case of group C∗-algebras, given a closed subgroup H
of a locally compact group G, his construction yields a C∗(H)-Hilbert module EG

H
equipped with an action of C∗(G) by bounded operators. This module contains all
representations induced from H to G, in the sense that, for every representation
(ρ,Hρ) of H, there exists a map between EG

H ⊗C∗(H) Hρ and the space of IndG
H ρ,

that preserves the scalar products on these Hilbert spaces, and intertwines the
actions of C∗(G). Among the advantages of this point of view is the possibil-
ity to express Mackey’s imprimitivity theorem under the neat form of the Morita
equivalence between C∗(H) and C0(G/H)o G.

Describing the reduced dual Ĝr of a group G as a measured space amounts
to explicitely writing down its Plancherel measure. This task was achieved in
the case of semisimple Lie groups by Harish-Chandra in [8]. In particular, it is
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shown that besides the atomic part, that is the discrete series, the support of the
Plancherel measure consists in a special type of induced representations, namely
the P-series. Let us fix notations: G is a linear connected semisimple Lie group
with finite center, and P a cuspidal parabolic subgroup with Langlands decom-
position P = MAN. We denote by M̂d the discrete series of M and Â the unitary
dual of A.

DEFINITION 1.1. The P-series of G is the family of representations of the
form

IndG
P σ⊗ χ⊗ 1,

where σ ∈ M̂d and χ ∈ Â.

Among the facts involved in the description of Ĝr, which will be explained
in greater detail below, it is shown that these representations are generically ir-
reducible [9], and that the families ĜP of classes of irreducible components of
the P-series representations are in fact parametrised by the conjugacy classes of
Levi components L = MA of the cuspidal parabolic subgroups P. In view of
these facts, it appears that properly describing P-series representations within
the Hilbert modules setting should involve modules over C∗(L) rather than over
C∗(P), as would a direct application of Rieffel’s theory.

Following this remark, we were led to generalise the construction of [20]
in order to obtain Hilbert modules suited to the description of P-series. Sec-
tion 2 presents our construction, in which the data consist in two groups G and
H acting on a space X equipped with a measure satisfying certain equivariance
hypotheses. The outcome is a C∗(H)-Hilbert module E(X) carrying an action
of C∗(G) by bounded operators. We apply the procedure to the special case of
P-series in Section 3: it yields Hilbert modules over the C∗-algebra of the Levi
component, which nevertheless still induce the P-series. Section 4 is devoted to
providing different pictures of these modules, corresponding to classical prop-
erties of principal series representations. In Section 5, we characterise bounded
invariant operators commuting to the action of C∗(G) and interpret the result as
a generic irreducibility result, reflecting theorems of Bruhat and Harish-Chandra
in the C∗-algebraic framework. Another application of this point of view is given
in Section 6, where we establish convergence of intertwining integrals.

As explained at the end of the paper, the modules discussed here also con-
stitute the framework for a global theory of Knapp–Stein intertwining operators.
In the classical representation theory, these operators allow to account for subtle
reducibility phenomena, that is fine topological properties of the reduced dual,
which do not manifest in the study of the Plancherel measure. Following the gen-
eral principle of noncommutative geometry, the reduced dual of a group should
be studied via its C∗-algebra. Subsequently, developing a theory of intertwiners
at the Hilbert module level is likely to provide a useful tool in the analysis of
reduced C∗-algebras associated to Lie groups, as advocated in Section 7.
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1.2. GENERAL NOTATIONS AND PRELIMINARIES. The reader is referred to [10],
[11], [12], [13], and [18] for general facts about structure and representation theory
of semisimple Lie groups, and to [16] for the theory of Hilbert modules.

The space of compactly supported functions on a topological space X with
complex values is denoted by Cc(X). If G is a locally compact group, we write
dg for a left Haar measure on G, and ∆G for the corresponding modular func-
tion. The maximal and reduced C∗-algebras of the group are respectively de-
noted by C∗(G) and C∗r (G). If A is a C∗-algebra and E, F are A-Hilbert modules,
the set of bounded (that is adjointable) operators between E and F is denoted by
LA(E, F) or simplyL(E, F), while the compact operators are denoted byKA(E, F)
or K(E, F). In the case E = F, the set L(E) is a C∗-algebra containing K(E) as a
two-sided ideal.

The multipliers of E are the elements of L(A, E), also denotedM(E), where
A is viewed as a Hilbert module over itself. The module E may be embedded in
M(E) by associating to ξ ∈ E the map mξ : a 7−→ ξ · a on A, with adjoint map
〈ξ, ·〉. If E = A, we recover one of the classical equivalent definitions of the mul-
tiplier algebra of A, andM(E) is a Hilbert module overM(A). The construction
givingM(E) is functorial and for T ∈ L(E, F), we write M(T) :M(E)→M(F)
the operator of left composition by T, with adjoint M(T∗). For ξ ∈ E and η ∈ F,

m〈T·ξ,η〉 = 〈M(T) ·mξ , mη〉

holds with inner products respectively taking values in F andM(F).
An example of elements inM(C∗(G)) is given by extending left translations

of compactly supported functions on G: for g ∈ G, we denote by Ug the multiplier
of C∗(G) defined by Ug · f = f (g−1·) for any f ∈ Cc(G).

2. GENERAL CONSTRUCTION

Let X be a locally compact topological space, with commuting actions of
two locally compact groups G and H, from the left and the right respectively.
The H-action is assumed to be proper, so that X/H is locally compact. In what
follows, we will also need a paracompactness assumption on X/H, which will
always be satisfied in the further examples, where X/H will turn out to be a com-
pact manifold. Let us finally assume that X carries a G-invariant Borel measure
µ, which is H-relatively invariant with character δX . It means that the relation
dµ(g · x · h) = δX(h)dµ(x) is satisfied for any g ∈ G, h ∈ H. From the above data

G y (X, µ) x H,

we build a right C∗(H)-Hilbert module together with a left action of C∗(G) by
bounded operators. This module will be obtained as the completion of Cc(X)
with respect to an appropriate norm. Let us first describe the pre-Hilbert module
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structure on Cc(X) over the dense involutive subalgebra Cc(H) of C∗(H). For
any f ∈ Cc(X) and ϕ ∈ Cc(H), define, for all x ∈ X,

( f · ϕ)(x) =
∫
H

1
∆H(h)1/2δX(h)1/2 f (x · h−1)ϕ(h)dh.

NOTATION 2.1. The map H → R∗+ defined by δ1/2
X ∆−1/2

H will be denoted γX .

PROPOSITION 2.2. For f , g ∈ Cc(X) and h ∈ H, let

〈 f , g〉(h) = γX(h)
∫
X

f (x)g(x · h)dµ(x).

The map thus defined on Cc(X)× Cc(X) is a Cc(H)-valued inner product on Cc(X).

Proof. Let f , g ∈ Cc(X) and ϕ ∈ Cc(H). The relations 〈 f , g〉∗ = 〈g, f 〉 and
〈 f , g · ϕ〉 = 〈 f , g〉ϕ in C∗(H) follow from straightforward calculations and the
definition of γX . The positivity of 〈 f , f 〉 in C∗(H) relies on the use of a Bruhat
section for X over X/H: it is proved in [3] that the paracompactness of X/H
guarantees the existence of a nonnegative bounded continuous function ψ on X
such that Supp ψ ∩ K · H is compact whenever K is a compact subset of X, and∫
H

ψ(xh)dh = 1 holds for all x ∈ X. Let (ρ, V) be a unitary representation of H,

the scalar product on V being denoted by (·, ·). The corresponding representation
of C∗(H) will still be denoted ρ. For ξ, η ∈ V,

(ρ(〈 f , g〉)ξ, η) =
∫
H

γX(h)
∫
X

f (x)g(xh)(ρ(h)ξ, η)dµ(x)dh

=
∫
H

γX(h)
∫
X

f (x)g(xh)(ρ(h)ξ, η)
∫
H

ψ(xh′)dh′ dµ(x)dh

=
∫
X

ψ(x)
∫

H×H

f (xh′−1)g(xh′−1h)(ρ(h)ξ, η)
γX(h)
δX(h′)

dh′ dh dµ(x).

