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ABSTRACT. We generalize the following fact to compact Kac algebras: Let G
be a compact abelian group, and let f be any trigonometric polynomial on G,

whose Fourier transform fvanishes outside of a Sidon set E in the dual, dis-
crete abelian group I' of G. Then we have || f|» < Kg|| f||1, where K is a con-
stant depending only on E. For this generalization, we introduce the notion
of Helgason-Sidon sets, which is based on S. Helgason’s work on lacunary
Fourier series on arbitrary compact groups. We establish the above inequality
for all finite linear combinations of characters defined by a Helgason-Sidon
set in the set of all minimal central projections.
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INTRODUCTION

An outstanding problem in the theory of Fourier series was to find estimates
for idempotents in L!(T), where T denotes the unit circle group. In this connec-
tion, we mention the so-called Littlewood conjecture, whose formulation appeared
in [4] the first time. It asserts that there are constants Cq, C, such that

7T
1 N
> . ll’lkt >
VN> o / ‘k;e |dt > Cylog(N),
_7T -

where n; € Z forallk = 1,...,N and N € N. Whereas the upper bound C;v/N
is easy to show, the lower bound C; log(N) had remained an open problem for a
long time. Eventually, it was solved independently by O.C. McGehee et al. [12]
and S.V. Konjagin [8] even for more general coefficients.

In fact, the upper bound Cyv/'N is not improvable if ny, k = 1,...,N, are
elements of a so-called Sidon set in Z. In case of an arbitrary compact abelian
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group G, a Sidon set is a “thin” subset E of the dual, discrete abelian group I
such that every continuous, complex-valued function on E vanishing at infinity
is the restriction to E of a Fourier transform of a function in L'(G). For locally
compact abelian groups, Sidon sets are also known as Helson sets.

The inclusion L?(G) C L'(G) naturally yields ||f|l» > ||f|l;- Now, taking
into account Theorem 5.7.7(3) of [13], there is a constant Kr depending only on a
given Sidon set E such that we get the inverse inequality

(0.1) 1 fll2 < Kl fllx

for every E-polynomial f on G, i.e. for every finite, complex linear combination
of continuous characters in I" such that its Fourier transform f vanishes outside
of E. In particular, we obtain for sums of charactersyy € EC I, k=1,...,N,

| Sl = v < el S,

In fact, Sidon sets can also be introduced for arbitrary compact groups. According
to Theorem 37.7(iv) of [6], corresponding inequalities hold in this case, too.

In this paper, we prove that (0.1) is also valid in a much more general situa-
tion:

Let K = (M, A, x, ¢) be a compact Kac algebra with the dual, discrete Kac
algebra K = (M, A, %, §) of K and {p; }ic; the set of all minimal central projections
in M. First, using the notion of the (generalized) Fourier transform by B.-J. Kahng
in [7] for locally compact quantum groups, which were introduced by J. Kuster-
mans and S. Vaes in [9], [10], we regard the inverse Fourier transform of a projec-
tion p; as a character x; in M multiplied by the dimension d; of p; by showing that
it is consistent with the corresponding definition of a character by S.L. Woronow-
icz in [17], [18] for his compact quantum groups. Next, we generalize the concept
of Sidon sets & in {p; };c;. Especially, we introduce the notion of Helgason-Sidon
sets by adding a “lacunarity” condition, which is due to S. Helgason in [5], to our
definition of a Sidon set. So, we get the following main result:

If f is a finite, complex linear combination of characters defined by a
Helgason-Sidon set £, then there is a constant K¢ depending only on £ such
that

1fllzp < Kellfllng-

In particular, if | is an arbitrary finite subset of I with cardinality |J| such that
{pj}iej € €, we obtain

|Zxll,, = Vi< T
jej e jer e

As an outlook, it may be an interesting question, even for groups, if there are any
groups without infinite Sidon sets, but which fulfill an inequality similar to (0.1).
Probably, one can get some results for so-called A sets, p € (1,0), see e.g. [6] for
further details.
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This paper arose from the first author’s thesis [1].

1. PRELIMINARIES

Mainly for technical reasons, we formulate all our results for compact Kac
algebras. In the following, we briefly summarize its theory. For a detailed ex-
position of the theory of Kac algebras, we refer to [3]. Furthermore, we give the
definition of the (generalized) Fourier transform and its main results from [7],
which we use throughout this paper.

Let M be a von Neumann algebra. A co-product on M is an injective, unital,
normal *-homomorphism A : M — M®M, where M&M denotes the von Neu-
mann algebraic tensor product, which has the following co-associativity property

(A®1)oA=(1®A)o0A,

where ¢ is the identity map of M. The pair (M, A) is called a Hopf~von Neumann
algebra. A co-involution x on (M, A) is a normal *-anti-automorphism of M such
that
k>=1 and {oAok=(k®k)oA,

where { : M&M — M®M denotes the flip defined by {(x1 ® x2) := xp ® x7 for
all x1, xp € M. Then (M, A, ) is called a co-involutive Hopf-von Neumann algebra.

Let (M, A) be a Hopf-von Neumann algebra and M, the predual of M, i.e.
the Banach space of all o-weakly continuous linear functionals on M. Then the
co-product A induces a multiplication * on M., which for all wy,wp; € M, and
x € M is defined by

(1.1) (x,wy *wy) := (A(x), w1 ® wy).

In analogy to the ordinary convolution in the predual L!'(G) of L®(G) with a
locally compact group G, it is called the convolution of wq and wy.

Now, let (M, A, k) be a co-involutive Hopf-von Neumann algebra. Then the
co-involution x gives an involution o on M., which for all w € M, and x € M is
defined by

(x,w®) = (x(x*), w).

Equipped with the above convolution * and the involution o, the predual M.
becomes a Banach x-algebra.
Let ¢ be a normal semi-finite faithful (n.s.f.) weight on M. Then one defines

Ny :={x € M:g(x"'x) <oo}, My:=N,MN, and
My = {x € M : g(x) < oo},
Ann.s.f. weight ¢ on M is called left invariant with respect to A if
(1®@)A(x) = p(x)1, x€ M.
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A Kac algebra K is a quadruple (M, A, k, ¢) consisting of a co-involutive Hopf-von
Neumann algebra (M, A, k) and a left invariant weight ¢ on (M, A) such that the
following two equations hold:

(1@ @)(A(x)(19x2)) = (1@ @) (1@ x1)A(x2)) x1,x2 €Ny,

Koo';”:(rftox teR,

where (07);cr denotes the modular automorphism group of ¢. The weight ¢ is
also called the left Haar weight.

