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ABSTRACT. By means of a variant of a theorem of Yngve Domar we obtain
decomposability criteria for bounded linear operators on Banach spaces de-
pending on local growth conditions of the resolvent and local dimension prop-
erties of the spectrum. These criteria are then applied to obtain normality and
regularity criteria for Banach function algebras of complex ultradifferentiable
functions on perfect, compact subsets of the complex plane.
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1. INTRODUCTION AND PRELIMINARIES

For a perfect, compact subset K of the complex plane C and k ∈ N∪ {∞}we
denote by Dk(K) the algebra of all k times continuously complex differentiable,
complex valued functions on K. If k is finite then Dk(K) is a normed algebra with
respect to the sub-multiplicative norm given by

‖ f ‖k :=
k

∑
j=0

1
j!
‖ f (j)‖K ( f ∈ Dk(K)),

where ‖ · ‖K is the uniform norm on K. In general these algebras are not complete
and their completion need not to be semisimple [7]. A characterisation of the class
of perfect, compact sets K for which the algebras Dk(K) (or normed function al-
gebras of complex ultradifferentiable functions on K) are complete and questions
concerning the completion in the non-complete situation have been investigated
in [14], [16], [9], [17] . . . .

Let M = (Mp)∞
p=0 be a sequence of bounded functions Mp : K → [1, ∞)

with M0 ≡ 1 satisfying the following condition for all non-negative integers p, q
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with 0 6 q 6 p:

(1.1) ∀z ∈ K :
Mp(z)

p!
>

Mq(z)Mp−q(z)
q!(p− q)!

.

Let D1(K,M) respectively D∞(K,M) denote the linear space of all f ∈ D∞(K) for
which

(1.2) ‖ f ‖1,M :=
∞

∑
p=0

∥∥∥ f (p)

Mp

∥∥∥
K
<∞ respectively ‖ f ‖∞,M := sup

p∈N0

∥∥∥ f (p)

Mp

∥∥∥
K
<∞.

Direct computation shows that D1(K,M) is an algebra and that ‖ · ‖1,M is a sub-
multiplicative norm on D1(K,M). If the sequence M satisfies the additional con-
dition

(1.3) CM := sup
p∈N

∥∥∥ p−1

∑
q=1

Mq Mp−q p!
q!(p− q)!Mp

∥∥∥
K
< ∞

then D∞(K,M) is an algebra too, and ‖ · ‖∞,M is a norm on D∞(K,M) for which
the pointwise multiplication is continuous. Indeed, if f , g ∈ D∞(K,M), then we
obtain by the Leibniz rule for all p ∈ N,∥∥∥ ( f g)(p)

Mp

∥∥∥
K
6
∥∥∥ p

∑
q=0

f (q)g(p−q)

Mq Mp−q
·

Mq Mp−q p!
q!(p− q)!Mp

∥∥∥
K
6 ‖ f ‖∞,M‖g‖∞,M(CM + 2).

If the functions Mp are constant, then these algebras have been investigated by
Dales and Davie in [16]. For the case of compact intervals see also Section 4.4 in
[15] and the references given there.

We further introduce the spaces `s(C(K),M), s = 1, ∞ as the spaces of all
sequences f = ( fp)∞

p=0 of continuous complex valued functions on K satisfying

(1.4) |f|1,M :=
∞

∑
p=0

∥∥∥ fp

Mp

∥∥∥
K
< ∞ respectively |f|∞,M := sup

p∈N0

∥∥∥ fp

Mp

∥∥∥
K
< ∞.

With respect to the multiplication suggested by the Leibniz rule

( fp)
∞
p=0(gp)

∞
p=0 :=

( p

∑
q=0

fqgp−q

(
p
q

))∞

p=0

(`1(C(K),M), | · |1,M) is a normed algebra and if (1.3) is fulfilled then `∞(C(K),M)
is a normed algebra with respect to a submultiplicative norm that is equivalent
to | · |∞,M. Note that, for all f = ( fp)∞

p=0 ∈ `s(C(K),M) and all p ∈ N0 we have
‖ fp‖K 6 ‖Mp‖K · |f|s,M. Using this fact it follows easily that (`s(C(K),M), | · |s,M)
is complete and that the completion of (Ds(K,M), ‖ · ‖s,M) may be identified with
the closure of the image of the isometric algebra monomorphism

Js,M : Ds(K,M)→ `s(C(K),M) , f 7→ ( f (p))∞
p=0,

of Ds(K,M) into `s(C(K),M), s = 1, ∞.
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In the same way the completion of (Dk(K), ‖ · ‖k) can be identified with
the closure of the image of the isometric monomorphic embedding Jk : f 7→
( f , f ′, . . . , f (k)) of Dk(K) into C(K)k+1, where C(K)k+1 is endowed with the mul-
tiplication suggested by the Leibniz rule and with the submultiplicative norm

| · |k given by |( f0, . . . , fk)|k :=
k
∑

p=0
‖ fp‖K/p!. Note that the radical of this com-

mutative Banach algebra is given by

rad(C(K)k+1) = {f = ( fp)
k
p=0 ∈ C(K)k+1 : f0 ≡ 0}

and consists of nilpotent elements. In particular, we have for the spectra σ(f) and
the spectral radius r(f) of elements f ∈ C(K)k+1:

(1.5) ∀f = ( fp)
k
p=0 ∈ C(K)k+1 : σ(f) = f0(K), and r(f) = ‖ f0‖K.

Following [16], a Banach algebra (A, ‖ · ‖A) of continuous functions on a
compact Hausdorff space X will be called a Banach function algebra on X if it con-
tains the constants and separates the points of X. A Banach function algebra
(A, ‖ · ‖A) on K is said to be natural if its character space ∆(A) coincides with
the set {δz : z ∈ K} of all point evaluations in points of K. Recall that a Banach
function algebra (A, ‖ · ‖A) on K is normal on K if, for every finite open covering
U1, . . . , Un of K there are functions f1, . . . , fn ∈ A satisfying f1 + · · ·+ fn ≡ 1 and
supp( f j) ⊂ Uj, j = 1, . . . , n. It is regular if and only if it is normal, when con-
sidered as a Banach function algebra on its character space. In particular every
Banach function algebra that is normal and natural will be regular.

The aim of this article, which extends some results of the thesis [6] of the
second author, is to obtain criteria for normality or regularity of the completions
of the normed algebras of functions which have been defined above. As the func-
tions in Dk(K), Ds(K,M) are analytic in the interior of K, a necessary condition
for normality will be that K has empty interior. We shall however see that there
are examples of perfect, compact sets K of positive Lebesgue measure, for which
the completions of these algebras are regular Banach function algebras on K.

In the following section we prove a variant of a theorem of Yngve Domar,
which will be used in Section 4 to establish local and global decomposability cri-
teria for bounded linear operators on Banach spaces by means of integrability
criteria given in Section 3. Some simple growth properties of entire functions
which are needed for resolvent estimates are given in Section 5. As normality
and regularity of semisimple commutative Banach algebras are closely related to
decomposability properties of multiplication operators (see Chapter VI of [13],
[22], [2] and Chapter 4 of [27]), these decomposability results can then be applied
in the last section to obtain normality and regularity criteria for Banach function
algebras of the above mentioned type.
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2. A VARIANT OF A THEOREM OF DOMAR

Recall that a function u : Ω→ [−∞, ∞) on an open domain in RN is said to
be subharmonic if it is upper semicontinuous and if for every closed ball B ⊂ Ω
and for every continuous function h : B→ R that is harmonic on the interior of B
and satisfies u 6 h on the boundary of B we have u 6 h on all of B. For a Lebesgue
measurable function F : Ω → [0, ∞] letM(F) denote the set of all subharmonic
functions u on Ω satisfying u 6 F on Ω and define MF : Ω→ [−∞, ∞] by

MF(x) := sup{u(x) : u ∈ M(F)}.
In [18], [19], Yngve Domar has obtained criteria for F to ensure the local bound-
edness of MF on Ω which have been very useful in local spectral theory [28], [29],
[25], [4].

The N-dimensional Lebesgue measure will be denoted by λN and we write
VN for the volume of the euclidean unit ball in RN . For subharmonic functions
u : Ω→ [−∞, ∞) and n ∈ N we consider the sets

En(u) := {x ∈ Ω : en 6 u(x) < en+1}
and put Ln(u) := λN(En(u)). We shall need the following fact, which is a special
case of Lemma 1.1 in [18] (with λ = 1 and D as defined below in that lemma).

LEMMA 2.1 (Domar). Let u : Ω → [−∞, ∞) be a subharmonic function. If for
some integer n and some xn ∈ Ω

u(xn) > en and Brn(xn) := {x ∈ RN : |x− xn| 6 rn} ⊂ Ω,

where

rn > D(Ln−1(u) + Ln(u))1/N and D :=
( e2

(e− 1)VN

)1/N
,

then Brn(xn) contains a point xn+1 with u(xn+1) > en+1.

The following variant of Domar’s Theorem 2 in [18] is suited to our needs.

THEOREM 2.2. Let F : Ω→ [0, ∞] be a Lebesgue measurable function on an open
set Ω ⊆ RN . Suppose that there exists a monotone increasing function f : [0, ∞) →
[0, ∞) such that

(2.1)
∞∫

a

1
f (t)

dt < ∞ for some a > 0

and such that

(2.2)
∫
Ω

f (log+ F(x))N−1dλN(x) < ∞.

If Ω = RN , then MF is bounded. If Ω 6= RN then, for all d > 0 the function MF is
bounded on

A(d) := {x ∈ Ω : dist(x, ∂Ω) > d}.
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In particular MF is locally bounded on Ω, i.e. bounded on every compact subset of Ω.