For u ∈ Cc(H) and x ∈ X, let ũx(h) = γX(h)u(x · h) for all h ∈ H. Then,

(ρ(〈 f , g〉)ξ, η) =
∫
X

ψ(x)
∫
H

( f̃ ∗x ∗ g̃x)(h)(ρ(h)ξ, η)dh dµ(x)

=
∫
X

ψ(x)(ρ( f̃ ∗x ∗ g̃x)ξ, η)dµ(x).(2.1)

The above computations are justified by the fact that the support of

x 7→
∫
H

( f̃ ∗x ∗ g̃x)(h)(ρ(h)ξ, η)dh
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is contained in Supp f ·H∩Suppg ·H which has compact intersection with Supp ψ.
Setting f = g in (2.1), it is clear that 〈 f , f 〉 is a positive element of Cc(H) ⊂ C∗(H)
and, taking ρ to be faithfull, that 〈 f , f 〉 = 0 implies f = 0.

DEFINITION 2.3. Let X, µ and H be as above. We denote by EH(X, µ) the
Hilbert module over C∗(H) obtained by completing Cc(X) with respect to the
norm ‖ f ‖ = |〈 f , f 〉|1/2

C∗(H)
and extending the action of Cc(H) to C∗(H).

NOTATION 2.4. When no confusion is likely to arise, this module will sim-
ply be denoted by EH(X) or E(X).

Let us now describe the left action of C∗(G).

PROPOSITION 2.5. Let X, µ, H and G be as above. The action of G on X induces
a ∗-morphism

C∗(G) −→ LC∗(H)(E(X)).

Proof. The action is first given at the level of the dense subalgebra Cc(G).
For f ∈ Cc(X) and φ ∈ Cc(G), let

(φ · f )(x) =
∫
G

φ(g) f (g−1x)dg

for all x ∈ X. Thus defined, φ · f belongs to Cc(X) and Proposition 2.2 ensures
that 〈φ · f , φ · f 〉 is a positive element of C∗(H). Let p be a state on C∗(H), and νp
the associated positive type Radon measure on H. Then the same computation as
in the proof of Proposition 2.2 shows that

p(〈 f1, f2〉) =
∫
H

〈 f1, f2〉(h)dνp(h) =
∫
X

ψ(x)
∫
H

( f̃1
∗
x ∗ f̃2x)(h)dνp(h)dµ(x),

for f1, f2 ∈ Cc(X), using the same notations as above. It follows that the map
( f1, f2) 7→ p(〈 f1, f2〉) provides an inner product on Cc(X). Consider the Hilbert
space obtained from Cc(X) by completion with respect to the associated norm,
denoted ‖ · ‖(p). Left translations yield a representation πp of G on this space
and the G-invariance of µ implies that πp is unitary. Moreover, if g → g0 in
G, then πp(g) f uniformly converges to πp(g0) f , while the supports remain in a
fixed compact subset of X, so that πp is strongly continuous. Still noting πp for
the integrated form of this representation, one has

p(〈φ · f , φ · f 〉) = ‖πp(φ · f )‖2
(p) 6 ‖φ‖

2
C∗(G)‖πp( f )‖2

(p) = ‖φ‖
2
C∗(G)p(〈 f , f 〉).

Since this inequality holds for any state p of C∗(H), it follows that

〈φ · f , φ · f 〉 6 ‖φ‖2
C∗(G)〈 f , f 〉

in C∗(H). Straightforward computations finally show that the left action of C∗(G)
commutes to the right action of C∗(H), and 〈φ · f1, f2〉 = 〈 f1, φ∗ · f2〉 so that C∗(G)
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acts by adjointable operators and the map C∗(G)→ LC∗(H)(E(X)) is a morphism
of C∗-algebras.

EXAMPLE 2.6. If X = G, then by construction, the module E(G) is the in-
duction module EG

H introduced in [20] by Rieffel.

EXAMPLE 2.7. If H = {1}, then E(X) ' L2(X, µ), with the regular repre-
sentation of C∗(G) coming from the action of G on X.

EXAMPLE 2.8. If X is reduced to a point, then E(X) may be identified to
C∗(H) considered as a Hilbert module over itself, C∗(G) acting trivially.

The last two examples are in fact extreme cases of the following result,
which describes E(X) when X comes as the product of some topological space
with the group acting on the right. This will also be the case in Section 4.2, when
dealing with quotients of the open cell of some Bruhat decomposition.

THEOREM 2.9. Let B be a paracompact Hausdorff space with a Borel measure db
and H a locally compact group. Consider X = B×H with the action of H given by right
translations on itself and equipped with a measure of the form dµ(b, h) = η(h)db dh
where η is a continuous morphism from H to R∗+. Then

E(X) ' L2(B)⊗ C∗(H).

Proof. First notice that the particular form of the action of H on X implies
that δX = η∆H , whence γX =

√
η. For ( f , g) ∈ Cc(B)× Cc(H) and (b, h) ∈ X, let

P( f , g)(b, h) = η(h)−1/2 f (b)g(h). Then P factorises through the algebraic tensor
product Cc(B)⊗ Cc(H) and the existence of a continuous partition of unity for B
implies that the range of P is uniformly dense in Cc(X). Simple calculations show
that P( f ⊗ g ∗ ϕ) = P( f ⊗ g) · ϕ for any ϕ ∈ Cc(H), implying Cc(H)-linearity for
P. One also has

〈P( f ⊗ g), P( f ⊗ g)〉 = ‖ f ‖2
2 g∗g

in C∗(H), so that P extends to an isometry between the Hilbert modules L2(B)⊗
C∗(H) and E(X) with dense range, which ends the proof.

REMARK 2.10. The previous proposition extends to the case where B× H is
a subset of X such that µ(X \ B× H) = 0. In such a case, although the action of
G on X might not restrict to an action on B× H, the isometry between E(X) and
L2(B)⊗ C∗(H) allows to define an action of C∗(G) on the latter.

3. THE HILBERT MODULE E(G/N)

3.1. SETTING AND NOTATIONS. In what follows, G is a connected semi-simple
Lie group with finite center. Let K be a maximal compact subgroup in G, with
Lie algebra k. The Lie algebra g of G admits Cartan decomposition g = k + p,
which determines a Cartan involution θ. Let g = k + ap + np be an Iwasawa
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decomposition of g and G = KApNp the corresponding Iwasawa decomposition
of G. The centraliser and the normaliser of Ap in K are respectively denoted by
Mp and M′p.

The group B = MpApNp is called standard minimal parabolic subgroup of G
and any closed subgroup P of G which is the normaliser of its Lie algebra and
contains a conjugate of B is called a parabolic subgroup.

Let N be the unipotent radical of such a subgroup, that is a maximal con-
nected normal subgroup of P consisting of unipotent elements.

Let L = P ∩ θ(P) be the θ-stable Levi component of P. It is a closed reductive
subgroup such that LN maps diffeomorphically to P. Let A be a maximal con-
nected split abelian subgroup in the center of L, and M =

⋂
χ

Ker |χ|, where χ runs

over the continuous homomorphisms χ : L→ R∗. Then L = MA.
The decomposition P = (M× A)n N is called the Langlands decomposition

of P. Respectively denoting a and n the lie algebras of A and N, it is possible to
choose an ordering on the a-roots such that n is the sum of the root-spaces asso-
ciated to positive roots. Denoting gλ the root-space associated to a root λ, let ρ be
the half sum of positive roots counted with multiplicity: ρ = (1/2) ∑

λ>0
dim(gλ)λ.

