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ABSTRACT. Continuing research on Banach–Saks and Schur properties started
by C.-H. Chu, M. Kusuda, and the authors, we investigate analogous proper-
ties in the Banach C∗-module context. As an environment serves the class of
Hilbert C∗-modules. Some properties of weak module topologies on Hilbert
C∗-modules are described. Natural module analogues of the classical weak
Banach–Saks and Schur properties are defined and studied. A number of use-
ful characterizations of properties of Hilbert C∗-modules is obtained. In par-
ticular, some interrelations of these properties with the self-duality property
of countably generated Hilbert C∗-modules are established.
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1. INTRODUCTION

Originally, the Banach–Saks property was introduced and studied for the
particular case of Lp([0, 1]) with 1 < p < ∞ by S. Banach and S. Saks in [1]. In
the sequel the Banach–Saks property has been considered for various classes of
Banach spaces (see, for example, [3], [6], [11], [14], [16], [24]).

In the present paper we extend the considerations of [16], [11] on the Banach–
Saks and Schur properties from the situation of Banach spaces to the situation of
certain Banach C∗-modules. For Hilbert C∗-modules we introduce some natural
module analogues of the weak Banach–Saks and Schur properties and study their
potential. The main idea of these constructions is to replace the weak topology of
Banach spaces by a weak topology of Hilbert C∗-modules. But there are at least
two suitable candidates for such a replacement — the weak topology generated
by the inner product and the weak topology generated by all C∗-linear bounded
functionals on the Hilbert C∗-module. We considered both of them, but mostly
we are interested in the first variant.
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In the second section we briefly recall some facts of the general Hilbert C∗-
module theory. In the third section we obtain some properties of the mentioned
weak module topologies (see Definition 3.1).

The forth section is dedicated to the study of the module Schur property
(see Definition 4.2). In particular, we prove that a C∗-algebra with a strictly pos-
itive element (considered as a Hilbert module over itself) has the module Schur
property if and only if it is unital (Theorem 4.6), and this requirement concerning
strictly positive elements is essential (Example 4.7). Finitely generated projective
modules over σ-unital C∗-algebras with Schur property have the module Schur
property (Corollary 4.10), whereas standard Hilbert modules l2(A) do not have
the module Schur property for any C∗-algebras A (Proposition 4.11).

In the fifth section we consider two possible candidates for the definition
of the module Banach–Saks property (see properties (mBS1) and (mBS2) in the
beginning of the fifth section). But it occurs, the first of them is fulfilled for all
Hilbert C∗-modules (Theorem 5.3). So we choose the second of them as the defini-
tion of the module Banach–Saks property (Definition 5.4). We prove that the mod-
ule Schur property implies the module Banach–Saks property (Proposition 5.5),
that a C∗-algebra with a strictly positive element has the module Banach–Saks
property if and only if it is unital (Theorem 5.6), and that finitely generated pro-
jective Hilbert modules have the module Banach–Saks property (Corollary 5.8).

In the last section some interrelations between both the module Schur and
the module weak Banach–Saks properties and self-duality of Hilbert C∗-modules
are considered.

2. PRELIMINARIES

A (right) pre-Hilbert C∗-module over a C∗-algebra A (cf. [25]) is a right A-
module V equipped with an A-valued inner product 〈·, ·〉 : V × V → A, which
is A-linear in the second variable, fulfils 〈x, y〉 = 〈y, x〉∗; is positive, i.e. 〈x, x〉 > 0,
and is definite, i.e. 〈x, x〉 = 0 if and only if x = 0. A pre-Hilbert A-module is a
Hilbert A-module provided it is a Banach space with respect to the norm ‖x‖ =
‖〈x, x〉‖1/2.

For the convenience of the reader we also give a sketch of the dual module
theory that will be essentially used in the sequel. Suppose V denotes a Hilbert
A-module again. Let V′ = HomA(V, A) be the set of all A-linear bounded maps
from V to A, the dual (left Banach) module for V. Apparently, there is an isometric
module embedding

∧ : V → V′, x∧(·) = 〈x, ·〉.(2.1)

A Hilbert A-module is said to be self-dual if this map is surjective. Generally
speaking, V′ is far not always a Hilbert C∗-module provided A is just an arbitrary
C∗-algebra. The inner product can be extended from V to V′ (and even in such
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way that the dual module will be self-dual) if and only if A is monotone complete
(cf. Theorem 4.7 of [8], and [12], [19], although in the more important case of W∗-
algebras such an extension was described in [25]). As usual, the bidual module
V′′ should be defined by the second iteration, i.e. V′′ = HomA(V′, A). For a
functional F ∈ V′′ one can define a functional F̃ ∈ V′ by the formula

F̃(x) = F(x̂), x ∈ V .

Then the map F 7→ F̃ is an A-module isometry from V′′ into V′, and it allows to
extend the inner product from V to V′′ in the following way

〈F, G〉 = F(G̃), F, G ∈ V′′ ,

where the norm arising from this inner product coincides with the operator norm
of V′′. Now, let x ∈ V, f ∈ V′ and put

ẋ( f ) = f (x)∗.(2.2)

Then the map (2.2) is an isometric module embedding of V into V′′ (see [21], [26]
for details). In opposition to the situation of Banach spaces, the third dual V′′′

for V is isomorphic to V′, whereas the Banach modules V, V′ and V′′ may be
pairwise non-isomorphic in particular situations [26].

More information about Hilbert C∗-modules can be found in [17], [20], [21],
[30], [31], for example.

3. WEAK MODULE TOPOLOGIES ON HILBERT C∗-MODULES

We are going to establish some properties of the topologies τV̂ and τV′ for
arbitrary Hilbert C∗-modules which are defined in the sequel. In particular, we
demonstrate that whenever both these topologies coincide on a certain countably
generated Hilbert C∗-module over a unital C∗-algebra then this module has to be
self-dual.