Proof. If u is subharmonic with u 6 F on Ω then

f (n)N−1Ln(u) = f (n)N−1λN(En(u)) 6
∫

En(u)

f (log+ F(x))N−1dλN(x)

and hence
∞

∑
n=1

f (n)N−1Ln(u) 6 J :=
∫
Ω

f (log+ F(x))N−1dλN(x) < ∞.

Using the Hölder inequality we obtain for all u ∈ M(F) and all k ∈ N with
f (k) > 0:

Sk(u) :=
∞

∑
n=k

Ln(u)1/N =
∞

∑
n=k

1
f (n)(N−1)/N

· f (n)(N−1)/N Ln(u)1/N

6
( ∞

∑
n=k

1
f (n)

)(N−1)/N( ∞

∑
n=k

f (n)N−1Ln(u)
)1/N

6
( ∞∫

k

1
f (t)

dt
)(N−1)/N

J1/N .

Note that the right hand side of the exterior inequality is independent of u and
converges to 0 for k→ ∞.

Let now x be an arbitrary point in Ω and put

d(x) := sup{r > 0 : Br(x) ⊂ Ω}.
Let k(x) be the smallest k ∈ N with the property

(2.3) f (k) > 0 and 2DJ1/N
( ∞∫

k

1
f (t)

dt
)(N−1)/N

< d(x),

where D is the constant from Lemma 2.1. Assume that MF(x) > ek(x)+1. Then
there exists some subharmonic function u on Ω satisfying u(x) > ek(x)+1. Be-
cause of

∞

∑
n=k(x)+1

D(Ln−1(u) + Ln(u))1/N 6 2D
∞

∑
n=k(x)

Ln(u)1/N

6 2DJ1/N
( ∞∫

k(x)

1
f (t)

dt
)(N−1)/N

< d(x),

we can find rn > D(Ln−1(u) + Ln(u))1/N , n > k, with

R :=
∞

∑
n=k(x)+1

rn < d(x).

By induction and using Lemma 2.1, one obtains a sequence (xn)∞
n=k(x)+1 with

xk(x)+1 := x, |xn+1 − xn| 6 rn and u(xn+1) > en+1 for all n > k(x) + 1. It follows
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that xn ∈ BR(x) ⊂ Ω for all n > k(x). As u must be locally bounded, this is a
contradiction. Hence we obtain MF(x) 6 ek(x)+1.

If Ω = C or if J = 0, then k(x) = k0 := min{n ∈ N : f (n) > 0} is
independent of x and MF must be bounded by ek0+1.

In the case Ω 6= C and J 6= 0, then for all d > 0 and all x ∈ A(d) we have
k(x) 6 kd where kd is the smallest integer k > k0 satisfying

2DJ1/N
( ∞∫

k

1
f (t)

dt
)(N−1)/N

< d

and we conclude that M f is bounded on A(d) by ekd+1.

If the function F in Theorem 2.2 is upper semicontinuous, then, as noted
in [18], the function MF is again subharmonic by a result of Brelot [10] (see also
[23]).

In [18] Domar has given the proof for the special case f (t) = f0,ε(t) := t1+ε,
where ε > 0. Other interesting choices for f are the functions fk,ε given by

(2.4) fk,ε(t) := t
( k

∏
j=1

Lcj(t)
)

Lck(t)ε,

where k ∈ N, ε > 0 and where Lcj denotes the j-fold compositional power of the
log+. In this case, for s > 0 sufficiently large,

∞∫
s

fk,ε(t)−1dt =
1
ε

Lck,ε(s)−ε

and direct computation shows that in the case Ω 6= RN , J 6= 0 we have

kd 6 1 + Eck

( 1
ε1/ε

(2DJ1/N

d

)N/((N−1)ε))
for all d > 0, where now Eck denotes the k-fold compositional power of the expo-
nential function. Hence, we obtain the growth behaviour

MF(x) 6 e2 · Eck+1

( 1
ε1/ε

(2DJ1/N

d(x)

)N/((N−1)ε))
, (x ∈ Ω).

We are mainly interested in the case of dimension 2, where we identify R2

with the complex plane C. Then condition (2.2) becomes

(2.5)
∫
Ω

f (log+ F(z))dλ2(z) < ∞.

If Ω = C, then, by Theorem 2.2 and the Liouville theorem for subharmonic func-
tions (see for example Corollary 2.3.4 of [30]), MF must be constant. Because of
MF 6 F on C, this implies MF 6 inf

z∈C
F(z) and log+ MF ∈ f−1({0}).

Let us also remark that condition (2.2) implies λN(F−1({∞})) = 0.
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The global integrability condition in Theorem 2.2 may be replaced by a lo-
calised form as follows:

COROLLARY 2.3. Let F : Ω0 → [0, ∞] be a Lebesgue measurable function on an
open set Ω0 ⊆ RN . Suppose that there exists a compact subset K ⊂ Ω0 such that for each
w ∈ Ω0 \ K there exists an open neighbourhood Ω ⊆ Ω0 and a monotone increasing
function f : [0, ∞) → [0, ∞) satisfying conditions (2.1) and (2.2) with respect to Ω.
Then the function MF is locally bounded on Ω0.

Proof. Let H be any compact subset of Ω0 and fix an open set U and a com-
pact set W such that K ∪ H ⊂ U ⊂W ⊂ Ω0. By our assumption and Theorem 2.2
each point in W \U has a compact neighbourhood on which the function MF is
bounded. As W \U is compact, we conclude that C := sup

x∈W\U
MF(x) < ∞. By

the maximum principle for subharmonic functions we have u 6 C on U for all
u ∈ M(F) and hence, MF 6 C on W.

COROLLARY 2.4. Let F : Ω0 → [0, ∞] be a Lebesgue measurable function on
an open set Ω0 ⊆ RN and let S be a totally disconnected subset of Ω0 which is closed
in Ω0 with respect to the relative topology. If for each w ∈ Ω0 \ S there exists an
open neighbourhood Ω ⊆ Ω0 and a monotone increasing function f : [0, ∞) → [0, ∞)
satisfying conditions (2.1) and (2.2) with respect to Ω, then the function MF is locally
bounded on Ω0.

Proof. Let H be an arbitrary compact subset of Ω0. As S is totally discon-
nected there exists an open neighbourhood Ω1 ⊂ Ω0 of H such that K1 := Ω1 ∩ S
is compact. Hence we may apply the previous corollary to the open set Ω1 and
the compact set K := K1 ∪ H and obtain the boundedness of MF on H.

Note that in these two corollaries the set F−1({∞}) may have positive Leb-
esgue measure.

3. INTEGRABILITY CRITERIA

In this section we establish some criteria which help to verify the existence
of the integral (2.5) in concrete situations. We first notice some elementary prop-
erties of the compositional powers Lck of the logarithm and of the functions fk,ε.

LEMMA 3.1. Let k > 1 be an integer and ε > 0 be real.
(i) For all x > Eck(1) we have

Lc′k(x) =
(

x
k−1

∏
j=1

Lcj(x)
)−1

, and(3.1)

f ′k,ε(x) 6 (k + 1) fk−1,ε(log(x)).(3.2)
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(ii) For a, c > 0 and b, d ∈ R we have

lim
x→∞

Lck(ax + b)
Lck(cx + d)

= 1.

Proof. The proof of (3.1) follows with the chain rule, (3.2) is an obvious con-
sequence of (3.1) and (ii) is easily obtained using induction with respect to k and
L’Hospital’s rule.

LEMMA 3.2. Let Qa be a square in the complex plane of side length a ∈ (0, 1].
(i) For 0 < α < 1 we have

∫
Qa

dist(z, ∂Qa)
−αdλ2(z) =

21+αa2−α

(2− α)(1− α)
.

(ii) Let k be a non negative integer and let ε be a positive real number. There exist
constants C1, C2 > 0, independent of a, such that, with the notation of Section 2 we have
for all α > 0, c > 1,

∫
Qa

fk,ε(log(cdist(z, ∂Qa)
−α))dλ2(z) 6 2a2(C1 + fk,ε(log(c(2a−2)α))) and(3.3)

∫
Qa

fk,ε(log+ log(cdist(z, ∂Qa)
−α))dλ2(z)(3.4)

6 2a2(C2 + fk,ε(log+ log(c(2a−2)α))).

(iii) Let c, α, γ, ε be positive numbers such that c > 1, γ > 2, and γα− ε > 0. For all
integers k > 1 consider the function h : [Eck(1), ∞)→ [0, ∞) given by

h(s) := fk,ε(cs fk−1,α(log s)−γ) (s > Eck(1)).

Then there exists some a0 > 0 only depending on c, α, k, and ε such that for all a ∈
(0, a0), we have the estimate

∫
Qa

h(dist(z, ∂Qa)
−1)dλ2(z) 6

8ca
γ(1 + α)− 2− ε

fk−1,η

(
log
(2

a

))2−γ
,

where η = (γα− ε)/(γ− 2).

Proof. (i) follows by direct computation (see Lemma 3.7 of [4]).
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FIGURE 1

(ii) Let ∆ denote the shaded triangle in Figure 1. By symmetry and using
appropriate coordinates and partial integration, we have for all monotone in-
creasing functions h : (0, ∞)→ (0, ∞) for which h(2/t2) is integrable on (0, 1):

∫
Qa

h(dist(z, ∂Qa)
−1)dλ2(z)=8

∫
∆

h(dist(z, ∂Qa)
−1)dλ2(z)=8

a/2∫
0

( a
2
− x
)

h
( 1

x

)
dx

=2a2
1∫

0

(1−t)h
( 2

at

)
dt62a2

a∫
0

h
( 2

t2

)
dt+2a2

1∫
a

h
( 2

a2

)
dt

62a2
(

h(2a−2) +

1∫
0

h(2t−2)dt
)

.

By applying this to the functions s 7→ fk,ε(log(csα)) and s 7→ fk,ε(log log(csα)) we
obtain the estimates (3.3) and (3.4).