If M is commutative, K = (M, A, «, ¢) is called abelian. If {o A = A, K
is called symmetric. Abelian Kac algebras can be identified with locally compact
groups G so that we get M = L®(G); if they are additionally symmetric, they can
be identified with locally compact abelian groups.

Now, let Hy be the GNS-space induced by ¢ with the embedding A, :
Ny — Hy and the scalar product

(Ap(x1),Ag(x2)) := @(x3x1), x1,%2 € Ny.

If B(H,) denotes the set of all bounded linear operators on Hy, the so-called
fundamental operator W € B(H, ® Hy) associated with K is defined by

W(Ag(x1) @ Ag(x2)) 1= Agag(Alx2) (11 @1)),  x1,%2 € Ny
Therefore, the Fourier representation A of K is introduced by
A:Mi — B(Hy), Mi3w— (w®1)(W").

By means of A, the von Neumann algebra M is defined by the double commutant
of A(M.), ie. M := A(M,)", and the C*-algebra associated with M by M, :=

o, L horm

A(My) . The dual Fourier representation A of K is defined by
At M, — B(Hp), M.30— (1®0)(W)e M.

Overall, in Theorem 4.1.1 of [3], it is obtained a duality theorem, i.e. for every Kac
algebra K = (M, A, «, ¢), there is a dual Kac algebra K = (]\71, A, %, §) such that the

bidual Kac algebra K is isomorphic to K. This result generalizes the Pontryagin
duality theorem for locally compact abelian groups, see e.g. Theorem 1.7.2 of [13].

A Kac algebra (M, A, «, ¢) is called compact if ¢ is finite, and it is called dis-
crete if the predual M, of M is unital. By Theorem 6.2.2 (Theorem 6.3.2) of [3],
compact (discrete) Kac algebras generalize compact (discrete) groups. Moreover,
with regard to Theorem 6.3.3 of [3], K is compact if and only if K is discrete.

In [17], [18], S.L. Woronowicz introduces the notion of compact quantum
groups, which are more general than compact Kac algebras. Nevertheless, the
definition of compact quantum groups is so simple that it guarantees the exis-
tence of the Haar state ¢, whereas its existence has to be assumed in case of com-
pact Kac algebras. Furthermore, in case of compact quantum groups, the overall
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representation theory remains more or less the same, but the co-involution (an-
tipode map) x can be unbounded, and we may have x> # . This leads to techni-
cal difficulties so that we formulate our results within the framework of compact
Kac algebras. For further discussions on compact or discrete quantum groups,
respectively, we refer to [11], [15], [16].

For the following, let K = (M, A, «, ¢) be always a compact Kac algebra.
Then, by Theorem 6.2.1 and Corollary 6.3.4(i) of [3], K and its dual, discrete Kac
algebra K= (]\7[, AR, @) are unimodular, i.e. ¢ is a k-invariant trace as well as @ is
a k-invariant trace. Now, see [2], [14], one defines the LP-spaces L¥ (M, ¢) for all
p € [1,0) to be the completion of the set {x € M : ||x|/,,¢ :== ¢(|x|F)1/P < oo}
with respect to the LP-norm || - [| 4.

Furthermore, according to Theorem 6.2.5(iii),(v) of [3], it is possible to de-
compose the Fourier representation A in a direct sum of irreducible, finite-dimen-
sional x-representations (A;);c; of My with A;(w) := A(w)p; for all w € M, and
i € I, where I denotes an index set and {p;};c; denotes the set of all minimal
central projections in M. Therefore, for every i € I, there exists a Hilbert space H;
with d; := dim H; < oo such that
(1.2) M=@B(H;) and §=) dTr,

i€l i€l

where Tr; denotes the canonical trace on B(H;) for all i € I. In fact, taking
into account Theorem 6.2.6(i),(ii) of [3], every non-degenerate *-representation
of M, is decomposable into a direct sum of irreducible, finite-dimensional *-
representations of M., where every irreducible *-representation of M, is auto-
matically finite-dimensional and equivalent to a component of the Fourier rep-
resentation A of K. Consequently, A is the sum of all equivalent classes of irre-
ducible *-representations of M.

In the situation of a compact Kac algebra K = (M, A, x, @), we have zm(P =
Ny = M. For all x € M, we define elements wy € M, by wy := ¢(- x). Therefore,
wy is square-integrable, i.e. wy € T with

T :={w € M, : 3L > 0such that [w(x")| < L||Ayp(x)||Vx € Ny},
where T = L!(G) N L?(G) in case of the abelian Kac algebra K, (G) with a locally

compact group G. Let K = (M, AR, ¢) be the dual, discrete Kac algebra of K.
Then one defines

7 := {0 € M, : 3L > 0 such that |[8(y*)| < LAz Vy € N5}
Now, we introduce the Fourier transform F(x) := A(wy) € AM(Z) C Mofx € M
and the inverse Fourier transform F~1(y) := A(6,) € AMI) C Mofy e Mg C
M with 0y = ¢(y) € 7 C M., which are formally defined in [7] for all x €
AMZ) € Mand for all y € A(Z) € M in case of an arbitrary locally compact

quantum group in the von Neumann algebraic setting introduced in [10]. The
corresponding C*-algebraic version of a locally compact quantum group is given
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in [9], where, in particular, a general duality theorem is shown. This category
includes both the Kac algebras in [3] and the compact quantum groups in [17],
[18]. But, in contrast to compact quantum groups, the existence of the left Haar
weight ¢ has to be assumed in the definition of locally compact quantum groups
in [9], [10].

