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ABSTRACT. We prove an operator identity for the shift operator in the scale
of standard weighted Bergman spaces in the unit disc. This operator iden-
tity is then applied in the context of functional calculus for the shift operator
and a characterization of harmonic symbol Bergman space Toeplitz operators
is obtained generalizing an earlier result by Louhichi and Olofsson. Duality
arguments lead to operator inequalities and structure formulas for reproduc-
ing kernel functions which make contact with work of Richter, Shimorin, and
others.
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0. INTRODUCTION

Let α > −1 and consider the standard weighted Bergman space Aα(D) of
analytic functions f in the unit disc D with finite norm

‖ f ‖2
α =

∫
D

| f (z)|2dµα(z),

where
dµα(z) = (α + 1)(1− |z|2)αdA(z), z ∈ D.

Here dA is usual planar Lebesgue area measure normalized so that the unit disc
has unit area. Note that the space A0(D) is the unweighted Bergman space, and
that the standard Hardy space H2(D) is a natural limit case of the spaces Aα(D)
as α→ −1.

The norm of Aα(D) can also be calculated from Parseval’s formula

‖ f ‖2
α = ∑

k>0
|ak|2µα;k
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using the power series expansion

(0.1) f (z) = ∑
k>0

akzk, z ∈ D,

of f ∈ Aα(D). Here the numbers

µα;k =
∫
D

|z|2kdµα(z) =
1

(k+α+1
k )

, k = 0, 1, 2, . . . ,

are the moments of the measure dµα and the generalized binomial coefficients
are defined using the Gamma function (see Section 1). The scale of Hilbert spaces
Aα(D) has been subject to much interest as documented by the monograph
Hedenmalm, Korenblum and Zhu [14].

The shift operator Sα on the Bergman space Aα(D) is the operator defined by

(Sα f )(z) = z f (z), z ∈ D,

for f ∈ Aα(D). It is straightforward to see that the shift Sα is a left-invertible
contraction. We show the following operator identity for the shift operator Sα:

(0.2) (S∗αSα)
−1 = ∑

k>0
(−1)k

(
α + 2
k + 1

)
Sk

αS∗kα

valid in the full scale α > −1 (see Theorem 1.4). The binomial coefficient in (0.2)
is O(1/kα+3) as k → ∞ (see Proposition 1.2). Since Sα is a contraction, this gives
that the series in (0.2) are absolutely convergent in operator norm. Also, since Sα

is bounded from below the operator (S∗αSα)−1 exists as a bounded linear operator
on Aα(D).

In the special case when n = α + 2 is a positive integer formula (0.2) is
known and seems first to have appeared in Olofsson [18] where it was used in
a calculation of operator-valued Bergman inner functions. In the other direction,
we show that an operator formula of the form (0.2) together with a pureness
condition characterize the Bergman shift operator Sα up to unitary equivalence
allowing for a general multiplicity (see Theorem 5.4). This last observation gen-
eralizes a recent result by Giselsson and Olofsson [12].

The left-hand side in (0.2) has the representation (S′α)∗S′α = (S∗αSα)−1, where
S′α = Sα(S∗αSα)−1 is the so-called Cauchy dual of Sα. The operator S′α is a weighted
shift operator and acts as

(0.3) (S′α f )(z) = ∑
k>1

µα;k−1

µα;k
ak−1zk, z ∈ D,

on functions f ∈ Aα(D) given by (0.1). Formula (0.3) follows by straightforward
calculation (see Lemma 1.1).
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Motivated by (0.2) we turn to a study of bounded linear operators T ∈
L(Aα(D)) on Aα(D) satisfying the operator identity

(0.4) (S′α)
∗TS′α = ∑

k>0
(−1)k

(
α + 2
k + 1

)
Sk

αTS∗kα .

