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ABSTRACT. Hilbert space frame theory has applications to various areas of
pure mathematics, applied mathematics, and engineering. However, the ques-
tion of how applying an invertible operator to a frame changes its properties
has not yet been satisfactorily answered, and only partial results are known
to date. In this paper, we will provide a comprehensive study of those ques-
tions, and, in particular, prove characterization results for (1) operators which
generate frames with a prescribed frame operator; (2) operators which change
the norms of the frame vectors by a constant multiple; (3) operators which
generate equal norm nearly Parseval frames.
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INTRODUCTION

To date, Hilbert space frame theory has broad applications in pure mathe-
matics, see, for instance, [5], [8], [11], as well as in applied mathematics, computer
science, and engineering. This includes time-frequency analysis [15], wireless
communication [16], [20], image processing [19], coding theory [21], quantum
measurements [14], sampling theory [13], and bioimaging [18], to name a few. A
fundamental tool in frame theory are the analysis, synthesis and frame operators
associated with a given frame. A deep understanding of these operators is indeed
crucial to frame theory and its applications.

Let us start by recalling the basic definitions and notions of frame theory.
Given a family of vectors { fi}M

i=1 in an N-dimensional Hilbert space HN , we say
that { fi}M

i=1 is a frame if there exist constants 0 < A 6 B < ∞ satisfying

A‖ f ‖2 6
M

∑
i=1
|〈 f , fi〉|2 6 B‖ f ‖2 for all f ∈ HN .

The numbers A, B are called lower and upper frame bounds (respectively) for the
frame. If A = B, { fi}M

i=1 is called an A-tight frame, and if A = B = 1, it is referred
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to as a Parseval frame. The frame is an equal norm frame, if ‖ fi‖ = ‖ fk‖ for all
1 6 i, k 6 M, and a unit norm frame, if ‖ fi‖ = 1 for all 1 6 i 6 M. The analysis
operator F : HN → `2(M) of the frame is defined by

F( f ) = {〈 f , fi〉}M
i=1.

The adjoint of the analysis operator is referred to as the synthesis operator F∗ :
`2(M)→ HN , which is

F∗({ai}M
i=1) =

M

∑
i=1

ai fi.

The frame operator is then the positive, self-adjoint invertible operator S : HN →
HN given by S = F∗F, i.e.,

S f =
M

∑
i=1
〈 f , fi〉 fi, for all f ∈ H.

Moreover, two frames { fi}M
i=1 and {gi}M

i=1 in H are called equivalent (unitarily
equivalent), if there exists an invertible (a unitary) operator T : H → H such that
gi = T fi for all i = 1, . . . , M. For further background on frame theory, we refer
the reader to [10], [12].

Letting { fi}M
i=1 be a frame for HN with frame operator S, and letting T be

an invertible operator on H, a fundamental, but poorly understood, question in
frame theory is the following: How do the frame properties of {T fi}M

i=1 relate to
the frame properties of { fi}M

i=1? Deserving particular attention are the following
subproblems due to their relevance for theoretical as well as practical applicabil-
ity of the generated frames.

(i) Frame operator. Often a particular frame operator is desired, which yields
the question: Is it possible to classify the operators T under which the frame
operator is invariant? More generally, can we classify those invertible operators
such that the generated frame has a prescribed frame operator?

(ii) Norm. It is essential to have a means to control the norms of the gener-
ated frame elements due to, for instance, numerical stability issues. This raises
the following question: Can we classify those invertible operators which map a
frame to another frame which is equal norm? Another variant is the classification
problem of all invertible operators T for which ‖ fi‖ = c‖T fi‖ for all 1 6 i 6 M.

(iii) Parseval frame. Parseval frames are crucial for applications, since from a
numerical standpoint, they are optimally stable. Also for theoretical purposes
those are the most useful frames to utilize, for instance, for the decomposition of
mathematical objects. Often, however it is not possible to construct an “exact”
Parseval frame, which leads to the problem of deriving a deep understanding of
operators which map a frame to a nearly Parseval frame.

In this paper, we will provide comprehensive answers to these questions,
which are in fact long-standing open problems or are close to such, giving proof
to both their significance and their difficulty.
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An answer to the first question complex will presumably, as we will indeed
see, provide a way to index frames which possess the same frame operator. This
in fact solves a problem which has been debated in frame theory for several years,
see, for instance, [3].

The second group of problems has been discussed at meetings for many
years but has not formally been stated in the literature. These are fundamental
questions which often arise when one is trying to improve frame properties by
applying an invertible operator to the frame.

Relating to the third problem complex, despite the significance of equal
norm Parseval frames for applications, their class is one of the least understood
classes of frames. The reason is that for any frame { fi}M

i=1 with frame operator
S, the closest Parseval frame is the canonical Parseval frame {S−1/2 fi}M

i=1, which
is rarely equal norm. Because of the difficulty of finding equal norm Parseval
frames, the famous Paulsen Problem as stated below is still open to date. For stat-
ing it, recall that given 0 < ε < 1, a frame { fi}M

i=1 is ε-nearly Parseval, if its frame
operator S satisfies (1− ε)Id 6 S 6 (1 + ε)Id. Also the frame is ε-nearly equal
norm, provided that |‖ fi‖2 − N/M| < ε for all i = 1, . . . , M. Armed with these
notions, we now state the Paulsen Problem.

