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ABSTRACT. In this note we prove a Birkhoff type transitivity theorem for
continuous maps acting on non-separable completely metrizable spaces and
we give some applications for dynamics of bounded linear operators acting
on complex Fréchet spaces. Among them we show that any positive power
and any unimodular multiple of a topologically transitive linear operator is
topologically transitive, generalizing similar results of S.I. Ansari and F. León-
Saavedra–V. Müller for hypercyclic operators.
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1. INTRODUCTION AND BASIC NOTIONS

The scope of this paper is to provide a tool for studying topologically tran-
sitive operators acting on non-separable Fréchet spaces by using techniques and
known results from the theory of hypercyclic operators. This tool is the follow-
ing theorem in which we show that each vector in the underlying space X is
contained in "many" closed invariant subspaces such that the restriction of the
operator to each one of them is hypercyclic:

THEOREM (Theorem 3.1). Let T : X → X be a topologically transitive operator
acting on a completely metrizable vector space X and let y be a vector of X. There exists
a dense Gδ subset D of X such that for each z ∈ D there exists a T-invariant (separable)
closed subspace Yz of X with y, z ∈ Yz such that the restriction of T to Yz, T : Yz → Yz,
is hypercyclic.

The previous theorem is derived from a Birkhoff type transitivity theorem
for topologically transitive continuous selfmaps of a (not necessarily separable)
completely metrizable space. More precisely we show the following:
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THEOREM (Theorem 2.4). Let X be a completely metrizable space which has no
isolated points. Let T : X → X be a continuous map acting on X and let x ∈ X. If
T is topologically transitive there exists a dense Gδ subset D of X with the following
properties:

(i) Every point z ∈ D is recurrent, that is there exists a strictly increasing sequence
of positive integers {kn} such that Tkn z→ z.

(ii) The point x belongs to the orbit closure O(z, T) of z for every z ∈ D; in particular
x belongs to the limit set L(z) of z for every z ∈ D, i.e. for each z ∈ D there exists a
strictly increasing sequence of positive integers {mn} such that Tmn z→ x.

This result comes by "localizing" Birkhoff’s transitivity theorem; see Theo-
rem 2.2 and Corollary 2.3. This local behavior was hidden in the proof of Birk-
hoff’s transitivity theorem behind the use of a countable base of X. Recall that a
continuous map T : X → X acting on a Hausdorff topological space X is called
topologically transitive if for every pair of non-empty open subsets U, V of X there
exists a non-negative integer n such that TnU ∩ V 6= ∅. In case X is completely
metrizable and separable, Birkhoff’s transitivity theorem [7] states that topologi-
cal transitivity is equivalent to hypercyclicity, i.e. there exists a point x in X which
has a dense orbit. The orbit of x ∈ X under T is the set O(x, T) := {Tnx : n ∈
N∪ {0}}. Hypercyclic operators on separable Fréchet spaces have been a subject
of extensive study in the last decades. Very good references are the recent books
[4] and [11].

The applications we give in Section 3 indicate the possibility to use the pre-
vious mentioned results to work on non-separable Fréchet spaces by applying
technics and known results from the theory of hypercyclic operators. Namely,
in Section 3, we show the following theorem which generalizes similar results of
S.I. Ansari [1] and F. León-Saavedra–V. Müller [12] for the case of a hypercyclic
operator:

THEOREM (Theorem 3.2). Let T : X → X be a topologically transitive operator
acting on a complex Fréchet space X and let x ∈ X. Then

(i) The operator Tp : X → X is topologically transitive for every positive integer p
and there exists a dense subset D of X with the following properties:

(a) Every vector z ∈ D is a recurrent vector for the operator Tp.
(b) The vector x belongs to the limit set LTp(z) for every positive integer p and

for every z ∈ D.
(ii) If λ is a complex number of modulus 1 the operator λ T : X → X is topologically

transitive and there exists a dense subset D of X with the following properties:
(a) Every vector z ∈ D is a recurrent vector for the operator λ T.
(b) The vector x belongs to the limit set Lλ T(z) for every |λ| = 1 and for every

z ∈ D.

