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1. INTRODUCTION

In the last few years several papers have been written showing that many
of the operators arising in quantum theory lie in one of two C∗-algebras, which
we call D and E , each of which contains a wealth of closed two-sided ideals.
The ideals are defined by considering the asymptotic behaviour of the operators
concerned in various directions at infinity. The ideals allow one to subdivide
the essential spectrum of operators in either algebra into various geometrically
specified parts. The key papers in this context include [6], [8] and other papers
cited there.

This paper arose from exchanges between the authors about which of the
two C∗-algebras was better suited to studying the spectrum at infinity of vari-
ous operators, particularly elliptic differential operators. The contents flesh out
their eventual conclusion: the smaller algebra, E , suffices for a wide range of uni-
formly elliptic operators, but the larger algebra,D, is needed in a number of more
singular applications.

In this paper we compare D and E under the assumption that they are con-
tained in L(H) where H = L2(RN , dN x). The algebra D is defined to be the set
of all A ∈ L(H) such that

(1.1) lim
k→0
‖Vk AV−k − A‖ = 0
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where Vk f (x) = eik·x f (x) and k ∈ RN . Equivalently Vk = eik·Q where Q is the
position operator. The algebra E is the set of all A ∈ D satisfying the further
conditions

(1.2) lim
s→0
‖Us A− A‖ = 0, lim

s→0
‖Us A∗ − A∗‖ = 0.

where Us f (x) = f (x + s) and s ∈ RN . Equivalently Us = eis·P where P is the mo-
mentum operator. One may also write E = Co G, which is the C∗-algebra associ-
ated with the action of the group G of all space translations Us on the algebra C of
all uniformly continuous bounded functions on RN ; see [11] for details. Note that
E contains every operator of the form f (Q)g(P) where f ∈ C and g ∈ C0(RN).

The algebrasD and E play a remarkable role in the description of the essen-
tial spectrum of partial differential operators, cf. [6], [8]. For example, consider
the following natural question: under what conditions is the essential spectrum
σess(H) of a self-adjoint operator H on L2(RN) determined by its “asymptotic
operators”, obtained as limits at infinity of its translates? More precisely, we say
that Hκ is an asymptotic operator of H if there is a sequence cn ∈ RN with |cn| → ∞
such that Ucn HU∗cn converges in strong resolvent sense to Hκ . We refer to [8], [9]
for recent results on this question and for other references and note the following
simple answer given in [8]: if H is affiliated with E then

(1.3) σess(H) =
⋃

κσ(Hκ),

where
⋃

means the closure of the union.
Note that if H is a self-adjoint operator on some Hilbert space H and A is a

C∗-algebra of operators on H then H is said to be affiliated to A if (H − z)−1 ∈ A
for some complex number z 6∈ σ(H) (then this clearly holds for all such z).

Although one may also use D to study the essential spectrum, the identity
(1.3) need not hold for operators in D. For example, if φ lies in the space C0 of
continuous functions vanishing at infinity, then φ(Q) ∈ D and the only asymp-
totic limit of φ(Q) is 0, but the essential spectrum of φ(Q) is the closure of the
range of φ. We shall see that similar phenomena occur for differential operators;
see Theorem 4.1 and Section 6. In this context it is relevant that if φ ∈ C then
φ(Q) ∈ D but φ(Q) /∈ E unless φ = 0. In particular the identity operator does
not lie in E .

It might be thought that the failure of (1.3) for D rules out the use of D to
investigate the essential spectrum of operators, but this is not the case. The paper
[6] associates a closed two-sided ideal JS with every non-empty open subset S in
RN (or the relevant underlying space) and then defines σS(A) for every A ∈ D
to be the spectrum of the image of A in the quotient algebra D/Js. It is shown
in Theorem 18 of [6] that JS contains all compact operators on L2(RN , dN x), but
the same proof implies that it contains φ(Q) for all φ ∈ C0. Indeed JS contains
all operators in D that have compact support in RN on the left and the right in
a certain natural sense; see Lemma 12 of [6]. If A ∈ D then σS(A) captures that
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part of the essential spectrum of A that is associated with a “direction” at infinity
determined by the set S. See also Theorem 6.2 and the comments after it.