PROBLEM 0.1 (Paulsen Problem). Find a function f (ε, N, M), such that for each
frame { fi}M

i=1 for HN which is both ε-nearly equal norm and ε-nearly Parseval, there
exists an equal norm Parseval frame {gi}M

i=1 satisfying

M

∑
i=1
‖ fi − gi‖2 6 f (ε, N, M).

We refer the reader to [2], [5], [7] for some recent results on this problem.
The question we deal with in this paper is closely related to the Paulsen Problem,
and we anticipate our answer to provide a new direction of attack.

This paper is organized as follows. In Section 1, we first classify those op-
erators which leave the frame operator invariant. A characterization of operators
mapping frames to frames with comparable norms of the frame vectors is pro-
vided in Section 2. Section 3 is then devoted to the study of operators which
generate nearly Parseval frames.

1. PRESCRIBED FRAME OPERATORS

1.1. INVARIANCE OF THE FRAME OPERATOR. The first question in this section to
tackle is the characterization of invertible operators which leave the frame oper-
ator invariant. More precisely, given a frame { fi}M

i=1 for a Hilbert space HN with
frame operator S, we aim to classify the invertible operators T on HN for which
the frame operator for {T fi}M

i=1 equals S. We remark that not even unitary op-
erators possess this property, the reason being that although a unitary operator
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applied to a frame will maintain the eigenvalues of the frame operator, it will
however in general not maintain the eigenvectors.

The exact mathematical formulation of this question is the following:

QUESTION 1.1. Given a frame { fi}M
i=1 with frame operator S, can we classify

the invertible operators T so that the frame operator of the generated frame {T fi}M
i=1

equals S?

We start with a well known result identifying the frame operator of the
frame {T fi}M

i=1. Since the proof is just one line, we include it for completeness.

THEOREM 1.2. If { fi}M
i=1 is a frame for HN with frame operator S, and T is an

operator on HN , then the frame operator for {T fi}M
i=1 equals TST∗. If T is invertible,

then {T fi}M
i=1 also constitutes a frame forHN .

Proof. The claim follows from the fact that the frame operator for {T fi}M
i=1

is given by

M

∑
i=1
〈 f , T fi〉T fi = T

( M

∑
i=1
〈T∗ f , fi〉 fi

)
= TST∗ f .

This leads to the following reformulation of Question 1.1:

QUESTION 1.3. Given a positive, self-adjoint, invertible operator S, can we clas-
sify the invertible operators T for which TST∗ = S?

For the case of Parseval frames, the answer is well-known [9]. Since known
proofs were highly non-trivial, we provide a trivial proof, which seems to have
been overlooked in previous publications.

COROLLARY 1.4. If { fi}M
i=1 and {gi}M

i=1 are equivalent Parseval frames, then
they are unitarily equivalent.

In particular, in the case of Parseval frames, the desired set of operators in Ques-
tion 1.1 are the unitary operators.

Proof. Since { fi}M
i=1 and {gi}M

i=1 are equivalent, there exists an invertible
operator T so that fi = Tgi for every i = 1, 2, . . . , M. By Theorem 1.2, the fact that
both frames constitute Parseval frames implies that T Id T∗ = Id.

1.2. GENERAL CHARACTERIZATION RESULT. Instead of directly providing an an-
swer to Question 1.1 for any frame, we will now first state the generalization of
this question whose answer will then include the solution to this problem. For
this, we will start with the following consequence of Theorem 1.2.

COROLLARY 1.5. Let { fi}M
i=1 and {gi}M

i=1 be frames forHN with frame operators
S1 and S2, respectively. Then there exists an invertible operator T onHN such that S1 is
the frame operator of {Tgi}M

i=1.
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Proof. Letting T = S1/2
1 S−1/2

2 , by Theorem 1.2, we obtain

TS2T∗ = (S1/2
1 S−1/2

2 )S2(S1/2
1 S−1/2

2 )∗ = S1.

Hence asking for the generation of frames with a prescribed frame operator
can be formulated in terms of operator theory as the following generalization of
Question 1.3 shows.

QUESTION 1.6. Given two positive, invertible, self-adjoint operators S1 and S2
on a Hilbert space H, can we classify the invertible operators T on H for which S1 =
TS2T∗?

A first classification result answering Question 1.6 is the following. In this
context, we mention that condition (ii) shall also be compared with the choice of
T in the proof of Corollary 1.5.

THEOREM 1.7. Let S1, S2 be positive, self-adjoint, invertible operators on a Hilbert
space H, and let T be an invertible operator on H. Then the following conditions are
equivalent:

(i) S2 = TS1T∗.
(ii) There exists a unitary operator U onH such that T = S1/2

2 US−1/2
1 .

Proof. (i)⇒ (ii) We set U = S−1/2
2 TS1/2

1 , which is a unitary operator, since

(S−1/2
2 TS1/2

1 )(S−1/2
2 TS1/2

1 )∗ = S−1/2
2 TS1T∗S−1/2

2 = S−1/2
2 S2S−1/2

2 = Id.

Moreover, we have

S1/2
2 US−1/2

1 = S1/2
2 (S−1/2

2 TS1/2
1 )S−1/2

1 = T.