Moreover, as in case of groups, we have the Fourier inversion theorem

(1.3) F Y Fx)=x and F(Fly) =y

as well as the Plancherel formula

(14)  G(F) F(x)) =xix) and o(F (1) F (12) = §(viv2)

givenin [7] when x = x; = x; € A(Z) C Mand y = y; = y» € A(Z) C M, which
can be easily generalized to the above formulas by the standard “polarization
identity” technique.

Since ¢ and ¢ are faithful, we identify 9, and 95 with A,(9,) C Hy and
A¢(‘ﬂ¢) - H@, respectively. Let 7 and F —1 also denote the extensions of the
Fourier transform and the inverse Fourier transform on H, and Hy, respectively.
Then, for all §, 17 € Hy, we define a convolution * on H, by

(1.5) Exyi=TF HF(@)F (),

which is based on the convolution * on A(Z) € M introduced in [7].

Now, for the rest of the paper, we make the following general assumption: We
assume that K = (M, A, «, ¢) is a compact Kac algebra such that ¢(1) = 1. More-
over, A will always denote the Fourier representation of K and K = (M, AR, §)
the dual, discrete Kac algebra of K with the dual Fourier representation A of K.
Furthermore, F and F 1 will always denote the Fourier transform and the in-
verse Fourier transform, respectively, as well as {p;}ic; the set of all minimal
central projections in M with dimensions d;.

2. CHARACTERS IN COMPACT KAC ALGEBRAS

Since the p;, i € I, are projections of the aforementioned type, we have p; €
im¢ - 9“(@ C ]\71, and each p; is contained in the domain of F -1, Consequently,
the expression F~!(p;) makes sense and the following definition is valid.

DEFINITION 2.1. Foralli € I, we define

_ F )
Xi = T,

and call x; € A(Z) C M the character of pi-

Since ¢ is a state and, taking into account Theorem 6.2.5(ii) of [3], A(¢) is
a central projection pg such that dy = 1, which projects Hy, onto CA,(1) = C1,
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we have A(p) € Mgz C NG C M. Hence, A(¢) is contained in the domain of

F~1. Consequently, the expression F~!(A(¢)) makes sense and the following
definition is valid, too.

DEFINITION 2.2. We define a character x( by

Xo:=F (M),
and call xo € A(Z) C M the one-character of K.

In order to show that our definition of a character is consistent with the
character in [17], [18] for compact quantum groups, we need the following

DEFINITION 2.3. For all i € I, we define an irreducible, finite-dimensional
*-representation AS of M, by

Af(a)x) = /\,’(C&)K(x*)), xeM,
and call A{ the conjugate representation of A;.

REMARK 2.4. (i) According to Theorem 6.2.6(ii) of [3], every irreducible *-
representation of M., is equivalent to a component A; of A. Hence, it suffices to
define the conjugate representation of A; for each i € I. Since, by Lemma 6.1.1(i)
of [3], the set {wy : x € M} is dense in M., Definition 2.3 is valid.

(ii) Regarding A; as an element of B(H;)®M, we get

AF = (Fex)(h),

where * here denotes the involution on B(H;). Hence, Definition 2.3 is consistent
with the conjugate representation in formula (3.11) of [17] and [18] for compact
quantum groups generalizing the corresponding notion for compact groups.

LEMMA 2.5. Foralli € I, we have

Xie = Xl*’

where x;i denotes the character of the minimal central projection pjc of the conjugate
representation AS of A,;.

o~

Proof. Let y € Mg such that 6, := ¢
trace, we have Qf(y* )y =10y by Lemma 6.1.1(ii) of [3]. Since p; € M and since Ais

(-y) € M,. Since § is a k-invariant

a x-representation of M., we get, foralli € I,
dixic = F 1 (pie) = Mbpe) = Abz(pr)) = A(6,) = A(6p,)" = F ' (pi)* = dix}.
Thus we have x;c = x; foralli € I. 1
LEMMA 2.6. Foralli € I, we have

Xi = (Tr; @ 1) (A).
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Proof. According to [7], we have Ag(x) = Ag(F(x)) in Hp forall x € M
and Ay (F1(y)) = Ag(y) in Hy for all y € M. Hence, on the one hand, we get

by Lemma 2.5, for all x € M and any fixed i € I,

(dixi, wx) = (FH(pi),wx) = @(F 1 (pi)x) = (Ag(x), Ap(F 1 (pi)*))
= (Ap(x), Ap(F Hpie))) = (Ag(F(x)), Ag(pie))
= 9(picF(x)) = @(pic F(x)).

On the other hand, regarding A{ as an element of B(H;)®M and using the de-
composition of ¢ into Y d;Try by (1.2), we obtain, for all x € M and any fixed
kel

iel,
(di(Tr; @ 1)(A7), wx) = diTri(Af (wx)) = §(Af(wx)) = P(pieA(wx)) = @(pieF (x))-

Since, by Lemma 6.1.1(i) of [3], the set {wy := ¢(- x) : x € M} is dense in M,, we
finally get, foralli € I,

Xi = (Tr; @) (A). W

In accordance with Lemma 2.6, our Definition 2.1 of a character is consistent
with the definition on p. 657 of [17] and [18] of a character of a finite-dimensional
representation of a compact quantum group generalizing the corresponding no-
tion in the situation of compact groups. Consequently, our characters possess all
the classical properties known in case of compact groups, see e.g. [6]. In particu-
lar, taking into account Theorem 6.2.6(i),(ii) of [3], for every i € I, there are finite
subsets K; and L; of I both containing the index 0 such that we have the following
decompositions

(2.1) Xixi= ), mxe and xixi =) mxu,

kGK,‘ lELi
where 1y and m; denote the multiplicities of xx and x; for allk € K;and I € L;,
respectively.

PROPOSITION 2.7. Foralli,j € I, we have
Xi*Xj = %51‘]'7({,
1
where 6;; denotes the Kronecker symbol and the convolution * is given by (1.5).

Proof. Applying the Fourier inversion theorem (1.3) and the orthogonality
of the set {p; }ic;, we get, foralli,j € I,

xXixxj=F HFoa)F(x)) = F! (F(F;fpi))f(F;fPf)))

/11 1 Ly ifi=j],
=F Y =p=p:)=-—"F Upp;) =<4
<dipldjp]> did; (pipj) {0 ifi £j. n
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PROPOSITION 2.8. Foralli,j € 1, we have the orthogonality relations
e(Xixj) =0 and @(xix;) = dij.