This paper aims to clarify the role that the two algebras play in connec-
tion with certain second order elliptic differential operators; the methods can be
adapted to higher order operators under suitable assumptions. The simplest re-
sults that we obtain are Theorems 1.1, 1.2 and 1.3 below. We also present some
further theorems that involve variations of the technical assumptions needed to
treat more general differential operators; see particularly Section 6.

We start by considering the Friedrichs extension of a non-negative symmet-
ric operator H0 defined on C∞

c (RN) by

(1.4) (H0 f )(x) = −∇ · (a∇ f )(x) = −a(x)∆ f (x)−∇a(x) · ∇ f (x).

More precisely let a : RN → (0, ∞) be a C1 function and let Q0 denote the qua-
dratic form associated with H0. It is defined on C∞

c (RN) by

Q0( f ) = 〈H0 f , f 〉 =
∫
RN

a(x)|∇ f (x)|2 dN x.

The form Q0 is closable in L2(RN) and its closure Q is associated with a non-
negative self-adjoint operator H, called the Friedrichs extension of H0. And H is
affiliated withD (or with E ) if (H + αI)−1 lies in the relevant algebra for some, or
equivalently all, α > 0.

Under the assumptions above our main theorems are as follows.

THEOREM 1.1. If there exists a constant c > 0 such that 0 < a(x) 6 c for all
x ∈ RN then A = (H + αI)−1 satisfies (1.1) for all α > 0, so H is affiliated with D.

THEOREM 1.2. If there exists a constant c > 0 such that c 6 a(x) < ∞ for all
x ∈ RN then A = (H + αI)−1 satisfies (1.2) for all α > 0.

If the conditions of both theorems are satisfied, it follows that the operator
H is affiliated with E .

THEOREM 1.3. If lim
|x|→∞

a(x) = 0 then A = (H + αI)−1 satisfies (1.1) but not

(1.2) for every α > 0. Hence the operator H is affiliated with D but not with E .

2. PROOF OF THEOREM 1.1 AND A GENERALIZATION

In this section we start by proving Theorem 1.1, and then formulate and
prove a more general theorem that has potential for being extended to higher
order elliptic operators.

Proof of Theorem 1.1. Observe first by observing that it is sufficient to prove

that e−Ht ∈ D for all t > 0, because (H + αI)−1 =
∞∫
0

e−t(H+αI)dt in norm.
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We define a new Riemannian metric on RN by ds = a(x)−1/2dx, where dx
is the standard Euclidean metric. The associated Riemannian volume element is
dvol(x) = a(x)−N/2dN x where dN x is the Euclidean volume element. One sees
immediately that

Q( f ) =
∫
RN

|∇n f (x)|2σ(x)2 dvol(x), ‖ f ‖2
2 =

∫
RN

| f (x)|2σ(x)2 dvol(x)

where∇n f is the gradient of f with respect to the new metric and σ(x) = a(x)N/4.
If the distance function with respect to the new metric is denoted by d(x, y) then
the uniform bound 0 < a(x) 6 c implies that

(2.1) d(x, y) > c−1/2|x− y| for all x, y ∈ RN .

If we define the distance d(E, F) between two closed subsets E, F of RN by

d(E, F) = inf{d(x, y) : x ∈ E, y ∈ F},

we are able to apply Lemma 1 of [5]. This states that if φ(x) = eαd(x,E) for some
α > 0 then

‖φe−Ht f ‖ 6 eα2t‖φ f ‖
for every f ∈ L2(RN) and t > 0.