DEFINITION 3.1. Let (V, 〈·, ·〉) be a pre-Hilbert module over a C∗-algebra
A, and let V′ be its dual module. The V′-weak module topology τV′ on V is
generated by the family of semi-norms

{ν f } f∈V′ , where ν f (x) = ‖ f (x)‖, x ∈ V ,(3.1)

and the V̂-weak module topology τV̂ on V is generated by the family of semi-
norms

{µz}z∈V , where µz(x) = ‖〈z, x〉‖, x ∈ V.(3.2)

Obviously, τV̂ is not stronger than τV′ , and these topologies coincide when-
ever V is self-dual. What about the opposite interrelation? Do they always coin-
cide? The next example demonstrates that for arbitrary V the topologies τV̂ and
τV′ are distinct, in general.
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EXAMPLE 3.2. Let (X, ρ) be a locally compact metric space, A = C0(X)
be the corresponding C∗-algebra and V = A be the Hilbert A-module under
consideration. Let X̃ = X ∪ {x̃} denote the one-point compactification of X. By
the commutativity of A both the two-sided and the left multiplier algebras M(A)
and LM(A) coincide. Moreover, the A-dual Banach A-module V′ of V can be
identified with the Banach space EndA(A) of A-linear bounded operators from
A to itself which is isometrically isomorphic to the left multiplier algebra LM(A)
of A. So V′ exactly coincides with the algebra Cb(X) of all bounded continuous
functions on X, and V′ = Cb(X) can be considered to act by left multiplication
on V = C0(X) (see [23], [31]). Consider a sequence {xi} in X which converges to
x̃ with respect to the topology of X̃. For this sequence choose a sequence of open
neighborhoods

Oδi (xi) = {y ∈ X : ρ(y, xi) < δi} ,

under the additional supposition that the sequence of positive numbers {δi} has
to be a null sequence. Let fi ∈ C0(X) be elements such that fi(xi) = 1, fi = 0
outside of Oδi (xi) and 0 6 fi(x) 6 1 for any x ∈ X. Then for any g ∈ C0(X)
one has

lim
i→∞
‖g fi‖ = lim

i→∞
sup
x∈X
|g(x) fi(x)| = lim

i→∞
sup

x∈Oδi
(xi)

|g(x) fi(x)|

6 lim
i→∞

sup
x∈Oδi

(xi)

|g(x)| = 0

what means { fi} is a null sequence with respect to the τV̂-topology. On the other
hand consider the constant function h on X, which always equals to 1. Then h
belongs to Cb(X) = V′ and

‖h fi‖ = sup
x∈X
| fi(x)| = 1

for any i ∈ N. Consequently, { fi} does not converge to zero with respect to the
topology τV′ .

PROPOSITION 3.3. Let {xn} be a τV̂-converging sequence of a Hilbert C∗-module
V. Then the set {xn} is bounded in norm.

Proof. Consider the sets

Ak,n = {y ∈ V : ‖〈y, xn〉‖ 6 k}

and Ak =
⋂
n

Ak,n. These sets are closed in norm, because the function y 7→

‖〈y, xn〉‖ is continuous for any fixed xn. The τV̂-convergence of {xn} implies that
V =

⋃
k

Ak. By the Baire’s theorem there are a number k0 and a ball B(y, ε) = {z ∈

V : ‖y− z‖ < ε} such that B(y, ε) ⊂ Ak0 . Thus the sequence {xn}, understood as
a subset of V′, is bounded on the ball B(y, ε) and, consequently, on any ball of V,



MODULE BANACH–SAKS AND SCHUR PROPERTIES 57

in particular on B(0, 1). That exactly means

C > sup
‖y‖61

‖〈y, xn〉‖ = sup
‖y‖61

‖ŷ(xn)‖

= sup
‖y‖61

‖ẋn(ŷ)‖ = sup
‖ŷ‖61

‖ẋn(ŷ)‖ = ‖ẋn‖ = ‖xn‖

for some constant C and for all n ∈ N, where the properties of the maps (2.1) and
(2.2) have been applied.

PROPOSITION 3.4. Let {xn} be a τV′ -converging sequence of a pre-Hilbert C∗-
module V. Then the set {xn} is bounded in norm.

Proof. We should only remark that V′ is a Banach module even if V is just
a pre-Hilbert one. Further arguments are similar to those applied in the proof of
Proposition 3.3.

Let us remind that a subset M of a topological vector space X is said to be
bounded if for any open neighborhood U of zero in X there is real number s > 0
such that M ⊂ tU for any t > s.

PROPOSITION 3.5. The following conditions for a subset Q of a Hilbert C∗-module
V are equivalent:

(i) Q is bounded with respect to the topology τV̂ ;
(ii) Q is norm-bounded.

Proof. Because the norm topology is stronger than the topology τV̂ one has
only to check the implication (i)⇒ (ii).

Let Q be bounded with respect to the topology τV̂ . Let {xn} ∈ Q be a τV̂-
bounded sequence. So, for any y ∈ V one can find a real number t > 0 satisfying

{xn} ⊂ t{x : ‖〈y, x〉‖ < 1} .

Consequently,

‖〈y, xn〉‖ < t for all n ∈ N.

In particular, the sets {‖〈y, xn〉‖}∞
n=1 are bounded for any fixed y ∈ V. Consider

the sets

Ak,n = {y ∈ V : ‖〈y, xn〉‖ 6 k}

and Ak =
⋂
n

Ak,n. These sets are closed in norm, because the function y 7→

‖〈y, xn〉‖ is continuous for any fixed xn. Moreover, V =
⋃
k

Ak. By the Baer’s

theorem there are a number k0 and a ball B(y, ε) = {z ∈ V : ‖y− z‖ < ε} such
that B(y, ε) ⊂ Ak0 . Therefore, the sequence {xn} is module weakly bounded on
the ball B(y, ε) and, as a consequence, on any ball of this type. Thus the sequence
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{xn}, understood as a subset of V′, is bounded on the ball B(y, ε) and, conse-
quently, on any ball of V, in particular on B(0, 1). That exactly means

C > sup
‖y‖61

‖〈y, xn〉‖ = sup
‖y‖61

‖ŷ(xn)‖

= sup
‖y‖61

‖ẋn(ŷ)‖ = sup
‖ŷ‖61

‖ẋn(ŷ)‖ = ‖ẋn‖ = ‖xn‖

for some constant C and for all n ∈ N, where the properties of the maps (2.1) and
(2.2) have been applied. So the sequence {‖xn‖} turns out to be bounded.