Proof. Using the Plancherel formula (1.4), the orthogonality of the set {p; };c;
and the decomposition of ¢ into ), d;Try by (1.2), we obtain, foralli,j € I,
kel

]:_1(?:'))*]:

P(Xi xj) = fP(( d; _1(pj)) -

dj

1 & Cker diTri(pi) = 5diTri(pi) = d? =1 ifi =},
P(pidij) = % 1 ’ e
0 ifi #j.

Since ¢ is a trace, we get ¢(xix}) = & foralli,j € I, too. 1

idjsv(f‘l(m)* Y(pj) = ddsv(pm])

PROPOSITION 2.9. Let | be a finite subset of I, and let a; € C forall j € ]. Then
we have, with f := Y a;jx;,
i

||f||2¢_\/W in particular HZ]—' (pj H \/ﬁ and HZX]H \/>
je

Proof. Applying Proposition 2.8, we get
1£134 = @(I£1%) ((2%) Yaxe) = L L aag(xixe) = L laj
ke] j€Tke] i€l

PROPOSITION 2.10. Let | be a finite subset of I, and let a; € C forall j € ]. Then

we have, with f := Y, ajxj,
j€l

1 fll1,p < [Y_laj|?, in particular HZ]—' (pj H /ZdZ and HZX]H <\/7
jeJ j€Il

Proof. Since ¢ is a state on M, it follows from the Cauchy-Schwarz inequal-
ity that, forall x € M,

217, = (2(1x)* < p(De(x"x) = (|x[*) = [|x]3,-
Consequently, since f := }_ a;x; € M, we get the assertion by Proposition 2.9. 1
j€l

LEMMA 2.11. Foralli € I, we have
3
||Xi||2,q)

|| i||4r(P

< lxille-

Proof. Since ¢ is a trace on M = 91, = M, it follows from Holder’s in-
equality, see Théoreme 3.6 of [2], with p = 3/2 and q = 3 that, foralli € I,

o(1xi?) < (@) (@ (lxil))'.
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Therefore, we get, foralli € I,

X130 = (2(xil*)>2 < oD (92D = llxi P
PROPOSITION 2.12. Let a; € C forall i € 1. Then we have, for any fixed i € I,

1/4 1/4
= |ai\< ) n,%) = |ai|( ) m%) , in particular

llaix
kGKi ZGLi
1/4 1/4
IF  pi)lag=di( E ) " =di( X mP)  and
kEKl‘ ZGLI*
1/4 1/4
Il = (X nt) " = (X m)
kEK,‘ lEL,‘

Proof. Applying Proposition 2.8, we have, foralli € I,
o((xi )% = oG xix) = oG x) Gixa) = o (X ”ka) (¥ mn))
kekK; leK;
=Y Y mmelxx) = Y ni

keK; I€K; kek;
In like manner, we get ¢((xix;)?) = ¥ m7? foralli € I. Since ¢ is a trace on
IGLI'

M =M, = My and x; € M for each i € I, we obtain, by Lemma V.2.16 of [14],
foralli €I,

p((xixi)?) = e(xixixi xi) = e(ixixixi) = e((xixi)?).
Hence, it follows that

||ﬂiXi||iq, = o((laixi))*) = lai*e(x;xi)?) = lai|* Y nf = |a;|* Y m],
keK; leL;

and we get the assertion. 1
PROPOSITION 2.13. For any fixed i € I and for all k € K; and | € L;, we have
ng < dk and m; < dl-

In particular, if di = 1, we have ny, = 1. Similarly, if d; = 1, then m; = 1. Thus we get,
foralli € I with K} := K;\{0} and L := L;\ {0},

Xixi=xo+ Y mxe and xixi = xo+ Y, mix.
kek] leL]

Hence, the one-character o of K occurs exactly once in the decompositions of x7 x; and
Xix; foralli € I, respectively.
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Proof. Using the Fourier inversion theorem (1.3) and the orthogonality of
the set {p; }ic1, we get, for any fixed i € I and for all k € K;,

Foxixom = F( L n)w = T mF o) = e ¥ nF ()

jek; jekK; jekK; d;
n; n
j k
= Pk Z 5 Pi = 5 Pk
jek; d; dy

Since py is the identity operator in B(Hy) for all k € K;, we obtain

IPell gz = Pkl = 1-

Regarding Proposition 2.4.6(i) of [3], we have [|A(w) || 5 < [lw|[pm, forall w € M..
Since ¢ is a trace on M, the Banach spaces M, and L!'(M, ¢) are isometrically
isomorphic by Theorem V.2.18 of [14]. Therefore, applying Proposition 2.8, we
get, for all k € K;,

M _ My || %
7= g Idla=| e

= I ax) prll g < 7 G i) gl el = 1 O ) U
= M)l < oy v = Ixixille = (i xi) = 1.

Hence, we have shown n; < di for all k € K; and any fixed i € I. Similarly, for
any fixed i € I and for all/ € L;, we get the second inequality m; < d;. 1

THEOREM 2.14. Let a; € C forall i € 1. Then we have, for any fixed i € I,

|ail |4

laixilli,p = > = = in particular
\/ZkeKi 1y \/):leLi m
_ d; d;
| F 1(1’1‘) Ly = L > = : > >1 and
\/ZkeKi ny \/ZleLi mj

I xi

1
Ly 2 2 2
\/ZkeK,» ny \/ZleLi m;

Proof. For any fixed i € I, it follows from Lemma 2.11 and Propositions 2.9
and 2.12 that

Ixil3o — lai ]

NP - '
il VEZkek e/ Lier, M7

Since the dimension of x;x; is equal to dlz, we obtain, with regard to the decom-
position x;x; = ¥ myx; by (2.1), foralli € I,
ZGLI'

laixille = lailllxillLe = lail

2
di = Z mldl.
IGLI‘



386 TOBIAS BLENDEK AND JOHANNES MICHALICEK

According to Proposition 2.13, for any fixed i € I and for all [ € L;, we have
m; < dj. Thus we finally get

d; B \/ZleL,» myd, \/ZleL ml -

\/ZleLi mlz \/ZleLi m12 \/ZleL ml

3. CHARACTERS DEFINED BY A SIDON SET

Since best for our purposes, we use the characterization of a Sidon set by
Theorem 5.7.3(e) of [13] in case of compact abelian groups or Theorem 37.2(iii) of
[6] in case of arbitrary compact groups, respectively, for the following generaliza-
tion of the concept of a Sidon set to compact Kac algebras.