Let PE denote the operator on H obtained by multiplying by the character-
istic function of E, and similarly for F. We claim that

(2.2) ‖PEe−HtPF‖ 6 e−d(E,F)2/4t

for all t > 0. In order to prove this it is sufficient to establish that

|〈e−Ht f , g〉| 6 e−d(E,F)2/4t‖ f ‖ ‖g‖
for all f = PE f ∈ L2(RN) and g = PFg ∈ L2(RN). We have

|〈e−Ht f , g〉| = |〈φe−Ht f , φ−1g〉| 6 eα2t‖φ f ‖ ‖φ−1g‖ 6 eα2t‖ f ‖ e−αd(E,F)‖g‖.

The proof is completed by putting α = d(E,F)
2t .

Now let En be the unit cube in RN with centre n ∈ ZN and vertices (n1 ±
1
2 , . . . , nN ± 1

2 ), and let Pn be the corresponding projection. It is immediate that
‖Pme−HtPn‖ 6 1 for all m, n ∈ ZN and all t > 0 but (2.1) and (2.2) together imply
that

‖Pme−HtPn‖ 6 e−(|m−n|−k)2/4ct

where k depends on N. The proof is completed by the use of the following
lemma.

LEMMA 2.1. If A is any bounded operator on L2(RN) satisfying

‖Pm APn‖ 6 µ(m− n)

for all m, n ∈ ZN , where ∑
r∈ZN

µ(r) < ∞, then A ∈ D.
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Proof. Given r ∈ ZN , we define Br = ∑
n−m=r

Pm APn and represent L2(RN)

as the orthogonal direct sum of the subspaces L2(En). It follows directly from
the definition of the operator norm that ‖Br‖ 6 µ(r) and hence that ∑

r∈ZN
Br = A

as a norm convergent series of operators. It remains only to prove that each Br
satisfies (1.1) and hence lies in D.

One can prove this by considering each term Pm APn independently pro-
vided the norm convergence of VkPm APnV−k to Pm APn is uniform with respect to
m, n subject to n−m = r. This follows from the representation

VkPm APnV−k = e−ik·r(Vke−ik·m)Pm APn(V−keik·n).

Our second version of Theorem 1.1 depends on a very general theorem, that
may be applied to higher order elliptic operators of the type considered in [6].

Given a non-negative self-adjoint operator H on a Hilbert spaceH, we shall
use the following concepts and notation freely. Let G = Dom(H1/2) be its form
domain equipped with the graph topology. Identify G ⊂ H ⊂ G∗ in the usual
manner and let L : G → G∗ denote the unique continuous linear operator that
extends H from Dom(H) to G.

PROPOSITION 2.2. Let {Vk}k∈RN be a strongly continuous unitary group on H
such that VkG ⊂ G for all k ∈ RN . Then the restrictions V′k := Vk|G define a C0-group
of bounded operators on the Hilbert space G.

In applications the conclusions of this proposition are often as easy to verify
as the hypothesis, but a proof may be found in Proposition 3.2.5 of [1].

From now on we assume that the conditions of Proposition 2.2 are satisfied.
By taking adjoints we see that each Vk extends to a bounded operator V′′k on G∗
and that the V′′k form a C0-group of bounded operators on the Hilbert space G∗.
In what follows we use the same notation Vk for these three groups, which of
them is involved being clear from the context.

THEOREM 2.3. Let Lk := VkLV−k ∈ L(G,G∗). If

lim
k→0
‖Lk − L‖ = 0

in L(G,G∗), then

lim
k→0
‖Vk ϕ(H)V−k − ϕ(H)‖ = 0

in L(H) for every ϕ ∈ C0(R).

Proof. A standard argument involving the Stone–Weierstrass theorem shows
that it suffices to consider the case ϕ(H) = (H + I)−1 ≡ R. It is easy to see that
for each k ∈ RN we have

Rk := VkRV−k = (Lk + I)−1|H.
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Hence

‖Rk−R‖=‖(Lk+ I)−1|H−(L+ I)−1|H‖L(H)6‖(Lk+ I)−1−(L+ I)−1‖L(G∗ ,G)
6‖(Lk+ I)−1‖L(G∗ ,G)‖L−Lk‖L(G,G∗)‖(L+ I)−1‖L(G∗ ,G)6C‖L−Lk‖L(G,G∗)

for some constant C that is independent of k subject to |k| 6 1; this uses the fact
that the group Vk is of class C0 in G and G∗.