(ii)⇒ (i) Since T = S1/2
2 US−1/2

1 , we obtain

TS1T∗ = S1/2
2 US−1/2

1 S1S−1/2
1 U∗S1/2

2 = S1/2
2 UU∗S1/2

2 = S1/2
2 Id S1/2

2 = S2,

which is (i).

This result is however not entirely satisfactory, since one might prefer to
have an explicit construction of all invertible operators T satisfying S1 = TS2T∗.

1.3. CONSTRUCTIVE CLASSIFICATION. We start with some preparatory lemmata,
the first being an easy criterion for identifying the eigenvectors of a positive, self-
adjoint operator.

LEMMA 1.8. Let T : HN → HN be an invertible operator onHN , and let {ej}N
j=1

be an orthonormal basis forHN . Then the following conditions are equivalent:
(i) {Tej}N

j=1 is an orthogonal set.

(ii) {ej}N
j=1 is an eigenbasis for T∗T with respective eigenvalues ‖Tej‖2.

In particular, T must map some orthonormal basis to an orthogonal set.
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Proof. For any 1 6 j, k 6 N, we have

〈(T∗T)ej, ek〉 = 〈Tej, Tek〉.

Hence, {Tej}N
j=1 is an orthogonal set if and only if 〈(T∗T)ej, ek〉 = 0 for all 1 6

j 6= k 6 N. This in turn is equivalent to the condition that T∗Tej = λjej for all
j = 1, 2, . . . , N with

λj = 〈(T∗T)ej, ej〉 = 〈Tej, Tej〉 = ‖Tej‖2.

This is (ii), and the lemma is proved.

In the language of frames, the next lemma will describe the impact of in-
vertible operators on the eigenvalues and eigenvectors of a frame.

LEMMA 1.9. Let S1, S2 be positive, self-adjoint, invertible operators on HN , and
let {ej}N

j=1 be the eigenbasis for S1 with corresponding eigenvalues {λj}N
j=1. Further, let

T be an invertible operator onHN satisfying S1 = T∗S2T. Then the following conditions
hold:

(i) {S1/2
2 T∗ej}N

j=1 is an orthogonal set.

(ii) ‖S1/2
2 T∗ej‖2 = λj for all j = 1, . . . , N.

Proof. We have

〈S1/2
2 T∗ej, S1/2

2 T∗ek〉 = 〈TS2T∗ej, ek〉 = 〈S1ej, ek〉 =
{

0 if j 6= k,
λj if j = k.

The claims follow immediately.

The property which is a crucial ingredient of Lemma 1.9 will be fundamen-
tal for the following characterization results. Hence we manifest a formal nota-
tion of it.

DEFINITION 1.10. Let E = {ej}N
j=1 and G = {gj}N

j=1 be orthonormal bases

forHN , and let Λ = {λj}N
j=1 and Γ = {γj}N

j=1 be sequences of positive constants.
An operator T : HN → HN is called admissible for (E ,G, Λ, Γ), if there exists some
orthonormal basis {hj}N

j=1 forHN satisfying

T∗ej =
N

∑
k=1

√
λj

γk
〈hj, gk〉gk, for all j = 1, . . . , N.

This notion now allows us to formulate the main classification theorem an-
swering Question 1.6 in a constructive manner.

THEOREM 1.11. Let S1 and S2 be positive, self-adjoint, invertible operators on a
Hilbert space HN , and let E = {ej}N

j=1 and G = {gj}N
j=1 be eigenvectors with eigen-

values Λ = {λj}N
j=1 and Γ = {γj}N

j=1 for S1 and S2, respectively. Further, let T be an
invertible operator onHN . Then the following conditions are equivalent:
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(i) S1 = TS2T∗.
(ii) T is an admissible operator for (E ,G, Λ, Γ).

Proof. (i)⇒ (ii) By Lemma 1.9, {S1/2
2 T∗ej}N

j=1 is an orthogonal set satisfying

‖S1/2
2 T∗ej‖2 = λj for all j = 1, 2, . . . , N. Hence,

{hj}N
j=1 :=

{ 1√
λj

S1/2
2 T∗ej

}N

j=1

is an orthonormal set. Thus, for each j = 1, 2, . . . , N,

1√
λj

S1/2
2 T∗ej =

N

∑
k=1
〈hj, gk〉gk.

This implies

T∗ej =
√

λjS
−1/2
2

N

∑
j=1
〈hj, gk〉gk =

N

∑
k=1

√
λj

γk
〈hj, gk〉gk.

Hence, we proved that T is admissible for (E ,G, Λ, Γ).
(ii) ⇒ (i) Now assume that T is admissible for (E ,G, Λ, Γ), which implies

that

S1/2
2 T∗ej = S1/2

2

N

∑
k=1

√
λj

γk
〈hj, gk〉gj =

N

∑
k=1

√
γk

√
λj

γk
〈hj, gk〉gk =

√
λjhj.

Hence, {S1/2
2 T∗ej}N

j=1 is an orthogonal set, and, for all j = 1, . . . , N, we have

‖S1/2
2 T∗ej‖2 = λj.

By Lemma 1.8, we obtain

(S1/2
2 T∗)∗(S1/2

2 T∗)ej = λjej for all j = 1, 2 . . . , N,

which yields

S1 = (S1/2
2 T∗)∗(S1/2

2 T∗) = (TS1/2
2 )S1/2

2 T∗ = TS2T∗,

i.e., condition (i).