We finish Section 3 with a characterization, similar to that of H.N. Salas in
[14], of topological transitivity of a backward unilateral weighted shift on l2(H),
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where H is a (not necessarily separable) Hilbert space, in terms of its weight se-
quence; see Proposition 3.4.

Finally, in Section 4 we show that every continuous almost topologically
transitive map acting on a completely metrizable space which has no isolated
points is topologically transitive; see Proposition 4.3. Recall that a continuous
map T acting on a Hausdorff topological space X is called almost topologically
transitive if for every pair of non-empty open sets U, V ⊂ X there exists a non-
negative integer n such that TnU ∩V 6= ∅ or TnV ∩U 6= ∅.

2. A BIRKHOFF TYPE TRANSITIVITY THEOREM FOR NON-SEPARABLE COMPLETELY
METRIZABLE SPACES

Birkhoff’s transitivity theorem can be reformulated using some very useful
concepts from the theories of dynamical systems and topological transformation
groups, namely the concept of the limit set of a point x ∈ X:

L(x) = {y ∈ X : there exists a strictly increasing sequence

of positive integers {kn} such that Tkn x → y}

that describes the limit behavior of the orbit O(x, T) and the generalized (prolon-
gational) limit set of x ∈ X that describes the asymptotic behavior of the orbits of
nearby points to x ∈ X:

J(x)={y∈X : there exist a strictly increasing sequence of positive

integers {kn} and a sequence {xn}⊂X such that xn→ x and Tkn xn→y}.

The limit and the extended limit sets have their roots in the stability theory
of dynamical systems in which they are mainly used to describe the Lyapunov
and the asymptotic stability of an equilibrium point. They are T-invariant and
closed subsets of X, see e.g. Proposition 2.6 of [9]. In view of the concept of limit
sets, a bounded linear operator T : X → X acting on a separable Fréchet space
X is hypercyclic if and only if L(x) = X for some non-zero vector x ∈ X. And
Birkhoff’s transitivity theorem says that T is hypercyclic if and only if J(x) = X
for every x ∈ X.

REMARK 2.1. If X is a completely metrizable space which has no isolated
points (hence X is uncountable), the orbit of a point x ∈ X (which is a countable
set) is dense in X if and only if L(x) = X. In a similar way, topological transitivity,
i.e. J(x) ∪O(x, T) = X for every x ∈ X, means that J(x) = X for every x ∈ X
since J(x) is a closed subset of X. In general, if X is a completely metrizable space,
one can use instead of the limit set L(x) the orbit closure O(x, T) = O(x, T)∪ L(x)
and instead of the generalized limit set J(x) the union O(x, T)∪ J(x) =: D(x) (the
concept of the D-set comes also from the stability theory of dynamical systems
and it is called the prolongation of the orbit O(x, T), see e.g. [6]).
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The following theorem, which can be seen as a "localized" Birkhoff’s tran-
sitivity theorem, plays a key role in our approach to topological transitivity. The
symbol B(x, ε) stands for the open ball centered at x with radius ε > 0. Recall
that a point x ∈ X is called recurrent if x ∈ L(x).

THEOREM 2.2. Let X be a completely metrizable space and let T : X → X be
a continuous map acting on X. Assume that there are points x, y ∈ X and a positive
number ε > 0 such that x ∈ J(w) for every w ∈ B(y, ε). Then

(i) there is a point z ∈ B(y, ε) such that x ∈ L(z);
(ii) if, moreover, every point w ∈ B(y, ε) is non-wandering, i.e. w ∈ J(w), there is a

recurrent point z ∈ B(y, ε) such that x ∈ L(z).