In the following theorem and elsewhereM denotes the set of non-negative,
real, self-adjoint N × N matrices. The closability assumption of the next theorem
holds if for every ball B ⊂ RN there exists a constant cB > 0 such that a(x) > cB I
for all x ∈ B; see Theorem 1.2.6 of [4].

From this point onwards we put Pr = −i ∂
∂xr

, abandoning the convention
that Pr denotes a projection, unless this is explicitly stated.

THEOREM 2.4. Let a : RN →M be a bounded measurable function and suppose
that the quadratic form

(2.3) Q( f ) =
N

∑
r,s=1
〈Pr f , ar,sPs f 〉

on C1
c (RN) is positive and closable. If H is the self-adjoint operator associated to the

closure then A = (H + αI)−1 satisfies (1.1) for all α > 0.

Proof. The form domain G of H is the completion of C1
c (RN) for the norm

(Q( f ) + ‖ f ‖2)1/2. Formally L : G → G∗ is given by

L =
N

∑
r,s=1

Prar,sPs and VkLV−k =
N

∑
r,s=1

(P + k)r ar,s(P + k)s.

Therefore VkLV−k is a quadratic polynomial in k ∈ RN . The only thing one still
has to prove in order to apply Theorem 2.3 is that G is stable under the multipli-
cation operators Vk = eik·Q. This follows directly from the inequality

Q(Vk f )=
∫
|P f + k f |2a(x) dx62

∫
|P f |2a(x) dx+2

∫
|k f |2a(x) dx62Q( f )+C|k|2‖ f ‖2

where | · |a(x) is the norm on CN associated to the quadratic form ar,s(x).

3. PROOF OF THEOREM 1.2 AND A GENERALIZATION

Proof of Theorem 1.2. Let H be a non-negative self-adjoint operator acting in
L2(RN , dN x). Assume that H > H0 = c(−∆)m in the sense of quadratic forms for
some c > 0 and some positive integer m. This implies that

A = (H0 + I)1/2(I + H)−1/2
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is bounded by Section 4.2 of [3]. Therefore

‖(Us − I)(H + I)−1‖ = ‖(Us − I)(H0 + I)−1/2 A(H + I)−1/2‖

6 c‖(Us − I)(H0 + I)−1/2‖

= c sup
ξ∈RN

|(eis·ξ − 1)(1 + |ξ|2m)−1/2|

by the use of the Fourier transform. The final expression converges uniformly to
zero as s→ 0 by an elementary argument.

The proof of Theorem 1.2 can be extended to higher order elliptic opera-
tors, but it actually holds in much more generality. Let H = L2(RN , dN x) and
let U denote the class of all continuous functions f : RN → [1, ∞) such that
lim
|k|→∞

f (k) = +∞. We define f (P) to be the unbounded positive self-adjoint op-

erator defined inH by

(F f (P)ψ)(k) = f (k)(Fψ)(k)

where F is the Fourier transform and Dom( f (P)) is the set of all ψ ∈ H such that∫
RN

| f (k)(Fψ)(k)|2 dNk < ∞.

The following theorem is in Lemma 3.8 of [8], but the proof below is adapted
from [2], which only treats the case in which A is compact.

THEOREM 3.1. The bounded self-adjoint operator A satisfies (1.2) if and only if
there exists f ∈ U such that Ran(A) ⊆ Dom( f (P)).

Proof. Suppose that such an f exists. The function g(k) = { f (k)}−1 is a
positive continuous function in C0(RN) and

‖Us A− A‖ = ‖(Usg(P)− g(P)) f (P)A‖ 6 ‖Usg(P)− g(P)‖ ‖ f (P)A‖.