1.4. BACK TO THE FRAMES SETTING. We now go back to the frame setting, and
state Theorem 1.11 in this language, thereby answering our main question con-
cerning the characterization of invertible operators generating frames with a pre-
scribed frame operator.

THEOREM 1.12. Let { fi}M
i=1 and {gi}M

i=1 be frames for a Hilbert space HN with
frame operators S1 and S2 having eigenvectors E = {ej}N

j=1 and G = {gj}N
j=1 with

eigenvalues Λ = {λj}N
j=1 and Γ = {γj}N

j=1 for S1 and S2, respectively. Further, let T be
an invertible operator onHN . Then the following conditions are equivalent:

(i) S1 = TS2T∗.



152 JAMESON CAHILL, PETER G. CASAZZA AND GITTA KUTYNIOK

(ii) T is an admissible operator for (E ,G, Λ, Γ).

We finally return to Question 1.1, and provide a constructive characteriza-
tion of those invertible operators which leave the frame operator invariant.

THEOREM 1.13. Let { fi}M
i=1 be a frame for a Hilbert space HN with frame op-

erator S having eigenvectors E = {ej}N
j=1 with respective eigenvalues Λ = {λj}N

j=1.
Further, let T be an invertible operator on HN . Then the following conditions are equiv-
alent:

(i) S = TST∗.
(ii) There exists some orthonormal basis {hj}N

j=1 forHN such that

T∗ej =
N

∑
k=1

√
λj

λk
〈hj, ek〉ek.

We remark that this theorem provides a way to index frames which possess
the same frame operator, solving a problem which has been debated in frame
theory since several years, see, for instance, [3].

2. PRESCRIBED NORMS

We now focus on the second question, namely to derive a classification of
all invertible operators which map frames to frames such that the norms of its
frame elements are a fixed multiple of the norms of the original frame vectors.
Formalizing, we face the following problem:

QUESTION 2.1. Given a constant c > 0 and a frame { fi}M
i=1 for HN , can we

classify the invertible operators T : HN → HN which satisfy ‖T fi‖ = c‖ fi‖ for all
i = 1, 2, . . . , M?

2.1. MAIN CLASSIFICATION RESULT. We first observe that without loss of gener-
ality we can assume that each frame vector is non-zero, since for a zero vector
fi, say, the condition ‖T fi‖ = c‖ fi‖ is trivially fulfilled. Furthermore, note that a
solution to Question 2.1 for a particular c > 0 immediately implies a solution for
any c > 0 just by multiplying the operators by an appropriate constant.

We start with a very simple lemma.

LEMMA 2.2. Let T be an invertible operator on H, and let f ∈ H. Then the
following conditions are equivalent:

(i) ‖T f ‖2 = c2‖ f ‖2.
(ii) 〈(T∗T − c2Id) f , f 〉 = 0.

Proof. We have

〈(T∗T − c2Id) f , f 〉 = 〈T∗T f , f 〉 − 〈c2 f , f 〉 = ‖T f ‖2 − ‖c f ‖2 = ‖T f ‖2 − c2‖ f ‖2.

The result is immediate from here.
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Another angle of thought is provided by the following remark.

REMARK 2.3. Let T1 and T2 be operators satisfying T∗1 T1 = c2T∗2 T2. Then,
for any frame { fi}M

i=1,

(2.1) ‖T1 fi‖2 = 〈T∗1 T1 fi, fi〉 = 〈c2T∗2 T2 fi, fi〉 = c2‖T2 fi‖2.

The remark shows that considering the situation of operators which map
equal norm frames to equal norm frames, equation (2.1) needs to be satisfied by
the two analysis operators F1, F2, say, of the frames.

The following definition is required for our main result. It will give rise to a
special class of vectors associated to a frame and an orthonormal basis.

DEFINITION 2.4. Let F = { fi}M
i=1 be a frame forHN , and let E = {ej}N

j=1 be
an orthonormal basis forHN . Then we define

H(F , E) = span{(|〈 fi, ej〉|2)N
j=1}M

i=1 ⊂ HN .

We can now state the main result of this section, which will subsequently
solve Question 2.1 completely.

THEOREM 2.5. Let { fi}M
i=1 be a frame forHN , and let {ci}M

i=1 be positive scalars.
Further, let T be an invertible operator on HN , and let {ej}N

j=1 be the eigenvectors for
T∗T with respective eigenvalues {λj}N

j=1. Then the following conditions are equivalent:
(i) We have

c2
i ‖ fi‖2 = ‖T fi‖2 for all i = 1, 2, . . . , M.

(ii) We have〈 N

∑
j=1

(λj − c2
i )ej,

N

∑
j=1
|〈 fi, ej〉|2ej

〉
= 0 for all i = 1, 2, . . . , N.

Proof. By Lemma 2.2, (i) is equivalent to

〈(T∗T − c2
i Id) fi, fi〉 = 0 for all i = 1, 2, . . . , N.