(iii) From the proof of (ii) we get

I :=
∫

Qa

h(dist(z, ∂Qa)
−1)dλ2(z) 6 2a2

1∫
0

h
( 2

at

)
dt .

Note that, for s > Eck(1), we have fk−1,α(log s)−γ 6 1 and hence

fk−1,ε(log(cs fk−1,α(log s)−γ)) 6 fk−1,ε(log(cs)).

Moreover, by Lemma 3.1(ii), there exists some s0 > Eck(1), such that

∀s > s0 : fk−1,ε(log(cs)) 6 2 fk−1,ε(log(s)).
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Therefore, we obtain for 0 < a < a0 := s−1
0 ,

I 6 2a2
1∫

0

h
( 2

at

)
dt = 2a2

1∫
0

2c fk−1,ε

(
log
(

2c
at fk−1,α

(
log
(

2
at

))−γ))
at fk−1,α

(
log
(

2
at

))γ dt

6 8ca
1∫

0

1
t

Lck

( 2
at

)1+ε−γ(1+α)[ k−1

∏
j=1

Lcj

( 2
at

)]1−γ
dt.

With the substitution u = Lck(2/at), using (3.1) and the monotonicity of the
functions Ecj, we conclude finally

I 6 8ca
∞∫

Lck(2a−1)

[ k−1

∏
j=1

Ecj(u)
]2−γ

u−γ(1+α)+1+εdu

6 8ca
[ k−1

∏
j=1

Lcj

(2
a

)]2−γ
∞∫

Lck(2a−1)

u−γ(1+α)+1+εdu

=
8ca

γ(1 + α)− 2− ε
fk−1,η

(
log
(2

a

))2−γ

for all a ∈ (0, a0).

Let now K be a compact set in the complex plane C. Given a closed square
Q of side length a containing K and a sequence n = (nk)

∞
k=1 of integers > 2 we

construct an associated grid sequence G = G(K, Q, n) inductively as follows:

(i) For k = 0 we define a0(G) := a, Q0(G) := {Q}, A0(G) := Q, N0(G) :=
Ñ0(G) := 1 and F0(G) := F̃0(G) := a2.

(ii) For k > 1 put ak(G) := ak−1(G)/nk and denote by Qk(G) the collection
of all squares of side length ak(G) contained in Q obtained by subdividing each
square in Qk−1(G) into nk(G)2 closed sub-squares. Nk(G) denotes the number
of all squares in Qk(G) having non-empty intersection with K while Ñk(G) will
be the number of R ∈ Qk(G) such that the interior of R has non-empty intersec-
tion with K. Finally Fk(G) := Nk(G)ak(G)2 respectively F̃k(G) := Ñk(G)ak(G)2

denotes the area of the union Ak(G) respectively Ãk(G) of these squares.

We call

dimG(K) := lim sup
k→∞

log Nk(G)
log(ak(G)−1)

the upper G-dimension of K. Obviously we have

dimB(K) 6 dimG(K) 6 dimB(K),

where dimB(K)and dimB(K) denote the lower and upper box dimension of K in
the sense of [20]. In particular, if the box dimension of K exists, i.e. if dimB(K) =
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dimB(K), then dimG(K) coincides with the box dimension of K. If the sequence
(Ñk(G))∞

k=0 is not eventually 0 we may also consider the upper G-constant

DG(K) := lim sup
k→∞

log Ñk(G)
log(ak(G)−1)

.

Obviously, DG(K) 6 dimG(K).
If h : (0, ∞)→ R is a function satisfying

lim
t→∞

h(t)
log t

= 0

then we say that K has upper G-dimension (respectively upper G-constant) 6 d
with asymptotic bound h if there exists some k0 ∈ N such that for all k > k0 we
have

log Nk(G)
log(ak(G)−1)

6 d +
h(ak(G)−1)

log(ak(G)−1)

respectively

log Ñk(G)
log(ak(G)−1)

6 d +
h(ak(G)−1)

log(ak(G)−1)
.

PROPOSITION 3.3. Let K be a compact set contained in a compact square Q of
side length a > 0 and let g : (0, ∞) → (0, ∞) be a continuous function. In each of the
following situations the integral

I :=
∫
Q

fm,ε(g(dist(z, K)−1))dλ2(z)

(with the convention fm,ε(g(∞)) = ∞) is finite:
(i) K admits an associated grid sequence G = G(K, Q, (nj)

∞
j=1) with upper G-

dimension (respectively upper G-constant) d < 2 satisfying

lim
j→∞

n1/j
j = 1, and(3.5)

g(t) = Ctα (t > 0),

with constants C > 0, α < µ0 := min{1, 2− d}, m = 0 and ε > 0 with α(1+ ε) < µ0.
(ii) K admits an associated grid sequence G = G(K, Q, (qk)∞

k=1) with 2 6 q ∈ N,
having upper G-dimension (respectively upper G-constant) 2 with asymptotic bound h,
where

(3.6) h(t) := − log+(Cb fm,δ(log t) fm−1,δ(log log t)) (t > Ecm+1(1)),

m > 1, 0 < ε < δ, Cb > 0, and

g(t) = log(ctα) (t > Ecm+1(1))

with constants c > 1, α > 0.
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(iii) K admits an associated grid sequence G = G(K, Q, (pqk−1
)∞

k=1) with 2 6 p, q ∈
N, having upper G-dimension (respectively upper G-constant) 2 with asymptotic bound
h, where

h(t) := − log+(Cc fm,δ(log log t) fm−1,δ(log log log t)) (t > Ecm+2(1)),

m ∈ N, ε ∈ (0, δ), Cc > 0, and

g(t) = log log(ctα) (t > Ecm+2(1))

with constants c > 1, α > 0.
(iv) m > 1, α, δ, ε > 0 are positive constants satisfying 3α− δ− ε > 0, K admits an

associated grid sequence G = G(K, Q, (q)∞
k=1), 2 6 q ∈ N, having upper G-dimension

(respectively upper G-constant) 1 with asymptotic bound h, where

h(t) := log+(Cd Lcm(t)δ)

with Cd > 0 and g is a non-negative continuous function satisfying

g(t) = O
( t

fm−1,α(log t)3

)
for t→ ∞.

Proof. The proof will be given for the sequences (Nj(G))∞
j=0. In the other

situations the proof is obtained by replacing this sequence by (Ñj(G))∞
j=0, Aj(G)

by Ãj(G), and Fj(G) by F̃j(G).
Note that in all of the four cases we have Fk(G) → 0 for k → ∞ and hence

λ2(K) = 0. It follows that, for j0 > 1, we have

I = I(j0) +
∞

∑
j=j0+1

∫
Aj−1(G)\Aj(G)

fm,ε(g(dist(z, K)−1))dλ2(z),

where
I(j0) :=

∫
Q\Aj0 (G)

fm,ε(g(dist(z, K)−1))dλ2(z)

is finite. As Aj−1(G) \ intAj(G) is the union of n2
j Nj−1− Nj squares of side length

aj(G) we obtain the estimate

(3.7) I 6 I(j0) +
∞

∑
j=j0+1

(n2
j Nj−1(G)− Nj(G))Mj,

where

Mj = max
{ ∫

R

fm,ε

(
g
( 1

dist(z, K)

))
dλ2(z); R ∈ Qj(G), R ⊂ Aj−1(G) \ intAj(G)

}
.

As g is monotone we have for j > j0:

(3.8) Mj 6 Ij :=
∫
Rj

fm,ε(g(dist(z, ∂Rj)
−1))dλ2(z),
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where Rj is a square of side length aj(G). For the proof it suffices to show that the
series

S(j0) :=
∞

∑
j=j0+1

(n2
j Nj−1(G)− Nj(G))Ij

converges for some j0 which is large enough.
In the situation of (i), where m = 0 and 0 < α(1 + ε) < µ0 6 1, we fix j0 ∈ N

such that aj0(G) < 1 and obtain from Lemma 3.2(i)

Ij 6 C1+ε
21+α(1+ε)aj(G)2−α(1+ε)

(2− α(1 + ε))(1− α(1 + ε))

for all j > j0. Hence, with a constant C1 > 0, we have

(3.9)

S(j0) 6 C1

∞

∑
j=j0+1

(n2
j Nj−1(G)− Nj(G))aj(G)2−α(1+ε)

= C1

∞

∑
j=j0+1

(Fj−1(G)− Fj(G))aj(G)−α(1+ε).

Fix now δ > 0 with d + δ + α(1 + ε) < 2. By the definition of d there exists some
j1 > j0 such that for all j > j1 we have

log(Nj(G))
log(aj(G)−1)

< d + δ.

Thus, for j > j1,

Fj(G)aj(G)−α(1+ε) = Nj(G)aj(G)2aj(G)−α(1+ε) 6 aj(G)2−d−δ−α(1+ε) → 0

as j → ∞. Therefore the sum in (3.9) coincides with Fj0(G)aj0+1(G)−α(1+ε) + S,
where

S =
∞

∑
j=j0+1

Fj(G)(aj+1(G)−α(1+ε) − aj(G)−α(1+ε))

=
∞

∑
j=j0+1

Fj(G)aj(G)−α(1+ε)(nα(1+ε)
j+1 − 1).

Because of aj(G) 6 2−ja for all j and by (3.5) we obtain

lim sup
j→∞

(Fj(G)aj(G)−α(1+ε)(nα(1+ε)
j+1 − 1))1/j 6 lim sup

j→∞
(aj(G)2−d−δ−α(1+ε))1/j

6
(1

2

)2−d−δ−α(1+ε)
< 1.

This shows that S and hence also I must be finite.
In (ii) we choose j1 > 1 large enough, such that for all j > j0 the conditions

aj(G)−1 > Ecm+1(1) and

(3.10)
log Nj(G)

log(aj(G)−1)
6 2 +

h(aj(G)−1)

log(aj(G)−1)
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are satisfied. Thus, by (3.3), we get in (3.8)

Mj 6 2aj(G)2(C1 + fm,ε(log(c2αaj(G)−2α))) (j > j0).