PROPOSITION 3.6. The following conditions for a subset Q of a pre-Hilbert C∗-
module V are equivalent:

(i) Q is bounded with respect to the topology τV′ ;
(ii) Q is norm-bounded.

Proof. The proof follows the arguments of the proofs of Propositions 3.3 and
3.5 with obvious changes in details.

THEOREM 3.7. Let A be a unital C∗-algebra, V = l2(A) be the standard count-
ably generated Hilbert A-module. Suppose, the topologies τV̂ and τV′ coincide on V.
Then V is self-dual and A has to be finite-dimensional.

Proof. Consider a module functional β ∈ V′. By Proposition 2.5.5 of [21]

there are elements bi from A such that β(x) =
∞
∑

i=1
b∗i ai, where x = (ai) ∈ V and

∥∥∥ N

∑
i=1

b∗i bi

∥∥∥ 6 C

for some constant C depending only on β and for all integers N. By the supposi-
tions of the theorem there are vectors y1, . . . , yn of V and a constant K > 0 such
that

νβ(x) 6 K ·max{µy1(x), . . . , µyn(x)}(3.3)

for any x ∈ V, where we have used the notations (3.1) and (3.2). Let us fix the
notations yi = (y(i)j ), x = (ai), where y(i)j , ai ∈ A and rewrite the inequality (3.3)
in the form

∥∥∥ ∞

∑
i=1

b∗i ai

∥∥∥ 6 K ·max
{∥∥∥ ∞

∑
j=1

(
y(1)j

)∗
aj

∥∥∥, . . . ,
∥∥∥ ∞

∑
j=1

(
y(n)j

)∗
aj

∥∥∥}.(3.4)
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For arbitrary positive integers k and N set ai = bi if k 6 i 6 k + N, and ai = 0
otherwise. Then the formula (3.4) gives∥∥∥ k+N

∑
i=k

b∗i bi

∥∥∥ 6 K ·max
{∥∥∥ k+N

∑
j=k

(
y(1)j

)∗
bj

∥∥∥, . . . ,
∥∥∥ k+N

∑
j=k

(
y(n)j

)∗
bj

∥∥∥}

6 K ·max
{∥∥∥ k+N

∑
j=k

(
y(1)j

)∗
y(1)j

∥∥∥1/2∥∥∥ k+N

∑
j=k

b∗j bj

∥∥∥1/2
, . . . ,

∥∥∥ k+N

∑
j=k

(
y(n)j

)∗
y(n)j

∥∥∥1/2∥∥∥ k+N

∑
j=k

b∗j bj

∥∥∥1/2}

6 C1/2 ·max
{∥∥∥ k+N

∑
j=k

(
y(1)j

)∗
y(1)j

∥∥∥1/2
, . . . ,

∥∥∥ k+N

∑
j=k

(
y(n)j

)∗
y(n)j

∥∥∥1/2}
.

Therefore,
{ N

∑
i=1

b∗i bi

}∞

N=1
is a Cauchy sequence with respect to the uniform topol-

ogy ensuring the vector (bi) to belong to V = l2(A). Thus, V is self-dual and, by
Theorem 4.3 of [7], A is finite-dimensional.

COROLLARY 3.8. Let A be a unital C∗-algebra. Let V be a countably generated
Hilbert A-module, for which the topologies τV̂ and τV′ coincide. Then V is self-dual.

The fact follows from Theorem 3.7 and Kasparov’s stabilization theorem
([13], Theorem 2) directly.

Summing up, we have shown that for countably generated Hilbert C∗-mod-
ules over unital C∗-algebras the coincidence of both the toplogies τV̂ and τV′

on the Hilbert C∗-module forces self-duality of the Hilbert C∗-module, and vice
versa.

4. THE MODULE SCHUR PROPERTY

In the following section we introduce a module analogue of the Schur prop-
erty of Banach spaces. Recall that a Banach space X has the Schur property if every
weak convergent sequence in X converges in norm. Let Y be a closed subspace
of X. Then X has the Schur property if and only if both Y and the quotient space
X/Y have the same property (cf. [2], [16]).

EXAMPLE 4.1. The Banach space L1[0, 1] has the Schur property. Indeed, let
{ fi} be a weakly convergent sequence of L1[0, 1]. Then, for any functional α of
L∞[0, 1] = L1[0, 1]′ the sequence

α( fi) =

1∫
0

α(x) fi(x)dx
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converges. This, obviously, implies the sequence { fi} converges with respect to
the L1-norm

‖ f ‖ =
1∫

0

| f (x)|dx.

For classification results with respect to the classical Schur property see
[16], [11].

DEFINITION 4.2. A Hilbert C∗-module V has the module Schur property if
every τV̂-convergent sequence in V converges in norm.

LEMMA 4.3. Any τV̂-convergent sequence {xn} of a Hilbert C∗-module V with
a subsequence {xn(l)} which converges in norm to some element x ∈ V admits x as its
τV̂-limit. Consequently, Hilbert C∗-modules with the module Schur property are sequen-
tially τV̂-complete.

Proof. For any z ∈ V and any ε > 0 there exists a number N ∈ N such that

‖〈z, xn − xm〉‖ < ε

for any m, n > N. So, there exists a number L ∈ N such that n(l) > N for any
l > L. The inequality

‖〈z, x− xm〉‖ = lim
l→∞
‖〈z, xn(l) − xm〉‖ 6 ε

holds for any m > N, and x ∈ V turns out to be the τV̂-limit of the sequence
{xn}.

It is known that a C∗-algebra has the Schur property if and only if it is finite
dimensional (cf. Lemma 3.8 of [16]). Our next goal is to prove that a C∗-algebra
with a strictly positive element possesses the module Schur property if and only if
it is unital. The conclusion that a unital C∗-algebra has the module Schur property
is obvious. But, before investigating the converse statement we will consider a
couple of examples as a motivation.

