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ABSTRACT. A theorem of Giesy and James states that c0 is finitely represent-
able in James’ quasi-reflexive Banach space J2. We extend this theorem to the
pth quasi-reflexive James space Jp for each p ∈ (1, ∞).

As an application, we obtain a new closed ideal of operators on Jp, namely
the closure of the set of operators that factor through the complemented sub-
space (`1

∞ ⊕ `2
∞ ⊕ · · · ⊕ `n

∞ ⊕ · · · )`p of Jp.
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1. INTRODUCTION

As outlined in the abstract, we shall prove that c0 is finitely representable in
the pth quasi-reflexive James space Jp for each p ∈ (1, ∞) and then show how this
result gives rise to a new closed ideal of operators on Jp. In order to make these
statements precise, let us introduce some notation and terminology.

We denote by N0 and N the sets of non-negative and positive integers, re-
spectively. Following Giesy and James [5], we index sequences by N0 and write
x(n) for the nth element of the sequence x, where n ∈ N0. For a non-empty subset
A of N0, we write A = {n1 < n2 < · · · < nk} (or A = {n1 < n2 < · · · } if A is
infinite) to indicate that {n1, n2, . . . , nk} is the increasing ordering of A.

Let K = R or K = C be the scalar field, and let p ∈ (1, ∞). For a scalar
sequence x and a finite subset A = {n1 < n2 < · · · < nk+1} of N0 of cardinality
at least two, we define

νp(x, A) =
( k

∑
j=1
|x(nj)− x(nj+1)|p

)1/p
;
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for convenience, we let νp(x, A) = 0 whenever A ⊆ N0 is empty or a singleton.
Then νp( · , A) is a seminorm on the vector space KN0 of all scalar sequences, and

‖x‖Jp := sup{νp(x, A) : A ⊆ N0, card A < ∞}

= sup
{( k

∑
j=1
|x(nj)− x(nj+1)|p

)1/p
:

k ∈ N, n1, . . . , nk+1 ∈ N0, n1 < · · · < nk+1

}
defines a complete norm on the subspace Jp := {x ∈ c0 : ‖x‖Jp < ∞}, which we
call the pth James space. The sequence (em)∞

m=0, where em ∈ KN0 is given by

em(n) =

{
1 if m = n,
0 otherwise,

(n ∈ N0),

forms a shrinking Schauder basis for Jp. More importantly, Jp is quasi-reflexive
in the sense that the canonical image of Jp in its bidual has codimension one.
This result, as well as the definition of Jp, is due to James [6] in the case p = 2;
Edelstein and Mityagin [4] appear to have been the first to observe that it carries
over to arbitrary p ∈ (1, ∞).

A Banach space X is finitely representable in a Banach space Y if, for each
finite-dimensional subspace F of X and each ε > 0, there is an operator T : F → Y
such that

(1.1) (1− ε)‖x‖ 6 ‖Tx‖ 6 (1 + ε)‖x‖ (x ∈ F).

We shall in fact only consider finite representability of c0, in which case it suffices
to establish (1.1) for the finite-dimensional subspaces F = `n

∞, where n ∈ N. Al-
though not required, let us mention the Maurey–Pisier theorem that c0 is finitely
representable in a Banach space Y if and only if Y fails to have finite cotype ( e.g. ,
see Theorem 14.1 of [2]). This result shows in particular that finite representabil-
ity of c0 is an isomorphic invariant, despite the obvious dependence on the choice
of norm in (1.1).

Giesy and James [5] proved that c0 is finitely representable in J2. Our first
main result, to be proved in Section 2, extends this result to arbitrary p ∈ (1, ∞).

THEOREM 1.1. For each p ∈ (1, ∞), c0 is finitely representable in Jp.

To explain how this result leads to a new closed ideal of operators on Jp, we
require some more notation. For p ∈ [1, ∞) and a family (Xj)j∈J of Banach spaces,
we write (

⊕
j∈J Xj)p for the direct sum of the Xj’s in the sense of `p; that is,(⊕

j∈J Xj

)
p
=
{
(xj) : xj ∈ Xj (j ∈ J) and ∑

j∈J
‖xj‖p < ∞

}
.

We shall only apply this notation in two cases, namely

(1.2) Gp :=
(⊕

n∈N `n
∞

)
p

and J(∞)
p :=

(⊕
n∈N0

J(n)p

)
p
,
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where J(n)p denotes the subspace of Jp spanned by the first n + 1 basis vectors
e0, e1, . . . , en. Our interest in these spaces stems from the two facts that (i) Jp con-

tains a complemented subspace isomorphic to J(∞)
p ; and (ii) Theorem 1.1 implies

that J(∞)
p contains a complemented subspace isomorphic to Gp (for p = 2, this has

already been observed by Casazza, Lin and Lohman ([1], Theorem 13(i)) using the
original Giesy–James theorem), and this subspace gives rise to a new closed ideal
of operators on Jp, as we shall now outline.

For Banach spaces X and Y, let

GY(X) = {ST : T ∈ B(X, Y), S ∈ B(Y, X)}

be the set of operators on X which factor through Y. This defines a two-sided
algebraic ideal of the Banach algebra B(X) of bounded operators on X, provided
that Y contains a complemented subspace isomorphic to Y ⊕ Y (which will al-
ways be the case in this paper), and hence its norm-closure, denoted by G Y(X),
is a closed ideal of B(X).