Recall that the sum in (0.4) is absolutely convergent in operator norm by decay
of binomial coefficients (see Proposition 1.2). We provide two descriptions of the
operators T ∈ L(Aα(D)) satisfying (0.4): First as operator integrals

T =
∫
T

f (eiθ)dωSα
(eiθ)

of functions f ∈ L∞(T) with respect to the Bergman shift operator Sα (see The-
orem 2.5) and, second, as Toeplitz operators T = Th on Aα(D) with bounded
harmonic symbols h (see Theorem 3.3). Here T = ∂D is the unit circle and the
Toeplitz operator on Aα(D) with bounded harmonic symbol h is the operator Th
defined by

(Thg)(z) =
∫
D

1
(1− ζz)α+2

h(ζ)g(ζ)dµα(ζ), z ∈ D,

for g ∈ Aα(D). The operator measure dωSα
can be thought of as the compression

to Aα(D) of the spectral measure for a unitary dilation of the operator Sα. The
relation between the symbols f and h is that h = P[ f ] is the Poisson integral of f
(see Theorem 3.2).

In the special case when n = α + 2 is a positive integer the above char-
acterizations of operators satisfying (0.4) are from Louhichi and Olofsson [15].
The novelty here is the generalization of these results to the full parameter scale
α > −1. Our proofs build on developments from [15] using the new ingredi-
ent (0.2). As a historical background we mention the classical paper Brown and
Halmos [8] which has inspired much research on Toeplitz operators. Examples
of more recent progress on Toeplitz operators in the Bergman space context are
Axler and Čučković [7], Ahern and Čučković [2] and Ahern [1].

In the restricted parameter range −1 < α 6 0 we show by a duality argu-
ment that the shift operator Sα satisfies the inequality

(0.5)
∥∥∥ f + ∑

k>1
Cα;kSk

α fk

∥∥∥2

α
6 (α + 2)

(
‖Sα f ‖2

α + ∑
k>1
‖ fk‖2

α

)
for f ∈ Aα(D) and { fk}k>1 ∈ `2(Aα(D)) finitely supported, where the Cα;k’s are
arbitrary complex numbers such that

(0.6) |Cα;k|2 = (−1)k+1
(

α + 2
k + 1

)
for k = 1, 2, 3, . . . (see Corollary 4.2). An interesting feature of inequality (0.5)
is that it is stable with respect to the process of passing to restrictions to shift
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invariant subspaces. It should be noticed that (0.5) for α = 0 gives the inequality

‖ f + S0g‖2
0 6 2(‖S0 f ‖2

0 + ‖g‖2
0), f , g ∈ A0(D),

from Hedenmalm, Jakobsson and Shimorin ([13], Proposition 6.4). A further anal-
ysis of inequalities derived from (0.5) leads to structure formulas for (normalized)
reproducing kernel functions similar to what has previously been obtained by
Shimorin [21] and McCullough and Richter [16] (see Theorem 5.5). See [3], [9],
[17], [22], [23] for related results. A main inspiration behind these developments
have been the ground breaking paper Aleman, Richter and Sundberg [4].

1. THE OPERATOR IDENTITY

In this section we shall prove the operator identity (0.2). For the purpose
of more generality we shall consider vector-valued versions of the spaces Aα(D).
Let α > −1 and let E be a Hilbert space. We denote by Aα(E) the space of all
E -valued analytic functions

(1.1) f (z) = ∑
k>0

akzk, z ∈ D,

with finite norm
‖ f ‖2

α = ∑
k>0
‖ak‖2µα;k < +∞.

It it straightforward to check that the space Aα(E) is a Hilbert space of E -valued
analytic functions in D with reproducing kernel function

Kα(z, ζ) =
1

(1− ζz)α+2
IE =

(
∑
k>0

(
k + α + 1

k

)
ζ

kzk
)

IE , (z, ζ) ∈ D2,

where IE is the identity operator in L(E). A standard reference for Bergman
spaces in D is Hedenmalm, Korenblum and Zhu [14]; see also Duren and Schus-
ter [11].

The shift operator acts as

Sα f (z) = ∑
k>1

ak−1zk, z ∈ D,

on functions f ∈ Aα(E) given by (1.1). The adjoint shift S∗α acts as

(1.2) S∗α f (z) = ∑
k>0

µα;k+1

µα;k
ak+1zk, z ∈ D,

on functions f ∈ Aα(E) given by (1.1). Formula (1.2) is easily checked by straight-
forward calculation. Let us calculate the action of the operator (S∗αSα)−1.