Direct computation (using Lemma 3.1(ii) and aj(G) = q−(j(j+1))/2a < 1) shows
that there exist a constant C0 > 1 and some j0 > j1 such that for all j > j0 we have

fm,ε(log(c2αaj(G)−2α)) 6 C0 j fm,ε(j) and

exp(−h(aj(G)−1)) >
1

C0
(j + 1) fm,δ(j) fm−1,δ(log(j + 1)).(3.11)

Hence, we obtain in the situation of (ii),

(3.12)

S(j0) 6 2
∞

∑
j=j0+1

(Fj−1(G)− Fj(G))(C1 + fm,ε(log(c2αaj(G)−2α)))

6 2C1Fj0(G) + 2C0

∞

∑
j=j0+1

(Fj−1(G)− Fj(G))j fm,ε(j).

By (3.10) and (3.11) we have for j > j0,

Fj(G) =Nj(G)aj(G)2 6 C0((j + 1) fm,δ(j) fm−1,δ(log(j + 1)))−1

and therefore,

(3.13) Fj(G)j fm,ε(j) 6 C0 fm−1,δ(log(j + 1))−1 → 0

for j → ∞. Moreover by the mean value theorem and Lemma 3.1(i) there exists
some xj ∈ [j, j + 1] with

Fj(G)((j + 1) fm,ε(j + 1)− j fm,ε(j)) 6 Fj(G)( fm,ε(xj) + xj(m + 1) fm−1,ε(log(xj)))

= (m + 2)Fj(G)xj fm−1,ε(log(xj))

6
C0(m + 2)(j + 1) fm−1,ε(log(j + 1))
(j + m + 1) fm,δ(j) fm−1,δ(log(j + 1))

6
C0(m + 2)

fm,δ(j)
.

Now, by (3.12) and (3.13), we obtain with

C(j0) := 2Fj0(G)(C1 + C0(j0 + 1) fm,ε(j0 + 1))

the needed estimate

S(j0) 6 C(j0) + 2C0

∞

∑
j=j0+1

Fj(G)((j + 1) fm,ε(j + 1)− j fm,ε(j))

6 C(j0) + 2C2
0(m + 2)

∞

∑
j=j0+1

fm,δ(j)−1 < ∞.
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(iii) In this case we have aj(G) = a · p−(qj−1)/(q−1). Similar as in the proof for
(ii), we find some constant C0 > 1, j0 ∈ N large enough to ensure the following
inequalities for all j > j0:

(3.14)

aj(G)−1 > Ecm+2(1),

log Nj(G)
log(aj(G)−1)

6 2 +
h(aj(G)−1)

log(aj(G)−1)
,

fm,ε(log log(c2αaj(G)−2α)) 6 C0 j fm,ε(j),

exp(−h(aj(G)−1)) >
1

C0
(j + 1) fm,δ(j) fm−1,δ(log(j + 1)).

By (3.4) we now get in (3.8),

Ij 6 2aj(G)2(C2 + fm,ε(log log(c2αaj(G)−2α))) (j > j0).

From the inequalities in (3.14) we obtain (as in the proof of (ii)) the estimate

S(j0) 6 C′(j0) + 2C2
0(m + 1)

∞

∑
j=j0+1

fm,δ(j)−1 < ∞

with the constant C′(j0) = 2Fj0(G)(C2 + C0(j0 + 1) fm,ε(j0 + 1)).
(iv) There is some j0 ∈ N such that for all j > j1 Lemma 3.2(iii) is applicable

(with γ = 3) and we obtain for j > j0,

Ij 6 Caj(G) fm−1,3α−ε

(
log
( 2

aj(G)

))−1
,

where C > 0 does not depend on j. Having chosen j0 large enough, and using
aj(G) = aq−j, we may, by Lemma 3.1(ii), also assume that, with some constant
C0 > 1, we have for j > j0,

1
C0

fm−1,3α−ε

(
log
( 2

aj(G)

))
6 fm−1,3α−ε(j) 6 C0 fm−1,3α−ε

(
log
( 2

aj(G)

))
,

fm−1,3α−ε(j + 1) 6 C0 fm−1,3α−ε(j), and

Lcm

( 1
aj+1(G)

)δ
6 C0 Lcm−1(j)δ.

Moreover, if j0 is chosen large enough, we obtain from the asymptotic grid con-
dition

Nj(G)aj(G) 6 Cd Lcm(a−1qj)δ 6 C0Cd Lcm−1(j)δ

for all j > j0. Hence,

(3.15) Nj(G)aj(G) fm−1,3α−ε(j)−1 6 CdC0 fm−1,3α−ε−δ(j)−1 → 0 for j→ ∞.
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By means of (3.15), we have in this situation,

S(j0) 6 C
∞

∑
j=j0+1

(n2
j Nj−1(G)− Nj(G))aj(G) fm−1,3α−ε

(
log
( 2

aj(G)

))−1

6 C0C
∞

∑
j=j0+1

(qNj−1(G)aj−1(G)− Nj(G)aj(G)) fm−1,3α−ε(j)−1

= C0C(Nj0(G)aj0(G) fm−1,3α−ε(j0 + 1)−1 + S),

where, by (3.15),

S =
∞

∑
j=j0+1

Nj(G)aj(G) fm−1,3α−ε(j)−1
(

q
fm−1,3α−ε(j + 1)

fm−1,3α−ε(j)
− 1
)

6 C2
0Cdq

∞

∑
j=j0+1

fm−1,3α−ε−δ(j)−1.

As this sum is finite we also obtain I < ∞ in (iv).

REMARK 3.4. (i) Many examples of compact sets in C with dimBK < 2 and
hence satisfying the condition in Proposition 3.3(i) can be found in the standard
references on fractal geometry (see for example [20]).

(ii) An example of a compact set K of upper box dimension 2 satisfying the
condition in Proposition 3.3(ii) for all m > 1 can be constructed as follows: Let
Q be a square of side length 1 and let p, q be integers with 1 < p + 1 < q. Set
Q0(G) := {Q}. For 1 6 k ∈ N let Qk(G) be the the collection of all squares of
side length q−(k(k+1))/2 obtained by subdividing each square in Qk−1(G) into qk

closed sub-squares. Put K0 := Q and, inductively for k > 1, let Kk be the compact
set which is obtained from Kk−1 by deleting from each square R ∈ Qk−1 with
R ⊂ Kk−1 the interior of the union of pq of the q2k squares from Qk contained

in R. For the compact set K :=
∞⋂

k=1
Kk and the associated grid sequence G =

G(K, Q, (qk)∞
k=1) we then have Ñk(G) = qk2

(q− p)k and hence

log Ñk(G)
− log ak(G)

= 2− k
log
(

q
q−p

)
− log ak(G)

,

where − log ak(G) = (k(k + 1)/2) log q. From this it follows that for all m > 1 the
set K has G-constant 2 with asymptotic bound h (h as in (3.6)).

(iii) It is also possible to construct examples of compact sets K satisfying a con-
dition as in (iii) of Proposition 3.3 but not the one in 3.3(ii).

(iv) The asymptotic condition for K in Proposition 3.3(iv) is satisfied for all
rectifiable arcs in C. This follows easily from [25] (proof of Proposition 5.4 and
formula (5.1)).
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4. APPLICATIONS TO LOCAL SPECTRAL THEORY

Throughout this section, (E, ‖ · ‖E) will be a (complex) Banach space and
L(E) the Banach algebra of all bounded linear operators on E endowed with the
operator norm. Recall that an operator T ∈ L(E) is said to have the single valued
extension property (respectively Bishop’s property (β), [8]) on an open set Ω ⊆ C if,
for each open subset U of Ω the map αU

T from the Fréchet space O(U, E) of all
analytic E-valued functions on U into itself defined by

αU
T ( f )(z) := (z− T) f (z) for all z ∈ U, f ∈ O(U, E)

is injective (respectively is injective with closed range; equivalently, if for every
sequence ( fn)∞

n=1 ⊂ O(U, E) for which (z − T) fn(z) → 0 uniformly for each
compact subset of U the sequence itself tends to 0 uniformly on each compact
subset of U as n→ ∞).

Let T ∈ L(E) and let S be a closed subset of the spectrum σ(T) of T. The op-
erator T is residually decomposable (briefly S-decomposable) [31], [32] with residuum
S if for each open cover C = U1 ∪ U2 with S ⊂ U1 and U2 ∩ S = ∅ there ex-
ist closed T-invariant subspaces X1, X2 with E = X1 + X2 and σ(T|Xj) ⊂ Uj for
j = 1, 2. By the duality results in Section 3 of [3] this is the case if and only if T and
its transpose T∗ both have property (β) on C \ S. Recall that T is said to be decom-
posable in the sense of C. Foiaş [21] if T is residually decomposable with residuum
S = ∅. Moreover, by Theorem IV.4.26 of [32], T ∈ L(E) is S-decomposable if
and only if there exists a map E : C`S(C) → Lat(T), from the set C`S(C) of all
closed subsets of C that either contain S or are disjoint to S into the set Lat(T) of
all closed T-invariant subspaces of E, with the following properties:

(i) E(∅) = {0}, E(C) = E.
(ii) For every family (Fn)∞

n=1 of sets in C`S(C) we have

∞⋂
n=1

E(Fn) = E
( ∞⋂

n=1

Fn

)
.

(iii) For every finite open cover
n⋃

k=0
Uk = C of C such that S ⊂ U0 and Uk ∩ S =

∅ for k = 1, . . . , n, we have

E = E(U0) + · · ·+ E(Un) .

(iv) For all F ∈ C`S(C) we have σ(T|E(F)) ⊂ F.

Such a map E is called a S-spectral capacity for T. It is uniquely determined
by the properties (i)–(iv) ([32], Theorem IV.1.9). We refer to the monographs [13],
[32], [27] for further results on these classes of operators.