Edelstein and Mityagin [4] made the easy, but fundamental, observation
that the quasi-reflexivity of Jp for p ∈ (1, ∞) implies that the ideal W (Jp) of
weakly compact operators has codimension one in B(Jp), hence is a maximal
ideal. Loy and Willis ([11], Open Problems 2.8) formally raised the problem of
determining the structure of the lattice of closed ideals of B(J2), having them-
selves proved that K (J2) ( G `2(J2) ( W (J2) and S (J2) = E (J2) 6⊇ G `2(J2),
where S (J2) and E (J2) denote the ideals of strictly singular and inessential op-
erators, respectively (see Theorem 2.7 of [11] and the text preceding it). Saksman
and Tylli ([13], Remark 3.9) improved the latter result by showing that K (J2) =
S (J2), while the third author [9], [10] generalized these results to arbitrary p ∈
(1, ∞) and, more importantly, complemented them by showing that the lattice of
closed ideals in B(Jp) has the following structure:

B(Jp)

W (Jp) = G
J(∞)
p

(Jp) = G
J(∞)
p

(Jp)

G `p(Jp)

K (Jp) = S (Jp) = E (Jp) = V (Jp)

{0},

where V (Jp) is the ideal of completely continuous operators, the vertical lines
indicate proper set-theoretic inclusion, and further closed ideals may be found
only at the dotted line. In particular, W (Jp) is the unique maximal ideal of B(Jp).
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The second main result of this paper, which we shall prove in Section 3,
states that B(Jp) contains at least one other closed ideal than those listed above.

THEOREM 1.2. For each p ∈ (1, ∞), the operator ideal G Gp(Jp) lies strictly be-
tween G `p(Jp) and W (Jp), where Gp is the Banach space given by (1.2).

Hence the lattice of closed ideals in B(Jp) has at least six distinct elements, namely

{0} ( K (Jp) ( G `p(Jp) ( G Gp(Jp) ( W (Jp) ( B(Jp).

2. PROOF OF THEOREM 1.1

Throughout this section, we fix a number p ∈ (1, ∞). Our aim is to prove
Theorem 1.1 by modifying the proof of Giesy and James [5]. The general scheme
of the proof is the same, but at several points, identities that are simple in the case
p = 2 have to be replaced with estimations applying to other p. We follow their
notation as far as possible. We show that there is a near-isometric embedding of
`K

∞ for each K ∈ N in the real case. It then follows easily, by standard techniques,
that there is at least an isomorphic embedding in the complex case. Hence in the
remainder of this section we shall assume that the scalar field is R.

Spiky vectors play a central role in the proof. As in p. 65 of [5], let

z2k =
1

(2k)1/p

k

∑
j=1

e2j−1 ∈ Jp (k ∈ N),

so that z2k is a unit vector with spikes in its initial k odd coordinates.
The other key ingredient is the “stretch” operator Tn : Jp → Jp which, for

n ∈ N and x ∈ Jp, is given by (Tnx)(kn) = x(k) whenever k ∈ N0 and by linear
interpolation between these points. One can easily check that Tn is linear and
isometric.

We use the notation [j, k] for the set of integers n such that j 6 n 6 k.
By an inductive process, we construct, for each K ∈ N, a set of K stretched

spiky vectors with the parameters chosen suitably, and show that these vectors
are equivalent to the usual basis of `K

∞. The inductive step is captured by the
following lemma, corresponding to Lemma 1 of [5].

LEMMA 2.1. Let m ∈ N and γ, ε ∈ (0, ∞). Suppose that x is an element of Jp
supported on the integer interval [0, 2m− 1] and satisfying

(2.1) max
06j<2m

|x(j)− x(j + 1)|p 6
γ

2m
and ‖x‖p

Jp
− νp(x, [0, 2m])p 6 ε.

For some even n, let w = Tnx + γ1/pz2mn. Then w is supported on the integer interval
[0, 2mn− 1] and satisfies

max
06j<2mn

|w(j)− w(j + 1)|p 6
γ

2mn

(
1 +

1
n1−1/p

)p
and(2.2)
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‖w‖p
Jp
− νp(w, [0, 2mn])p 6 2ε + γϕ(m, n),(2.3)

where ϕ(m, n)→ 0 as n→ ∞ with m fixed.

We show next how Theorem 1.1 follows, and then return to the proof of
Lemma 2.1.

Proof of Theorem 1.1. With ε > 0 and K ∈ N given, we construct vectors

x1, . . . , xK ∈ Jp with ‖xi‖Jp > 1 for 1 6 i 6 K such that
∥∥∥ K

∑
i=1

δixi

∥∥∥
Jp
6 1 + 2ε for all

choices of δ1, . . . , δK ∈ {−1, 1}. We then deduce equivalence with the usual basis

of `K
∞ as follows. By convexity, we have

∥∥∥ K
∑

i=1
λixi

∥∥∥
Jp
6 1 + 2ε for all real λi with

|λi| 6 1. Suppose that max
16i6K

|λi| = |λj| = 1. Then we see that
∥∥∥ K

∑
i=1

λixi− 2λjxj

∥∥∥
Jp

6 1 + 2ε (the coefficient of xj has been changed to −λj), so∥∥∥ K

∑
i=1

λixi

∥∥∥
Jp
> ‖2λjxj‖Jp −

∥∥∥ K

∑
i=1

λixi − 2λjxj

∥∥∥
Jp
> 2− (1 + 2ε) = 1− 2ε.