Proof. We give only the proof of claim (ii) since the proof of claim (i) is sim-
ilar. Since x ∈ J(y) there exist a point y1 ∈ B(y, ε), a positive integer k1 and
an open ball B(y1, ε1) ⊂ B(y, ε), with ε1 < 1 such that Tk1 B(y1, ε1) ⊂ B(x, 1).
And since y1 ∈ J(y1) there exist a point w1 ∈ B(y1, ε1), an open ball B(w1, r1) ⊂
B(y1, ε1), for some r1 > 0, and a positive integer m1 such that Tm1 B(w1, r1) ⊂
B(y1, ε1). Note that x ∈ J(w1) since x ∈ J(w) for every w ∈ B(y, ε). Thus,
there exist a point y2 ∈ B(w1, r1), a positive integer k2 > k1 and an open ball
B(y2, ε2) ⊂ B(w1, r1) with ε2 < 1/2 such that Tk2 B(y2, ε2) ⊂ B(x, 1/2). Now
we can proceed as before. Since y2 ∈ J(y2) there exist a point w2 ∈ B(y2, ε2), an
open ball B(w2, r2) ⊂ B(y2, ε2), for some r2 > 0, and a positive integer m2 > m1
such that Tm2 B(w2, r2) ⊂ B(y2, ε2). Proceeding by induction we can find two
sequences of points {yn} and {wn}, two strictly increasing sequences of positive
integers {kn} and {mn} and two sequences of positive numbers rn 6 εn < 1/2n

with the following properties:

(a) B(yn+1, εn+1) ⊂ B(wn, rn) ⊂ B(yn, εn),
(b) Tkn+1 B(yn, εn) ⊂ B(x, 1/(n + 1)) and
(c) Tmn B(wn, rn) ⊂ B(yn, εn),

for every n ∈ N. Since X is a complete metric space and rn 6 εn < 1/2n then⋂
n

B(yn, εn) =
⋂
n

B(wn, rn) = {z}, for some z ∈ X.

Therefore, Tkn z→ x by property (b) and Tmn z→ z by properties (a) and (c).

COROLLARY 2.3. Let (X, d) be a complete metric space with metric d and let
T : X → X be a continuous map acting on X. Assume that there are points x, y ∈ X
and a positive number ε > 0 such that x ∈ J(w) for every w ∈ B(y, ε). Then

(i) There is a dense Gδ subset D of B(y, ε) such that x ∈ L(z) for every z ∈ D.
(ii) If, moreover, every point in B(y, ε) is non-wandering, i.e. w ∈ J(w), there is a

dense Gδ subset D of B(y, ε) such that x ∈ L(z) and z is recurrent, for every z ∈ D.

Proof. By a diagonal procedure, see Lemma 2.4 of [8], x ∈ J(w) for every
w ∈ B(y, ε) since x ∈ J(w) for every w ∈ B(y, ε). Moreover, every point of
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the closure of B(y, ε) is non-wandering. We do that in order to apply the Baire
category theorem and Theorem 2.2 for the complete metric space B(y, ε). Now,
in (i), let D := {z ∈ B(y, ε) such that x ∈ L(z)}. Then D can be written as a
countable intersection of open and dense subset of B(y, ε) in the following way:

D =
⋂

s,n∈N

⋃
m>n

T−mB(x, 1
s ) ∩ B(y, ε).

Similarly, in (ii) let D := {z ∈ B(y, ε) such that x ∈ L(z) and z ∈ L(z)}. Then

D =
⋂

s,n∈N

( ⋃
m>n

T−mB(x, 1
s ) ∩

⋃
l>n

{
w ∈ X : d(Tlw, w) <

1
s

})
∩ B(y, ε).

Hence, in both cases (i) and (ii), the set D is a dense Gδ subset of B(y, ε).

The following two results are immediate corollaries of Theorem 2.2. They
can also be found in Satz 1.2.2 of [10] and in a more general form in Theorem 26
of [3]. We are grateful to K.-G. Grosse-Erdmann for pointing out this to us.

THEOREM 2.4 (A Birkhoff type transitivity theorem for non-separable com-
pletely metrizable spaces). Let X be a completely metrizable space which has no iso-
lated points. Let T : X → X be a continuous map acting on X and let x ∈ X. If
T is topologically transitive there exists a dense Gδ subset D of X with the following
properties:

(i) Every point z ∈ D is recurrent.
(ii) The point x belongs to the limit set L(z) for every z ∈ D.