DEFINITION 3.1. Let E be a subset of I. We call £ := {p;};cg a Sidon set if
for every ¢ € ( Y pi)]\//\fc = {( Y pi>y NS MC}, there is an w € M, such
i€E i€E
that, foralli € E,
ypi = AMw)pi-
We can choose w in such a way that there is a constant B¢ depending only on £
such that

lwllas. < Bellwll g,
REMARK 3.2. Since M. 2 Co(I') for locally compact abelian groups with

dual group I' and M, = €y(X) for arbitrary compact groups with dual object X,
Definition 3.1 actually includes the above mentioned classical cases.

Now, we modify the Rademacher functions, see e.g. [19], which are used in
the proof of (0.1), see Theorem 5.7.7(3) of [13].

DEFINITION 3.3. Letn € N. Forj = 1,...,n, we call the complex-valued
functions r]-(-) on [0,1] defined for all t € [(k — 1)/4f,k/4j] andk=1,...,4/ by
1 if k =1 mod 4,

i if k =2 mod 4,
—1 ifk=3mod4,
—i ifk=0mod 4,
where i denotes the imaginary unit, modified Rademacher functions.
LEMMA 3.4. Let n € N. Foralli,j,k,1 € {1,...,n}, we get

1 1 ffi=jandk =1,
/rl-(t)rj(t)rk(t)rl(t) dt =41 ifi=landj=k,
0 0 otherwise.
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Proof. The first two cases follow from r](t) rj(t) =1forallj=1,...,nand
€ [0,1]. In the third case, the intregrals cancel each other out. 1

DEFINITION 3.5. Let x : [0,1] — M. For all p € [1, ), we define

1
Il g1 = /|| Wheat)”" = ([ gtz ar)”.
0

LEMMA 3.6. Let £ = {p; }icg bea Sidon set with constant Bg, and let | be a finite
subset of E enumerated by ju, m = 1,...,n:=|]|. Leta;, € Cforallm=1,...,n

n
Let f:= Y aj, X, andletrj (-) :=rm(-), m =1,..., n, be the modified Rademacher
m=1

functions on [0,1] as well as g : [0,1] — M such that g(t) := i tin ()8, X, for all
m=1
t € [0,1]. Then we get
18ll1,0,00,1) < Bell fll1,q-

Proof. For the following, we write j instead of j,, in order to simplify the
notations, i.e. f = ) a;x;and g(t) = ¥ rj(t)a;x; . Forall t € [0, 1], we set
j€] j€J

) =Y re(Bpe =Y pi Y re(t)pr
ke] it ke

Since p; € B(H;) = Aj(M,) for alli € I, we have §(t) € ( r pi> M, for all t €
i€eE

[0,1]. Consequently, regarding Definition 3.1, for each such (t) with t € [0,1],
there is an w(t) € M, such that, foralli € E,

Pp(t)pi = Mw(t))pi and |lw(t)|m, < Bellp ()| 5.-
Therefore, we get, forall t € [0,1],

1
Z’j(t)“fjpj =7l szafd pj = Z”Jd pj= Z“Jd]

j€J ] ke] j€l IS
= a;— a;
=) j 1)) j PJ
j€J d j€l d

According to the Fourier inversion theorem (1.3) and the convolution * in M, by
(1.1), we obtain, for all t € [0,1],

]

F1(p;
:er(t)”jjpj: Za]dp]_/\ )L aF ( d{(p)>

jeJ ] je] ] jeJ ]
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]-"( Z}a]-)(]) = /\(“’(t))/\(“’&g}am) = AMw(t) * wzjejﬂ]xj).
je

Hence, since A is faithful, i.e. injective, with regard to Corollary 4.1.3(ii) of [3], we

have w,;) = w(t) *wy. 4., forallt € [0,1]. Consequently, since the Banach
8(t) Lie] 9jXj
spaces L'(M, ¢) and M., are isometrically isomorphic by Theorem V.2.18 of [14]

and since ||y (#)[| ;. = 1 for each t € [0,1], it follows that, for all t € [0,1],
18 g = g, = o) <@g allan, < l(®) . log, a

x|, < Belw Ol flg = Bellflhp.
j€]

= [lw(®)Im,

Since the right side does not depend on ¢, we finally get

o dt = Be| f

1+ 1

1
I8l g0 = [ 180
0

REMARK 3.7. In fact, in the proof of Lemma 3.6, we even have ¢(t) €
( Y pi) 3(M,) for all t € [0,1], where 3(M.) denotes the center of M..
icE

For the following, we write j instead of j;; as in the proof of Lemma 3.6 in
order to simplify the notations, i.e. f = }_ a;x; and g(t) = ¥ ;(t)a;x;-
i€l j€]

Similar to Lemma 2.11, we need the following

LEMMA 3.8. Let ] be a finite subset of 1. Then we have

118113,4,10,1) 01) ¢ gl
T Sl
4,9,0,1]

Proof. Since the Rademacher functions r; ( ) ] € J, are constant on the inter-
vals [(k—1)/4",k/4"] C [0,1] forallk = 1,...,4", respectively, the restriction to
the interval [(k —1)/4",k/4"] of g forall k = 1 .,4" does not depend on t. Thus,
foreachk =1,...,4", weset g 1= g(t) e M for allt € [(k—1)/4",k/4"]. Now,
forall k =1,...,4", let M be the unital, commutative C*-subalgebra of M gen-
erated by |gx| and the identity 1 € M. With regard to Gelfand’s theory, My can
then be identified with the continuous, complex-valued functions C(spec(My))
on spec(My), where spec(My) denotes the compact Gelfand space of My, which
is homeomorphic to the spectrum spec(|g|)-