Let εk = ε/3K−k. At stage k, we will define numbers nk ∈ N and γk ∈ R
and vectors x(k)1 , . . . , x(k)k ∈ Jp such that the following properties hold. Firstly,

x(k)1 , . . . , x(k)k are all supported on the integer interval [0, 2mk − 1], where mk :=

n1n2 . . . nk, and ‖x(k)i ‖Jp > 1 for 1 6 i 6 k. Secondly,

1 6 γk 6 1 +
εk
K

.

Thirdly, for all choices of δ1, . . . , δk ∈ {−1, 1} and with y(k)δ :=
k
∑

i=1
δix

(k)
i , we have

max
06j<2mk

|y(k)δ (j)− y(k)δ (j + 1)|p 6
γk

2mk
and(2.4)

‖y(k)δ ‖
p
Jp
− νp(y

(k)
δ , [0, 2mk])

p 6 εk.(2.5)

By (2.4) and (2.5), we then obtain ‖y(k)δ ‖
p
Jp

6 γk + εk 6 1 + 2ε 6 (1 + 2ε)p, from
which the desired conclusion follows.

To start, take x(1)1 = z2 and n1 = γ1 = 1. Suppose now that stage k− 1 has
been completed. For a certain even integer nk to be chosen, define

x(k)i = Tnk (x(k−1)
i ) (1 6 i 6 k− 1) and x(k)k = γ

1/p
k−1z2mk .

Let δ1, . . . , δk ∈ {−1, 1} be given. We may assume that δk = 1. Apply Lemma 2.1
with x = y(k−1)

δ , m = mk−1, n = nk, ε = εk−1 and γ = γk−1. Then

w = Tnk (y
(k−1)
δ ) + γ

1/p
k−1z2mk = y(k)δ ,
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hence (2.2) implies that (2.4) is satisfied with

γk = γk−1

(
1 +

1

n1−1/p
k

)p
.

We choose nk large enough to ensure that γk 6 1 + εk/K. By (2.3),

‖y(k)δ ‖
p
Jp
− νp(y

(k)
δ , [0, 2mk])

p 6 2εk−1 + γk−1 ϕ(mk−1, nk).

Since εk = 3εk−1, to ensure (2.5), we choose nk also to satisfy

γk−1 ϕ(mk−1, nk) 6 εk−1.

REMARK 2.2. Because of the dependence of ϕ(m, n) on m, it is not possible
to take nk equal to the same value n for each k, as in [5] for the case p = 2. We
shall actually see later that ϕ(m, n) only depends on m when p > 2.

Outline of proof of Lemma 2.1. Write y = Tnx and z = γ1/pz2mn, so that w =
y + z. Clearly, y and z are both supported on the integer interval [0, 2mn − 1].
Also, from the definitions, we have |z(j)− z(j + 1)| = (γ/2mn)1/p and

|(Tnx)(j)− (Tnx)(j + 1)| 6 1
n

( γ

2m

)1/p
= n1/p−1

( γ

2mn

)1/p
(0 6 j < 2mn),

from which (2.2) follows.
The bulk of the work is the proof of (2.3). Since w is supported on the integer

interval [0, 2mn− 1], we can find a set A = {a1 < a2 < · · · < ak+1}, with a1 = 0
and ak+1 = 2mn, such that ‖w‖Jp = νp(w, A). The aim is to show that the whole
interval acts as a reasonable substitute for this set A. This will be accomplished
by four steps, summarized as follows:

νp(w, A)p 6 νp(y, A)p + νp(z, A)p + ρ1(2.6)

6 νp(y, A ∪ N)p + νp(z, A ∪ N)p + ρ1 + ρ2(2.7)

6 νp(y, [0, 2mn])p + νp(z, [0, 2mn])p + ρ1 + ρ2(2.8)

6 νp(w, [0, 2mn])p + ρ1 + ρ2 + ρ3,(2.9)

where N := [0, 2mn] ∩ nN0, and ρ1, ρ2 and ρ3 are error terms which will emerge
from the proofs. Step 1 moves from w = y + z to y and z separately, and Step 4
reverses this. Working with y and z separately, Step 2 adjoins multiples of n to A,
and Step 3 adjoins all intervening integers. Because of the concepts involved, we
present these four steps in the order 1, 4, 3, 2.

LEMMA 2.3. Suppose that a, b > 0. Then

(a + b)p − ap − bp 6 2p(ap−1b + abp−1).

Proof. With no loss of generality, we may assume that a > b. Writing b/a =
t, we see that the stated inequality is equivalent to (1+ t)p− 1− tp 6 2p(t+ tp−1)
for 0 < t 6 1. For such t, since the function t 7→ (1 + t)p is convex and t =
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(1− t) · 0+ t · 1, we have (1+ t)p 6 (1− t) · 1+ 2pt, hence (1+ t)p− 1 6 (2p− 1)t,
which of course implies the required inequality.

REMARK 2.4. The estimation in Lemma 2.3 is quite adequate for our pur-
poses. In fact, the best constant on the right-hand side of the inequality is p for
2 6 p 6 3, and 2p−1 − 1 otherwise [7].

Step 1. Proof of (2.6). Write `i = ai+1 − ai, so that
k
∑

i=1
`i = 2mn. Then we

have, by definition,

|y(ai)−y(ai+1)|6
`i
n

( γ

2m

)1/p
and |z(ai)−z(ai+1)|6

( γ

2mn

)1/p
(16 i6k).