EXAMPLE 4.4. Let A = V = C0(0, 1] and let us define a function fn ∈ A in
the following way: f equals to zero at 0 and on the interval [ 1

n , 1], f equals to 1
at the point 1

2n , and f is linear on both the intervals [0, 1
2n ] and [ 1

2n , 1
n ]. Obviously,

the sequence { fn} converges to zero with respect to the topology τV̂ , but it does
not converge in norm. So the C∗-algebra C0(0, 1] does not have the module Schur
property.

EXAMPLE 4.5. Let A = V = K(H) be the C∗-algebra of compact operators
in a separable Hilbert space H and B(H) be the set of all bounded linear opera-
tors on H. Consider a sequence {an} ∈ A and assume that the sequence {kan}
converges in norm for any k ∈ K(H). Then its limit with respect to the right strict
topology belongs to the closure of K(H) in B(H), and this closure coincides with
B(H) (see, for instance, [18], [27]). However, the norm limit of {an}, whenever
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it exists, has to belong to K(H). So any sequence from K(H), whose right strict
limit lies outside K(H), τV̂-converges, but does not converge in norm. Therefore,
K(H) does not have the module Schur property, too.

THEOREM 4.6. A C∗-algebra with a strictly positive element, in particular, a sep-
arable C∗-algebra (cf. 1.4.3 of [29]), has the module Schur property if and only if it is
unital. In particular, the Schur property for C∗-algebras is strictly stronger than the
module Schur property.

Proof. Suppose, a non-unital C∗-algebra A has a strictly positive element.
That condition on A is equivalent to the existence of a countable approximative
unit in A ([29], Proposition 3.10.5). For such A any element of its right multiplier
algebra RM(A) may be obtained just as a limit of a sequence of A converging
with respect to the right strict topology, i.e. there is not any necessity to consider
nets under these assumptions (cf. Section 2.3 of [31], and Section 5.5 of [21]). Now,
to check that A does not have the module Schur property we will reason similarly
as at Example 4.5. Let a sequence {an} of A be τV̂-convergent (here we identify
V = A again), i.e. the sequence {b∗an} converges in norm for any b ∈ A. There-
fore, the τV̂-limit of {an} belongs to the right strict closure of A inside of its bidual
Banach space A∗∗, i.e. it belongs to the right multipliers RM(A) of A. Because the
algebra RM(A) is strictly larger than A whenever A is not unital, we can find a
sequence from A that converges with respect to the topology τV̂ (for instance, to
the identity of RM(A)), but does not converge in norm. Thus A does not have
the module Schur property either.

Since unital C∗-algebras have the Schur property if and only if they are
finite-dimensional, the module Schur property is weaker than the Schur prop-
erty for C∗-algebras.

The next example demonstrates the requirement of Theorem 4.6 to a C∗-
algebra to have a strictly positive element to be essential.

EXAMPLE 4.7. Let H be a non-separable Hilbert space, A = B(H) be the
C∗-algebra of all linear bounded operators in H and A0 denotes the set of op-
erators T ∈ B(H) such that both Ker(T)⊥ and Range(T) are separable (closed)
subspaces of H. Then A0 is an involutive subalgebra of A, containing all compact
operators on H. Moreover, A0 is closed in norm. Indeed, let a sequence {Tn} of
A0 converges in norm to a certain element T of B(H). Consider (closed) separable
subspaces

H1 = span
{⋃

Ker(Tn)
⊥
}

, H2 = span
{⋃

Range(Tn)
}

(4.1)

of H, generated by the unions
⋃

Ker(Tn)⊥ and
⋃

Range(Tn) respectively. Then,
obviously, H⊥1 coincides with the intersection

⋂
Ker(Tn), so H⊥1 is included in

Ker(T). This implies that Ker(T)⊥ is a subspace of H1 and, consequently, is
separable. On the other hand, Range(T) belongs to the closure of the union
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⋃
Range(Tn). Therefore, both Ker(T)⊥ and Range(T) are separable subspaces

of H and T ∈ A0. Clearly, the C∗-algebra A0 is not unital, but we claim that it
is not even σ-unital. To verify this, let us suppose the opposite assertion to be
true, and there is a countable approximate identity {Tn} in A0. Let H1 be defined
by (4.1). Then there is a non-zero vector x ∈ H such that it is orthogonal to H1.
Let p ∈ B(H) be the orthogonal projection onto the span of x. Then, actually, p
belongs to A0 and the sequence pTn does not converge in norm to p. So we have a
contradiction and, consequently, A0 does not have any countable approximative
identity. Nevertheless, we claim that V = A0, considered as a Hilbert A0-module,
satisfies the module Schur property. Indeed, assume {Tn} is a τV̂-convergent se-
quence of V. Then both spaces H1 and H2, defined by (4.1), are separable. Let
u ∈ B(H) be a minimal partial isometry between H1 and H2. Then, in fact, u
belongs to A0, where u|H⊥1 = 0 and u∗|H⊥2 = 0. Thus the sequence {uu∗Tn}
converges in norm and coincides element-wise with the sequence {Tn}.

PROPOSITION 4.8. Let a Hilbert C∗-module V be represented as a direct orthogo-
nal sum V = V1 ⊕V2 of two Hilbert C∗-submodules. Then the following conditions are
equivalent:

(i) V has the module Schur property.
(ii) Both V1 and V2 have the module Schur property.

Proof. Obviously, (i) implies (ii) and we have just to verify the inverse asser-
tion. So consider any τV̂-convergent sequence {xi} of V. Then xi = x(1)i ⊕ x(2)i

with x(1)i ∈ V1, x(2)i ∈ V2. Obviously, the sequences {x(j)
i } are τV̂j

-convergent
sequences (j = 1, 2), and therefore, they converge with respect to the norm of Vj
(j = 1, 2). Consequently,

‖xn − xm‖ 6 ‖x(1)n − x(1)m ‖+ ‖x
(2)
n − x(2)m ‖

for any n, m. Thus, {xi} is a Cauchy sequence with respect to the norm topology
of V.

COROLLARY 4.9. Finitely generated Hilbert modules over unital C∗-algebras A
have the module Schur property. In particular, all the Hilbert A-modules An (n ∈ N)
have the module Schur property.

Proof. For the Hilbert A-modules An our statement follows from Proposi-
tion 4.8 and Theorem 4.6.

