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ABSTRACT. It is well known as a fundamental result in the theory of the clas-
sical groups that the polar decomposition of a regular matrix exists and is
uniquely determined. In this paper a generalization of the result above is
given for a bounded operator in Hilbert spaces, in particular on the unique-
ness of the polar decomposition.
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1. INTRODUCTION

Let A be a regular matrix and A∗ the adjoint matrix of A. We define |A| by√
A∗A. Then it is well known as a fundamental result in the theory of the classical

groups (cf. [2], [4], [9]) that there exists a unitary matrix U satisfying

(1.1) A = U|A|
and such a U is uniquely determined. The equation (1.1) is called the polar de-
composition of A.

On the other hand, for a bounded operator in Hilbert spaces we have well
known the existence of the polar decomposition, but as far as the authors know,
there is no description at all on the uniqueness of the polar decomposition (cf.
[3], [5], [6], [7], [8], [10], [11], [12]) except for [1]. We note that the statement in
Section 2.6.3 of [1] is wrong, as a counterexample will be given in Section 2 of the
present paper.

Our aim in the present paper is to generalize the result on the uniqueness of
the polar decomposition for a regular matrix to the result for a bounded operator
in Hilbert spaces.

Let H and K be Hilbert spaces over C with inner products (·, ·)H and (·, ·)K,
and norms ‖ · ‖H and ‖ · ‖K, respectively. We sometimes omit subscripts H and K.
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Let L(H, K) denote the space of all bounded linear operators from H into K. Let
A ∈ L(H, K) and A∗ ∈ L(K, H) its adjoint operator. We define |A| ∈ L(H, H) by√

A∗A as in Chapter VI of [10]. Let U ∈ L(H, K) be such that

(1.2) ‖UΨ‖K = ‖Ψ‖H

for all Ψ ∈ (ker U)⊥, where ker U denotes the kernel of U and (ker U)⊥ the or-
thogonal complement of ker U. Such U is called a partially isometric operator.

Let A ∈ L(H, K). Then, A = U|A| with a partially isometric operator U is
called a polar decomposition of A. The following theorem is well known.

THEOREM 1.1. Let A ∈ L(H, K). Then there is a partially isometric operator
U ∈ L(H, K) such that A = U|A| holds. In particular, U satisfying

(1.3) ker U = ker A

exists and is uniquely determined.

Let us write the partially isometric operator U satisfying A = U|A| and (1.3)
as U0 throughout the present paper.

Our aim in the present paper is to prove the following theorem.

THEOREM 1.2. Let H and K be Hilbert spaces over C and A ∈ L(H, K). Then the
polar decomposition of A is unique if and only if either ker A = {0} or R(A)⊥ = {0},
where R(A) denotes the range of A.

Theorem above is a generalization of the result for a regular matrix.
Let P be the orthogonal projection from H onto ker A. We will prove in

Proposition 2.5 of the present paper that A=U|A| is a polar decomposition of A,
if and only if there is a partially isometric operator V∈L (ker A, R(A)⊥) such that

(1.4) U = U0 + VP.

Hence, if either ker A = {0} or R(A)⊥ = {0}, we see V = 0 and so U = U0,
which shows the uniqueness of the polar decomposition. Conversely, assume
ker A 6= {0} and R(A)⊥ 6= {0}. Let Ψ0 ∈ ker A and Φ0 ∈ R(A)⊥ such that
‖Ψ0‖H = ‖Φ0‖K = 1. We can easily define the partially isometric operator V ∈
L (ker A, R(A)⊥) such that

V(aΨ0) = aΦ0, a ∈ C

and ker V = {Ψ0}⊥. Since U0 + VP 6= U0, we can see that the polar decomposi-
tion of A is not unique. Thus we have only to prove Proposition 2.5 to complete
the proof of theorem. We will prove Proposition 2.5 in the next section.

2. PROOF OF THEOREM

We first give a counterexample of the statement in Section 2.6.3 of [1] that if
ker A 6= {0}, the polar decomposition of A is not unique.
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EXAMPLE 2.1. Let A ∈ L(C2,C) defined by A = (a, 0) for a complex con-
stant a 6= 0. Then, ker A is the linear span of t(0, 1) ∈ C2, where t(0, 1) is the
transposed vector of (0, 1). So ker A 6= {0}.

We will show that the polar decomposition of A is unique. We can easily see

|A| =
(
|a| 0
0 0

)
.

Let U = (u1, u2) ∈ L(C2,C) be a partially isometric operator such that A = U|A|.
From A = U|A| we have

U = (a/|a|, u2).

So we can easily see that ker U is the linear span of t(−|a|u2/a, 1) and that (ker U)⊥

is the linear span of t(1, |a|u2/a), where u2 is the complex conjugate of u2 ∈ C.
Let w ∈ (ker U)⊥. Then tw = βt(1, |a|u2/a) for a β ∈ C. We can easily see

‖w‖2 = |β|2(1 + |u2|2), ‖Uw‖2 = |β|2(1 + |u2|2)2.