Lemma 2.3 implies that νp(y + z, A)p − νp(y, A)p − νp(z, A)p 6 2ps, where

s :=
k

∑
i=1

(|y(ai)−y(ai+1)|p−1|z(ai)−z(ai+1)|+|y(ai)−y(ai+1)| |z(ai)−z(ai+1)|p−1)

6
k

∑
i=1

(( `i
n

)p−1( γ

2m

)1−1/p( γ

2mn

)1/p
+

`i
n

( γ

2m

)1/p( γ

2mn

)1−1/p)
= γ

( ∑k
i=1 `

p−1
i

2mnp−1+1/p +
1

n1−1/p

)
,

since
k
∑

i=1
`i = 2mn. For 1 < p 6 2, we have `

p−1
i 6 `i, hence

s 6 γ
( 1

np−2+1/p +
1

n1−1/p

)
,

whereas for p > 2,
k
∑

i=1
`

p−1
i 6 (∑k

i=1 `i)
p−1 = (2mn)p−1, so that

s 6 γ
( (2m)p−2

n1/p +
1

n1−1/p

)
.

Multiplying these upper bounds on s by 2p, we conclude that (2.6) is satisfied with

ρ1 =


2pγ

(
1

np−2+1/p +
1

n1−1/p

)
for 1 < p 6 2,

2pγ
(
(2m)p−2

n1/p + 1
n1−1/p

)
for p > 2.

Step 4. Proof of (2.9), with ρ3 = γ/np−1. Letting

s` =
(`+1)n−1

∑
j=`n

(|w(j)− w(j + 1)|p − |y(j)− y(j + 1)|p − |z(j)− z(j + 1)|p),
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we can write

νp(w, [0, 2mn])p − νp(y, [0, 2mn])p − νp(z, [0, 2mn])p =
2m−1

∑
`=0

s`.

Our claim is that this quantity is at least −γ/np−1.
To verify this, fix integers ` ∈ [0, 2m − 1] and j ∈ [`n, (` + 1)n − 1]. Then

z(j)− z(j + 1) is alternately ±c, where c := (γ/2mn)1/p, while

y(j)− y(j + 1) =
x(`)− x(`+ 1)

n
,

and by assumption d` := (1/n)|x(`)− x(`+ 1)| 6 (1/n)(γ/2m)1/p. Since c > d`,
we see that |w(j)− w(j + 1)| is alternately c + d` and c− d`. Hence, as n is even,

(2.10) s` =
n
2
((c + d`)p + (c− d`)p − 2dp

` − 2cp).

By convexity of the function t 7→ tp, we have (c + d`)p + (c− d`)p > 2cp. There-

fore s` > −ndp
` > −γ/2mnp−1, so

2m−1
∑
`=0

s` > −γ/np−1, as required.

REMARK 2.5. Equation (2.10) shows that s` = 0 for p = 2, and in fact one
can prove that s` > 0 whenever p > 2, thus rendering the error term ρ3 superflu-
ous for such p.

We now come to Step 3, which is really the heart of the method, and it is
the one where it is essential to work with νp( · , · )p rather than νp( · , · ) itself. We
shall adjoin all intervening integers to the set A ∪ ([0, 2mn] ∩ nN0). This has the
effect of reducing νp(y, · )p, but the reduction is more than offset by an increase
in νp(z, · )p.

LEMMA 2.6. Suppose that t > 1. Then tp − t 6 (t− 1)(t + 1)p−1.

Proof. For 1 < p 6 2, we have tp−1 6 t, hence

tp − t 6 tp − tp−1 = (t− 1)tp−1,

which is stronger than the stated inequality. For p > 2, we use the convexity of
the function t 7→ tp−1. Since

t =
t− 1

t
(t + 1) +

1
t
· 1,

we have

tp−1 6
t− 1

t
(t + 1)p−1 +

1
t

,

which is again stronger than the stated inequality.

Step 3. Proof of (2.8). Let B = A ∪ ([0, 2mn] ∩ nN0). Our aim is to prove that

δ := νp(y, [0, 2mn])p + νp(z, [0, 2mn])p − νp(y, B)p − νp(z, B)p
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is non-negative. Writing B = {b1 < b2 < · · · < bh+1}, we have

δ =
h

∑
j=1

(∆ j(y) + ∆ j(z)),

where

∆ j(y) =
( bj+1−1

∑
i=bj

|y(i)− y(i + 1)|p
)
− |y(bj)− y(bj+1)|p

and ∆ j(z) is defined similarly. Hence it suffices to prove that ∆ j(y) + ∆ j(z) > 0
for each integer j ∈ [1, h].

The definition of B shows that bj and bj+1 both belong to an interval of the
form [rn, (r + 1)n] for some r ∈ N0. As in the proof of Step 4, this implies that

|y(i)− y(i + 1)| = dr (bj 6 i < bj+1) and |y(bj)− y(bj+1)| = `jdr,

where dr := (1/n)|x(r)− x(r + 1)| 6 (1/n)(γ/2m)1/p and `j := bj+1 − bj, and
consequently ∆ j(y) = (`j − `

p
j )d

p
r . Meanwhile, |z(i) − z(i + 1)| = c for each i,

where c := (γ/2mn)1/p, and |z(bj)− z(bj+1)| equals 0 if `j is even and c if `j is
odd, thus in both cases ∆ j(z) > (`j − 1)cp.