Since N is nilpotent and L is reductive, they are both unimodular and the Haar
measure dp on P = L n N decomposes into dp = dl dn. Finally, let n denote the
image θn of n under the Cartan involution and N be the corresponding analytic
subgroup.

3.2. THE MODULE E(G/N). The central object in this paper is the Hilbert module
obtained by performing the construction of the previous section in the case of Lie
groups G and L satifying the assumptions in the above setting, acting on the coset
space X = G/N. As a consequence of Iwasawa decomposition, it is possible to
write G = KMAN. Notice that M∩MAN = K∩M is compact, and that the parts
of the decomposition of an element in G relatively to KM, A and N are unique. It
follows from smoothness of the Iwasawa decomposition that the right action of L
on G/N is free and proper. The coset space (G/N)/L identifies to the flag variety
G/P, hence is a compact manifold. Since N is nilpotent and G semisimple, these
groups are both unimodular. It implies the existence of a G-invariant measure µ
on G/N, unique up to normalisation. Exploiting the choice of a maximal compact
subgroup K of G and once again the decomposition G = KP and the fact that N
is normal in P, we may identify G/N to K×M× A as a topological space, and µ

to e2ρ log(a)dk dm da.
The last identification immediately implies L-relative invariance for µ and

allows to compute δG/N . We recover these facts below, without using any choice
of a maximal compact subgroup. In order to do so, let us first recall some classical
notation.

NOTATION 3.1. Following [3], if Γ is a topological group and σ ∈ Aut(Γ),
the modular function of σ, denoted modΓ(σ), or mod(σ) when no confusion may



490 PIERRE CLARE

result, is defined by the equality
∫
Γ

f ◦ σ = mod(σ)−1
∫
Γ

f , holding for any inte-

grable function f . If a group Γ′ admits a subgroup Γ which is normalised by an
element g ∈ Γ′, we write cg(γ) = gγg−1 for every γ ∈ Γ. In the case of an inner
automorphism cγ of Γ, it follows from the definitions that modΓ(cγ) = ∆Γ(γ

−1).

PROPOSITION 3.2. The unique G-invariant measure µ on G/N is relatively in-
variant with respect to the right action of L and δG/N(l) = e2ρ log(a) for l = ma ∈ L.

Proof. We first prove that δG/N(l) = modN(cl) for any l = ma ∈ L. For f
integrable function and ġ the class in G/N of g ∈ G, define F(ġ) =

∫
N

f (gn)dn so

that our normalisations of Haar measures give
∫
G

f =
∫

G/N
F dµ. Thus,

δG/N(l)
∫
G

f (g)dg =
∫

G/N

F(ġl−1)dµ(ġ) =
∫

G/N

∫
N

f (gl−1n)dn dµ(ġ)

= mod(cl)
∫

G/N

∫
N

f (gnl−1)dn dµ(ġ)

= mod(cl)
∫
G

f (gl)dg = mod(cl)
∫
G

f (g)dg,

hence the first part of the result and the expected equality. The rest of the proof
reduces to the classical Lie algebra computation leading to the modular func-
tions of parabolic subgroups. Identifying N to its Lie algebra via the exponential
map, one only needs to compute the jacobian determinant |det(Ad(l)|n)|. The
properties of Langlands decomposition imply that M is the product of a closed
subgroup of K, hence compact and a connected reductive group with compact
center. It follows that |det(Ad(m)|n)| = 1 for any m ∈ M. Finally, an element
a ∈ A acts on the root space gλ by eλ log(a), so that |det(Ad(a)|n)| = e2ρ log(a),
which concludes the proof.

The data of

G y (G/N, µ) x L

hence satisfies the assumptions required in the previous section. Let us now turn
to the properties of E(G/N), starting with the fact that it induces the P-series
representations.

3.3. SPECIALISATION. As explained in Section 1, Rieffel’s modules allow to re-
cover the particular induced representations by tensoring with the Hilbert space
of the inducing representation. This specialisation procedure is still available us-
ing the C∗(L)-module E(G/N). The existence of the corresponding maps es-
sentially relies on the following result, relating E(G/N) to Rieffel’s module EG

P ,
which coincides with EP(G).
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PROPOSITION 3.3. There is an isometric isomorphism of C∗(L)-Hilbert modules

EL(G/N) ' EP(G)⊗ C∗(L),

that intertwines the left actions of C∗(G) on both sides.

Proof. Let MN denote the averaging map defined by

MN( f )(ġ) =
∫
N

f (gn)dn

for any function f in Cc(G) and ġ ∈ G/N the class of g ∈ G. A similarly defined
map on Cc(P) extends to a surjection εN : C∗(P) � C∗(L). Let α be a function
in Cc(P) ⊂ C∗(P), and f ∈ Cc(G) ⊂ E(G). Using the decomposition of measure
dp = dl dn it is easily seen that

(3.1) MN( f · α) = MN( f ) · εN(α)

in E(G/N). Now for l = ma ∈ L,

γG,P(l) =

√
∆G
∆P

(l) = ∆−1/2
P (l) = eρ log(a) = δ1/2

G/N(l) =

√
δG/N
∆L

(l) = γG/N,L(l).

Then it follows from a straightforward computation that

(3.2) 〈MN( f1), MN( f2)〉E(G/N) = εN(〈 f1, f2〉E(G))

in C∗(L) for every f1, f2 ∈ Cc(G). Recall that the C∗(L)-valued inner product on
E(G)⊗ C∗(L) is defined on elementary tensors by

〈 f1 ⊗ ϕ1, f2 ⊗ ϕ2〉 = 〈ϕ1, εN(〈 f1, f2〉E(G))ϕ2〉C∗(L) = ϕ∗1εN(〈 f1, f2〉E(G))ϕ2.

Let A be defined on Cc(G)×Cc(L) by A( f , ϕ) = MN( f ) · ϕ. Equality (3.1) proves
that A factorises through Cc(G)⊗ Cc(L), while (3.2) implies that

〈A( f1 ⊗ ϕ1), A( f2 ⊗ ϕ2)〉E(G/N) = 〈 f1 ⊗ ϕ1, f2 ⊗ ϕ2〉E(G)⊗C∗(L).

Since MN is onto, it follows that A also has dense range and the above equality
shows that it extends to the expected isometric isomorphism.

REMARK 3.4. The modules EG
P ⊗ C∗(L) were used in [19] by F. Pierrot. The

interest of the approach to E(G/N) as a special case of the general construction of
Section 2 is so far two-fold: first, it leads to the convenient realisation of E(G/N)
given in Theorem 4.8 through the use of the general result describing E(X) when
X = B× H (Proposition 2.9). Another interest of seeing E(G/N) as a completion
of Cc(G/N) is that it makes it possible to directly define intertwining integrals
similar to the ones considered by A.W. Knapp and E.M. Stein in [14], [15] without
needing any of the meromorphic continuation argument used by these authors,
as will be seen in Section 6.

Let us now establish the existence of specialisation maps.
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COROLLARY 3.5 (Specialisation). For (σ, χ) ∈ M̂× Â, letHσ⊗χ be the Hilbert
space of the representation σ⊗ χ⊗ 1 of P, andHP

σ,χ the space of the induced representa-
tion

πP
σ,χ = IndG

P σ⊗ χ⊗ 1.

There exists a map

qσ,χ : EL(G/N)⊗C∗(L) Hσ⊗χ −→ HP
σ,χ

unitarily intertwining the actions of C∗(G) on these Hilbert spaces.