By Kasparov’s stabilization theorem ([13], Theorem 2) any finitely gener-
ated module V is an direct orthogonal summand of the standard module l2(A).
Therefore, by Theorem 1.3 of [22] it has to be projective whenever A is unital. So,
V is a direct orthogonal summand of some Hilbert A-module An, n < ∞, and by
Proposition 4.8 it has the module Schur property.
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COROLLARY 4.10. Let A be C∗-algebra with a strictly positive element and with
the module Schur property. Then finitely generated projective Hilbert modules over A
have the module Schur property.

The assertion follows from Theorem 4.6 and Proposition 4.8.

PROPOSITION 4.11. The standard Hilbert module V = l2(A) does not have the
module Schur property for any C∗-algebra A.

Proof. For a unital C∗-algebra the statement is clear, because the standard
basis {ei} (with all entries of ei equal to zero except the i-th, which equals 1A)
τV̂-converges to zero, but does not converge in norm.

For an arbitrary C∗-algebra A we can reason in the following way: let us
fix an element a ∈ A of norm one and consider the sequence {xk} from l2(A),
where all entries of xk are zero except the k-th entry that equals to a. Then for any
y = (bi) from l2(A) one has

‖〈y, xk〉‖ = ‖b∗k a‖ 6 ‖bk‖
for each k, so {xk} converges to zero with respect to the topology τV̂ . On the other
hand, this sequence does not converge in norm.

Let us consider one example of a countably, but not finitely generated and
non-standard Hilbert C∗-module without the module Schur property.

X

�
�
�

Q
Q
Q

Y

?p

FIGURE 1. Example 4.12

EXAMPLE 4.12. Consider the projection map p : Y → X from Figure 1,
where X is an interval, say [−1, 1], and Y is the topological union of one interval
with two copies of another half-interval with a branch point at 0. Then C(Y) is a
Banach C(X)-module with respect to the actions

( f ξ)(y) = f (y)ξ(p(y)), f ∈ C(Y), ξ ∈ C(X).

Define the C(X)-valued inner product on C(Y) by the formula

〈 f , g〉(x) =
1

#p−1(x) ∑
y∈p−1(x)

f (y)g(y),(4.2)

where #p−1(x) is the cardinality of p−1(x). It was shown in [28] that C(Y) is
a countably, but not finitely generated Hilbert C(X)-module with respect to the
inner product (4.2). Now, for a point x ∈ [0, 1] let us denote its pre-image p−1(x)
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intersected with the upper line of Y by y(1)x , and the intersection of p−1(x) with
the lower line of Y by y(2)x . Consider functions hn ∈ C(X) which equal to zero
to the left of the point 1

2n and to the right of the point 1
n , equal to 1 at the point

3
4n , and are linear on both the intervals [ 1

2n , 3
4n ] and [ 3

4n , 1
n ]. We define a sequence

{ fn} ∈ C(Y) in the following way: fn = 0 on p−1([−1, 0]), fn(y
(1)
x ) = hn(x) and

fn(y
(2)
x ) = −hn(x) for x ∈ [0, 1]. Then for any g ∈ C(Y) one has

‖〈g, fn〉‖ = max
x∈[ 1

2n , 1
n ]

1
2
|g(y(1)x ) fn(y

(1)
x ) + g(y(2)x ) fn(y

(2)
x )|

= max
x∈[ 1

2n , 1
n ]

1
2
|g(y(1)x )− g(y(2)x )|hn(x) 6 max

x∈[ 1
2n , 1

n ]

1
2
|g(y(1)x )− g(y(2)x )| ,

and the latter sequence converges to zero if n goes to infinity. But, on the other
hand, the sequence { fn} does not converge in norm. Thus C(Y) does not have
the module Schur property.

5. MODULE WEAK BANACH–SAKS PROPERTIES

In this section we search for module analogues for the different kinds of
Banach–Saks properties for Banach spaces. As most promising we select a certain
generalization of the weak Banach–Saks property.

Let us start with a short review of two Banach–Saks type properties for the
classical situation. A Banach space X has the Banach–Saks property if from any
bounded sequence {xn} of X there may be extracted a subsequence {xn(k)} such
that

lim
k→∞

∥∥∥1
k

k

∑
i=1

xn(i) − x
∥∥∥ = 0(5.1)

for some element x ∈ X.
A Banach space is reflexive whenever it has the Banach–Saks property [4].

A C∗-algebra has the Banach–Saks property if and only if it is finite-dimensional
[16], [3].

In functional analysis a weaker type of the Banach–Saks property gives very
useful results for larger classes of Banach spaces. More precisely, a Banach space
X has the weak Banach–Saks property if for any sequence {xn} of X which con-
verges weakly to zero there may be selected a subsequence {xn(k)} such that the
equality (5.1) is fulfilled with x = 0. We are interested in certain module ana-
logues of the weak Banach–Saks property in this section. To give definitions,
assume V to be a Hilbert C∗-module. Consider the following conditions on V:

(mBS1) Any τV̂-null sequence {xn} of V admits a subsequence {xn(i)}which
satisfies the equality (5.1) with x = 0.

(mBS2) Any τV̂-convergent sequence {xn} of V admits a subsequence {xn(i)}
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such that the sequence 1
k

k
∑

i=1
xn(i) converges in norm.

The condition (5.1) with x = 0 may be rewritten for Hilbert C∗-modules in
the following equivalent way

(5.2) lim
k→∞

∥∥∥ 1
k2

k

∑
i,j=1
〈xn(i), xn(j)〉

∥∥∥ = 0 .

Obviously, any τV̂-null orthogonal sequence {xk} of norm one vectors in a Hilbert
C∗-module V satisfies the condition (5.2).

LEMMA 5.1. Condition (mBS2) implies condition (mBS1), but not conversely,
generally speaking.