PROPOSITION 4.1. Let Ω ⊂ C be an open set, let T be an operator in L(E) and let
Ke ⊆ σ(T) be a totally disconnected compact set. If for every z ∈ Ω \ Ke there is some
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neighbourhood Uz of z and some monotone increasing function fz : [0, ∞) → [0, ∞)
satisfying condition (2.1) and

(4.1)
∫

Uz

fz(log+ log+(‖(ζ − T)−1‖))dλ2(ζ) < ∞,

then T has Bishop’s property (β) on Ω.

Note, that condition (4.1) can only be satisfied if σ(T) ∩Uz has planar Le-
besgue measure 0.

The proof of this proposition is similar to that of Theorem 3.3 in [4]. One
has only to replace in that proof the original theorem of Domar by its variant
Theorem 2.2 and to take fz instead of t 7→ t1+ε(z).

If T satisfies the conditions of Proposition 4.1, then so do its dual operator
T∗, the operators LR(T) and RR(T) of left- and right-multiplication by T on every
closed subalgebra R of L(E) containing all rational functions of T with poles only
outside of σ(T) and also the duals of these multiplication operators. Hence, we
obtain the following decomposability statement.

COROLLARY 4.2. Let Ω, Ke and T ∈ L(E) be as in Proposition 4.1 and let R
be any closed subalgebra of L(E) containing all rational functions of T with poles only
outside of σ(T), then the operators T, T∗, LR(T) and RR(T) are S-decomposable with
S := σ(T) \Ω.

With this corollary and Proposition 1.4.4 in [27] we obtain:

COROLLARY 4.3. If in the situation of Corollary 4.2 we have σ(T) ⊂ Ω, then
the operators T, T∗, LR(T) and RR(T) are even super-decomposable in the sense of
Definition 1.4.1 of [27].

The following proposition shows how decomposability properties of an op-
erator T ∈ L(E) may be obtained from local dimension properties of σ(T) and
local growth properties of the resolvent of T.

PROPOSITION 4.4. Let T be an operator in L(E) and let S be a closed subset of
σ(T). Assume that for each z ∈ σ(T) \ S there exists a compact square Qz ⊂ C \ S with
centre z and a continuous function gz : (0, ∞)→ (0, ∞) satisfying

log+ log+ ‖(ζ − T)−1‖ 6 gz(dist(ζ, σ(T))−1) (ζ ∈ Qz \ σ(T))

such that one of the four conditions in Proposition 3.3 is satisfied for Qz, Kz := (Qz ∩
σ(T)) ∪ ∂Qz and gz. Then T is S-decomposable. If S is totally disconnected, then T is
super-decomposable.

This is now an immediate consequence of Propositions 3.3, 4.1 and Corol-
laries 4.2, 4.3.

COROLLARY 4.5. Let T ∈ L(E) be a bounded linear operator and let S be a closed
subset of σ(T). Suppose, that for each z ∈ σ(T) \ S there exists a compact square Qz
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with centre z such that there are some αz, mz ∈ N and constants Cz, δz, cz > 0 with

∀ζ ∈ intQz \ σ(T) : ‖(ζ − T)−1‖ 6 czdist(ζ, Kz)
−αz ,

(where Kz := (Qz ∩ σ(T)) ∪ ∂Qz) and such that the dimension condition in Proposi-
tion 3.3(iii) is satisfied for Kz with respect to Q = Qz, m = mz, Cc = Cz and δ = δz.
Then T is S-decomposable. In particular, if S is totally disconnected, then T is super-
decomposable.

For a compact set K ⊂ C, we denote by R(K) the uniform closure of Rat(K).

REMARK 4.6. It seems to be still an open problem (see [12]) if every hy-
ponormal operator T on a separable, infinite dimensional Hilbert space satisfy-
ing R(σ(T)) = C(σ(T)) has a non-trivial hyperinvariant subspace. Notice, that
in this case we have

∀ζ ∈ C \ σ(T) : ‖(ζ − T)−1‖ 6 dist(ζ, σ(T))−1.

Hence, if there is some closed subset S ⊂ σ(T) such that σ(T) satisfies locally
outside of S a dimension condition as in the previous corollary, and if σ(T) \ S
contains more than one point, then T is S-decomposable and has a non-trivial
hyperinvariant subspace.

In this connection a result from [11] is of interest:

REMARK 4.7. Let K ⊂ C be a compact set and S be a closed subset of K such
that R(S) = C(S). If K \ S has planar Lebesgue measure 0, then R(K) = C(K).

By Mergelyan’s theorem this applies to situations, where the complement
of S in C is connected and intS = ∅ and thus in particular to situations, where S
is totally disconnected.

The following easy fact will be useful later:

LEMMA 4.8. Let (A, ‖ · ‖) be a Banach function algebra on a compact set K ⊂ C
containing Rat(K). If the operator Lid of multiplication by the variable is decomposable
on A, then A is normal. If in addition Rat(K) is dense in A, then A is regular.

Proof. As the inclusion mapping A ↪→ C(K) is continuous and intertwines
the operators of multiplication by idK on A and C(K) we have for the spectral
capacity E of Lid|A and all closed subsets F of C:

E(F) ⊆ { f ∈ A : supp( f ) ⊆ F},

see for example Proposition 1.2.17 in [27]. Hence, by the decomposability, A is
normal. Moreover, for all f ∈ Rat(K), the operator L f of multiplication by f is
decomposable by Corollary II.1.11 in [13]. The set Dec(A) of all f ∈ A for which
L f is decomposable on A is a closed subalgebra of A (see [5] or Proposition 4.4.9
in [27]). Hence, if Rat(K) is dense in A, we have Dec(A) = A and A is regular
by [22].
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5. SOME GROWTH ESTIMATES FOR ENTIRE FUNCTIONS

For the resolvent estimates that are needed in order to be able to apply the
results of the previous section we need some elementary growth estimates for
certain entire functions.

LEMMA 5.1. Let z 7→ f (z) =
∞
∑

p=0
apzp be an entire function and let (bp)∞

p=0 be a

monotone decreasing null sequence in (0, 1] satisfying b0 = 1 and suppose that |ap| 6 bp
p

for all p ∈ N0. For r > 0 denote by b∗(r) the smallest p ∈ N with bp 6 1/2r. Then we
have the following estimate

(5.1) M f (r) := sup
|z|6r
| f (z)| 6 b∗(r)rb∗(r)−1 + 21−b∗(r) (r > 1).

Proof. By the definition of b∗(r) and M f (r) we have for all r > 1 the estimate

M f (r) 6
b∗(r)−1

∑
p=0

|ap|rp +
∞

∑
p=b∗(r)

bp
prp 6

rb∗(r) − 1
r− 1

+
∞

∑
p=b∗(r)

2−p

6 b∗(r)rb∗(r)−1 + 21−b∗(r).

COROLLARY 5.2. Suppose that 0 < s ∈ R. In the situation and with the notation
of the previous lemma we have in particular:

(i) If b0 = 1 and bp = p−s for p > 0, then

∀r > 1 : M f (r) 6 (2 + 21/s) exp
((

21/s +
1
s

)
r1/s log r

)
.

(ii) If b0 = 1 and bp = log(e + p)−s for p > 0, then

∀r > e : M f (r) < exp(2 log(r) exp((2r)1/s)).

(iii) If ap =
(

∏
p
j=0 log(j + e)

)−s
, then there are constants C1, C2, C3 > 1 such that

we have
∀r > 1 : M f (r) 6 C1 exp(C2 exp(C3r(1/s)+ε)).

Proof. (i) In this case we have b∗(r)− 1 < (2r)1/s 6 b∗(r) and the statement
follows easily from Lemma 5.1.

(ii) Now we have

b∗(r)− 1 < exp((2r)1/s)− e 6 b∗(r)

and the statement follows with the help of Lemma 5.1.
(iii) Fix δ ∈ (0, 1) with ((1− δ)s)−1 < s−1 + ε. For all p > 2 in N let pδ be

the unique integer with pδ < δp 6 pδ + 1. Then we get for p > e/δ:

a−1
p >

p

∏
j=pδ

(log(j + e))s > (log(pδ + e))s(1−δ)p > (log(δp))s(1−δ)p.
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With bp := 1 for 0 6 p < e/δ and bp := (log(δp))−s(1−δ) for p > e/δ we have
ap 6 bp

p for all p ∈ N0. By means of Lemma 5.1 and some obvious estimates one
now obtains easily the statement in (iii).

6. BASIC PROPERTIES OF NORMED ALGEBRAS OF COMPLEX DIFFERENTIABLE AND
ULTRADIFFERENTIABLE FUNCTIONS

LEMMA 6.1. Let K ⊂ C be a perfect, compact set and k ∈ N.
(i) Dk(K) is a Banach function algebra on K if and only if the linear operator T :

f 7→ ( f ′, . . . , f (k)) with domain D(T) = Dk(K) ⊂ C(K) to C(K)k is closed.
(ii) The following are equivalent:

(a) The completion D̂k(K) of Dk(K) is a Banach function algebra on K.
(b) The completion of Dk(K) is semisimple.
(c) The linear operator T : f 7→ ( f ′, . . . , f (k)) with domain Dk(K) ⊂ C(K) to

C(K)k is closable.

Proof. As Dk(K) contains the constants and separates the points of K, (i)
follows immediately from the fact that Jk(Dk(K)) coincides with the graph G(T)
of T.

(ii) “(a)⇒ (b)” is obvious.
If T is not closable, then there exists some f = ( f0, f1, . . . , fk) in G(T) =

Jk(Dk(K)) with f0 ≡ 0 and f j 6≡ 0 for some j ∈ {1, . . . , k}. As f is nilpotent, this

can not happen if Jk(Dk(K)) is semisimple.
If T is closable with closure T, then the domain D(T) ⊂ C(K) of T, endowed

with the graph norm, is isometrically isomorphic to G(T) = Jk(Dk(K)). As D(T)
contains the constants and separates the points of K, we see that D̂k(K) = D(T)
is a Banach function algebra.