Proof. Associativity of the tensor product allows to reduce the proof to ap-
plying the similar result obtained by Rieffel in the case of classical induction
Hilbert modules. Proposition 3.3 provides a unitary equivalence

EL(G/N)⊗C∗(L) Hσ⊗χ ' (EP(G)⊗C∗(P) C∗(L))⊗Hσ⊗χ.

The result follows from composing this isomorphism with the specialisation maps
of Theorem 5.12 (p.228) in [20].

REMARK 3.6. Letting P be a cuspidal parabolic subgroup and σ run over
M̂d, it appears that, although E(G/N) is a Hilbert module over C∗(L), it still
“contains” the P-series representations of G, in the sense that it induces all of
them.

We now turn to other realisations of E(G/N), encoding some classical fea-
tures of P-series representations.

4. DIFFERENT PICTURES

Notations in this section are the same as in the previous one.

4.1. INDUCED PICTURE. According to the usual definition, essentially due to
G. Mackey for locally compact groups, induced representations act on spaces of
sections of equivariant fiber bundles. In particular, for (σ, χ) in M̂d × Â, the P-
series representation πP

σ,χ acts on the space of L2-sections of the fiber product
G ×σ⊗χ⊗1 Hσ⊗χ⊗1 over the flag manifold G/P. The trivial behaviour of the in-
ducing parameter on N allows to consider sections of the G-equivariant bundle

G/N ×σ⊗χ Hσ⊗χ

��
G/P

as the space of πP
σ,χ. In order to recover that point of view within the global

approach provided by the module E(G/N), it is tempting to try and realise it as
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a space of sections of the G-equivariant bundle

G/N ×L C∗(L)

��
G/P

where C∗(L) can be viewed as the collection of all the Hilbert spaces Hσ⊗χ⊗1.
This realisation will be called the induced picture of E(G/N).

Let us denote by E o
i the space of compactly supported continuous functions

F : G/N → C∗(L) subject to the relation

F(x · l) = eρ log(a)Ul−1 · F(x)

for any x ∈ G/N and l = ma ∈ L, on which C∗(L) acts by right multiplication.
Let ψ be a Bruhat section for the action of L on G/N, as defined in the proof of
Proposition 2.2. The existence of ψ follows from the (para)compactness of the
coset space (G/N)/L ' G/P. A C∗(L)-valued inner product is defined on E o

i by
considering

〈F1, F2〉ψ =
∫

G/N

F1(x)∗F2(x)ψ(x)dµ(x)

for F1, F2 ∈ E o
i . The problem of the dependence on ψ is settled by the following

result.

LEMMA 4.1. The map 〈·, ·〉ψ defined above does not depend on the choice of the
Bruhat section ψ.

Proof. Let ψ1 and ψ2 be two Bruhat sections on G/N and u = ψ1 − ψ2. For
x ∈ G/N be represented by kma ∈ KMA, the relation satisfied by any functions
F1, F2 ∈ E o

i implies that F1(x)∗F2(x) = e−2ρ log(a)F1(k)∗F2(k). It follows from the
Iwasawa decomposition of the measure that∫

G/N

F1(x)∗F2(x)u(x)dµ(x) =
∫

K×MA

F1(kma)∗F2(kma)e2ρ log(a) dk dm da

=
∫
K

F1(k)∗F2(k)dk
∫
L

u(kl)dl dk.

The last quantity vanishes since
∫
L

u(kl)dl = 0 for all k ∈ K by definition of ψ1

and ψ2. It follows that 〈F1, F2〉ψ1 = 〈F1, F2〉ψ2 .

NOTATION 4.2. As a consequence of the above lemma, we can denote with-
out ambiguity 〈·, ·〉i the sesquilinear form on E o

i , regardless of the Bruhat section
used to construct it.
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DEFINITION 4.3 (Induced picture). The space obtained by completing E o
i

with respect to the norm induced by |〈·, ·〉i| and denoted Ei is called the induced
picture of E(G/N).

The C∗(L)-module Ei carries a left action of C∗(G), defined by convolution
at the level of compactly supported functions, in the same way as the one of
Proposition 2.5.

PROPOSITION 4.4. The map f 7→ f̃ defined on the dense subset Cc(G/N) of
E(G/N) by

f̃ (x)(l) = eρ log(a) f (x · l)
for x ∈ G/N and l = ma ∈ L, takes values in E o

i . It is Cc(L)-linear and preserves the
C∗(L)-valued inner products.

Proof. Let f ∈ Cc(G/N), x ∈ G/N and l0 = m0a0, l = ma ∈ L. Then
f̃ (x) ∈ Cc(L) and f̃ (xl)(l0) = eρ log(a0) f (xll0). Since

[Ul−1 f̃ (x)](l0) = f̃ (x)(ll0) = eρ log(aa0) f (xll0),

the expected relation f̃ (xl) = e−ρ log(a)Ul−1 f̃ (x) holds, implying that f̃ ∈ E o
i .

The Cc(L)-linearity follows from a straightforward computation. We prove the
isometry property: for f1, f2 ∈ Cc(G/N),

〈 f̃1, f̃2〉i(l0) = eρ log(a0)
∫

G/N

∫
L

f̃1(x)(l) f̃2(x)(ll0)dl ψ(x)dµ(x)

= eρ log(a0)
∫

G/N

∫
L

e2ρ log(a) f1(xl) f2(xll0)ψ(x)dl dµ(x)

= eρ log(a0)
∫

G/N

f1(x) f2(xl0)
∫
L

ψ(xl−1)dl dµ(x)

= 〈 f1, f2〉E(G/N)(l0)
∫
L

ψ(xl)dl = 〈 f1, f2〉E(G/N)(l0)

where ψ is any Bruhat section on G/N.

The map of the above statement has dense range in Ei, as we see by con-
sidering F ∈ E o

i such that F(x) ∈ Cc(L) for x ∈ G/N: then F = ũ where
u : x 7→ F(x)(1). The properties of C∗(L)-sesquilinearity and positivity of 〈·, ·〉i
can be obtained as consequences of the previous proposition, and the following
theorem holds as an immediate corollary.

THEOREM 4.5. There is an isometric isomorphism of C∗(L)-Hilbert modules

E(G/N) ' Ei.

Moreover, the left action of C∗(G) on Ei given by convolution coincides with the one
obtained by transporting it from E(G/N) via this isomorphism.
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REMARK 4.6. It is clear from the definition and Iwasawa decomposition that
functions in E o

i are determined by their restriction to K. It makes it possible to
obtain a compact picture of E(G/N) as the completion of a space of functions K →
C∗(L).

4.2. OPEN PICTURE. The classical so-called open or noncompact picture of P-series
representations (see [12]) allows to realise all these representations on Hilbert
spaces which do not depend on the representation σ of M in the inducing pa-
rameter. The crucial observation is the following consequence of the Bruhat de-
composition of G (see for instance [13]):

PROPOSITION 4.7 (Open Bruhat cell). The set NMAN is open in G and its
complement has Haar measure 0.

The above fact is reflected by an isomorphism between E(G/N) and the
tensor product of a Hilbert space by the right-acting C∗-algebra:

THEOREM 4.8 (Open picture). There is an isometric isomorphism of C∗(L)-
Hilbert modules

E(G/N) ' L2(N)⊗ C∗(L).

Proof. It is a straightforward consequence of Theorem 2.9 and Remark 2.10,
applied to B = N and H = L, for NL has measure 0 in G/N. More precisely, a
dense submodule of E(G/N) is obtained by considering functions of the form

F : nma 7−→ e−ρ log(a) f (n)ϕ(ma),

where f ∈ Cc(N) and ϕ ∈ Cc(L).

In the two following sections, we turn to applications of the point of view
provided by the module E(G/N) on P-series. Section 5 is devoted to the charac-
terisation of bounded self-intertwiners of E(G/N), interpreted as an irreducibil-
ity result. In Section 6, we define intertwining integrals in the spirit of [14] on a
dense subset of E(G/N).