But, for all i = 1, 2, . . . , N,

0 = 〈(T∗T − c2
i Id) fi, fi〉 =

〈 N

∑
j=1

(λj − c2
i )〈 fi, ej〉ej,

N

∑
j=1
〈 fi, ej〉ej

〉
=

N

∑
j=1

(λj − c2
i )|〈 fiej〉|2 =

〈 N

∑
j=1

(λj − c2
i )ej,

N

∑
j=1
|〈 fi, ej〉|2ej

〉
.

The result is immediate from here.

Now we can answer Question 2.1. The result follows directly from Theo-
rem 2.5. We want to caution the reader that T∗T is not the frame operator for the
frame {T fi}M

i=1. In fact, as discussed before, the frame operator for this frame is
TST∗, where S is the frame operator for { fi}M

i=1.
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THEOREM 2.6. Let F = { fi}M
i=1 be a frame for HN , and let c > 0. Further, let

T be an invertible operator onHN , and let T∗T have the orthonormal basis E = {ej}N
j=1

as eigenvectors with respective eigenvalues {λj}N
j=1. Then the following conditions are

equivalent:
(i) ‖T fi‖ = c‖ fi‖, for all i = 1, 2, . . . , M.

(ii) (λ1 − c2, λ2 − c2, . . . , λN − c2) ⊥ H(F , E).
In particular, if H(F , E) = HN , then λi = c2 for all i = 1, 2, . . . , N, and hence T is a
multiple of a unitary operator.

Given a frame { fi}M
i=1, Theorem 2.6 now provides us with a unique method

for constructing all operators T so that ‖T fi‖ = c‖ fi‖ for all i = 1, 2, . . . , M,
detailed in the following remark.

REMARK 2.7. Let F = { fi}M
i=1 be a frame for HN , and let c > 0. First, we

choose any orthonormal basis E = {ej}N
j=1 for HN , and consider H(F , E). We

distinguish two cases:

CaseH(F , E) = HN . In this case only unitary operators T can map { fi}M
i=1 to an

equal norm frame and satisfy that the operator T∗T has E as its eigenvectors.

CaseH(F , E) 6= HN . In this case, choose a vector

N

∑
j=1

ajej = (a1, a2, . . . , aN) ∈ H(F , E)⊥,

which satisfies c2 + aj > 0 for all j = 1, 2, . . . , N. Set λj := c2 + aj for all
j = 1, 2, . . . , N. Then choose any operator T on HN such that {Tej}N

j=1 forms
an orthogonal set and satisfies

‖Tej‖2 = λj for all j = 1, 2, . . . , N.

By Lemma 1.8,

T∗Tej = (c2 + aj)ej = λjej for all j = 1, 2, . . . , N.

Moreover, by our choice of {λj}N
j=1,

(λ1 − c2, λ2 − c2, . . . , λN − c2) ⊥ H(F , E).

Since

‖T fi‖2 − c2‖ fi‖2= 〈(T∗T − c2Id) fi, fi〉 =
N

∑
j=1

(λj − c2)|〈 fi, ej〉|2

=
〈 N

∑
j=1

(λj − c2)ej,
N

∑
j=1
|〈 fi, ej〉|2ej

〉
=
〈 N

∑
j=1

ajej,
N

∑
j=1
|〈 fi, ej〉|2ej

〉
=0,

it follows that ‖T fi‖2 = c2‖ fi‖2 for all i = 1, 2, . . . , M.
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2.2. GENERATING EQUAL NORM FRAMES. Now we regard Theorem 2.6 from a
different standpoint. In fact, for a given invertible operator T, Theorem 2.6 iden-
tifies all unit norm frames which T maps to equal norm frames. Namely, this is
the family of frames for which there exists some c > 0 such that

(λ1 − c2, λ2 − c2, . . . , λN − c2) ⊥ H(F , E).

Based on this observation, we derive several rather surprising corollaries
from Theorem 2.6.

COROLLARY 2.8. Let c > 0, let { fi}M
i=1 be a unit norm frame for HN , and let T

be an invertible operator on HN such that T∗T has eigenvectors {ej}N
j=1 with respective

eigenvalues {λj}N
j=1. Then the following are true:

(i) The operator T maps { fi}M
i=1 to an equal norm frame with ‖T fi‖= c if and only if

(λ1 − c2, λ2 − c2, . . . , λN − c2) ⊥ H(F , E).

(ii) The operator T maps { fi}M
i=1 to an equal norm Parseval frame if and only if( 1√

λ1
− N

M
,

1√
λ2
− N

M
, . . . ,

1√
λN
− N

M

)
⊥ H(F , E).

Proof. (i) This follows directly from Theorem 2.6.
(ii) The operator T maps { fi}M

i=1 to an equal norm Parseval frame if and
only if T = S−1/2 (S the frame operator of the frame) and {S−1/2 fi}M

i=1 is equal
norm with ‖S−1/2 fi‖2 = N/M for all i = 1, 2, . . . , N. The claim then follows from
Theorem 2.6.

COROLLARY 2.9. Let F = { fi}N
i=1 be a unit norm frame for HN (i.e. a unit

norm linearly independent set). Then for every non-unitary operator T on HN which
maps { fi}N

i=1 to an equal norm spanning set, we have

H(F , E) 6= HN .

Proof. Towards a contradiction, assume that H(F , E) = HN . Then, by
Corollary 2.8(ii), { fi}M

i=1 is not equivalent to an equal norm Parseval frame, a
contradiction.