Proof. Clearly, condition (mBS2) implies condition (mBS1) as a particular
case. To see the non-equivalence of these conditions consider the C∗-algebra
A = K(l2) of all compact operators on a separable Hilbert space l2 as a Hilbert C∗-
module over itself. Then condition (mBS1) is fulfilled, however condition (mBS2)
does not hold: indeed, for any sequence of minimal pairwise orthogonal projec-
tions {pi}with common least upper bound 1B(l2), where 1B(l2) denotes the unit of
the C∗-algebra B(l2) of all bounded linear operators in l2, the sequence of partial

sums
{

qk =
k
∑

i=1
pi

}
is τV̂-convergent to 1B(l2). For any subsequence {qk(j)} of it

the sequence 1
j

j
∑

i=1
qk(j) converges to an infinite projection operator on l2. So the

latter sequence cannot converge in norm since infinite projection operators do not
belong to A which is already norm-closed.

LEMMA 5.2. Any τV̂-convergent sequence {xn} of a Hilbert C∗-module V with

a subsequence {xn(i)} such that the sequence 1
k

k
∑

i=1
xn(i) converges in norm to some ele-

ment x ∈ V admits x as its τV̂-limit. Consequently, Hilbert C∗-modules with condition
(mBS2) are sequentially τV̂-complete.

Proof. Consider any τV̂-convergent sequence {xn} of V that admits a sub-

sequence {xn(i)} such that the sequence 1
k

k
∑

i=1
xn(i) converges in norm to some

x ∈ V. Then this sequence has to τV̂-converge to the same element x, that means

lim
l→∞

∥∥∥〈z,
1
l

l

∑
i=1

(xn(i) − x)
〉∥∥∥ = 0
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for any z ∈ V. Therefore, for any z ∈ V, any ε > 0 there exists an L ∈ N such that
for any k > l > L the inequality

ε >
∥∥∥〈z,

1
l

l

∑
i=1

(xn(i) − x)
〉
−
〈

z,
1
k

k

∑
i=1

(xn(i) − x)
〉∥∥∥ =

1
k− l

∥∥∥ k

∑
i=l+1

〈z, (xn(i) − x)〉
∥∥∥

holds. Selecting k = l + 1 we arrive at

lim
l→∞
‖〈z, (xn(l) − x)〉‖ = 0

and the subsequence {xn(l)} of the sequence {xn} τV̂-converges to x ∈ V. Now,
for any z ∈ V we obtain

0 = lim
n→∞

lim
l→∞
‖〈z, (xn − xn(l))〉‖ = lim

n→∞
‖〈z, (xn − x)〉‖ .

Consequently, the sequence {xn} τV̂-converges to x ∈ V by definition, and this is
equivalent to the assertion that the sequence {xn − x} τV̂-converges to zero.

The study of the property (mBS1) gives a rather surprisingly general result
for Hilbert C∗-modules.

THEOREM 5.3. Any Hilbert C∗-module has the property (mBS1).

Proof. We will reason in the vein of the original work [1]. Let {xk} be a τV̂-
null sequence of a Hilbert C∗-module. By Proposition 3.3 we may suppose that
the norms of all the elements xk do not exceed one. Put n(1) = 1. By supposition
for an arbitrary ε1 > 0 there exists a number n(2) > n(1) such that ‖〈xn(1), xi〉‖ <
ε1 whenever i > n(2). Analogously for an arbitrary ε2 > 0 there is a number
n(3) > n(2) such that ‖〈xn(2), xi〉‖ < ε2 whenever i > n(3) and so on. Set
εi = 1

i . Then we claim the subsequence {xn(i)} of {xk} satisfies the condition
(5.2). Indeed∥∥∥ 1

k2

k

∑
i,j=1
〈xn(i), xn(j)〉

∥∥∥ 6 1
k2

( k

∑
i=1
‖xn(i)‖2 + 2 ∑

16i<j6k
‖〈xn(i), xn(j)〉‖

)
6

1
k
+

2
k2 ((k− 1)ε1 + (k− 2)ε2 + · · ·+ εk−1)

=
1
k
+

2
k2

(
k +

k
2
+

k
3
+ · · ·+ k

k− 1
− (k− 1)

)
=

1
k
+

2
k2 +

2
k

(1
2
+

1
3
+ · · ·+ 1

k− 1

)
=

=
1
k
+

2
k2 +

2
k
(C− 1 + ln(k− 1) + o(1)),

where C ≈ 0, 5772 is the Euler constant and, consequently, the right part of this
estimate vanishes when k goes to infinity.

It means that we have only one candidate for the module Banach–Saks prop-
erty.



MODULE BANACH–SAKS AND SCHUR PROPERTIES 67

DEFINITION 5.4. We will call the property (mBS2) the module Banach–Saks
property.

PROPOSITION 5.5. If a Hilbert C∗-module has the module Schur property, then it
has the module Banach–Saks property.

Proof. Let {xk} be a τV̂-convergent sequence of a Hilbert C∗-module V and
let x be its limit in the completion of V with respect to the topology τV̂ . Then
Lemma 4.3 ensures x has to belong to V actually. Thus the numerical sequence
{‖xk − x‖} converges to zero. Without loss of generality (because one can pass to
a subsequence) we can suppose that ‖xk − x‖ 6 1

k2 . This implies∥∥∥ 1
n

( n

∑
k=1

xk

)
− x
∥∥∥ =

∥∥∥ 1
n

n

∑
k=1

(xk − x)
∥∥∥ 6 1

n

n

∑
k=1
‖xk − x‖ 6 1

n

( ∞

∑
k=1

1
k2

)
and the right part of this expression converges to zero.

THEOREM 5.6. A C∗-algebra with a strictly positive element, in particular, a sep-
arable C∗-algebra, has the module Banach–Saks property if and only if it is unital, if and
only if it has the module Schur property.

Proof. Theorem 4.6 and Proposition 5.5 ensure that a unital C∗-algebra has
the module Banach–Saks property. To check the converse implication let us fix an
arbitrary non-unital C∗-algebra A with a strictly positive element and consider
V = A as a Hilbert A-module. Then exactly for the same reasons as explained
in the proof of Theorem 4.6 any element of the right multiplier algebra RM(A)
may be obtained just as a limit of a sequence from A with respect to the right
strict topology, which coincides with the topology τV̂ . Therefore, one can find
a sequence {xk} of A which converges with respect to the topology τV̂ (for in-
stance, to the unit of RM(A)), but which does not converge in norm. Then for

any subsequence {xk(i)} of {xk} the sequence
{

1
n

n
∑

i=1
xk(i)

}
of A has obviously the

same τV̂-limit in RM(A) as the sequence {xk}, so
{

1
n

n
∑

i=1
xk(i)

}
cannot converge

in norm. Thus A does not have the module Banach–Saks property.