REMARK 6.2. If the operator d/dz is closed (respectively closable), then the
operator T in the statement of Lemma 6.1 is easily seen to be closed (respectively
closable). In this case Dk(K) (respectively D̂k(K)) is then a Banach function alge-
bra for all k > 1. Moreover, by (1.5), we have for all f ∈ D̂k(K),

r( f ) = r(Jk( f )) = ‖ f ‖K.

REMARK 6.3. Suppose that the operator T in the statement of Lemma 6.1
is closable and that the uniform closure of Dk(K) is a natural Banach function
algebra, then the Banach function algebra D̂k(K) is natural. This is a consequence
of the theorem in [24].

For the algebras Dk(K) we can show:
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PROPOSITION 6.4. Let K ⊂ C be a perfect compact set, k ∈ N and write again
Jk for the canonical isometric embedding of Dk(K) into the Banach algebra C(K)k+1

endowed with the multiplication suggested by the Leibniz rule.
(i) The operator LJk(idK)

of multiplication by Jk(idK) is C(K)-spectral in the sense of
[13] and hence decomposable.

(ii) The operator LidK of multiplication by idK on the completion D̂k(K) has prop-
erty (β).

(iii) If d/dζ is closable and if S is a closed, totally disconnected subset of K such that
in K \ S locally (as in Corollary 4.5) the dimension condition of Proposition 3.3(iii) holds,
then the completion D̂k(K) is a regular, natural Banach function algebra.

Proof. (i) We have LJk(idK)
= S+ N, where S is the operator of multiplication

by (idK, 0, . . . , 0) and N is the nilpotent operator of multiplication by (0, 1, 0, . . . , 0)
commuting with S. A continuous C(K) functional calculus for S is given by
f 7→ Φ( f ), where Φ( f ) is the operator of multiplication by ( f , 0, . . . , 0). Hence
Jk(idK) is C(K)-spectral.

(ii) As LidK is similar to a restriction of LJk(idK)
, it inherits property (β) from

that operator.
(iii) Lemma 6.1(ii) and Remark 6.2 imply that D̂k(K) is a Banach function

algebra containing Rat(K). Hence, by Remark 4.7, the uniform closure of D̂k(K)
coincides with C(K). By Remark 6.3, the Banach algebra D̂k(K) is natural. Corol-
lary 4.5 shows that LidK is decomposable on D̂k(K). Therefore, D̂k(K) is normal
(by Lemma 4.8) and thus regular.

Useful criteria for the semi-simplicity of D̂k(K) or for the completeness of
Dk(K) can be found in [16], [9], [17]. We mention also the following fact:

REMARK 6.5. If K is a perfect, compact set such that d/dz is closable in
C(K), then K does not contain any totally disconnected subset A 6= ∅ that is
clopen in K (i.e. closed and open in the relative topology of K). In particular, if
z ∈ K and ε > 0, then dimH(Uε(z) ∩ K) > 1.

Indeed, if z ∈ K and dimH(Uε(z) ∩ K) < 1 for some ε > 0, then Uε(z) ∩ K
is totally disconnected (see Section 2.2 of [20]) and K contains a clopen relative
neighbourhood of z in K. If there is a clopen subset A 6= ∅ in K, then it is easy
to show the existence of a sequence ( fn)∞

n=1 in D1(K) such that fn → 0 uniformly
on K and f ′n → χK uniformly on K, where χA is the characteristic function of A.

In the following, K will usually denote a perfect, compact set in C and
M = (Mp)∞

p=0 will be a sequence of bounded, positive functions with M0 ≡ 1
satisfying (1.1) and, in the case s = ∞, when considering the spaces `∞(C(K),M),
D∞(K,M) or D̂∞(K,M) we shall also assume that (1.3) holds. For convenience,
we also use the notations mp and µp for the functions

(6.1) z 7→ mp(z) :=
(Mp(z)

p!

)1/p
, z 7→ µp(z) := log mp(z), (p ∈ N0).
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If the operator d/dz is closable in C(K) with closure dz, we may consider
the spaces

D̃s(K,M) :=
{

f ∈
∞⋂

p=0
D(dp

z ) : ‖ f ‖̃s,M < ∞
}

,

s = 1, ∞, where

‖ f ‖̃1,M :=
∞

∑
p=0

∥∥∥dp
z f

Mp

∥∥∥
K

, respectively ‖ f ‖̃∞,M := sup
p∈N0

∥∥∥dp
z f

Mp

∥∥∥
K

.

Then, (D̃s(K,M), ‖ · ‖̃s,M) is a normed algebra (with respect to some equivalent
submultiplicative norm in the case s = ∞).

LEMMA 6.6. Let K,M be as above.
(i) If D1(K) is complete, then Ds(K,M) is a Banach function algebra on K.

(ii) If the differentiation operator d/dz is closable in C(K), then D̃s(K,M) and the
completion D̂s(K,M) of Ds(K,M) are Banach function algebras on K.

Proof. In the situation of (i), d/dz is closed and hence Ds(K,M) = D̃s(K,M).
Therefore (i) is a consequence of (ii).

Suppose now that d/dz is closable in C(K) with closure dz. Let ( fn)∞
n=1 be

a Cauchy sequence in D̃s(K,M) and let g = (gp)∞
p=0 be the limit of (Js,M fn)∞

n=1

in `s(C(K),M), where Js,M : D̃s(K,M)→ `s(C(K),M) again denotes the isomet-
ric monomorphism defined by Js,M f := (dp

z f )∞
p=0, f ∈ D̃s(K,M). In particular

‖dp
z fn − gp‖K → 0 for all p ∈ N0. By induction we see g0 ∈

∞⋂
p=0

D(dp
z ). Thus

fn → g0 ∈ D̃s(K,M). Therefore, D̃s(K,M) is complete and D̂s(K,M) is a closed
subalgebra of D̃s(K,M). As both of them contain the polynomials, they are Ba-
nach function algebras on K.

REMARK 6.7. Let K and M be as above. As Ds(K,M) is an algebra, the set
Rat(K) of all rational functions with poles off K is contained in Ds(K,M), for s = 1
respectively s = ∞, if and only if for all z ∈ C \ K the function ζ 7→ (z− ζ)−1 is
in Ds(K,M) which in turn is equivalent to

∞

∑
p=0

∥∥∥ 1
(z− ·)p+1mp

p

∥∥∥
K
< ∞ respectively sup

p∈N0

∥∥∥ 1
(z− ·)p+1mp

p

∥∥∥
K
< ∞ (z ∈ C\K).

Sufficient conditions for this are

lim
p→∞
‖m−1

p ‖K = 0, and(6.2)

lim
p→∞

∥∥∥ mp
p

mp+1
p+1

∥∥∥
K
= 0.(6.3)
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In the case considered in [16], where all the functions Mp and mp are constants,
each of these two conditions is also necessary.

LEMMA 6.8. Let K ⊂ C be a perfect, compact set and let M be as above with the
additional property that the functions Mp, p ∈ N0, are continuous on K. If Rat(K) ⊂
Ds(K,M) then

(6.4) lim
p→∞
‖m−1

p ‖∂K = 0 and lim
p→∞

∥∥∥ mp
p

mp+1
p+1

∥∥∥
∂K

= 0.

Hence, if intK = ∅, then Rat(K) ⊂ Ds(K,M) is equivalent to (6.2) and to (6.3).

Proof. If lim
p→∞
‖1/mp‖∂K 6= 0 then there exists some C > 0 and some sub-

sequence (pk)
∞
k=1 of (p)∞

p=0 and a sequence (zk)
∞
k=1 of points in ∂K such that

1/mpk (zk) > C for all k. Passing to some subsequence, we may assume (by the
compactness of ∂K) that zk → z0 for some point z0 ∈ ∂K. Hence, there is some
k0 > 0 such that |zk − z0| < C/3 for all k > k0. Fix w0 ∈ C \ K with |z0 − w0| <
C/3 and consider the rational function h ∈ Rat(K) with h(z) := (z− w0)

−1 for
all z ∈ K. It follows that for k > k0 we have∥∥∥h(pk)

Mpk

∥∥∥
K
>
|h(pk)(zk)|
Mpk (zk)

=
1

|zk − w0|pk+1mpk (zk)
pk

>
3

2C
·
(3

2

)pk
→ ∞

for k→ ∞. Hence, h 6∈ D∞(K,M).
If the second condition in (6.4) is violated, then it follows with similar argu-

ments that for some w0 ∈ C \ K the rational function z 7→ (z − w0)
−1 is not in

D∞(K,M).

If Rat(K) ⊂ Ds(K,M), then K coincides with the spectra of the identity
function idK and of the operator by multiplication with idK in D̂s(K,M) and, in
the case that d/dζ is closable in C(K), also in D̃s(K,M). The same is true for
Js,M(idK) and the operator of multiplication by Js,M(idK) in `s(C(K),M).

In the proof of the following fact we use some arguments of the proof of
Theorem 3.3 in [1].

PROPOSITION 6.9. Let K be a (not necessarily perfect) compact set and let M be a
sequence of bounded functions Mp : K → [1, ∞) satisfying (1.1) and

(6.5) lim
p→∞

max
0<q<p

∥∥∥mp−q
p−qmq

q

mp
p

∥∥∥
K
= 0.

Then

(6.6) rad(`1(C(K),M)) = {f = ( fp)
∞
p=0 ∈ `1(C(K),M) : f0 ≡ 0}.