This converges to zero in norm as s → 0 because (eik·s − 1)g(k) converges uni-
formly to 0 as s→ 0.

Conversely suppose that A lies in the set B of all operators satisfying (1.2).
If h lies in the Schwartz space S then

h(P)A =
∫
RN

h̃(x)Ux A dN x

where h̃ is the inverse Fourier transform of h and the integrand is norm continu-
ous. Putting ht(k) = e−k2t where t > 0, or equivalently

h̃t(x) = (4πt)−N/2e−|x|
2/4t

the assumption that A ∈ B implies that

lim
t→0
‖ht(P)A− A‖ = 0.
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Now let tn be a sequence such that 0 < tn 6 1
2n and ‖{I − htn(P)}A‖ 6 1

2n

for all n > 1. If

fM(k) = 1 +
M

∑
n=1

(1− htn(k))

then fM is a continuous function on RN satisfying 1 6 fM(k) 6 M + 1 for all k
and lim

|k|→∞
fM(k) = M + 1. Moreover

‖ fM(P)A‖ 6 1 +
M

∑
n=1
‖{I − htn(P)}A‖ < 2

for all M. If k ∈ RN then

0 6 1− htn(k) = 1− e−|k|
2tn 6

|k|2
2n

so the sequence fM increases monotonically and locally uniformly to a continu-
ous limit f . Clearly f satisfies 1 6 f (k) 6 1 + |k|2 for all k and lim

|k|→∞
f (k) = +∞.

An application of the closed graph theorem finally gives ‖ f (P)A‖ 6 2.

4. PROOF OF THEOREM 1.3 AND A GENERALIZATION

Theorem 1.3 is a special case of the following theorem, which can easily be
adapted to higher order elliptic differential operators written in divergence form.

THEOREM 4.1. Let a : RN →M be a bounded measurable function such that the
quadratic form Q0 defined on C1

c (RN) by (2.3) is closable. If H is the positive self-adjoint
operator associated to its closure then H is affiliated with D. If there is a sequence of
points cn ∈ RN such that cn → ∞ and a sequence of real numbers rn → ∞ such that

sup
|x−cn |6rn

|a(x)| → 0, then H is not affiliated with E .

Proof. The first statement of the theorem is contained in Theorem 2.4. Let
Hn = Ucn HU−cn where cn ∈ RN are as stated. The assumptions of the theo-
rem imply that lim

n→∞
〈Hn f , f 〉 = 0 for all f ∈ C1

c (RN). Equivalently, we have

lim
n→∞

H1/2
n f = 0 for all f ∈ C1

c (RN). Then for such f we have

f − (H1/2
n + I)−1 f = (H1/2

n + I)−1H1/2
n f

hence Rn = (H1/2
n + I)−1 converges strongly to I as n→ ∞.

Denote R = (H1/2 + I)−1 and suppose that for each ε > 0 there exists δ > 0
such that |s| < δ implies ‖(Us − I)R‖ < ε. Clearly (Us − I)Rn = Ucn(Us −
I)RU−cn so ‖(Us − I)Rn‖ = ‖(Us − I)R‖. Letting n→ ∞ in the formula

‖(Us − I)Rn f ‖ < ε‖ f ‖,
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valid for all f ∈ L2(RN), we obtain ‖(Us − I) f ‖ 6 ε‖ f ‖ under the same con-
ditions on s. But ‖Us − I‖ = 2 for all s 6= 0; the contradiction implies that R
does not satisfy (1.2). Therefore R /∈ E . An application of the functional calculus
finally implies that (H + I)−1 /∈ E , so H is not affiliated with E .

The following comments can be used to give an alternative proof of Theo-
rem 4.1 and might be of value in other contexts.

LEMMA 4.2. Let {cn} be a sequence (or a net) of points in RN and S a bounded
operator on L2(RN) such that the weak limit lim

n
Ucn SU−cn = T exists. If S ∈ D then

T ∈ D. If S ∈ E then T ∈ E .