THEOREM 5.7. Let a Hilbert C∗-module V admit a decomposition into a direct or-
thogonal sum V = V1⊕V2 of two Hilbert C∗-submodules. Then the following conditions
are equivalent:

(i) V has the module Banach–Saks property.
(ii) Both V1 and V2 have the module Banach–Saks property.

Proof. Obviously, (i) implies (ii) and we have just to ensure the inverse con-
clusion. Consider any τV̂-convergent sequence {xi} of V. Then its elements admit

decompositions as xi = x(1)i ⊕ x(2)i with x(1)i ∈ V1, x(2)i ∈ V2. Both the sequences

{x(j)
i } are τV̂j

-convergent sequences (j = 1, 2). Therefore, there are subsequences
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{x(j)
i(k)} of {x(j)

i } such that their means 1
n

n
∑

k=1
x(j)

i(k) converge in norm to some ele-

ments x(j) of Vj, respectively for j = 1, 2. Thus, for the sequence {xi(k)} and for
x = x(1) ⊕ x(2) we have the following estimate:∥∥∥ 1

n

( n

∑
k=1

xi(k)

)
− (x(1) ⊕ x(2))

∥∥∥ =
∥∥∥( 1

n

n

∑
k=1

x(1)i(k) − x(1)
)
⊕
( 1

n

n

∑
k=1

x(2)i(k) − x(2)
)∥∥∥

6
∥∥∥ 1

n

n

∑
k=1

x(1)i(k) − x(1)
∥∥∥+ ∥∥∥ 1

n

n

∑
k=1

x(2)i(k) − x(2)
∥∥∥.

Since the upper bounds converge to zero as k tends to infinity, the sum in the first
term converges to x in norm. So V has the module Banach–Saks property.

COROLLARY 5.8. Let A be a σ-unital C∗-algebra with the module Banach–Saks
property. Then finitely generated Hilbert modules over A and finitely generated projective
Hilbert modules over A have the module Banach–Saks property.

Let A be a C∗-algebra and consider the infinite matrix algebra M∞(A) =
∞⋃

n=1
Mn(A). For vectors x1, . . . , xn of a Hilbert A-module V consider the Gram

matrix based on them:

G(x1, . . . , xn) =


〈x1, x1〉 〈x1, x2〉 · · · 〈x1, xn〉
〈x2, x1〉 〈x2, x2〉 · · · 〈x2, xn〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈xn, x1〉 〈xn, x2〉 · · · 〈xn, xn〉

 ,

with entries gij = 〈xi, xj〉, besides G(x1, . . . , xn) ∈ M∞(A). Then the condition
(5.2) on a sequence {xi} of V with x = 0 can be equivalently reformulated as the

assertion that
{

1
k2

k
∑

i,j=1
gij

}
forms a sequence which converges to zero with respect

to the norm topology. Instead of condition (5.2) one can require that the sequence
{ 1

n2 G(x1, . . . , xn)} of M∞(A) has to converge to zero in norm. For instance, this
condition holds whenever {xi} is an orthogonal system of norm one vectors (or

even an orthonormal base), because ‖G(x1, . . . , xn)‖ 6
n
∑

i,j=1
‖gij‖ (cf. [23]). Let

us remark that neither the value
∥∥∥ 1

n2

n
∑

i,j=1
〈xi, xj〉

∥∥∥ nor the value
∥∥∥ 1

n2 G(x1, . . . , xn)
∥∥∥

majorize each other, in general.
We conclude this section with the observation that for Hilbert C∗-modules

over some C∗-algebras which admit the classical Banach–Saks property of Banach
spaces the module Banach–Saks property is admitted, too. This follows from the
definition of the module Banach–Saks property and from Proposition 3.3. For
a complete classification of Hilbert C∗-modules with the classical Banach–Saks
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property we refer to Propositions 2.3, 2.5 of [11]. There are also Hilbert C∗-
modules over non-commutative C∗-algebras satisfying the module Banach–Saks
property.

EXAMPLE 5.9. Take an infinite-dimensional Hilbert space H and consider
the C∗-algebra A = K(H) of all compact linear operators on H. Select some pro-
jection p ∈ A with finite-dimensional range and set V = pA as a (right) Hilbert
A-module. Then V admits the classical Banach–Saks property and, hence, the
module Banach–Saks property. Note, that 〈pA, pA〉 = A.

6. DUAL MODULES AND MODULE SCHUR AND BANACH–SAKS PROPERTIES

In this section we establish an interrelation between self-duality of count-
ably generated Hilbert C∗-modules and their properties to have the module Schur
or the module Banach–Saks property, respectively. The main goal is an alternative
characterization of C∗-dual Hilbert C∗-modules of representatives of this class.

Suppose X denotes the completion of V with respect to the topology τV̂ ,
and Xs denotes the subset of X consisting of all equivalence classes of τV̂-Cauchy
sequences from V. (Two Cauchy sequences are supposed to be equivalent if and
only if their difference is a τV̂-null sequence.) Let us show how the set Xs can
be canonically identified with a subset of the dual module V′, similarly like V is
canonically embeddable into its C∗-dual A-module V′. Let {xi} be a τV̂-Cauchy
sequence from V, i.e. the sequence {〈xi, z〉} converges in norm to some element
x(z) ∈ A for any z ∈ V since ‖〈u, v〉‖ = ‖〈v, u〉‖ for any u, v ∈ V. As we see,
this construction defines an A-linear functional 〈x, ·〉 : V → A. Now, for this
functional 〈x, ·〉, for z ∈ V and for any ε > 0 there exists a number i0 such that

‖x(z)‖ 6 ‖〈xi, z〉‖+ ε 6 ‖xi‖‖z‖+ ε

whenever i > i0, where ‖xi‖ < C for some constant C and for all i by Proposi-
tion 3.3. Thus, the functional 〈x, ·〉 is bounded and belongs to the dual module V′.