COROLLARY 2.5. Let X be a completely metrizable space which has no isolated
points. Let T : X → X be a continuous map acting on X and let A be a countable
subset of X. If T is topologically transitive there exists a dense Gδ subset D of X with the
following properties:

(i) Every point z ∈ D is recurrent.
(ii) The closure A of A is a subset of L(z) for every z ∈ D.

Note that if X is completely metrizable and separable then we can recover
the original transitivity theorem of Birkhoff by applying the previous corollary.

3. APPLICATIONS TO LINEAR DYNAMICS

In this section we will use Theorem 3.1 and known results from the theory
of hypercyclic operators to derive similar results for the non-separable case.

We quote from the Preface of [11], "... Some of the deepest, most beautiful
and most useful results from linear dynamics is Ansari’s theorem on the pow-
ers of hypercyclic operators and the León–Müller theorem on the hypercyclic-
ity of unimodular multiples of hypercyclic operators ...". More precisely, Ansari
showed in [1] that if T is a hypercyclic operator then any positive power of T is
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also a hypercyclic operator with the same set of hypercyclic vectors. And León-
Saavedra and Müller showed in [12] that if T is a hypercyclic operator and λ is
a complex number of modulus 1 then λ T is also a hypercyclic operator with the
same hypercyclic vectors. The reason that we can obtain similar results in the
more general setting of a topologically transitive operator is because each vector
in X is contained in "many" closed invariant subspaces such that the restriction
of the operator to each one of them is hypercyclic:

THEOREM 3.1. Let T : X → X be a topologically transitive operator acting on
a completely metrizable vector space X and let y be a vector of X. There exists a dense
Gδ subset D of X such that for each z ∈ D there exists a T-invariant (separable) closed
subspace Yz of X with y, z ∈ Yz such that the restriction of T to Yz, T : Yz → Yz, is
hypercyclic.

Proof. Let W0 denote the closed linear span of the orbit O(y, T), that is W0
is the closure of the subspace {P(T)y : P polynomial}. Since T is topologically
transitive then, by Corollary 2.5, there exists a dense Gδ subset D of X which
consists of recurrent vectors such that W0 ⊂ O(x, T) for each x ∈ D. Now, choose
a vector z ∈ D and set x1 := z. Thus, W0 ⊂ O(x1, T) and x1 ∈ L(x1). Let W1
be the closed linear span of the orbit O(x1, T). By the same corollary there exists
a vector x2 ∈ X such that W0 ⊂ O(x1, T) ⊂ W1 ⊂ O(x2, T) and x2 ∈ L(x2).
Proceeding by induction, there is a sequence of vectors {xn}n∈N in X such that
Wn−1 ⊂ O(xn, T) ⊂ Wn, where Wn denotes the closed linear span of the orbit
O(xn, T), and xn ∈ L(xn) for every n ∈ N. Set Yz :=

⋃+∞
n=0 Wn. Obviously, Yz

is a T-invariant, closed and separable subspace of X. Now, let us show that the
restriction of T to Yz, T : Yz → Yz, is hypercyclic. Let U, V ⊂ Yz be two non-

empty relatively open subsets of Yz. Since Yz :=
⋃+∞

n=1 O(xn, T) and O(xn, T) ⊂
O(xn+1, T) for every n ∈ N, there exist a positive integer p and some non-negative
integers k and m such that Tkxp ∈ U and Tmxp ∈ V (note that the vector xp is
common for both U and V). Since xp is a recurrent vector and V is open in Tz

we may assume that m > k. Now note that Tm−k(Tkxp) = Tmxp ∈ V. Thus,
Tm−kU ∩ V 6= ∅ and hence T : Yz → Yz is topologically transitive. Therefore,
by Birkhoff’s transitivity theorem, T : Yz → Yz is hypercyclic and since z was an
arbitrary vector of D, which is a dense Gδ subset of X, the proof is completed.