5. AN IRREDUCIBILITY THEOREM

5.1. GROUPS OF REAL RANK 1. In this section, we will sometimes need to assume
that the real rank of G, that is the dimension of the abelian part in the Iwasawa
decomposition of G, is 1. As a consequence, proper parabolic subgroups of G are
necessary minimal. The subgroups in the Langlands decomposition of P = B are
M = Mp compact, A = Ap ' R∗+ and N = Np.

REMARK 5.1. The P-series induced from a minimal parabolic subgroup are
also called principal series.

We denote:
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• α the smallest restricted root of (g : a);
• p and q the respective dimensions of g−α and g−2α.

It follows that n = g−α + g−2α and ρ = (1/2)(p + 2q)α. The automorphisms
{ca , a ∈ A} of N are called dilations.

The Weyl group W = NK(A)/ZK(A) contains exactly one non-trivial ele-
ment, denoted w, and the Bruhat decomposition of G writes G = PwP t P, so
that the complement of NMAN in G is the class wP of w in G/P.

NOTATION 5.2. Elements in the dense subset (G/N) \ wL may be written
according to NMA in a unique way. For such an element this decomposition will
be denoted

g = n(g)m(g)a(g)n.

We also denote l(g) = m(g)a(g).

What follows essentially consists in analysing distributions on N with ho-
mogeneity properties under the action of the one-parameter group of dilations A.
Identifying N to its Lie algebra n, this action is seen to dilate vectors with differ-
ent coefficients according to root subspaces. This behaviour is taken into account
by a special norm-like function on N.

DEFINITION 5.3. The norm function on N is the function defined on N \{1} by

|n| = eρ log a(w−1n).

Elementary facts about this function may be found in [14] and [5]. In par-
ticular, it will be useful to know that the norm function is C∞ on N \ {1} and is
continuously extended to N by setting |1| = 0. Moreover, |n−1| = |n| for any
n ∈ N and the measure dn/|n| is invariant under dilations.

Another feature in real rank 1, is the possibility to completely describe the
left action of C∗(G) in the open picture of E(G/N). It is initially defined by convo-
lution at the level of Cc(G/N) and carried to L2(N)⊗C∗(L) via the isomorphism
of Theorem 4.8. One may also consider the corresponding action of G defined by
translations on Cc(G/N) and extended to E(G/N). The next proposition explic-
its this action in the open picture. For f ⊗ ϕ in L2(N)⊗ C∗(L), we write g · f ⊗ ϕ
for the action of g ∈ G transported from the one on E(G/N). The Bruhat decom-
position in rank 1 proves that it is enough to consider g ∈ NMA and g = w.

PROPOSITION 5.4. Let f ⊗ ϕ ∈ L2(N)⊗C∗(L), n0 ∈ N and l0 = m0a0 ∈ MA.
Then,

(i) n0 · ( f ⊗ ϕ) = λN(n0)( f )⊗ ϕ.
(ii) l0 · ( f ⊗ ϕ) = eρ log(a0) f ◦ cl−1

0
⊗Ul0 · ϕ.

(iii) For any ν ∈ N \ {1} and λ ∈ L,

w · ( f ⊗ ϕ)(ν, λ) =
1
|ν| f (n(w

−1ν)) (Ul(w−1ν)ϕ)(λ).
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Proof. It follows directly from the definition of the isomorphism in Proposi-
tion 4.8.

Let us now turn to the main result of this section.

5.2. BOUNDED SELF-INTERTWINERS.

DEFINITION 5.5. Let A be a C∗-algebra. An element M in the multiplier
algebraM(A) = LA(A) is said to be central if it satisfies the relation

M(ab) = aM(b)

for any a, b ∈ A.

REMARK 5.6. Using approximate units, the algebra of central multipliers of
A can be proved to coincide with the center ofM(A).

THEOREM 5.7. The elements of LC∗(L)(E(G/N)) which commute to the left ac-
tion of C∗(G) are exactly the central multipliers of C∗(L).

The method of the proof consists in associating to such an operator a bilinear
form on a submodule of test functions and study the properties of the associate
distributional kernel.

In what follows, all distributions take values in Banach spaces. General
theory may be found in [4], as well as the next proposition, which characterises
the distributions satisfying some invariance properties.

PROPOSITION 5.8. Let M be a differentiable manifold and Γ a Lie group with
Haar measure dγ. Let E be a Banach space and T an E-valued distribution on M× Γ.
If T is invariant under the transformations (m, γ) 7→ (m, γ0γ), then there exists an
E-valued distribution S on M such that

〈T, ϕ〉 =
∫
Γ

〈S, ϕγ〉dγ

where ϕγ : m 7→ ϕ(m, γ) whenever ϕ is a test function on M× Γ.

REMARK 5.9. As a special case, it follows that, up to a scalar factor, the only
left-invariant distribution on a Lie group is the Haar measure.

Proof of Theorem 5.7. The right action of C∗(L) extends to one ofM(C∗(L))
on E(G/N) and if TM denotes right multiplication by M ∈ M(C∗(L)), the cen-
trality condition for M implies C∗(L)-linearity for TM. The fact that TM commutes
to the action of C∗(G) is trivial, and boundedness follows from the existence of
an adjoint map for TM, namely TM∗ .

Conversely, let T ∈ LC∗(L)(E(G/N)), satisfying the centrality condition.
Following notations introduced in Section 1, the Hilbert module L(C∗(L), E) on
M(C∗(L)) is denoted byM(E(G/N)).

We shall work in the open picture of Section 4.2. Since M(E(G/N)) con-
tains L2(N) ⊗M(C∗(L)), there is an injection L2(N) ↪→ M(E(G/N)) through
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which f ∈ L2(N) is identified with the multiplier f ⊗ 1M(C∗(L)), also denoted m f ,
so that m f⊗a = m f ma, for any a ∈ C∗(L), using notations of Section 1.2. It also
follows that

M(T)(m f⊗a) = M(T)(m f )ma,

hence for f1 ⊗ a1, f2 ⊗ a2 ∈ E(G/N),

〈M(T)(m f1⊗a1), m f2⊗a2〉 = ma∗1
〈M(T)(m f1), m f2〉ma2 .

Let us now consider the map BT : Cc(N)× Cc(N)→M(C∗(L)) defined by

BT( f1, f2) = 〈M(T)(m f1
), m f2〉,

and prove that it is a Radon measure on N × N. Let K be a compact subset in
N × N, and f1, f2 ∈ Cc(N) such that Supp f1 × Supp f2 ⊂ K. Recall that if E is a
Hilbert module over a C∗-algebra A, the identity |〈ξ, η〉|A 6 ‖ξ‖〈η, η〉1/2 holds
for any ξ, η ∈ E, hence the following equality inM(C∗(L)):

|BT( f1, f2)| 6 ‖M(T)(m f1)‖ · |m f2 |.

It follows that ‖BT( f1, f2)‖ 6 ‖T‖ · ‖ f1‖2 · ‖ f2‖2, where ‖T‖ denotes the operator
norm of T, hence continuity of BT with respect to the topology of uniform con-
vergence on K. Consequently, BT defines a distributional kernel kT on N × N, so
that it writes

BT( f1, f2) =
∫

N×N

f1(n1) f2(n2) kT(n1, n2)dn1 dn2.

Since the left action of G on E(G/N) preserves the inner product, commutation
of T to this action implies that BT(n0 · f1, n0 · f2) = BT( f1, f2).

Applying the diffeomorphism (n1, n2) 7→ (n−1
1 n2, n2) of N × N and using

Proposition 5.8 and Remark 5.9 we see that kT satisfies the equation

kT(n1, n2) = kT(1, n−1
1 n2).