Proof. If Sx = UxSU−x then VkSxV−k = UxVkSV−kU−x hence ‖VkSxV−k −
Sx‖ = ‖VkSV−k − S‖. Thus if f , g ∈ L2 are of norm one then by going to the
limit along x = cn in the inequality |〈 f , (VkSxV−k − Sx)g〉| 6 ‖VkSV−k − S‖ we
obtain ‖VkTV−k − T‖ 6 ‖VkSV−k − S‖. This clearly implies the first assertion of
the lemma. The supplementary argument needed for the second part is similar:
from the obvious ‖(Us − I)Sx‖ = ‖(Us − I)S‖we get ‖(Us − I)T‖ 6 ‖(Us − I)S‖
hence the result.

COROLLARY 4.3. Let H be a self-adjoint operator affiliated with D or E . Assume
that there are a self-adjoint operator H̃ and a sequence (or a net) of points cn ∈ RN such
that lim

n
Ucn HU−cn = H̃ in the weak resolvent sense. Then H̃ is affiliated with D or E

respectively.

5. SOME EXAMPLES

In this section we study the theorems of this paper in one dimension, which
is particularly simple because the Riemannian metric may be evaluated explicitly
in that case.

We assume that H acts in L2(R, dx) according to the formula

(H f )(x) = − d
dx

(
a(x)

d f
dx

)
where a : R→ (0, ∞) is a continuously differentiable function. More precisely H
is taken to be the Friedrichs extension of the operator defined initially on C∞

c (R),
and it is associated with the closure of the quadratic form

Q( f ) =
∫
R

a(x)| f ′(x)|2 dx

defined initially on C∞
c (R). We do not assume that a(·) has a uniform positive

upper or lower bound, so H might not be affiliated with either D or E .
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We now make the change of variable

s(x) =
x∫

0

a(u)−1/2 du

so that α < s < β where −∞ 6 α < 0 < β 6 ∞. If we put g(s) = f (x(s)), then

∫
R

| f (x)|2 dx =

β∫
α

|g(s)|2σ(s)2ds, Q( f ) =

β∫
α

|g′(s)|2σ(s)2ds,

where σ(s) = a(x)1/4.
The advantage of the representation (5.1) below is that it often enables one

to use the well-developed theory of Schrödinger operators to determine the es-
sential spectrum of K and hence of H.

THEOREM 5.1. The operator H lies in D̃ where this algebra is the norm closure
of the operators that have finite range in the sense of [6], as measured by the Euclidean
metric associated with the variable s. If σ is twice continuously differentiable, then H is
unitarily equivalent to the operator K acting in L2((α, β), ds) according to the formula

(5.1) (Kh)(s) = −h′′(s) + V(s)h(s)

and subject to Dirichlet boundary conditions, where V(s) = σ′′(s)
σ(s) .

Proof. The first part of the theorem follows the same line of argument as
the first proof of Theorem 1.1. The second part is an application of [4]; one
has to put V = X in the proof of Theorem 4.2.1. The unitary operator U :
L2((α, β), σ(s)2ds)→ L2((α, β), ds) is defined by (U f )(s) = σ(s) f (s).

EXAMPLE 5.2. The case a(x) = e−2x is particularly simple, because we may
then vary the above definition slightly by putting s(x) = ex, where s lies in (0, ∞).
We have σ(s) = s−1/2. The new metric is given by

d(x1, x2) = |ex1 − ex2 |

in the x variable. The fact that H is affiliated with D̃ may be interpreted as saying
its resolvent has finite range if unit balls are stretched for large negative x and
compressed for large positive x.

If we put h(s) = s1/2 f (s) then we obtain
∞∫

0

| f (s)|2σ(s)2 ds=
∞∫

0

|h(s)|2 ds,
∞∫

0

| f ′(s)|2σ(s)2 ds=
∞∫

0

(
|h′(s)|2+ 3

4s2 |h(s)|
2
)

ds.