Now if `j 6 n− 1, we find

∆ j(y) + ∆ j(z) > (`j − `
p
j )d

p
r + (`j − 1)cp > ((`j − `

p
j ) + (`j − 1)np−1)dp

r

because cp > np−1dp
r . Since n > `j + 1, Lemma 2.6 gives (`j − 1)np−1 > `

p
j − `j,

hence ∆ j(y) + ∆ j(z) > 0, as required. Otherwise `j = n, which is assumed even,
so that ∆ j(z) = ncp, and

∆ j(y) + ∆ j(z) = (n− np)dp
r + ncp > (n− np + np)dp

r = ndp
r > 0.

Finally, we reach Step 2 where multiples of n are adjoined to the set A. We
require two lemmas, the first of which describes the effect on νp( · , A)p of substi-
tuting new end points in A, while the second considers the effect of filling in gaps
in A.

LEMMA 2.7. Consider integers ` > 3 and 0 6 c 6 b1 < b2 < · · · < b` 6 c′, let
B = {b1, b2, . . . , b`} and C = {c, b2, . . . , b`−1, c′}, and suppose that v ∈ Jp satisfies

v(c) 6 v(b1) 6 v(bj) 6 v(b`) 6 v(c′) or(2.11)

v(c) > v(b1) > v(bj) > v(b`) > v(c′)(2.12)

for 1 < j < `. Then

νp(v, {b1, b`})p − νp(v, B)p 6 νp(v, {c, c′})p − νp(v, C)p.

Proof. We consider only the case where (2.11) is satisfied; the other case is
similar. We replace the end points of B one at a time. Let D = {c, b2, . . . , b`−1, b`}.
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In the sum under consideration, the term r := v(b2) − v(b1) is replaced with
s := v(b2)− v(c), and both are non-negative, so

νp(v, D)p − νp(v, B)p = sp − rp.

Differentiation shows that the function t 7→ (s + t)p − (r + t)p is increasing on
[0, ∞) because s > r, and hence sp− rp 6 (s+ t)p− (r + t)p for each t > 0. Taking
t := v(b`)− v(b2), we obtain s + t = v(b`)− v(c) and r + t = v(b`)− v(b1), so

νp(v, D)p − νp(v, B)p 6 νp(v, {c, b`})p − νp(v, {b1, b`})p.

A similar argument with r := v(b`) − v(b`−1), s := v(c′) − v(b`−1) and t :=
v(b`−1)− v(c) shows that

νp(v, C)p − νp(v, D)p 6 νp(v, {c, c′})p − νp(v, {c, b`})p.

Adding these two inequalities, we conclude that

νp(v, C)p − νp(v, B)p 6 νp(v, {c, c′})p − νp(v, {b1, b`})p,

from which our statement follows.

LEMMA 2.8. Let v ∈ Jp and ` ∈ N, and suppose that C1, . . . , C` and D1, . . . , D`

are finite subsets of N0 with min Cj = min Dj =: mj and max Cj = max Dj =: m′j,
where m′j 6 mj+1 for each j. Suppose further that E1, . . . , E`−1 are finite subsets of N0

such that min Ej = m′j and max Ej = mj+1 for each j (so Ej is between Cj ∪ Dj and
Cj+1 ∪ Dj+1), and let E` = {m′`}. Then

`

∑
j=1

(νp(v, Dj)
p − νp(v, Cj)

p) = νp

(
v,
⋃`

j=1
(Dj ∪ Ej)

)p
− νp

(
v,
⋃`

j=1
(Cj ∪ Ej)

)p
.

Proof. Clearly, we have

νp

(
v,
⋃`

j=1
(Cj ∪ Ej)

)p
=

`

∑
j=1

νp(v, Cj)
p +

`

∑
j=1

νp(v, Ej)
p,

which together with the corresponding formula for νp(v,
⋃`

j=1(Dj ∪ Ej))
p gives

the result.

Step 2. Proof of (2.7), with ρ2 = 2ε. Let N = [0, 2mn] ∩ nN0. The effect on z
of adjoining elements to the set A = {a1 < · · · < ak+1} is easily seen. Let `i =
ai+1 − ai for 1 6 i 6 k. As in the proof of Step 3 above, |z(ai) − z(ai+1)| is
c := (γ/2mn)1/p if `i is odd, and 0 if `i is even. If `i is odd and new points are
inserted between ai and ai+1, then at least one of the new intervals, say [bj, bj+1],
has odd length, so |z(bj)− z(bj+1)| = c. Hence

νp(z, A) 6 νp(z, A ∪ N).

We shall now prove the corresponding inequality for y, just with an er-
ror term added on the right-hand side. Recall that a1 = 0 and ak+1 = 2mn.
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Note that if there is some b ∈ N such that ai < b < ai+1 for some i and either
y(b) < min{y(ai), y(ai+1)} or y(b) > max{y(ai), y(ai+1)}, then

|y(ai)− y(b)|p + |y(b)− y(ai+1)|p > |y(ai)− y(ai+1)|p.

Hence we may adjoin any such points b to the set A, thereby increasing νp(y, A)
without changing A ∪ N; we still use the notation A = {a1 < · · · < ak+1} for the
augmented set.