It follows that defining a distribution cT on N by cT(n) = kT(1, n) implies that
kT(n1, n2) = cT(n−1

1 n2). Invariance under the A action will allow us to char-
acterise this distribution. Namely, the action of an element l = ma ∈ L on an
elementary tensor f ⊗ ϕ ∈ L2(N) ⊗ C∗(L) is given by the formula l · f ⊗ ϕ =

eρ log(a) f ◦ cl ⊗Ul · ϕ of Proposition 5.4.
Commutation to the L action implies that BT(a · f1, a · f2) = BT( f1, f2) for

any a ∈ A. It follows that

e−2ρ log(a)
∫

N×N

f1(ca(n1)) f2(ca(n2)) kT(n1, n2)dn1 dn2
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= e2ρ log(a)
∫

N×N

f1(n1) f2(n2) kT(c−1
a (n1), c−1

a (n2))dn1 dn2

=
∫

N×N

f1(n1) f2(n2) kT(n1, n2)dn1 dn2 ,

the first equality resulting of modN(ca) = e−2ρ log(a). As a consequence the distri-
bution cT satisfies the following invariance property: cT(ca(n)) = e−2ρ log(a)cT(n),
that is, for any test function ϕ on N,

(5.1) 〈cT , ϕ ◦ ca〉 = 〈cT , ϕ〉.

PROPOSITION 5.10. If the real rank of G is 1, then the Radon measures on N
satisfying relation (5.1) are multiples of the Dirac measure.

Proof. Since N is a simply connected nilpotent Lie group, it may be identi-
fied via the exponential map to its Lie algebra n = g−α⊕ g−2α ' Rp⊕Rq, in a way
that preserves measures and allows to identify spaces of test functions and dis-
tributions. Under these identifications, the action by dilations of A on N is given
on n in terms of α by ca(n) ' (α(a)u, α(a)2v) for a ∈ A and n ∈ N identified to
(u, v) ∈ Rp ⊕Rq. We denote by a · (u, v) this last expression.

Denote r(u, v) = (‖u‖4 + ‖v‖2)1/4 for (u, v) ∈ Rp ⊕ Rq and let c0
T be the

restriction of cT to the open subset N \ {1}. The function r is the Lie algebraic
analogue of the norm function introduced above. For t ∈ R+, we denote the
surface of equation r(u, v) = t. Then, for a ∈ A ' R∗+, we have the equality
r(a · (u, v)) = a r(u, v), and the map

(u, v) 7−→
(

r(u, v),
(u, v)
r(u, v)

)
is a diffeomorphism between N \ {1} and R∗+ × S1. Fix ψ0 ∈ C∞

c (S1). If ϕ is a test
function on R∗+, then ϕ⊗ ψ0 is in C∞

c (R∗+)⊗C∞
c (S1) ⊂ C∞

c (N \ {1}) and the map
ϕ 7→ 〈c0

T , ϕ⊗ ψ0〉 is a homogeneous distribution on R∗+. Proposition 5.8 implies
that 〈c0

T , ϕ⊗ ψ0〉 is of the form

c(ψ0)

+∞∫
0

ϕ(r)
dr
r

so c0
T cannot be the restriction of a Radon measure. It follows that the support

of cT is reduced to {1}, so that cT is a combination of derivatives in the sense
of distributions of the Dirac measure. The homogeneity condition finally proves
that cT = δ1 · 1M(C∗(L)) up to a constant.

According to the above result, there exists a multiplier U ∈ M(C∗(L)) such
that cT = Uδ1. It follows that kT(n1, n2) = U · δ1(n−1

1 n2), hence the following
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form of the bilinear form:

BT( f1, f2) = 〈 f1, f2〉L2 U

for f1, f2 ∈ L2(N).
As a consequence, for a1, a2 ∈ C∗(L),

〈M(T)(m f1 ⊗ma1), m f2 ⊗ma2〉 = 〈 f1, f2〉L2 m∗a1
U ma2 = 〈 f1 ⊗U∗(a1), f2 ⊗ a2〉

in M(C∗(L)), and M(T) coincides with right composition by U∗. This map is
C∗(L)-linear only if U satisfies the centrality condition, which concludes the proof
of Theorem 5.7.

REMARK 5.11. In the special case of q = 0, the distribution cT is homoge-
neous of degree −p. If G = SL2(R) for instance, p = 1 and the problem reduces
to the Euler equation on R, the solutions of which are known to be combinations
of the Dirac measure δ0 and the principal value distribution Vp(1/x). The latter
being of order 1, it is not the restriction of a Radon measure, which implies that
cT = δ0 up to a constant factor.

The above result should be seen as the analogue at the level of Hilbert mod-
ules of the generic irreducibility theorem due to Harish-Chandra in the general
cuspidal case, and to Bruhat in the minimal one (see [18]). More precisely, they
established the irreducibility of all P-series representations except for the ones in-
duced by elements in M̂d × Â fixed under the action of the Weyl group WP, for
which reducibility may happen. In view of the Schur lemma, it means that the
self-intertwiners for these representations amount to homotheties, except for the
ones coming from a subset of lower dimension in L̂.

In our global framework, Theorem 5.7 states that self-intertwiners reduce
to what plays the role of homotheties on a module over a non-commutative alge-
bra, that is multipliers satisfying the extra centrality condition needed to be linear.
That all the bounded operators commuting to C∗(G) are trivial in this sense, re-
flects the fact that the subset of parameters in L̂ giving reducibility is too small to
manifest at the level of E(G/N).

6. STANDARD INTERTWINING INTEGRALS

The generic irreducibility theorem mentioned above states that, with respect
to the Plancherel measure, almost all the P-series are irreducible. To deal with the
representations in the remaining measure zero set, it is necessary to determine if
non-trivial self-intertwiners may exist. Knapp and Stein successfully developed
such a theory of intertwining operators in [14], [15], some aspects of which are
still being discovered. The first applications were related to the detection of fine
reducibility phenomena in the P-series and explicit computation of densities in
the Plancherel formula (see [12]).
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Their method starts from Bruhat’s theory and the remark that certain inte-
grals formally enjoy the intertwinig properties although they are given by non-
locally integrable kernels. The constructions then roughly proceeds in two steps.
The first one consists in allowing the parameter in Â seen as a subset of a′ ⊗C to
take non-purely imaginary values. The corresponding integrals are then conver-
gent on a domain and the operators may be defined as meromorphic extensions.
The second step consists in normalising these operators, to make them unitary.
The normalising functions are related to densities in the Plancherel formula and
the study of their poles allows to decide of the reducibility of induced represen-
tations.

Let us now turn to standard intertwining integrals. As explained at the
beginning of the previous paragraph, the theory of intertwining operators relies
on the possibility to give meaning to certain integral formula. In the classical
context, the integral operators are meant to intertwine the representations πσ,χ
and πw·σ,w·χ . One is led to study the so-called standard operator Iw given by

IwF(g) =
∫
N

F(gwn)dn,

which formally turns a section F on G/LN into a section on G/LN.
At the level of the generalised induction modules introduced above, inter-

twining operators should be C∗(G)-invariant operators E(G/N) −→ E(G/N),
preferably preserving the inner products. As a first step in the direction of such a
theory, we study what can be defined by considering the integral formula Iw on
a dense submodule of E(G/N). We will prove the following statement:

THEOREM 6.1. The standard integral∫
N

F(gwn)dn

defines a linear map Cc(G/N)→ C(G/N).

6.1. PROOF OF THE CONVERGENCE. Recall that G diffeomorphically decomposes
into KAN. Hence any g ∈ G may be written accordingly g = k(g)a(g)n(g). The
proof of Theorem 6.1 essentially relies on the following property of the map a.