If we denote the restriction to My of ¢ by ¢| M, forall k = 1,...,4", we
may therefore identify ¢y, with a continuous linear functional on C(spec(Mj)).
Hence, Riesz’ representation theorem guarantees the existence of a regular Borel
measure dyy on spec(My) such that, for all x € My = C(spec(My)) and for all
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o) = [ xdm
spec(My)

Now, let dt; be the restriction to [(k —1)/4",k/4"] C [0,1] of Lebesgue measure
dt for all k = 1,...,4". If we set Ay := spec(My) x [(k — 1)/4” k/4"] for all

k = 1,...,4" with the product measure dy; ® dt, and A := U Ay with the
k=1
product measure dy ® dt, we have

4n k/4m"
/(P () dt— / /ng\dﬂkdtk—Z /ngldyk®dtk—/lg )l dp@dt.
(k 1) /4" spec(My) a Ak

Consequently, according to the modified Rademacher functions, we succeeded
1
in writing [ ¢(|g(f)|) dt as a measure integral. Thus we may apply Holder’s

0
inequality, and we obtain, with p =3/2and g =3,

1 1 1
[otswPrar< ( [otswna)”( [ (sl
0 0

0

Therefore, we get

1 1
1815 4,011 = /fp g (#) /q) 18(t) dt /fp 18 (t) )ohf)l/2
0 0

:||g||1,¢,[o,1]||g||4,¢,[0,1]. '
LEMMA 3.9. Let ] be a finite subset of 1. Then we have
||8||2,<p,[0,1] = 2 |ﬂj|2-
i€l
Proof. Regarding the Plancherel formula (1.4), the orthogonality of the set
{pi}icr aswellas rj(t)r;(t) = 1forall j € Jand t € [0,1], we get

1
813 00 = / lg(t)15,dt = / o)) dt = [ p(g(t)g(t)) dt
0

1
= /(P ]X]) Erk(t)uk?(k) dt
0 ]e] kejJ
1
fﬁl(i’i) * F ' (px)
:/(p Y r(#)a L) qt
[o((Zris=57) Enton— )
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<P(Fl<2rj(f>“f%Pf>*Fl(Zrk(t)a"dlkpk>)dt

j€J ] keJ

@( ( er(t)”f;jpj) * lgrk(t)”kdlkpk) dt

j€]

O\_ O\H o O—

(ZV] P/Z”k ”kdlkpk) dt

j€l
1
= (er (£)]aj* zPJ / ZW )
j€l 0 j€] ]

Since q)( |aj|?(1/ dz)p]) does not depend on ¢, it follows from the decomposi-
jel
tion of ¢ into Y d,Tr; by (1.2) that
i€l

1

/ Z|“1|2 zpf)dt_ <Z|“1|2dzpf> Z‘”ﬂzdz(f’ pi) Z|”J|2dzszrl Pj)

0 j€l ] j€J j j€] je] j i€l
—Z|“1| dTr (pj) = Z|“ =) lajf*.
j€J J j€J i€l

Altogether, we have shown the assertion. 1

LEMMA 3.10. Let ] be a finite subset of I. Then we have

2 2
4 2, % 2 *
I8l g0 < 2((ZlaiPan) ) +o( (X lailPxixg) ).
€] j€]
Proof. Since K= (M, A, «, ¢) is compact, we have ¢ € M. Consequently, the

1
integral | dt and ¢ can be exchanged. Since ¢ is a trace on M = 9, = M, we

0
therefore infer from Lemma V.2.16 of [14], Lemma 3.4 and Proposition 2.12 that

||g||i¢,[o,1]

1 1 1
= [llg®)lat = [ ol dt = [ o((g(t)"g(t))?) at
0 0 0

1
:/(p(( ri( J(:) Y ori(t) ]Xj( rk(t)ak)ck) Y onl(t ﬂle)
0 1€

j€l keJ leg
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= qv(zazxz Y oaixi Y mxi Zam (re(B)ri(t) df)
ie] jeJ ke] le]

= o( T loilPxix ¥ laxPaine) + q»(zaixi (X 1o Py )aixi)
j€T keJ i€] IS

—o( L lalxinixixi)

ic]

o K o 2ixe) + o Lan (Da i )aixi) = ¥ laixilld

j€J icJ] ic]

;%7 X Z a2 ) +o (L aind (Zlajl%x,) aii ) -3 laif* Y

j€J ie] i€] kek;

(

(

(Zlefxixg T o) + 9 (L ( Ll o)
(

(
=

=¢
=9

%

Ll i) ) + Dl Xl i)

ic] el

=¢

=9
ie] j€j

(.
(2|a Beix) ) + Sl oo (uxind)
(Zla | x]x]') )+¢((;|aj|2xjx;*)2)~ I

PROPOSITION 3.11. Let | be a finite subset of I. Then we get

2 2
o((LlalPxix) ) =1 (X lajlPni)
(T xin)) = L (L)
where nj; denotes the multiplicity of x; in the decomposition of X}F Xjforallj € ]. Simi-
larly, we get

2 2
o((XlalPxxf) ) =X (X lajPm)
(L)) = L (T am)
where m;; denotes the multiplicity of x; in the decomposition of ij;-‘ forallj € J.

Proof. Using the Plancherel formula (1.4) and the Fourier inversion theorem
(1.3), we get

o((Zlofxix) )
= go((; a2 ( 2] laiPx;x;) ) =9 (F ( 2] laiPxix;) F( 2] aix;x7))
= (?(]:(ZWZ )y nka)*f(Z\ﬂj|2 ) nka))

jej keKj j€] keKj
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( (Z|ﬂ]|2 Z kdek) <Z|ﬂj|2 Z nkdk?(k))

jel kek; keK;
- «E"”'ZEK 2T F ) ( jezl|aj|2kezl<j2:f<f1<pk>>))
= @((glﬂjlzkg kak) (%Iﬂjlzk&?;pk)) — (ﬁ((%aj|2k§<j’;;pk)z).