In this representation the operator H becomes

(5.2) (Kh)(s) = −h′′(s) +
3

4s2 h(s)
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subject to Dirichlet boundary conditions at 0 and ∞. The positivity of the po-
tential implies that the (non-negative) Green function of (K + I)−1 is pointwise
bounded above by the Green function of

(K0h)(s) = −h′′(s)

and similarly for the heat kernels. This provides an independent check that H is
affiliated with D̃. The formula (5.2) also allows us to conclude that the spectrum
and essential spectrum of H equal [0, ∞).

EXAMPLE 5.3. A similar exact calculation may be carried out in the Hilbert
space L2((0, ∞), dx) for a(x) = xα, where 0 < α < 2. Putting β = 1− α

2 ∈ (0, 1),

the new variable s = xβ

β ranges from 0 to ∞. The corresponding metric is

d(x1, x2) = β−1|xβ
1 − xβ

2 |
which is much larger than the Euclidean metric near 0 and much smaller for large
x1, x2.

6. A MORE GENERAL CONTEXT

It is interesting to note that one can give descriptions of the algebras D and
E that are independent of the vector space structure of RN . This allows one not
only to replace RN by a metric space, but also to define certain C∗-subalgebras of
D with which non-uniformly elliptic operators are affiliated.

Let X be a metrizable, locally compact, but non-compact space equipped
with a Radon measure µ whose support is equal to X. This fixes the Hilbert space
L2(X). Assume that d is a proper metric compatible with the topology on X such
that sup

x
µ(Bx(r)) < ∞ holds for any closed ball Bx(r) (proper means that any

closed bounded set is compact). One says that a bounded operator A on L2(X)
has d-finite range if there exists r > 0 such that PE APF = 0 for all closed sets
E, F such that d(E, F) > r. If X is a manifold this is equivalent to assuming that
the distribution kernel of A has support in {(x, y) : d(x, y) 6 r}. We associate
to d two C∗-algebras of operators on L2(X) by the following rules [6], [7]: D(d)
is the norm closure of the set of d-finite range operators and E(d) is the norm
closure of the set of d-finite range operators which have bounded d-uniformly
continuous integral kernels. Our next proposition shows that these definitions
provide natural generalizations of the algebras D and E considered before.

PROPOSITION 6.1. If X = RN and de denotes the Euclidean metric on X then
D = D(de) and E = E(de).

Proof. The description of D in terms of operators of finite range appears in
[6]. The identity D = D(de) is a particular case of Proposition 7.4 of [7]; the
proof is particularly simple when X = RN . The identity E = E(de) follows from
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Proposition 6.5 of [7]. Note that the identification E = C o G makes this part
obvious.

Let D and E be the algebras associated with a triple (X, µ, d) satisfying the
preceding conditions. We say that a bounded operator A on L2(X) has bounded
support if there exist a ∈ X and r > 0 such that A = APr = Pr A, where Pr is the
projection

(Pr f )(x) =

{
f (x) if d(x, a) < r,
0 otherwise.

The choice of a is irrelevant in this context. Denote the norm closure of the set
of operators with bounded support by B. It is easy to show that every operator
with bounded support lies inD, hence B ⊂ D. It is also clear that if X is a discrete
space then B coincides with the set of compact operators on L2(X) (note that the
metric is proper). The following theorem correctly suggests that B plays a similar
role in D as the set of compact operators K plays in E .

THEOREM 6.2. The set B is a proper, closed, two-sided ideal in D.

Proof. This is a special case of Theorem 18 of [6], in which one takes the set
S there to be any non-empty bounded open set in RN .

In the light of this theorem, one may define the spectrum of A ∈ D at infinity
to be the spectrum of π(A), where π : D → D/B is the canonical quotient map.
One might even call A a Fredholm operator relative to D if π(A) is invertible in
D/B.