COROLLARY 2.10. Every invertible operator T on a Hilbert spaceHN maps some
equal norm Parseval frame to an equal norm frame.

Proof. Let T be an invertible operator onHN , and let {ej}N
j=1 be an eigenba-

sis for T∗T with respective eigenvalues {λj}N
j=1. Set

c2 =
1
N

N

∑
j=1

λj and f =
N

∑
i=1

ej.
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Then

〈T∗T − c2Id f , f 〉 =
N

∑
j=1

(λj − c2) · 1 = 0,

which means

(1, 1, . . . , 1) ⊥ (λ1 − c2, λ2 − c2, . . . , λN − c2).

Next, consider the frame

{ fi}2N

i=1 =
{ N

∑
j=1

ε jej

}
{ε j}∈{1,−1}N

.

For every g =
N
∑

j=1
ajej, we obtain

2N

∑
i=1
|〈g, fi〉|2 =

2N

∑
i=1

∣∣∣ N

∑
j=1

ε jaj

∣∣∣2 = 2N
N

∑
j=1
|aj|2 = 2N‖g‖2.

Thus
{

1√
2N fi

}2N

i=1
forms an equal norm Parseval frame, and we have H(F , E) =

span{(1, 1, . . . , 1)}. By Theorem 2.6, this implies that {T fi}2N

i=1 is an equal norm
frame with ‖T fi‖2 = c2 for all i = 1, 2, . . . , 2N .

We now provide an example of an equal norm Parseval frame and a non-
unitary operator T, which maps it to a unit norm frame.

EXAMPLE 2.11. Let f1, . . . , f4 be the vectors in R3 defined by

f1 =
1
2
(1, 1, 1), f2 =

1
2
(−1, 1, 1), f 3 =

1
2
(1,−1, 1), f4 =

1
2
(1, 1,−1).

{ fi}4
i=1 is an equal norm Parseval frame for R3. If we let {ej}3

j=1 denote the stan-
dard unit vector basis, then

H(F , E) = span{(1, 1, 1)}.

We next choose a vector g such that g ⊥ H(F , E) by g = (1,−1, 0). Let now, for
instance, c = 2, and set

λ1 = 1 + c2 = 5, λ2 = −1 + c2 = 3, λ3 = 0 + c2 = 4.

Then define an operator T such that {Tej}3
j=1 is an orthogonal set and ‖Tej‖ = λj.

One example of such an operator is defined by

T(1, 0, 0) = (5, 0, 0), T(0, 1, 0) =
(

0,

√
3
2

,

√
3
2

)
, T(0, 0, 1) = (0,

√
2,−
√

2).
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Thus

T f1 =
1
2

(√
5,

√
3
2
+
√

2,

√
3
2
−
√

2
)

, T f2 =
1
2

(
−
√

5,

√
3
2
+
√

2,

√
3
2
−
√

2
)

,

T f3 =
1
2

(√
5,−

√
3
2
+
√

2,

√
3
2
−
√

2
)

, T f4 =
1
2

(√
5,

√
3
2
−
√

2,

√
3
2
+
√

2
)

,

and we indeed obtain

‖T fi‖2 =
1
4
(5 + 3 + 4) = 3

as desired.

3. GENERATING NEARLY PARSEVAL FRAMES

We finally tackle the question of deriving a deep understanding of operators
which map a frame to a nearly Parseval frame.

3.1. PARSEVAL FRAMES AND DETERMINANTS. As a first step, we will draw an in-
teresting connection between Parseval frames and determinants. We remark that
this result is closely related to results by Cahill [4], see also [6], who pioneered
the utilization of the Plücker embedding from algebraic geometry for characteri-
zation results in frame theory.

We start by pointing out some important, but simple consequences of the
well known arithmetic-geometric mean inequality, which we first state for refer-
ence.

THEOREM 3.1 (Arithmetic-geometric mean inequality). Let {xj}N
j=1 be a se-

quence of positive real numbers, then( N

∏
j=1

xj

)1/n
6

1
N

N

∑
j=1

xj

with equality if and only if xj = xk for every j, k = 1, . . . , N.

In terms of positive self-adjoint matrices, this results reads as follows.

COROLLARY 3.2. Let S be a positive, self-adjoint N×N matrix such that Tr(S) =
N and det(S) = 1, then S is the identity matrix.

We now use this result to draw a connection between Parseval frames and
determinants, namely of the matrix representation of the associated frame oper-
ator.

THEOREM 3.3. Let { fi}M
i=1 be a frame forHN with frame operator S. If det(S) >

1 and
M
∑

i=1
‖ fi‖2 = N, then { fi}M

i=1 constitutes a Parseval frame.
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Proof. Set

{gi}M
i=1 =

{ fi
det(S)

}M

i=1
.

Now, let {λj}N
j=1 denote the eigenvalues of S, and let the eigenvalues of the frame

operator for {gi}M
i=1 be denoted by {λ′j}N

j=1. Then we obtain

N

∑
j=1

λ′j =
∑N

j=1 λj

det(S)2 =
N

det(S)2 ,

which implies
∑N

j=1 λ′j
N

=
1

det(S)2 6 1 =
N

∏
j=1

λ′j.

However, this contradicts the arithmetic-geometric mean inequality unless λ′j = 1

for all j = 1, 2, . . . N, i.e., unless { fi}M
i=1 constitutes a Parseval frame.