LEMMA 6.2. The restriction of the Iwasawa projection

a|N : N −→ A

is proper.

Proof. Let us first assume that G has real rank one. The result can be ob-
tained in this case using so-called SU(2, 1)-reduction as explained in [10]. More
precisely, let us assume that α and 2α are the positive restricted roots, so that
n = g−α + g−2α, to which N identifies. Then, writing n = exp(X + Y) with
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X ∈ g−α and Y ∈ g−2α, Theorem 3.8 in Chapter IX, Section 3 of [10] states that
a(n) is of the form

exp(C1 ln[(1 + C2|X|2)2 + 4C2|Y|2]H0)

where H0 is a fixed element generating a and C1, C2 are constants depending on
the dimensions of g−α and g−2α. It is then straightforward to check the properness
of the Iwasawa projection, studying the dependence in the coordinates X and Y.

Finally, the higher rank situation boils down to the previous one by another
classical reduction. Consider the set {α1, . . . , αp} of indivisible positive roots of a
in g. Let nαi = g−αi + g−2αi and Nαi = exp(nαi ). Then there exists a diffeomor-
phism

ϕ :
p

∏
i=1

Nαi −→ N

such that
a(ϕ(n1, . . . , np)) = a(n1) · · · a(np),

which concludes the proof.

Theorem 6.1 follows rather easily from the above lemma. Indeed, the for-
mula defining Iw is clearly G-equivariant, so that it is enough to establish the
convergence of

∫
N

F(g0wn)dn for F ∈ Cc(G/N) and any special g0 ∈ G. Choos-

ing g0 = w−1 and retaining the notation introduced above, the problem reduces
to proving the convergence of ∫

N

F(k(n)a(n))dn

since F is N-invariant. Applying Lemma 6.2 concludes the proof.

6.2. EXPRESSION IN THE OPEN PICTURE. Although the most natural way to de-
fine Iw is to consider a subspace of functions in E(G/N), it may be useful to have
explicit formulas in the other pictures at hand. In order to obtain a convenient ex-
pression, we first establish some formulas regarding the action of G on the com-
pact flag manifold G/P. The following lemma expresses the action G y G/P,
composed with the “stereographic projection” of G/P on the euclidean space N
(in the case of G = SL2(R), the group N is a real line on which the flag manifold
G/P ' S1 surjects) by means of the decomposition of almost all of G according
to NMAN.

LEMMA 6.3. Let g ∈ G, ν0 ∈ N such that gν0 ∈ NMAN and ν ∈ N \ {1}. Set
µ = w2 ∈ M. Then,

(i) n(g−1n(gν0)) = ν0;
(ii) n(wn(wν)) = cµ(ν);

(iii) m(wn(wν)) = µ m(wν)−1;
(iv) a(wn(wν)) = a(wν)−1;
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(v) l(wn(wν)) = µ l(wν)−1.

Proof. Write gν0 with respect to NP as gν0 = n(gν0)p. Then

g−1n(gν0) = g−1n(gν0)pp−1 = g−1gν0 p−1,

and (i) is a consequence of unicity in the decomposition according to NMAN. (ii)
follows from the remark that if g ∈ G is such that n(g) exists and m ∈ M, then
n(gm) = n(g). Indeed,

n(wn(wν)) = n(wn(w−1µν)) = n(wn(w−1cµ(ν))),

hence the result. Finally, if wν = n0 p0 with p0 = m0a0n0 and wn0 = n1 p1 with
p1 = m1a1n1, then

n0 = w−1n1 p1 = wµ−1n1 p1 = wcµ−1(n1)µ
−1 p1

hence
wν = wcµ−1(n1)µ

−1 p1 p0 = wcµ−1(n1)µ
−1m1m0a1a0n′,

for some n′ ∈ N. Since m(wn(wν)) = m1 and a(wn(wν)) = a1, formulas (iii) and
(iv) follow, thus implying (v).

The action of the non-trivial Weyl element is sometimes called the inversion
of N (see Chapter 2, Section 6 in [11]). Our next result shows how it transforms
the measure on N.

LEMMA 6.4. For f ∈ L1(N),∫
N

f (n(wν))e−2ρ log a(wν) dν =
∫
N

f (ν)dν.

Proof. Since w ∈ K, the map Lw : f 7−→ f (w ·) preserves the C∗(L)-norm
on E(G/N) ' L2(N) ⊗ C∗(L). Denote P the map of Theorem 4.8 defined on
elementary tensors of Cc(N)⊗ Cc(L) by

P( f ⊗ ϕ) : nma 7−→ e−ρ log a f (n)ϕ(ma).

For any x ∈ NMA and l0 ∈ L, it is clear that n(xl0) = n(x) and l(xl0) = l(x)l0.
Consequently, if nma ∈ NMA,

P( f ⊗ ϕ)(wnma) = e−ρ log ae−ρ log a(wn) f (n(wn))ϕ(l(wn)ma),

and Lw is given on L2(N)⊗ C∗(L) by

Lw( f ⊗ ϕ)(nma) = e−ρ log a(wn) f (n(wn))λL(l(wn))(ϕ)(ma).

Since the C∗(L)-norm is given in the open picture by | f ⊗ ϕ|2 = ‖ f ‖2 ϕ∗ϕ and
preserved by Lw, denoting fw(n) = e−ρ log a(wn) f (n(wn)), we get

‖ fw‖2
2 = ‖ f ‖2

2,

since the action of λL(l(wn)) does not affect the norm. This proves the proposi-
tion for positive functions, and the result follows by linear combination.
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Let us finally describe the effect of conjugating ν by elements of L on the
decomposition of w−1ν according to NMAN.

LEMMA 6.5. Let l0 = m0a0 ∈ L and ν ∈ N. Then,
(i) m(w−1cl0(ν)) = cw(m0)m(w−1ν)m−1

0 ;
(ii) a(w−1cl0(ν)) = a−2

0 a(w−1ν);
(iii) l(w−1cl0(ν)) = cw(m0)l(w−1ν)l−1

0 a−1
0 .

Proof. (iii) clearly follows from (i) and (ii). For those,

w−1l−1
0 νl0=cw−1(l−1

0 )w−1νl0=cw−1(l−1
0 )n′l(w−1ν)n′l0=n′′cw−1(l−1

0 )l(w−1ν)l0n′′,

with n′, n′′ ∈ N and n′, n′′ ∈ N. (i) follows from identifying the M components.
Taking into account the fact that cw acts on A as the inverse map a 7→ a−1, identi-
fying the M components proves (ii).

We are now ready to write the standard intertwining integral in the open
picture. To this purpose, we denote Iw the integral formula obtained by applying
Iw to elementary tensors of L2(N)⊗ C∗(L). Namely, for f ⊗ ϕ in Cc(N)⊗ Cc(L)
and x0 = n0m0a0,

Iw( f ⊗ ϕ)(x0) = eρ log(a0)
∫
N

e−ρ log a(x0wν) f (n(x0wν))ϕ(l(x0wν))dν.

NOTATION 6.6. The automorphism of C∗(L) induced by the conjugation cw
of L is denoted a 7→ aw.

PROPOSITION 6.7. Assuming that either side is defined, the equality

Iw( f ⊗ ϕ)(x0) =
∫
N

f (n0ν)[Ul(w−1ν)ϕ]w(l0)
dν

|ν|

holds for f ⊗ ϕ ∈ Cc(N)⊗ Cc(L) and x0 = n0m0a0.

Proof. The identities

m(x0wν) = m0m(wν), a(x0wν) = a0a(wν),

n(x0wν) = n0cl0(n(wν)) = n0l0n(wν)l−1
0 ,

are clear. They imply that

Iw( f ⊗ ϕ)(x0) =
∫
N

e−ρ log a(wν) f (n0cl0(n(wν)))ϕ(l0l(wν))dν.