In particular, the spectrum and the spectral radius in `1(C(K),M) are given by

(6.7) σ(f) = f0(K) and r(f) = ‖ f0‖K for all f = ( fp)
∞
p=0 ∈ `1(C(K),M).
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Proof. An induction argument shows that for all f = ( fp)∞
p=0 ∈ `1(C(K),M)

with f0 ≡ 0 and n ∈ N we have fn = (gp)∞
p=0 where gp ≡ 0 for 0 6 p < n and

gp = ∑
p1,...,pn>1

p1+···+pn=n

p!
n

∏
j=1

fpj

pj!
.

Hence,

|fn|1,M =
∞

∑
p=n

∥∥∥ gp

Mp

∥∥∥
K
6

∞

∑
p=n

∑
p1,...,pn>1

p1+···+pn=n

∥∥∥ p!
Mp

n

∏
j=1

Mpj

pj!

∥∥∥
K
·

n

∏
j=1

∥∥∥ fpj

Mpj

∥∥∥
K

6 An|f|n1,M,

where An is defined by

An := sup
{∥∥∥ 1

mp
p

n

∏
j=1

m
pj
pj

∥∥∥
K

: p > n, p1, . . . , pn ∈ N,
n

∑
j=1

pj = p
}

.

Therefore f will be quasi-nilpotent, if we can show

(6.8) lim
n→∞

A1/n
n = 0.

Let ε > 0 be arbitrary. By condition (6.5) there is some n0 ∈ N such that for all
p > n0 and 0 6 q 6 p, ∥∥∥mp−q

p−qmq
q

mp
p

∥∥∥
K
< ε.

Let n > n0 and p1, . . . , pn+1 ∈ N with p := p1 + · · ·+ pn+1 > n + 1. For all z ∈ K
we then have

1
mp(z)p

n+1

∏
j=1

mpj(z)
pj =

mp−pn+1(z)
p−pn+1 mpn+1(z)

pn+1

mp(z)p ·mp−pn+1(z)
p−pn+1

n

∏
j=1

mpj(z)
pj 6 εAn.

Hence, An+1 6 εAn. This shows

lim
n→∞

An

An+1
= 0

which implies (6.8) and we conclude that f is quasi-nilpotent.
The mapping f 7→ Ψ( f ) := (δp,0 f )∞

p=0 defines an isometric monomor-
phism Ψ : C(K) → `1(C(K),M). Hence, r(Ψ( f )) = ‖ f ‖K for all f ∈ C(K).
As every element f = ( fp)∞

p=0 is of the form f = Ψ( f0) + ((1− δ0,p) fp)∞
p=0 and

((1− δ0,p) fp)∞
p=0 is quasi-nilpotent by the first part of the proof, we obtain (6.6)

and (6.7).

The following is now an immediate consequence of Lemma 6.9 and the
main result of Honary in [24].
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COROLLARY 6.10. Let K ⊂ C be a perfect, compact set such that the operator
d/dζ is closable in C(K) and let M be a sequence as in Proposition 6.9. Then the
character spaces of D̂1(K,M) and D̃1(K,M) coincide with that of the uniform closure
A1(K,M) of D1(K,M) in C(K). In particular, D̂1(K,M) and D̃1(K,M) are natural if
A1(K,M) is natural.

Notice, that Theorem 3.3 in [1] is a direct consequence of Theorem 1.6 in [16]
and Corollary 6.10.

For the analogue to Proposition 6.9 for `∞(C(K),M) we need a stronger
assumption on the sequence M. In the proof we follow the idea of the proof of
Lemma 3.4 in [16].

PROPOSITION 6.11. Let K be a compact set and let M be a sequence of bounded
functions Mp : K → [1, ∞) satisfying (1.1) and

(6.9) lim
p→∞

∥∥∥ p−1

∑
q=1

Bp,q

∥∥∥
K
= 0,

where

Bp,q(z) :=
(

p
q

)
Mp−q(z)Mq(z)

Mp(z)
(z ∈ K).

Then

rad(`∞(C(K),M)) = {f = ( fp)
∞
p=0 ∈ `∞(C(K),M) : f0 ≡ 0}.

In particular, the spectrum and the spectral radius in `∞(C(K),M) are given by

(6.10) σ(f) = f0(K) and r(f) = ‖ f0‖K for all f = ( fp)
∞
p=0 ∈ `∞(C(K),M).

Proof. For the proof it suffices to show that every f = ( fp)∞
p=0 ∈ `∞(C(K),M)

for which f0 has no zero on K has an inverse in `∞(C(K),M). For such an element
f we have δ := inf

z∈K
| f0(z)| > 0. We may assume δ = 1. Note that 1 := (δ0,p)

∞
p=0 is

the unit element in `∞(C(K),M). Hence f will be invertible if we can show that
the sequence g = (gp)∞

p=0 of continuous functions, inductively defined by

g0 :=
1
f0

and gp+1 := − 1
f0

p+1

∑
q=1

(
p
q

)
fqgp−q (p ∈ N0),

is in `∞(C(K),M). With the notation αp := | fp|/Mp, βp := |gp|/Mp, p ∈ N0, we
have β0 6 1 and hence

βp+1(z) 6 αp+1(z) +
p

∑
q=1

Bp,q(z)αq(z)βp+1−q(z)

6 |f|∞,M

(
1 +

∥∥∥ p

∑
q=0

Bp+1,q

∥∥∥
K
· max

16q6p
‖βq‖K

)
.
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Choose n such that
∥∥∥ p

∑
q=0

Bp+1,q

∥∥∥
K
6 (2|f|∞,M)−1 for all p > n and let m be the

maximum of 2|f|∞,M and max
16q6n

‖βq‖K. Then we have for p > n:

‖βp+1‖K 6
1
2

max
16q6p

‖βq‖K + |f|∞,M.

By induction on p we obtain ‖βp‖K 6m for all p∈N0, and so g∈ `∞(C(K),M).

With the theorem of Honary [24] we obtain:

COROLLARY 6.12. Let K ⊂ C be a perfect, compact set such that the operator
d/dζ is closable in C(K) and let M be a sequence as in Proposition 6.11. Then the
character spaces of D̂∞(K,M) and D̃∞(K,M) coincide with that of the uniform closure
A∞(K,M) of D∞(K,M) in C(K). In particular, D̂∞(K,M) and D̃∞(K,M) are natural
if A∞(K,M) is natural.

As an example for situations in which condition (6.9) is satisfied, we show:

LEMMA 6.13. Let K ⊂ C be a perfect, compact set and let α, β : K → [0, ∞)
be two continuous functions satisfying α(z) + β(z) > 0 for all z ∈ K. The sequence
M = (Mp)∞

p=0 given by M0 ≡ 1 and

Mp(z) := p! · ppα(z) · (log(p + e))pβ(z) (z ∈ K, p ∈ N).
satisfies conditions (1.1) and (6.9), hence also the algebra condition (1.3) and (6.5).

Proof. With the notation of Proposition 6.11, we have in this situation

Bp,q(z) = Bα(z)
α,p,qBβ(z)

β,p,q (z ∈ K),

where

Bα,p,q =
qq(p− q)p−q

pp < 1 and Bβ,p,q =
(log(e + q))q(log(e + p− q))p−q

(log(e + p))p

for 1 6 q < p. Using elementary calculus, one easily shows that the functions
q 7→ Bα,p,q and q 7→ Bβ,p,q are strictly monotone decreasing on (0, p/2] and obtains
Bα,p,q < 1 and Bβ,p,q < 1 for 1 6 q < p. In particular, M satisfies (1.1).

By the assumptions on the functions α and β there are compact subsets
Kα, Kβ of K with K = Kα ∪ Kβ and

cα := min
z∈Kα

α(z) > 0, cβ := min
z∈Kβ

β(z) > 0.

With

Sα,p :=
p−1

∑
q=1

Bcα
α,p,q and Sβ,p :=

p−1

∑
q=1

B
cβ

β,p,q

we obtain ∥∥∥ p−1

∑
q=1

Bp,q

∥∥∥
K
6 max{Sα,p, Sβ,p}.
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For 0 < ε < 1 we fix q0 such that 21−cα /(1 − 2−cα) < ε/2 and p0 > q0 with
2q1+cα

0 p−cα
0 < ε/2. For all p > 2p0 we then obtain

Sα,p 6 2 ∑
16q6p/2

( q
p

)qcα

6 2
q0−1

∑
q=1

( q0

p

)qcα

+ 2 ∑
q0<q6p/2

( q
p

)qcα

2−qcα < ε.

For the estimate of Sβ,p we proceed similar as in the proof of Lemma 3.3 in [16].
Fix δ ∈ (0, 1) with 4δcβ /(1− δcβ) < ε and then p1 > 2/ε such that

∀p > p1 :
log(e + 1 + log p)

log(e + p)
< min{δ, e−2/cβ}.

for all p > p1 let qp denote the smallest integer greater than log p. We obtain the
following and hence, (6.9) is satisfied:

Sβ,p 6 2 ∑
16q6p/2

B
cβ

β,p,q 6 2
qp

∑
q=1

( log(e + q)
log(e + p)

)qcβ
+ 2 ∑

qp<q6p/2
B

cβ

β,p,qp

< 2
qp

∑
q=1

δqcβ + p
( log(e + 1 + log p)

log(e + p)

)qpcβ
<

ε

2
+ p exp(−2 log p) < ε.

For the sequence M = (Mp)∞
p=0 with

Mp(z) := p!1+α(z)
p

∏
j=1

(log(e + j))β(z) (p ∈ N0, z ∈ K)

with α and β as in the previous lemma the same statement can be proved.

REMARK 6.14. If M satisfies Rat(K) ⊂ D̂s(K,M) and R(K) = C(K), then
the algebra As(K,M) coincides with C(K) and is hence natural (s = 1, ∞).

We also note the following fact which follows from Lemma 6.6 with some
standard methods (cf. the proof of Theorem 1.8 in [16]).