3.2. CHARACTERIZATION OF UNITARY OPERATORS. We will next provide a clas-
sification of unitary operators as those operators of determinant one which map
some Parseval frame to a set of vectors with the same norms of the frame vectors.

THEOREM 3.4. Let T be an operator on HN . Then the following conditions are
equivalent:

(i) T is unitary.
(ii) |det(T)| = 1, and there exists some Parseval frame { fi}M

i=1 for HN such that
‖ fi‖ = ‖T fi‖ for all i = 1, 2, . . . , M.

(iii) |det(T)| = 1, and there exists some Parseval frame { fi}M
i=1 for HN such that

M
∑

i=1
‖T fi‖2 = N.

(iv) |det(T)| = 1, and there exists some frame { fi}M
i=1 for HN such that

M
∑

i=1
‖ fi‖2

= N and {T fi}M
i=1 is a Parseval frame forHN .

Proof. (i)⇒ (ii)⇒ (iii) are clear.
(iii)⇒ (i) By Theorem 1.2, the frame operator of {T fi}M

i=1 equals TT∗, since
{ fi} is a Parseval frame. Now, let λ1, . . . , λN denote the eigenvalues of TT∗. Then,
it follows that

N

∑
j=1

λj =
M

∑
i=1
‖T fi‖2 =

M

∑
i=1
‖ fi‖2 = N,

where the last equality follows from the fact that { fi}M
i=1 is a Parseval frame. On

the other hand, we have
N

∏
j=1

λj = det(TT∗) = |det(T)|2 = 1.
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Hence, we have equality in the arithmetic-geometric mean inequality. Thus, all
λj’s coincide, which is only possible provided that λj = 1 for every j = 1, . . . , N.
This implies TT∗ = Id.

(iv)⇔ (i) This follows by applying the previous argument to T−1.

One might wonder whether the assumption in Theorem 3.4 that either
{ fi}M

i=1 or {T fi}M
i=1 is a Parseval frame is indeed necessary. This is in fact the

case, even for a linearly independent set. In the following we will construct such
an illuminating example in R4 by using the results of the previous section.

EXAMPLE 3.5. In R4, let {ej}4
j=1 denote the standard unit orthonormal basis,

and define

f1 = (1, 1, 2, 2), f2 = (1,−1, 2, 2), f3 = (1, 1,−2, 2), f4 = (1, 1, 2,−2).

An easy computation shows that

H(F , E) = span{(1, 1, 2, 2)}.

Now, let

a1 = 1, a2 = 1, a3 = −1
2

, a4 = −1
2

,

and

λ1 = 1 + a1 = 2, λ2 = 1 + a2 = 2, λ3 = 1 + a3 = −1
2

, λ4 = 1 + a4 = −1
2

.

This choice ensures that, for every i = 1, 2, . . . , 4,〈 4

∑
j=1

(λj − 1)ej,
4

∑
j=1
|〈 fi, ej〉|2ej

〉
= 0.

By Remark 2.7, if we choose any — in particular, a non-unitary — operator T on
R4 such that {Tej}4

j=1 an orthogonal set with ‖Tej‖2 = λi for j = 1, 2, 3, 4, then

‖T fi‖ = ‖ fi‖ for all i = 1, 2, . . . , 4 and det T =
4

∏
j=1

λj = 1.

3.3. EXTENSION OF THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY. We now
proceed to analyze when an invertible operator can map an equal norm frame
to a nearly Parseval frame. For the next proposition, we first need the following
special case of a result from [17].

THEOREM 3.6 ([17]). Let N > 2, and let xj > 0 for all j = 1, 2, . . . , N. Then

1
N(N − 1) ∑

16j<k6N
(x1/2

j − x1/2
k )2 6

∑N
j=1 xj

N
−
( N

∏
j=1

xj

)1/N
.

The following quantitative version of the arithmetic-geometric mean in-
equality will be crucial for our main result in this section.
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THEOREM 3.7. Let N > 2, and let 0 6 xj 6 N for all j = 1, 2, . . . , N. If

∑N
j=1 xj

N
−
( N

∏
j=1

xj

)1/N
< ε,

then there exists a function f : R+ → R+ with

|xj − xk| 6 f (ε) for all j, k = 1, 2, . . . , N

and
1− f (ε) 6 xj 6 1 + f (ε) for all j = 1, 2, . . . , N.

Moreover, f is bounded by
f (ε) 6 2ε1/2N3/2.

Proof. By Theorem 3.6,

1
N(N − 1) ∑

16j<k6N
(x1/2

j − x1/2
k )2 6

∑N
j=1 xj

N
−
( N

∏
j=1

xj

)1/N
< ε.

Therefore, for all 1 6 j < k 6 N,

|x1/2
j − x1/2

k |
2 6 ∑

16 j̃<k̃6N

(x1/2
j̃
− x1/2

k̃
)2 6 N(N − 1)ε.

Since xj 6 N, it follows that x1/2
j 6 N1/2 for all j = 1, 2, . . . , N. Thus,

|xj − xk|2 = |x1/2
j − x1/2

k |
2 |x1/2

j + x1/2
k |

2 6 N(N − 1)ε24N 6 4N3ε,

which implies
|xj − xk| 6 2N3/2ε1/2.