Since U is partially isometric, we have ‖Uw‖2 = ‖w‖2, which shows u2 = 0. So
U is determined uniquely as U = (a/|a|, 0).

Let H and K be Hilbert spaces over C. Let A ∈ L(H, K) and U0 the partially
isometric operator defined in Introduction. We can easily have

ker |A| = ker A, and(2.1)

H = ker |A| ⊕ R(|A|∗) = ker |A| ⊕ R(|A|) = ker A⊕ R(|A|),(2.2)

where R(|A|) denotes the closure of R(|A|).

LEMMA 2.2. Let A ∈ L(H, K) and suppose that A = U|A|, with U partially
isometric. We write

(2.3) D(U) := {Ψ ∈ H : ‖UΨ‖K = ‖Ψ‖H}.
Then we obtain

(2.4) D(U) = (ker U)⊥

and R(|A|) ⊂ D(U).

Proof. We can easily see (ker U)⊥ ⊂ D(U), because U is partially isometric.
Let Ψ ∈ D(U) and write

Ψ = Ψ1 + Ψ2, Ψ1 ∈ ker U, Ψ2 ∈ (ker U)⊥.

Then we have
‖Ψ‖2

H = ‖UΨ‖2
K = ‖UΨ2‖2

K = ‖Ψ2‖2
H ,

which shows Ψ1 = 0. Consequently we have Ψ ∈ (ker U)⊥ and so D(U) ⊂
(ker U)⊥. Hence we obtain (2.4).

Let Ψ ∈ H. It follows from A = U|A| that

(U|A|Ψ, U|A|Ψ)K = (AΨ, AΨ)K = (|A|Ψ, |A|Ψ)H ,
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which shows |A|Ψ ∈ D(U).

LEMMA 2.3. Let A ∈ L(H, K) and suppose that A = U|A|, with U partially
isometric. Then, there is a partially isometric operator V ∈ L(ker A, R(A)⊥) satisfy-
ing (1.4).

Proof. We see from (2.4) that D(U) is a closed vector subspace in H and so

(2.5) (UΨ1, UΨ2) = (Ψ1, Ψ2), Ψ1, Ψ2 ∈ D(U)

holds from a polarization argument.
Using (2.2) and (2.4), we set

D0 := ker A ∩ D(U) = R(|A|)⊥ ∩ D(U),(2.6)

G0 := ker A ∩ D(U)⊥ = ker A ∩ ker U.(2.7)

Then

(2.8) ker A = D0 ⊕ G0.

Let V be the restriction U � ker A of U with the domain ker A. Let Ψ ∈ ker A.
Then from (2.8) we can write

Ψ = Ψ1 + Ψ2, Ψ1 ∈ D0, Ψ2 ∈ G0.

Then we have VΨ = VΨ1 + VΨ2 = UΨ1 from (2.7). Let Φ ∈ H. The relation
|A|Φ ∈ D(U) follows from Lemma 2.2. So from (2.5) and (2.6) we have

(VΨ, AΦ)K = (UΨ1, AΦ)K = (UΨ1, U|A|Φ)K = (Ψ1, |A|Φ)H = 0,

which shows
R(V) ⊂ R(A)⊥.

Thus we could see V ∈ L(ker A, R(A)⊥).
Because of V = U � ker A we have

ker V = ker A ∩ ker U = G0

from (2.7), which shows

(2.9) (ker V)⊥ = D0 = ker A ∩ (ker U)⊥ in ker A

from (2.4), (2.6) and (2.8). Hence, since U is partially isometric, so is V.
Let Ψ ∈ H and write

Ψ = Ψ1 + Ψ2, Ψ1 ∈ ker A, Ψ2 ∈ R(|A|)
by means of (2.2). Then we obtain

(U −U0)Ψ = UΨ−U0Ψ = UΨ1 + UΨ2 −U0Ψ2 = UΨ1 = VPΨ

because of ker U0 = ker A and A = U|A| = U0|A|. Thus we could complete the
proof.

LEMMA 2.4. Let V ∈ L(ker A, R(A)⊥) be a partially isometric operator and set
U := U0 + VP ∈ L(H, K). Then U is partially isometric and satisfies A = U|A|.
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Proof. From (2.2) we have

R(|A|) = (ker A)⊥.

So we obtain P|A| = 0 ∈ L(H, H). Consequently U|A| = U0|A| = A holds.
We will show that U0 + VP ∈ L(H, K) is partially isometric. From Theo-

rem VI.10 in [10] we know

(2.10) R(U0) = R(A).