Let the intervals [ai, ai+1] (1 6 i 6 k) that contain at least one multiple of n
be relabelled [bj, b′j] (1 6 j 6 h) and ordered increasingly; that is,

0 = a1 = b1 < b′1 6 b2 < b′2 6 · · · 6 bj < b′j 6 · · · 6 bh < b′h = ak+1 = 2mn,

where b′j may or may not be equal to bj+1 for 1 6 j 6 h − 1. Then, with Bj :=
([bj, b′j] ∩ nN) ∪ {bj, b′j} for 1 6 j 6 h, we obtain

(2.13) νp(y, A)p − νp(y, A ∪ N)p =
h

∑
j=1

(νp(y, {bj, b′j})p − νp(y, Bj)
p).

Define cj = max([0, bj] ∩ nN0), c′j = min([b′j, ∞) ∩ nN0) and Cj = [cj, c′j] ∩ nN0.
Then c1 = 0 and c′h = 2mn, and we have

(2.14) νp(y, {bj, b′j})p − νp(y, Bj)
p 6 νp(y, {cj, c′j})p − νp(y, Cj)

p (1 6 j 6 h)

by Lemma 2.7, which applies because the augmentation of the set A carried out
in the previous paragraph ensures that y satisfies either (2.11) or (2.12). Indeed,
it is clear that y(b) lies between y(bj) and y(b′j) for each b ∈ Bj. To check the
remaining inequalities concerning the values of y at the points cj and c′j, let us for
definiteness consider the case where y(bj) 6 y(b′j) and explain why y(cj) 6 y(bj);
the other cases are similar. The inequality is obvious if cj = bj. Otherwise we
write cj = rn, where r ∈ N0, and note that (r + 1)n > bj by the definition of cj.
Since [bj, b′j]∩ nN0 6= ∅, we conclude that (r + 1)n 6 b′j, so the augmentation of A
implies that y(bj) 6 y((r + 1)n) 6 y(b′j). Now recall that y = Tnx, so y(bj) is
found by interpolation between x(r) = y(rn) = y(cj) and x(r + 1) = y((r + 1)n).
Since y((r + 1)n) > y(bj), we must therefore have y(cj) 6 y(bj), as required.

We next seek to invoke Lemma 2.8 with the sets {cj, c′j} playing the role of
the Dj’s. To do so, we require some more notation. Let c0 = c′0 = 0, C0 = {0},
ch+1 = c′h+1 = 2mn and Ch+1 = {2mn}. Then clearly min{cj, c′j} = min Cj = cj

and max{cj, c′j} = max Cj = c′j for each integer j ∈ [0, h + 1], but c′j 6 cj+1 need
not be satisfied for each j ∈ [1, h]. It is, however, true that c′j 6 cj+2 for each
j ∈ [0, h − 1] because the interval [bj+1, b′j+1] contains a multiple of n. Hence,
taking Ej = [c′j, cj+2] ∩ nN0 for 0 6 j 6 h − 1 and letting Eh = Eh+1 = {2mn},
we can apply Lemma 2.8 for even and odd indices j separately. We observe that
Cj ∪ Ej = [cj, cj+2] ∩ nN0 for j ∈ [0, h − 1], so

⋃
j∈Γr

(Cj ∪ Ej) = N for r ∈ {0, 1},
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where Γ0 and Γ1 denote the sets of even and odd integers in [0, h+ 1], respectively.
Thus Lemma 2.8 gives

(2.15) ∑
j∈Γr

(νp(y, {cj, c′j})p−νp(y, Cj)
p)=νp

(
y,
⋃

j∈Γr
({cj, c′j} ∪ Ej)

)p
−νp(y, N)p.

Since y = Tnx and N = [0, 2mn] ∩ nN0, we have

νp(y, N)p = νp(x, [0, 2m])p > ‖x‖p
Jp
− ε

by (2.1), while νp(y,
⋃

j∈Γr ({cj, c′j} ∪ Ej))
p 6 ‖y‖p

Jp
= ‖x‖p

Jp
. Hence the sum on the

left-hand side of (2.15) is no greater than ε, so adding the two cases (r = 0 and
r = 1) and using (2.13) and (2.14), we conclude that

νp(y, A)p − νp(y, A ∪ N)p 6
h

∑
j=1

(νp(y, {cj, c′j})p − νp(y, Cj)
p)

=
h+1

∑
j=0

(νp(y, {cj, c′j})p − νp(y, Cj)
p) 6 2ε.

Completion of the proof of Lemma 2.1. With the four steps completed, it is clear
that Lemma 2.1 holds with

ϕ(m, n) = 2p
(

ψ(m, n) +
1

n1−1/p

)
+

1
np−1 ,

where

ψ(m, n) =


1

np−2+1/p for 1 < p 6 2,

(2m)p−2

n1/p for p > 2.

Note that m does not appear in the case p 6 2, and that p− 2 + 1/p > 0, so in
both cases ϕ(m, n)→ 0 as n→ ∞ with m fixed.

3. PROOF OF THEOREM 1.2

We begin with an elementary observation which is tailored to reduce The-
orem 1.2 to the statement that the Banach spaces Gp and J(∞)

p given by (1.2) are
non-isomorphic. A closely related result can be found in Proposition 5.3.8 of [12].

LEMMA 3.1. Let X, Y and Z be Banach spaces satisfying:
(i) X contains a complemented subspace isomorphic to Y;

(ii) Y contains a complemented subspace isomorphic to Z;
(iii) Y ∼= Y⊕Y and Z ∼= Z⊕ Z.

Then G Z(X) ⊆ G Y(X), with equality if and only if Z ∼= Y.
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Proof. The inclusion G Z(X) ⊆ G Y(X) is clear, as is the equality of these two
ideals in the case where Z ∼= Y.