Now we are ready to show Ansari’s and León–Müller theorems for topo-
logically transitive operators:

THEOREM 3.2. Let T : X → X be a topologically transitive operator acting on a
complex Fréchet space X and let x ∈ X. Then

(i) The operator Tp : X → X is topologically transitive for every positive integer p
and there exists a dense subset D of X with the following properties:

(a) Every vector z ∈ D is a recurrent vector for the operator Tp.
(b) The vector x belongs to the limit set LTp(z) for every positive integer p and
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for every z ∈ D.
(ii) If λ is a complex number of modulus 1 the operator λ T : X → X is topologically

transitive and there exists a dense subset D of X with the following properties:
(a) Every vector z ∈ D is a recurrent vector for the operator λ T.
(b) The vector x belongs to the limit set Lλ T(z) for every |λ| = 1 and for every

z ∈ D.

Proof. Let U, V be two non-empty open subsets of X and let x ∈ U. By The-
orem 3.1 there is a vector z ∈ V and a T-invariant separable closed subspace Yz
of X with x, z ∈ Yz such that the restriction of T to Yz, T : Yz → Yz, is hypercyclic.
Hence, we can apply the original theorems of Ansari and León–Müller for the
restriction T : Yz → Yz. Thus, the operators Tp : Yz → Yz and λ T : Yz → Yz are
hypercyclic and share the same set of hypercyclic vectors with T : Yz → Yz. So
we can find a (common) hypercyclic vector w ∈ Yz for the operators Tp : Yz → Yz
and λ T : Yz → Yz such that the vectors x, z belong to the limit sets LTp(w) and
Lλ T(w) respectively. Therefore, like in the proof of Theorem 3.1, the operators
Tp : X → X and λ T : X → X are topologically transitive. In both cases (i) and
(ii), let D be the union of the sets of hypercyclic vectors of the family of operators
T : Yz → Yz for z in a dense Gδ subset of X. Thus, D is dense in X.

REMARK 3.3. Linearity of the map under consideration is essential in the
proof of Theorem 3.2. It is evident, that even for real piecewise linear maps, a
power of a topologically transitive map may not be topologically transitive; see
e.g. [2].

We finish this section with a characterization, similar to that of H.N. Salas in
[14], of topological transitivity of a backward unilateral weighted shift on l2(H),
where H is a (not necessarily separable) Hilbert space, in terms of its weight se-
quence. The motivation of this problem comes from a work of T. Bermúdez and
N.J. Kalton [5]. In this paper they showed that spaces like l∞(N) and l∞(Z) do not
support topologically transitive operators. On the other hand, following an ex-
ample suggested by J.H. Shapiro, they showed that every non-separable Hilbert
space supports a topologically transitive operator. To do that they wrote H as
l2(X) for some Hilbert space X of the same density character with H, i.e. a space
with the same least cardinality of a dense subset. Then they showed that the
operator 2B, where B is the backward unilateral shift on l2(X), is topologically
transitive. Hence, a problem that naturally arises is to give a characterization of
topological transitivity of a backward unilateral weighted shift on l2(H), where
H is a (not necessarily separable) Hilbert space, in terms of its weight sequence.

PROPOSITION 3.4. Let H be Hilbert space and let T : l2(H) → l2(H) be a
unilateral backward weighted shift with positive weight sequence (wn). The following
are equivalent:

(i) T is topologically transitive.



172 ANTONIOS MANOUSSOS

(ii) There exists a non-trivial T-invariant (separable) closed subspace Y ⊂ l2(H) on
which the restriction of T to Y, T : Y → Y, is hypercyclic.

(iii) The restriction T : Y → Y to any T-invariant (separable) closed subspace Y ⊂
l2(H) is hypercyclic.

(iv) lim sup
n→∞

(w1 · · ·wn)→ +∞.

Proof. Property (i) implies (ii) by Theorem 3.1. From Salas characterization
of hypercyclic unilateral backward shifts in [14], claim (ii) implies (iii). From the
same theorem property (iv) implies (iii) and vice versa. Finally, it is easy to verify
that claim (iii) implies (i).