REMARK 6.15. If K ⊂ C is a perfect, compact set such that d/dz is closable
in C(K) and if M is a sequence satisfying (1.1) and Rat(K) ⊂ Ds(K,M) (and in
the case s = ∞ also (1.3)), then the closure Rs(K,M) of Rat(K) in D̂s(K,M) is a
natural Banach function algebra.

7. NORMALITY AND REGULARITY CRITERIA

For a compact set K ⊂ C and a point z ∈ K we call

dK(z) := lim sup
ε→0

dimB(K ∩Uε(z))

the upper box dimension of K at z. If K is in addition perfect and M = (Mp)∞
p=0

a sequence of bounded functions Mp : K → [1, ∞) satisfying M0 ≡ 1 and (1.1)
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then, with the notation introduced in (6.1), we define for all k ∈ N,

(7.1) Λk
M(z) := lim sup

ε→0
lim sup

p→∞

∥∥∥Lck(p)
µp

∥∥∥
K∩Uε(z)

.

THEOREM 7.1. Let K ⊂ C be a perfect, compact set, for which the operator d/dz
is closable in C(K), and let M be a sequence as above, which in addition satisfies (6.2).
Denote by Ω0 the set of all points z ∈ K such that for each ε > 0 there exists a closed
square Qz ⊂ Uε(z) with z ∈ intQz such that for Qz and Kz := ∂Qz ∪ (Qz ∩ K),
the asymptotic dimension condition in part (ii) of Proposition 3.3 is satisfied with some
m ∈ N and some δ > 0. The sets

Ω1 := {z ∈ Ω0 : Λ1
M(z) < ∞} and Ω2 := {z ∈ K : dK(z) + Λ2

M(z) < 2}

are open for the relative topology on K. If S := K \ (Ω1 ∪Ω2) is totally disconnected,
then D̂1(K,M) and D̃1(K,M) are normal Banach function algebras. The maximal reg-
ular subalgebra of D̂1(K,M) contains R1(K,M). If in addition M satisfies condition
(6.5), then D̂1(K,M) and D̃1(K,M) are regular.

Proof. As d/dz is closable in C(K) we must have dK(z) > 1 for all z ∈ K
(cf. Remark 6.5). It follows immediately from the definitions of Ω0, Λk

M, dK, that
the sets Ω1, Ω2 are relatively open in K. Because of (6.2) the algebra D1(K,M)
contains Rat(K) and ω, defined by the following, is an entire function:

ω(ζ) :=
∞

∑
p=0

∥∥∥ 1
mp

∥∥∥p

K
ζ p+1 (ζ ∈ C).

Let z be an arbitrary point in Ω1. Then there exist constants ε0 ∈ (0, 1),
C > 0 and p0 ∈ N such that log p 6 Cµp(ζ) for all p > p0 and all ζ ∈ K ∩Uε0(z).
In particular we have

(7.2)
∥∥∥ 1

mp

∥∥∥
K
6 p−1/C (p > p0).

Because of z ∈ Ω0 there exists some closed square Qz ⊂ Uε0(z) with centre
z such that with Q = Qz, K = Kz := ∂Qz ∪ (Qz ∩ K), the asymptotic dimension
condition in part (ii) of Proposition 3.3 is satisfied for some m ∈ N and some
δz > 0. Put η := dist(Qz,C \Uε0(z))

−1. For all w ∈ Qz \ Kz we have

‖(w− ·)−1‖1,M 6
∞

∑
p=0

(∥∥∥ 1
(w− ·)p+1mp

p

∥∥∥
K\Uε0 (z)

+
∥∥∥ 1
(w− ·)p+1mp

p

∥∥∥
Uε0 (z)∩K

)
6 ω(η) +

∞

∑
p=0

∥∥∥ 1
mp

∥∥∥p

Uε0 (z)∩K
dist(w, Kz)

−p−1.

With the help of (7.2) and Corollary 5.2(i) we see that for each α > 1/C there
exists a constant c > 0 such that

‖(w− ·)−1‖1,M 6 exp
( c

dist(w, Kz)α

)
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for all w∈Qz\Kz. By Proposition 3.3(ii), we see that the following integral is finite:∫
Qz

fm,δz/2(log+ log+(‖(w− ·)
−1‖1,M))dλ2(w).

Consider now an arbitrary point z in Ω2 and fix δ > 0 with dK(z)+Λ2
M(z) <

2− 2δ. Hence, there exists constants ε0 > 0, p0 ∈ N and C ∈ (0, 1) such that
log log p 6 Cµp(ζ) for all p > p0 and all ζ ∈ K ∩Uε0(z). In particular we have

(7.3)
∥∥∥ 1

mp

∥∥∥
K∩Uε0 (z)

6 log(e + p)−1/C (p > p0).

Fix now α ∈ (C, 2−Λ2
M(z)− 2δ). By the definition of Λ2

M(z) there exists some
closed square Qz ⊂ Uε0(z) with centre z such that for Qz and Kz := ∂Qz ∪ (Qz ∩
K), we have dimB Kz < Λ2

M(z) + δ. With η := dist(Qz,C \Uε0(z))
−1 we obtain

(as in the case z ∈ Ω1) the estimate

‖(w− ·)−1‖1,M 6 ω(η) +
∞

∑
p=0

∥∥∥ 1
mp

∥∥∥p

Uε0 (z)∩K
dist(w, Kz)

−p−1 (w ∈ Qz \ Kz).

With the help of (7.3) and Corollary 5.2(ii) one easily obtains the existence of a
constant c > 0 such that

log log ‖(w− ·)−1‖1,M 6 cdist(w, Kz)
−α

for all w ∈ Qz \Kz. Now we may apply part (i) of Proposition 3.3 and see that the
following integral is finite:∫

Qz

(log+ log+(‖(w− ·)
−1‖1,M))1+δdλ2(w).

As ‖(w− ·)−1‖1,M coincides with the norm of the resolvent (w− LidK )
−1 of

the operator LidK of multiplication by idK on each of the three Banach function
algebras R1(K,M), D̂1(K,M), D̃1(K,M), we conclude from Proposition 4.1 that
these multiplication operators are decomposable. By Lemma 4.8 this implies that
D̂1(K,M), D̃1(K,M) and R1(K,M) are normal. As R1(K,M) is a natural Banach
function algebra (by Remark 6.15), it is even regular.

The following variant of Theorem 7.1 for D∞(K,M) can be obtained with
only minor changes in the proof.

THEOREM 7.2. Let K ⊂ C be a perfect, compact set, for which the operator d/dz
is closable in C(K), and let M be a sequence as above, which in addition satisfies (6.2)
and (1.3). Define Ω0, Ω1 and Ω2 as in the statement of Theorem 7.1. Then the sets
Ω1 and Ω2 are open for the relative topology on K. If S := K \ (Ω1 ∪Ω2) is totally
disconnected, then D̂∞(K,M) and D̃∞(K,M) are normal Banach function algebras. The
maximal regular subalgebra of D̂∞(K,M) contains R∞(K,M). If in addition M satisfies
condition (6.9), then D̂∞(K,M) and D̃∞(K,M) are regular.
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EXAMPLE 7.3. Let K ⊂ C be a perfect, compact set for which the operator
d/dz is closable in C(K). Let α, β : K → [0, ∞) be two continuous functions and
define the sequence M = (Mp)∞

p=0 by M0 ≡ 1 and

Mp(z) := p! · ppα(z) · log(e + p)pβ(z) (p ∈ N, z ∈ K).

Suppose that the following three conditions are satisfied:

(i) β > 1 on {z ∈ K : α(z) = 0} and the set S := {z ∈ K; β(z) = 1 and α(z) =
0} is totally disconnected.

(ii) For all z ∈ {ζ ∈ K \ S : α(ζ) = 0} we have dK(z) + β(z)−1 < 2.
(iii) For all z ∈ {ζ ∈ K \ S : α(ζ) 6= 0} the asymptotic dimension condition in

part (ii) of Proposition 3.3 is satisfied for some m ∈ N and some δ > 0.

Then the Banach function algebras Rs(K,M), D̂s(K,M), and D̃s(K,M) are
regular for s = 1 and s = ∞.

Proof. By Lemma 6.13, M satisfies conditions (1.1), (6.9) and therefore also
(1.3) and (6.5).

By the continuity of α and β we have Λ1
M(z) = α(z)−1 if α(z) > 0 and

Λ2
M(z) 6 β(z)−1 if α(z) = 0. Hence, by Theorem 7.1 respectively Theorem 7.2,

the algebras D̂s(K,M) and D̃s(K,M) are natural, regular Banach function alge-
bras containing Rs(K,M) as a regular closed subalgebra (s = 1, ∞).

For the sequence M = (Mp)∞
p=0 with

Mp(z) := p!1+a(z)
p

∏
j=1

(log(e + j))β(z) (p ∈ N0, z ∈ K)

with α and β as in the previous example a similar statement can be proved.
E. Bishop has given in [7] an example of a non-rectifiable, compact Jordan

arc K, for which d/dz is not closable in C(K). Moreover, by Theorem 10.5 of Dales
and Feinstein in [17], the operator d/dz cannot be closed if K is any non-rectifiable
Jordan arc. On the other hand, constructions as given in [26] show, that there exist
compact Jordan arcs K of positive planar Lebesgue measure (which are of course
not rectifiable) such that the union of all rectifiable subarcs of K is dense in K. In
this situation, d/dz must be closable in C(K) by Theorem 6.3 in [17]. Moreover,
for the examples constructed in [26] there is a totally disconnected closed subset
S of K such that all points in K \ S are contained in some rectifiable subarcs of K.
It follows from the previous example, that in this situation the algebras D̂s(K,M)

and D̃s(K,M) are natural, regular Banach function algebras containing Rs(K,M)
as a regular closed subalgebra (s = 1, ∞) for the sequence M = (Mp)∞

p=0 with

Mp(z) := p!(log(e + p))p(1+dist(z,S)) (z ∈ K, p ∈ N0).
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