Conversely, suppose that G Z(X) = G Y(X), and let P be a projection on X
with P(X) ∼= Y. Clearly P factors through Y, so P belongs to G Z(X) by the as-
sumption. It then follows from standard results that Z contains a complemented
subspace isomorphic to Y ( e.g. , see Proposition 3.4 and Lemma 3.6(ii) of [9]), and
therefore Y and Z are isomorphic by the Pełczyński decomposition method.

We shall next record the facts required to invoke Lemma 3.1 in the proof of
Theorem 1.2.

LEMMA 3.2. For each p ∈ (1, ∞),
(i) Gp contains a complemented subspace isomorphic to `p;

(ii) J(∞)
p contains a complemented subspace isomorphic to Gp;

(iii) Jp contains a complemented subspace isomorphic to J(∞)
p ;

(iv) `p ∼= `p ⊕ `p, Gp ∼= Gp ⊕ Gp and J(∞)
p ∼= J(∞)

p ⊕ J(∞)
p .

Proof. All but one of these results are well known. The exception is (ii)
which, however, follows from Theorem 1.1 in exactly the same way as the cor-
responding result for p = 2 is deduced from the original Giesy–James theorem
in Theorem 13(i) of [1].

References for the other statements are as follows; (i) and the first part of (iv)
are obvious, while (iii) and the remaining two parts of (iv) follow from Lemmas 5
and 6 of [4]. (A key condition appears to be missing in the statement of Lemma 5
of [4], though, namely that the sequence denoted by ν is unbounded.)

REMARK 3.3. Let X and Y be Banach spaces. An operator T : X → Y is
bounded below by ε > 0 if ‖Tx‖ > ε‖x‖ for each x ∈ X. In this case T is an iso-
morphism onto its image, and the inverse operator has norm at most ε−1, so in
particular the Banach–Mazur distance dBM between the domain X and the im-
age T(X) of T satisfies

dBM(X, T(X)) 6
‖T‖

ε
.

Now suppose that X is a closed subspace of Y and that T : X → Y is linear
and satisfies

‖x− Tx‖ 6 η‖x‖ (x ∈ X)

for some η ∈ (0, 1). Then we have (1− η)‖x‖ 6 ‖Tx‖ 6 (1 + η)‖x‖ for each
x ∈ X, so by the previous paragraph T is an isomorphism onto its image, and

dBM(X, T(X)) 6
1 + η

1− η
.
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DEFINITION 3.4. Let F be a finite-dimensional Banach space. The uncondi-
tional basis constant of a basis b = {b1, . . . , bn} for F is given by

Kb := sup
{∥∥∥ n

∑
j=1

αjβ jbj

∥∥∥ : αj, β j ∈ K, |αj| 6 1 (j = 1, . . . , n),
∥∥∥ n

∑
j=1

β jbj

∥∥∥ 6 1
}

.

The infimum of the unconditional basis constants of all possible bases for F is the
unconditional constant of F; we denote it by uc(F).

It is easy to verify that, for Banach spaces E and F of the same finite dimen-
sion, we have

(3.1) uc(E) 6 dBM(E, F)uc(F).

DEFINITION 3.5 ([3], Definition 3.1). Let C ∈ [1, ∞). A Banach space X has
local unconditional structure (or l.u.st. for short) with constant at most C if each
finite-dimensional subspace of X is contained in some larger finite-dimensional
subspace F of X with uc(F) 6 C.

A Banach space with an unconditional basis has l.u.st. This applies in par-
ticular to Gp. On the other hand, Johnson and Tzafriri ([8], Corollary 2) have
shown that no quasi-reflexive Banach space has l.u.st. We shall use this result to
prove that J(∞)

p does not have l.u.st.
We begin with a generalization of the above-mentioned fact that every Ba-

nach space with an unconditional basis has l.u.st. This result is probably well-
known to specialists, but as we have been unable to locate a reference, we include
a proof.

LEMMA 3.6. Let X be a Banach space with a Schauder basis (bn)n∈N0 , and let
C ∈ [1, ∞). Suppose that X contains a sequence (Fn)n∈N0 of finite-dimensional sub-
spaces satisfying

(3.2) b0, b1, . . . , bn ∈ Fn and uc(Fn) 6 C (n ∈ N0).

Then X has l.u.st. with constant at most C + δ for each δ > 0.

Proof. Take ε ∈ (0, 1/2) such that C/(1− 2ε) < C + δ, and let E be a k-di-
mensional subspace of X for some k ∈ N. Approximation of each vector of an
Auerbach basis for E shows that, for each η > 0, there is M ∈ N0 such that

(3.3) ‖x− Pmx‖ 6 η‖x‖ (m > M, x ∈ E),

where Pm denotes the mth basis projection associated with (bn)n∈N0 . Applying
this conclusion with η > 0 chosen such that

(3.4)
η
√

k
1− η

6
ε

1− ε
,

we obtain by Remark 3.3 that the operator U : x 7→ PMx, E → PM(E), is an
isomorphism with ‖U‖ 6 1 + η and ‖U−1‖ 6 (1− η)−1.
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Since U(E) = PM(E) ⊆ span{b0, b1, . . . , bM} ⊆ FM and dim U(E) = k, we
can find a projection Q on FM such that Q(FM) = U(E) and ‖Q‖ 6