Arranging the characters according to their occurrence in the decompositions of
the products x7x; for all j € J by (2.1), it therefore follows from the orthogonality
of the set {p; }ic; and the decomposition of ¢ into } d;Tr; by (1.2) that

lel

o((Shh L in))

0% ;pl<wﬂl> ) = (L o Do)
:Z; (Z|a]| nl> Tr; (p;) —Zdz(Z\a]\ nl) :Z<Z|”j|2ﬂij>2.

z' jej iel *i icl “jej

Altogether, we have shown the first assertion. Similarly, we get the second one. 1

THEOREM 3.12. Let & = {p;}icE be a Sidon set with constant Bg, and let | be a
finite subset of E. Let a; € C forall j € |, and let f := jg] ax;-

@) If, for all j € ],
Xjxj=2xo and Xjxj = Xo,
where xq denotes the one-character of K, we get

1 £12,9 \/2”7 < \fZBngHLq), in particular
j€
(PaEas H \/ﬁ < V2B | L (py H and
i€l IS €]
sl = i< Ve g,

(ii) If, forall j € ],
(1)

XjXj = Xo+X;

2
and XiX; = X0+ X\,

where ) denotes the one-character of K as well as )(](.1) and )(](2) are characters such that,
forallj,j" € Jwithj # 7§,

x]“) 7 X,(»/l) and x]@ 7 x](-/z !
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we get

(Sey la2)’

5 gszngHl,q,, in particular
(Ziey la2)" + Tjey lagl*

3
(Zjeidjz) \fBgHZ]: p] H and
(Tier ) + e d? jel

12 }
Vi1 S \/EBSHJ.GZIXJHW
(iii) If, forall j € ],

Xixi=xo+ ) xe and Xixi =Xxo+ ) xu
keKJf leL;

where ) denotes the one-character of K, such that, for any fixed j,j’ € J with j # j as
well as for all k € K, k' € K;, and forall 1 € L, I' € L;.,,

Xk # X and X1 # Xv,

we get

3
(Eje] |ﬂj|2)
2
(Sjey la2)" + Tjey (@ = 1)lajl4

(Sjer?)’ <VEB| L F ), and
(Eje]dz)vaZjE](dzfl)d j€] !

3
s < v 2l

Proof. (i) Since )(] Xj = Xoand X]'Xj = xoforallj € J,wehaveng, = mp, =1
for all j € J, while ni; = mj = Oforalli # 0andj € J. Hence, regarding
Lemma 3.10 and Proposition 3.11, we get

1814 j01) < (g aPxx) ) + qv((;lajlzm;*)z)
-y (Z jaj2n; ) +2 (T |aj|2mi],)2

icl icl "jej

< \@BngHL(P, in particular




394 TOBIAS BLENDEK AND JOHANNES MICHALICEK
2 2 2
= (L) + (TlaP) =2( T lel?)
IS j€J j€l
Together with Lemmas 3.9, 3.8 and 3.6, it follows that

(Serl)” sl gpen
()" e

Consequently, by Proposition 2.9, we have shown the assertion.
(ii) By Proposition 2.13, xo occurs exactly once in each decomposition of Xf Xj
and )(]-)(]’.‘ forall j € J. Thus, as in (i), we have no, = mo; = 1forallj € J. Hence,

< [I8ll1,g,00,1) < Bellfll1,9-

(1) # xo and )((2) # xoforallj e ]such that n(l) = ](2) =1 for allj € J, while

all other multiplicities are zero. Since )(] 75 )( ) and X j 7é )(/ ) for all i€
such that j # j/, we infer from Lemma 3.10 and Proposmon 3. 11 that

,¢,[0,1]

<9 ((jglﬂjlzxfxf')z) +(p((j§ Iaj|2x]~x}f)2)=g(% Iaj|2nij)2+2 (© Iaj|2mij)2

icl jeJ
2
~(Tla?)’ X P2 (Tlal) + a2 =2(( Sl ) + X layl).
j€l j€l €T j€J J€T
Together with Lemmas 3.9, 3.8 and 3.6, it follows that

(Zje} \ajlz)m 181, 0.
: 7S g2 o S
(2((Zjef|ﬂj|2) +2j€]|ﬂ]’|4)) 8l40,01)

(iif) Similar to (ii), we infer from Lemma 3.10 and Proposition 3.11 that

18114 g0 < w((glﬂflz?c?xf')z) + <P((§Ilﬂf|2m}‘ ))
= (Z |a]|2nZ ) +Y (Z |aj|2ml-],)2

901 S

icl iel "jej
= (ZlaP) +Z T (a2 + (Sla?) + X T (o)
jeJ ]e]keK’ j€] je]leL}
2 2
= (L 1a?) + T IKlajl* + (L lajl?)” + X L]l
j€J j€J j€J j€l

Since the dimension of )(]’f xj and x; )(;-k is equal to djz, respectively, the index sets
KJ/ and L} are greatest if x; and x; are characters of one-dimensional projections



L'-NORM ESTIMATES OF CHARACTER SUMS 395

forallk € Kiand !l € L;.. Therefore, for all j € ], we can estimate the cardinalities
|K]’| and |L;| from above by

K| <d?—1 and |Lj| <df—1.

Thus we have

114 01 < ((Zlafl) + L = Dlaylt).

j€l
Together with Lemmas 3.9, 3.8 and 3.6, it follows that
3/2
Yiey lajl? g3
( o ) 7 S 2o /o] [01] ]

(2((21'@|“]'|2)2+Zje](d]2—l)\a]-|4)> ||g||4¢ 0]

REMARK 3.13. Let G be a compact group with the dual object X of G. For
each o € Z, let U(") € ¢ be a continuous, irreducible, unitary representation of
G with the representation space H,. According to Definition 4.1 of [5], a subset
E C Xis called lacunary if the two following conditions are satisfied:

(i) Whenever (v, 8) and (1, ¢) are different pairs from E, i.e. the corresponding
characters x,ap and X, are different from each other, then the representations
U @ U and U @ U are disjoint, i.e. no irreducible component of U®) ©
UP) is equivalent to an irreducible component of U(") ® U(®).

(ii) There is a constant K such that, forall«, § € E,

Ny,p <K,

where 7, g denotes the number of all irreducible components in u® o u
counted with multiplicity.