4. ALMOST TOPOLOGICALLY TRANSITIVE OPERATORS ARE TOPOLOGICALLY TRANSITIVE

Among the concepts that generalize, or are closely related, to topological
transitivity is the concept of a topological semi-transitive operator; see e.g. [13]
for the case of operator algebras. Recall that an operator T : X → X acting on
a topological vector space X is called topologically semi-transitive if for every two
non-zero vectors x, y ∈ X we have that x ∈ O(y, T) or y ∈ O(x, T). There are
some disadvantages in this concept for the case of the action of a semigroup of
linear operators. One disadvantage is that topological semi-transitivity is not a
topological concept. Another disadvantage is that topological semi-transitivity is
very restrictive, since even a chaotic operator is not topologically semi-transitive
(to see that just consider two non-zero periodic vectors). A concept that looks
more attractive to generalize topological transitivity is the concept of almost topo-
logical transitivity:

DEFINITION 4.1. Let X be a Hausdorff topological space and let T : X → X
be a continuous map acting on X. We call T almost topologically transitive if for
every pair of non-empty open sets U, V ⊂ X there exists a non-negative integer
n such that TnU ∩V 6= ∅ or TnV ∩U 6= ∅. That is x ∈ D(y) := O(y, T) ∪ J(y) or
y ∈ D(x) := O(x, T) ∪ J(x) for every x, y ∈ X.

Note that if X is a completely metrizable space which has no isolated points
the orbit O(x, T) has empty interior for every x ∈ X. In this case the following
proposition shows that a continuous map T : X → X is almost topologically
transitive if x ∈ J(y) or y ∈ J(x) for every x, y ∈ X.

PROPOSITION 4.2. Let X be a completely metrizable space which has no isolated
points. A continuous map T : X → X is almost topologically transitive if x ∈ J(y) or
y ∈ J(x) for every x, y ∈ X.

Proof. We proceed by contradiction. Assume that there exists a pair of (not
necessarily distinct) vectors x, y ∈ X such that x /∈ J(y) and y /∈ J(x). Hence,
x ∈ O(y, T) or y ∈ O(x, T) since T is almost topologically transitive. Without loss
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of generality we may assume that x ∈ O(y, T). Since the orbit O(y, T) has empty
interior there is a sequence {xn}n∈N in X such that xn → x and xn /∈ O(y, T)
for every n ∈ N. Thus, the following hold: (a) xn ∈ J(y) for infinitely many
n ∈ N, so x ∈ J(y) since J(y) is a closed subset of X which is a contradiction
or (b) y ∈ D(xn) := O(xn, T) ∪ J(xn) eventually. In that case, using a diagonal
procedure similar to the one in Lemma 2.4 of [8], it follows that y ∈ D(x) :=
O(x, T) ∪ J(x). This implies that y ∈ O(x, T) since y /∈ J(x). But also x ∈ O(y, T),
hence O(x, T) = O(y, T). So, if x, y are distinct vectors then O(x, T) = O(y, T) is
a periodic orbit, thus x ∈ J(y) (and y ∈ J(x)) which is a contradiction. If x = y,
and since xn /∈ O(y, T) = O(x, T), we may assume that xn 6= x for every n ∈ N.
Hence, as we showed above for the case of two distinct points, xn ∈ J(x) for
infinitely many n ∈ N or x ∈ J(xn) eventually. In both cases, x ∈ J(x) = J(y), by
Lemma 2.4 of [8], which is again a contradiction.

The above proposition and Corollary 2.3 imply the following:

PROPOSITION 4.3. Let X be a completely metrizable space which has no isolated
points and let T : X → X be an almost topologically transitive selfmap of X. Then T is
topologically transitive.

Proof. Note that x ∈ J(x) for every x ∈ X since T is almost topologically
transitive. Now, let us show that J(x) = X for every x ∈ X. We argue by contra-
diction. Assume that J(x) 6= X for some x ∈ X. Hence, x ∈ J(y) for every y is in
the complement of J(x). Therefore, by Corollary 2.3, there exist a point y /∈ J(x)
and two strictly increasing sequences of positive integers {kn} and {mn} such
that Tkn y → x and Tmn y → y. We may assume that mn − kn → +∞. Thus,
Tmn−kn(Tkn y) = Tmn y → x and Tkn y → x, hence y ∈ J(x) which is a contradic-
tion.
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