If X = RN then Theorems 1.1 and 1.2 show that if one wishes to study uni-
formly elliptic operators then de is the appropriate choice of the metric. However,
Theorem 5.1 shows that for some second order elliptic operators that are not uni-
formly elliptic the relevant metric can be expressed in terms of the second order
coefficients.

The class of operators affiliated to D(d) is very large. The main interest of
the algebras E(d) is that the essential spectrum of the operators affiliated with
them can be described in terms of asymptotic operators, but it is not so easy to
check that interesting operators are affiliated with E(d). For this reason, we shall
describe a class of Riemannian manifolds for which the Laplacian is affiliated
with the corresponding algebra E(d). The following material extends the scope of
the study of the Laplacian on three-dimensional hyperbolic space in Theorem 44
of [6]; in that example the volume doubling condition below does not hold.

Let X be a complete but non-compact Riemannian manifold equipped with
its canonical Riemannian measure µ and distance d. Denote Vx(r) = µ(Bx(r)).
Let H be the self-adjoint operator associated to the (positive) Laplacian ∆ and let
ht(x, y) be the kernel of e−tH . We assume:

(i) the measure has the volume doubling property, i.e. there is a constant D
such that Vx(2r) 6 DVx(r) for all x ∈ X and r > 0;
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(ii) the Poincaré inequality holds: there is a constant P such that∫
Bx(r)

| f − fB(r)|2dµ 6 Pr2
∫

Bx(2r)

|∇ f |2dµ

for all x ∈ X and r > 0, where fB(r)(x) = Vx(r)−1
∫

Bx(r)
f dµ;

(iii) we have sup
x,y

ht(x, y) < ∞ for all t > 0.

THEOREM 6.3. Under the above assumptions on X the operator H is affiliated
with E(d).

Proof. By using the first two conditions and Theorem 5.4.12 of [10] we see
that there are constants C, a > 0 such that

ht(x, y) 6 CVx(
√

t)−1e−ad(x,y)2/t,

In particular, the third condition is satisfied if inf
x

Vx(
√

t) > 0. Moreover, from

Theorem 5.4.8 of [10] we get for all x, y, z, t such that d(y, z) 6
√

t

(6.1) |ht(x, y)− ht(x, z)| 6 Ct−α/2d(y, z)αh2t(x, y).

Here C, α are some strictly positive constants. By using also the third condition
we introduced above, we see that the integral kernel h = h1 of e−H is a bounded
symmetric Hölder continuous function, namely there is a number C such that:

(6.2) |h(x, y)− h(x, z)| 6 Cd(y, z)α if d(y, z) 6 1.

We need one more simple argument to complete the proof that e−H ∈ E . Let
t > 0 and let θ : R→ R be a continuous function such that 0 6 θ 6 1, θ(t) = 1 if
t 6 r, and θ(t) = 0 if t > r + 1. We set k(x, y) = h(x, y)θ(d(x, y)). Clearly k is a
d-uniformly continuous d-finite range kernel and∫

X

|h(x, y)− k(x, y)|µ(dy) 6
∫

d(x,y)>r

h(x, y)µ(dy)

6
∫

d(x,y)>r

CVx(1)−1e−ad(x,y)2
µ(dy).

Set t = 1
a and observe that the doubling property implies Vx(

√
t) 6 C(t)Vx(1).

Therefore∫
X

|h(x, y)− k(x, y)|µ(dy) 6
∫

d(x,y)>r

CC(t)−1Vx(
√

t)−1e−d(x,y)2/tµ(dy).

Then from Lemma 5.2.13 of [10] we obtain∫
X

|h(x, y)− k(x, y)|µ(dy) 6 Ke−ar2/2
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for some constant K independent of θ and r. From the Schur lemma it follows
that ‖e−H −Op(k)‖ 6 Ke−ar2/2, where Op(k) is the operator on L2 with kernel k.
Since Op(k) ∈ E(d) and r > 0 is arbitrary, we get e−H ∈ E(d).

Acknowledgements. We thank El Maati Ouhabaz for helpful discussions of the mate-
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