In general, regarding p. 447 and Theorem 37.10 of [6], a lacunary subset of
X is not a Sidon set.

Now, for all j € ], the special decompositions of the products X}k xjand x; )(]’.‘
in Theorem 3.12 are motivated by the above property (i) of a lacunary subset.

REMARK 3.14. (i) Let G be a compact abelian group with the dual group I
of G. Then we have, forall y € T,

Tr=77= 7 =1c,
where 1 denotes the one-character of G. Consequently, all continuous characters
v € I fulfill the special decompositions in Theorem 3.12(i).
(ii) Let J be a non-empty index set. For each: € J, let H, be a finite-dimensional

Hilbert space, and let {(H,) denote the unitary group consisting of all unitary

operators on H,. Then G := [] #(H,) is a compact group under the product
L€J
topology. For each : € J, the projection 7, of G onto 4I(H,) is a continuous, irre-

ducible, unitary representation of G. By Remark 37.5 of [6], the set {7, : ¢ € T} is
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a Sidon set in the dual object Xg of G. For each ¢ € J, let T, denote the conjugate
representation of 7t,. Then, by 29.46(b) of [6], we have, forall: €7

QM =1 ® m(l)

with the trivial representation 775 of G and a continuous, irreducible, (4% — 1)-
dimensional, unitary representation 7_([(1) of G. Consequently, it follows for the
corresponding character x; of 7, that, forall 1 € J,

_ 1
XLXl = 19 +Xl( )/

where 1g denotes the one Character of G. If 1,// € J such that 1 # //, we have
X: # Xv, in particular XL ;é X . Thus, the characters y,, ¢+ € J, fulfill the
special decompositions in Theorem 3. 12(ii). In fact, by p. 788 of [5], the Sidon set
{m, : 1 € J} is also lacunary.

(iii) For any fixed i € {0,1/2,1,3/2,...}, let x; denote the character corre-
sponding to the representation T} of G4((2) in accordance with 29.13 of [6]. Then
it follows from Theorem 29.26 of [6] that

XiXi = XiXi = Zxk Xo+ Zxk,

where xq is the one-character of G$1(2). Hence, for all k = 1,...,2i, the char-
acters xj from the decompositions of x7 x; and 7(;-‘ Xj, such that i < j, are equal.
Consequently, the character x; does not fulfill the special decomposition of The-
orem 3.12(iii). In fact, by p. 789 of [5], the dual object Xy () of G4((2) has no
infinite lacunary subset.

Furthermore, for the compact groups 69 (3), (2) and O(3), we get similar
results such that the special decompositions in Theorem 3.12(iii) are not valid,
respectively.

Combining a special case of property (ii) of a lacunary subset in the dual
object of a compact group in Remark 3.13 with Definition 3.1 of a Sidon set, we
make the following

DEFINITION 3.15. Let £ = {p;}icg be a Sidon set. We call £ a Helgason—
Sidon set if there is a constant C > 1 such that, foralli € E,
(3.1) Y m<C
kGK,‘
REMARK 3.16. Obviously, the characters from Remark 3.14(i) and (ii) fulfill

inequality (3.1), whereas in Remark 3.14(iii) we get a constant C; depending on
the character ;.

PROPOSITION 3.17. Let €& = {p;}icr be a Sidon set. Then the following asser-
tions are equivalent:
(i) & is a Helgason—Sidon set.
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(ii) There is a constant C > 1 such that, forall i € E,

Zml<C

lELi
(iif) There is a constant C > 1 such that, for all i € E,
Ixilie = Y mi =Y, mi<
keK; leL;
Proof. (i) = (iii) There is a constant C > 1 such that, for alli € E,
2
Zn%é(znk) <C2.
kEK{ kEK,‘

The rest of assertion (iii) follows from Proposition 2.12.
(iii) = (i) There is a constant C > 1 such that, for alli € E,

Yom< ) m<

kekK; kekK;
(ii) « (iii) In like manner, we obtain this equivalence. 1

DEFINITION 3.18. Let £ = {p;}icr be a Sidon set. We call £ a strong Sidon
set if there is a constant C > 1 such that, foralli € E,

d; < C.
PROPOSITION 3.19. A strong Sidon set is also a Helgason—Sidon set.

Proof. Let £ = {p;}icE be a strong Sidon set. Then there is a constant C > 1
such that d; < C for all i € E. Using the fact that the dimension of xj x; is equal
to d'l?- and regarding the decomposition x;x; = Y mxx by (2.1), we get, for all

kek;

Yo o< ) mdy = 1

keK; kekK;

i€E,

THEOREM 3.20. Let & = {p;}ice be a Helgason-Sidon set (strong Sidon set)
with constant Bg, and let | be a finite subset of E. Let a; € C forall j € ], and let
f=% ajx- Then there is a constant C > 1 such that

i€l

Ifll2p = [Y_1aj1 < V2CBel|fll1p, in particular
j€]

| =7y H \/ﬁ < V2CBe|| L F 1y, H and

j€J j€J

|20, = Vi < vacse| L,
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Proof. By Proposition 3.19, we need only to consider the case that £ =
{pi}icE is a Helgason-Sidon set. Then, according to Proposition 3.17, there are
constants C1, C, > 1such that, forallj € | CE,

2 ng < C] and Z m; <

keK leL

Let C := max(Cy,C;). By rearranging the occurring sums, we thus infer from
Lemma 3.10 and Proposition 3.11 that

n<o((Slafxin) ) +o((S )

j€]

=y (z |aj|2nl-].)2 +y (2 |aj|2ml-].)2

iel " jej iel "jej

<(LX |aj|2nij)2 (X |“f|2mff)2

ielje] ielje]

- <Z|a]-|2 Y nk)2+ (Z|aj|2 Y ml)2 < 2C2<2|a]-|2)2.

j€l keK]- j€] leLj j€l

Together with Lemmas 3.9, 3.8 and 3.6, it follows that

3/2
(Zjes i) 8l p01
V2C Yjej |aj|? ||g||4(p[01

Consequently, by Proposition 2.9, we have shown the assertion. 1

||g||lq2 [01] = < Bellfll,e-
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