√
k by the

Kadec–Snobar theorem (e.g., see Theorem 4.18 of [2]). The operator

T : x 7→ x−Qx + U−1Qx, FM → X,

then satisfies

‖x−Tx‖=‖Qx−U−1Qx‖=‖PMU−1Qx−U−1Qx‖6η‖U−1Qx‖6η‖U−1‖‖Q‖‖x‖,

where the penultimate estimate follows from (3.3), and hence we have

‖x− Tx‖ 6 ε(1− ε)−1‖x‖ (x ∈ FM)

by (3.4). Since ε(1− ε)−1 < 1, Remark 3.3 implies that T is an isomorphism onto
its image, and

dBM(FM, T(FM)) 6
1 + ε(1− ε)−1

1− ε(1− ε)−1 =
1

1− 2ε
,

so uc(T(FM)) 6 C/(1− 2ε) 6 C + δ by (3.1).
The conclusion now follows because E ⊆ T(FM). Indeed, for each x ∈ E,

y := Ux belongs to FM and satisfies Qy = y, so that

T(FM) 3 Ty = y−Qy + U−1y = x,

as desired. (In fact, T(FM) = ker Q + E by an easy dimension argument.)

PROPOSITION 3.7. Let p ∈ (1, ∞). Then the Banach space J(∞)
p does not have

l.u.st.

Proof. Assume towards a contradiction that J(∞)
p has l.u.st. with constant at

most C ∈ [1, ∞) for some p ∈ (1, ∞), and let n ∈ N0. Denote by ιn : J(n)p → J(∞)
p

and ρn : J(∞)
p → J(n)p the canonical nth coordinate embedding and projection, re-

spectively, and let jn : J(n)p → Jp be the natural inclusion operator. By assump-

tion, ιn(J(n)p ) is contained in some finite-dimensional subspace Fn of J(∞)
p with

uc(Fn) 6 C.
Let Rn : Jp → Jp be the (n + 2)-fold right shift given by Rnek = en+k+2 for

each k ∈ N0. This defines an operator of norm 21/p on Jp, and Rn is bounded

below by 1. Lemma 3.2(iii) implies that there are operators U ∈ B(J(∞)
p , Jp) and

V ∈ B(Jp, J(∞)
p ) such that VU = I

J(∞)
p

; we may clearly suppose that V has norm 1.

We shall now consider the operator Sn := jnρn + RnU(I
J(∞)
p
− ιnρn) ∈ B(J(∞)

p , Jp).

The obvious norm estimates show that ‖Sn‖ 6 1 + 21/p ‖U‖. To prove that Sn is
bounded below by 1, let x ∈ J(∞)

p and ε > 0 be given. Introducing the vector
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y = (I
J(∞)
p
− ιnρn)x ∈ J(∞)

p , we obtain

‖x‖p

J(∞)
p

=‖ρnx‖p
Jp
+‖y‖p

J(∞)
p

=‖jnρnx‖p
Jp
+‖VUy‖p

J(∞)
p

6‖jnρnx‖p
Jp
+‖RnUy‖p

Jp
(3.5)

because ‖V‖ = 1 and Rn is bounded below by 1. Since jnρnx ∈ span{e0, . . . , en},
there is a subset A of [0, n + 1]∩N0 such that ‖jnρnx‖Jp = νp(jnρnx, A). Similarly,
as RnUy ∈ span {en+2, en+3, . . .}, we can find a finite subset B of [n + 1, ∞) ∩ N
such that ‖RnUy‖p

Jp
6 νp(RnUy, B)p + ε. Combining these identities with (3.5),

we conclude that

‖x‖p

J(∞)
p
−ε6νp(jnρnx, A)p+νp(RnUy, B)p6νp(jnρnx+RnUy, A ∪ B)p6‖Snx‖p

Jp
,

and letting ε tend to 0, we see that Sn is bounded below by 1, as stated.
Thus Remark 3.3 implies that dBM(Fn, Sn(Fn)) 6 ‖Sn‖ 6 1 + 21/p‖U‖, and

therefore uc(Sn(Fn)) 6 C(1 + 21/p‖U‖) by (3.1). Moreover, we have ιnek ∈ Fn for
each k ∈ {0, 1, . . . , n}, so that Sn(Fn) 3 Sn(ιnek) = ek because jnρnιnek = ek and
(I

J(∞)
p
− ιnρn)ιn = 0. Hence the sequence (Sn(Fn))n∈N0 satisfies both parts of (3.2),

so Lemma 3.6 implies that Jp has l.u.st., contradicting the above-mentioned the-
orem of Johnson and Tzafriri that this is impossible for a quasi-reflexive Banach
space.

COROLLARY 3.8. Let p ∈ (1, ∞). Then the Banach spaces Gp and J(∞)
p are not

isomorphic.

Proof. This is clear because, as remarked above, Gp has an unconditional

basis and thus l.u.st., whereas J(∞)
p does not by Proposition 3.7.

The proof of Theorem 1.2 is now easy. Recall that W (Jp) = G
J(∞)
p

(Jp). The in-

clusions G `p(Jp)(G Gp(Jp) and G Gp(Jp)(G
J(∞)
p

(Jp) both follow from Lemma 3.1,

which applies by Lemma 3.2 and the facts that `p 6∼= Gp and Gp 6∼= J(∞)
p . The

second of these facts was proved in Corollary 3.8, while the first can be justified
in various ways; for instance, `p is uniformly convex with type min{2, p} and
cotype max{2, p}, whereas Gp is not uniformly convexifiable, has type 1 and fails
to have finite cotype.
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