Further, for any 1 6 j 6 N, we obtain

xj =
∑N

k=1 xk + xj − xk

N
6

∑N
k=1 xk

N
+

∑N
k=1 |xj − xk|

N
6 1 +

N2N3/2ε1/2

N
= 1 + 2N3/2ε1/2.

The inequality xj > 1− 2N3/2ε1/2 can be similarly proved.

The bound on f in Theorem 3.7 is certainly not optimal. We believe that the
optimal bound is of the order of εN; our intuition is supported by the following
example.

EXAMPLE 3.8. Fix K, N and let

x1 = K, x2 =
1
K

, and xj = 1 for all j = 3, 4, . . . , N.

Then
N
∏
j=1

xj = 1. Also, since KN > N, we can conclude that

∑N
j=1 xj

N
=

K
N

+
1

KN
+ 1− 2

N
6 1 +

K
N
− 1

N
= 1 + ε,
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where ε = (K− 1)/N. For N large, ε is arbitrarily small. Moreover, λ1 = K ≈ εN,
which implies

f (ε) > εN.

3.4. MAIN RESULTS. We now head towards our main results. The next proposi-
tion gives a first estimate of how close an equal norm frame is to being Parseval
in terms of the determinant of the frame operator.

PROPOSITION 3.9. Let { fi}M
i=1 be a frame for HN with frame operator S satisfy-

ing ‖ fi‖2 = N/M for all i = 1, . . . , M and (1− ε)N 6 |det(S)|. Then

(1− f (ε))Id 6 S 6 (1 + f (ε))Id,

where
f (ε) 6 2ε1/2N3/2.

Proof. Let {λj}N
j=1 denote the eigenvalues of S. By hypothesis,

(1− ε)N 6 |det(S)| =
N

∏
j=1

λj,

which implies

(3.1) 1− ε 6
( N

∏
j=1

λj

)1/N
.

On the other hand,

(3.2)
∑N

j=1 λj

N
=

∑M
i=1 ‖ fi‖2

N
=

∑M
i=1 N/M

N
= 1.

This implies λj 6 N for all j = 1, 2, . . . , N, and combining (3.1) and (3.2), we
obtain

∑N
j=1 λj

N
−
( N

∏
j=1

λj

)1/N
< ε.

The result now follows from Theorem 3.7.

Our first main theorem, which we will state in the sequel, now provides
sufficient conditions for when there exists a mapping of an arbitrary frame to an
equal norm nearly Parseval frame. It also in a certain sense weakens the assump-
tion of Proposition 3.9.

THEOREM 3.10. Let { fi}M
i=1 be a frame for HN with (1− ε)N 6 |det(S)|. Fur-

ther, let T be an operator with |det(T)| > 1 and ‖T fi‖2 = N/M for all i = 1, 2, . . . , M.
Also, let S1 be the frame operator of {T fi}M

i=1 and denote its eigenvalues by {µj}N
j=1.

Then

(1− ε)
∑N

j=1 µj

N
6
( N

∏
j=1

µj

)1/N
6

∑N
j=1 µj

N
.
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Moreover,
(1− f (ε))Id 6 S1 6 (1 + f (ε))Id.

Proof. By hypothesis,

|det(TST∗)| = |det(T)|2|det(S)| > |det(S)| > (1− ε)N .

Thus

(3.3)
N

∏
j=1

µj > (1− ε)N , hence 1− ε 6
( N

∏
j=1

µj

)1/N
.

Since ‖T fi‖2 = M/N for all i = 1, 2, . . . , M,

(3.4)
N

∑
j=1

µj = N, hence
∑N

j=1 µj

N
= 1.

By (3.3) and (3.4), it follows that

(1− ε)
∑N

j=1 µj

N
= 1− ε 6

( N

∏
j=1

µj

)1/N
6

∑N
j=1 µj

N
= 1.

The moreover part is immediate by Theorem 3.7.

Our final main result provides a generalization of Theorem 3.10, in the sense
that it gives a bound on TT∗ in the situation that T maps an equal norm frame to
an equal norm frame.

THEOREM 3.11. Let { fi}M
i=1 be a frame forHN , and let T be an invertible operator

onHN with |det(T)| > 1 and satisfying:
(i) ‖ fi‖2 = ‖T fi‖2 = N/M, and

(ii) (1− ε)N 6 |det(S)|.
Then

1− f (ε)
1 + f (ε)

Id 6 TT∗ 6
1 + f (ε)
1− f (ε)

Id.

Proof. Since (1− ε)N 6 |det(S)| 6 |det(TST∗)|, applying Proposition 3.9
to both { fi}M

i=1 and {T fi}M
i=1 yields

(3.5) (1− f (ε))Id 6 S 6 (1 + f (ε))Id

and

(3.6) (1− f (ε))Id 6 TST∗ 6 (1 + f (ε))Id.

By applying T from the left and T∗ from the right to (3.5), we obtain

(1− f (ε))TT∗ 6 T(1− f (ε))T∗ 6 TST∗.

Combining with (3.6), we can conclude that

(1− f (ε))TT∗ 6 (1 + f (ε))Id,
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which implies

TT∗ 6
1 + f (ε)
1− f (ε)

Id.

Similar arguments lead to the other inequality.
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