PROPOSITION 6.1. The topology τV̂ has a countable base of neighborhoods of zero
provided V is a countably generated Hilbert A-module.

Proof. Let V = spanA{xi : i ∈ N}, i.e. the sequence {xi}∞
i=1 generates V over

A. Then we claim the countable family of sets

Uxi1
,...,xin , 1

N
=
{

y ∈ V : ‖〈xi1 , y〉‖ < 1
N

, . . . , ‖〈xin , y〉‖ < 1
N

}
,(6.1)

1 < i1, . . . , in < ∞, n, N ∈ N

forms the base of neighborhoods of zero for the topology τV̂ . Indeed, let us con-
sider any τV̂-neighborhood of zero of the form

Ux,ε = {y ∈ V : ‖〈x, y〉‖ < ε},
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where x ∈ V, ε > 0. It is just enough to check that any of these open sets contains
one of the sets (6.1). By supposition, for any δ > 0 there are a1, . . . , an ∈ A such
that ∥∥∥x−

n

∑
i=1

xiai

∥∥∥ < δ.

Consider a neighborhood Ux1,...,xn , 1
N

. By Proposition 3.5 we can assume that the
norms of all the elements of the generating set do not exceed one, whenever N is
large enough. Therefore, for any z ∈ Ux1,...,xn , 1

N
one can deduce

‖〈x, z〉‖ 6
∥∥∥〈x−

n

∑
i=1

xiai, z
〉∥∥∥+ ∥∥∥〈 n

∑
i=1

xiai, z
〉∥∥∥ 6 δ‖z‖+

n

∑
i=1
‖ai‖‖〈xi, z〉‖

6
(

δ +
1
N

n

∑
i=1
‖ai‖

)
‖z‖ .

The numerical expression turns out to be less than the selected ε, whenever both
δ and 1

N are small enough and n ∈ N is fixed. So we are done.

COROLLARY 6.2. Let V be a countably generated Hilbert C∗-module. Then under
the notations above Xs coincides with the completion X of V with respect to the topology
τV̂ and, consequently, X can be isometrically embedded into the the C∗-dual module V′

extending the canonical embedding of V into V′.

THEOREM 6.3. Let V be a countably generated Hilbert module over a unital C∗-
algebra A. Then the completion X of V with respect to the topology τV̂ coincides with the
dual module V′ extending the canonical embedding of V into V′.

Proof. We already know that X is included into V′ via the canonical embed-
ding of V into V′, and we should just check the coincidence in the particular case.
First, let us suppose, V is the standard module l2(A). Then we can use the char-
acterization of the dual module l2(A)′ described in Proposition 2.5.5 of [21]. For

any β = (bi) ∈ l2(A)′, where
∥∥∥ n

∑
i=1

b∗i bi

∥∥∥ 6 C for all n and some finite constant C,

let us consider the finite vectors αn = (b1, . . . , bn, 0, 0, . . . ) ∈ l2(A). Then for any
y = (yi) ∈ l2(A) we have

‖〈αn − αm, y〉‖=
∥∥∥ m

∑
i=n+1

b∗i yi

∥∥∥6∥∥∥ m

∑
i=n+1

b∗i bi

∥∥∥1/2∥∥∥ m

∑
i=n+1

y∗i yi

∥∥∥1/2
6C1/2

∥∥∥ m

∑
i=n+1

y∗i yi

∥∥∥1/2

and this expression goes to zero provided m, n go to infinity. Thus, {αn} is a τV̂-
Cauchy sequence and, moreover, its τV̂-limit, obviously, coincides with β. This
shows the desirable identification of X and V′ which extends the canonical em-
bedding of V into V′.

Now, assume V is an arbitrary countably generated Hilbert A-module. Then
by Kasparov’s stabilization theorem there exists a Hilbert A-module W such that
l2(A) = V ⊕W. Denote by PV : l2(A) → l2(A) the corresponding orthogonal
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projection onto the first summand, so Range(PV) = V. For any functional f ∈ V′

one can define a functional f̃ ∈ l2(A)′ as the composition f̃ = f PV . Because
l2(A)′ coincides with the τ

l̂2(A)
-completion of l2(A) there is a sequence {zi} of

l2(A), where zi = xi ⊕ yi, such that its τ
l̂2(A)

-limit is f̃ . Thus, the sequence {xi} of

V converges to f with respect to the topology τV̂ .

REMARK 6.4. Theorem 6.3 is true also for σ-unital C∗-algebras A, but the
proof involves more complicated techniques and is left to the reader. Actually, it
is the corollary of the crucial general result Theorem 6.4 of [9] and Proposition 3.3.
Let us also emphasize for V = A that in the non-unital, σ-unital case the theorem
above is equivalent to the well-known fact that the completion of A with respect
to the left strict topology coincides with the left multiplier algebra LM(A).

Applying Theorem 6.3 we get:

COROLLARY 6.5. Let V be a countably generated Hilbert module over a unital
C∗-algebra. Then V is self-dual whenever it has the module Schur property.

COROLLARY 6.6. Let V be a countably generated self-dual Hilbert module over
a unital C∗-algebra. Then V has the property (mBS1) if and only if it has the module
Banach–Saks property.

Proof. Suppose the property (mBS1) holds for V. Consider any τV̂-conver-
gent sequence {xi} of V. Then by supposition and by Theorem 6.3 its τV̂-limit x
belongs to V. Then the sequence {yi = xi− x} is a τV̂-null sequence. Hence, it ad-

mits a subsequence {yi(k)} satisfying the equality (5.1), so the sequence 1
n

n
∑

k=1
xi(k)

converges to x in norm.

COROLLARY 6.7. Any countably generated self-dual Hilbert module over a unital
C∗-algebra possesses the module Banach–Saks property.

The proof follows from Theorem 5.3 and Corollary 6.6.
As a final result we can state, that the module Schur and the module Banach–

Saks properties are different in general, because any standard Hilbert module
over a finite dimensional C∗-algebra is self-dual and, consequently, has the mod-
ule Banach–Saks property, however it does not have the module Schur property
by Proposition 4.11.
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