We note that U0U∗0 ∈ L(K, K) is the projection onto R(U0) (cf. Section VI.4 in
[10]). So we can see U0U∗0 VP = 0 ∈ L(H, K) from R(V) ⊂ R(A)⊥ and (2.10).
Consequently,

(U∗0 VPΨ, U∗0 VPΨ)H = 0

for all Ψ ∈ H, which shows

(2.11) U∗0 VP = 0 ∈ L(H, H).

Hence we get

(2.12) ‖(U0 + VP)Ψ‖2
K = ‖U0Ψ‖2

K + ‖VPΨ‖2
K.

Let Ψ ∈ ker(U0 + VP) ⊂ H. This is equivalent to Ψ ∈ ker U0 = ker A and
VPΨ = 0 from (2.12), which is also equivalent to Ψ ∈ ker A and VΨ = 0 from
PΨ = Ψ. Hence we have

ker(U0 + VP) ⊂ ker V(⊂ ker A).

Conversely, let Ψ ∈ ker V(⊂ ker A). Then we have U0Ψ = 0 and PΨ = Ψ. So we
have Ψ ∈ ker(U0 + VP) from (2.12). Thus we could see

(2.13) ker(U0 + VP) = ker V(⊂ ker A).

Let Ψ ∈ ker(U0 + VP)⊥ ⊂ H. Then we can write

(2.14) Ψ = Ψ1 + Ψ2, Ψ1 ∈ ker A, Ψ2 ∈ (ker A)⊥.

It follows from (2.13) that ker(U0 + VP)⊥ ⊃ (ker A)⊥. So we have

Ψ1 ∈ ker A ∩ ker(U0 + VP)⊥, Ψ2 ∈ (ker A)⊥ ∩ ker(U0 + VP)⊥.

Consequently from (2.12)–(2.14), and the properties of U0, P and V we get

‖(U0 + VP)Ψ‖2
K = ‖U0Ψ2‖2

K + ‖VPΨ1‖2
K = ‖U0Ψ2‖2

K + ‖VΨ1‖2
K

= ‖Ψ2‖2
H + ‖Ψ1‖2

H = ‖Ψ‖2
H ,

where we used the assumption that V is partially isometric. Thus we could prove
that U0 + VP is partially isometric.

We obtain the following from Lemmas 2.3 and 2.4.

PROPOSITION 2.5. Let A ∈ L(H, K). Then A = U|A|, with U partially isomet-
ric, if and only if there is a partially isometric operator V ∈ L(ker A, R(A)⊥) satisfy-
ing (1.4).



180 WATARU ICHINOSE AND KANAKO IWASHITA

Acknowledgements. The authors thank the referee for helping to get the proof of the-
orem elegant and the result generalized. The first author is grateful to Shinshu University,
Faculty of Science of Shinshu University for Grant-in-Aid and JSPS (Japan Society for the
Promotion of Science) for Grant-in-Aid for Scientific Research No. 23540195.

REFERENCES

[1] A. ARAI, Mathematical Structure I for Quantum Mechanics [Japanese], Asakura Publ.,
Tokyo 1999.

[2] C. CHEVALLEY, Theory of Lie Groups, Princeton Univ. Press, Princeton 1946.

[3] N. DUNFORD, J.T. SCHWARTZ, Linear Operators. Part II: Spectral Theory, Interscience
Publ., New York 1963.

[4] A. HAUSNER, Uniqueness of the polar decomposition, Amer. Math. Monthly 74(1967),
303–304.

[5] E. HILLE, R.S. PHILLIPS, Functional Analysis and Semi Groups, Amer. Math. Soc., Prov-
idence, RI 1968.

[6] K. ITO, Encyclopedic Dictionary of Mathematics, 2nd Edition (English translation from
Japanese 3rd edition, 1985), MIT Press, Cambridge, Massachusetts 1993.

[7] T. KATO, Perturbation Theory of Linear Operators, Springer-Verlag, New York 1966.

[8] P.D. LAX, Functional Analysis, John Wiley & Sons, New York 2002.

[9] M. MIMURA, H. TODA, Topology of Lie Groups. I and II, Amer. Math. Soc., Providence,
RI 1991.

[10] M. REED, B. SIMON, Methods of Modern Mathematical Physics. I. Functional Analysis,
Academic Press, New York 1980.

[11] F. RIESZ, B.-SZ. NAGY, Functional Analysis (English translation), Fredreick Unger,
New York 1955.

[12] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York 1980.

WATARU ICHINOSE, DEPARTMENT OF MATHEMATICAL SCIENCES, SHINSHU

UNIVERSITY, MATSUMOTO 390-8621, JAPAN

E-mail address: ichinose@math.shinshu-u.ac.jp

KANAKO IWASHITA, DEPARTMENT OF MATHEMATICAL SCIENCES, SHINSHU

UNIVERSITY, MATSUMOTO 390-8621, JAPAN

E-mail address: s090102@shinshu-u.ac.jp

Received May 16, 2011; revised June 17, 2011.