The change of variables ν↔ n(wν) leads via Lemma 6.4 to the expression∫
N

e−ρ log(a(wn(wν))a(wν)2) f [n0cl0(n(wn(wν)))]ϕ[l0l(wn(wν))]dν,
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which simplifies to∫
N

e−ρ log a(wν) f [n0cl0(cµ(ν))]ϕ[l0µl(wν)−1]dν,

using Lemma 6.3.
We computed the modular function modNcl = e−2ρ log a for l = ma ∈ L

earlier. Besides, since µ = w2 ∈ M, it follows that wcµ−1(ν) = wµ−1νµ = w−1ν

for ν ∈ N hence a(wcµ−1(ν)) = a(w−1ν) and m(wcµ−1(ν)) = m(w−1ν)µ, which
leads to l(wcµ−1(ν)) = l(w−1ν)µ. We deduce from the previous remarks and
Lemma 6.5 that:

Iw( f ⊗ ϕ)(x0) =
∫
N

e−ρ log a(wc
µ−1 (ν)) f [n0cl0(ν)]ϕ[l0µl(wcµµ−1(ν))−1]dν

=
∫
N

e−ρ log a(w−1ν) f [n0cl0(ν)]ϕ[l0l(w−1ν)−1]dν

= modN(cl−1
0
)
∫
N

e
−ρ log a(w−1c

l−1
0

(ν))
f (n0ν)ϕ[l0l(w−1cl−1

0
(ν))−1]dν

=
e−2ρ log a0

modN(cl0)

∫
N

e−ρ log a(w−1ν) f (n0ν)ϕ[a−1
0 l(w−1ν)−1c−1

w (m0)]dν.

Since cw(a0) = a−1
0 , it follows that

Iw( f ⊗ ϕ)(x0) =
∫
N

f (n0ν)ϕ[l(w−1n−1ν)−1cw−1(l0)]e−ρ log a(w−1ν) dν.

Using the notations ϕ 7→ ϕw for the action of w on C∗(L) and |n| for the
norm function introduced before, we finally get the expected expression.

It follows from Proposition 6.7 that the standard intertwining integral may
be written in the open picture as

Iw =
∫
N

RN(ν)⊗Uw
l(w−1ν)

dν

|ν| ,

where RN denotes the right regular representation of N.

REMARK 6.8. The standard intertwining integral can also be expressed in
the induced picture. More precisely, it is proved in [5] that if F ∈ E o

i , this integral
can be written

IwF(x) =
∫
N

Ul(w−1n)F(xn)
dn
|n|

for x ∈ G/N, and is well defined because of Theorem 6.1 and the equivalence of
the different pictures.
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Let us conclude this section by some general remarks on C∗-algebraic in-
tertwining. Theorem 6.1 replaces the meromorphic continuation in the theory of
Knapp and Stein. The fact that the operators they obtain in this way are not uni-
tary and need to be normalised has its counterpart in our framework. Namely, Iw
does not take its values in E(G/N), as it was observed in [5] already in the case of
SL2(R). This phenomenon is the analogue of the existence of poles in the classical
theory, where these singularities actually enclose all the data about reducibility
in the P-series.

It is in fact possible to recover this information by studying the operator Iw,
and more precisely what prevents it from extending to E(G/N). In this picture,
the “singularity” appears as a distribution Tw on L, and it was observed in the
appendix of [6], again for SL2(R), that studying the points in L̂ where the Fourier
transform of Tw vanishes also yields the parameters at which reducibility occurs.

Finally, let us sketch some perspectives about the normalisation of the in-
tertwining operators. The procedure in Knapp–Stein theory consists in dividing
the standard integral by a certain meromorphic function of the parameter in Â so
that it becomes unitary. The normalising function is obtained by composing the
standard operator by its adjoint. Similarly, our goal is to extract from Iw a unitary
operator on the Hilbert module E(G/N), twisted by the automorphism of C∗(L)
induced by the Weyl element. However, since Iw does not extend to E(G/N), it is
not possible to perform any kind of polar decomposition, so that one has to come
up with an appropriate unitary and check that it actually normalises the stan-
dard integral. We came over this problem in [5] by means of functional calculus
on differential operators in some special cases.

7. IMAGES OF C∗r (G)

In this final section, we argue how a C∗-algebraic theory of intertwiners
should relate to the analysis of the reduced C∗-algebra of Lie groups.

DEFINITION 7.1. Two cuspidal parabolic subgroups are said to be associate
if their Levi components are conjugate. The assocation class of a cuspidal para-
bolic subgroup P is denoted by [P].

Results of Harish-Chandra [7] and Lipsman [17] establish that the unitary
equivalence classes of the P-series representations, for all possible P, can be parti-
tioned according to the association classes of the inducing subgroups. This leads
to the following decomposition of the reduced dual into a disjoint union

(7.1) Ĝr =
⊔

[P], P cuspidal

ĜP

where ĜP denotes the set of irreducible components in the P-series representa-
tions. This result, in relation with the Plancherel formula, describes the reduced
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dual as a measured space. In order to understand it as a noncommutative topo-
logical space, we need to take the reducibility phenomena into account. Those
were dealt with by Knapp and Stein [14], [15] by means of their intertwining op-
erators, implementing the intricate action of Weyl groups. The structure of the
C∗-algebra was described in [21] for the cases where Ĝr is Hausdorff, and in [22]
by means of the operators of Knapp and Stein.

We indicate here how the Hilbert modules E(G/N) are expected to provide
a good framework to analyse C∗r (G) with respect to association classes of cuspidal
parabolic subgroups.

We no longer assume the real rank of G to be 1, but we consider P = MAN
minimal parabolic, which is a necessary and sufficient condition for M to be com-
pact.

PROPOSITION 7.2. The left action of C∗(G) on E(G/N) induces a ∗-morphism

C∗r (G) −→ C0(M̂× Â,K).
Proof. Still denoting εN : C∗(P) � C∗(L) the canonical surjection, let τ be

the map
Co G ' C∗(G) −→ C(G/P)o G ' K(E(G))

coming from Rieffel’s formulation of the imprimitivity theorem, taking into ac-
count the compactness of G/P. Let τN = τ ⊗εN 1. Then

τN : C∗(G) −→ K(E(G/N)).

Since P is amenable, all its actions are. The imprimitivity theorem implies
that the action of G on G/P is Morita-equivalent to the one of P on G/G, hence
amenable too (see [1] and [2]). It follows that C(G/P) o G is isomorphic to
C(G/P) or G, where C∗r (G) acts naturally. The situation is summed up in the
following diagram

τN : C∗(G)

λG
����

// C(G/P)o G

'
��

// K(E(G/N))

'
��

C∗r (G)
''n l i g d b _ ] Z X U S P

// C(G/P)or G C0(M̂× Â,K)

where the isomorphism in the last column is a consequence of the strong Morita
equivalence between K(E(G/N)) and C∗(L). Since L = MA with A abelian and
M compact, C∗(L) decomposes into

C0(Â)⊗
⊕

σ∈M̂

End (Vσ),

where the Vσ are finite-dimensional, hence the isomorphism

K(E(G/N)) ' C0(M̂× Â,K)

by stable equivalence.
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It seems that the result extends to the cuspidal case with a ∗-morphism

C∗r (G) −→ C0(M̂d × Â,K).

The purpose of our further work will be to describe the image of this morphism,
using the unitary operators which arise by normalising Iw (see [5] for the cases of
SL2(R) and SL2(C)). Denoting C∗P(G) this image, the decomposition (7.1) of Ĝr is
likely to translate at the level of C∗r (G) by

C∗r (G) '
⊕

[P], P cuspidal

C∗P(G).
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