LEMMA 1.1. Let α > −1. Then

(S∗αSα)
−1 f (z) = ∑

k>0

µα;k

µα;k+1
akzk, z ∈ D,
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for f ∈ Aα(E) given by (1.1).

Proof. By the action of Sα we have

〈S∗αSα f , f 〉α = ‖Sα f ‖2
α = ∑

k>1
‖ak−1‖2µα;k = ∑

k>0
‖ak‖2µα;k+1,

which by polarization gives

S∗αSα f (z) = ∑
k>0

µα;k+1

µα;k
akzk, z ∈ D,

for f ∈ Aα(E) given by (1.1). Passing to the inverse (S∗αSα)−1 the conclusion of
the lemma follows.

The reciprocal of the Bergman kernel function Kα is essentially the binomial
series

(1.3) (1− z)α+2 = ∑
k>0

(−1)k
(

α + 2
k

)
zk, z ∈ D,

where the binomial coefficients are interpreted in the generalized sense(
β

k

)
=

Γ(β + 1)
k!Γ(β− k + 1)

=
1
k!

k−1

∏
j=0

(β− j)

for k = 0, 1, 2, . . . using the Gamma function Γ.
We shall need some properties of the coefficients in (1.3).

PROPOSITION 1.2. Let α > −1. Then (−1)k(α+2
k ) > 0 for k > α + 2 if 2m−

1 6 α 6 2m for some integer m > 0. Similarly (−1)k(α+2
k ) 6 0 for k > α + 2 if

2m 6 α 6 2m + 1 for some integer m > 0. Furthermore, the coefficients in (1.3) have
the growth property that

lim
k→∞

(−1)k
(

α + 2
k

)
kα+3 =

Γ(α + 3) sin(π(α + 1))
π

,

where Γ is the Gamma function.

Proof. Writing out the generalized binomial coefficient we have(
α + 2

k

)
=

Γ(α + 3)Γ(k− α− 2)
k!Γ(k− α− 2)Γ(1− (k− α− 2))

for k = 0, 1, . . . . Using the reflection formula

Γ(z)Γ(1− z) =
π

sin πz
for the Gamma function (see formula (4.5) of [6]) we obtain(

α + 2
k

)
= Γ(α + 3)

sin π(k− α− 2)
π

Γ(k− α− 2)
k!

,
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which by the addition formula for the sine simplifies to

(1.4)
(

α + 2
k

)
= (−1)kΓ(α + 3)

sin π(α + 1)
π

Γ(k− α− 2)
k!

for k = 0, 1, . . . . Analyzing the sign of the individual factors in (1.4) we obtain the
conclusions about the sign of (−1)k(α+2

k ). A calculation using Stirling’s formula

lim
x→+∞

Γ(x + 1)
(x/e)x

√
2πx

= 1

(see Section 8.22 of [19]) gives the asymptotic behavior of the numbers (−1)k

(α+2
k ).

The proof of identity (0.2) uses the following lemma on binomial coeffi-
cients.

LEMMA 1.3. Let µα;k = 1/(k+α+1
k ) for α > −1 and k > 0. Then

j

∑
k=0

(−1)k
(

α + 2
k + 1

)
1

µα;j−k
=

1
µα;j+1

for j > 0.

Proof. A calculation using the binomial series (1.3) gives that

∑
k>0

(−1)k
(

α + 2
k + 1

)
zk =

1− (1− z)α+2

z
, z ∈ D.

Observe that the sum in the lemma is the j-th Taylor coefficient for the function

f (z) =
1− (1− z)α+2

z
1

(1− z)α+2 , z ∈ D.

Calculating the Taylor series expansion for f we have

f (z) =
1
z

( 1
(1− z)α+2 − 1

)
= ∑

j>0

1
µα;j+1

zj, z ∈ D.

An identification of coefficients now yields the conclusion of the lemma.

We are now ready for the proof of (0.2).

THEOREM 1.4. Let α > −1 and let E be a Hilbert space. Then the shift operator
Sα on Aα(E) satisfies the operator identity

(S∗αSα)
−1 = ∑

k>0
(−1)k

(
α + 2
k + 1

)
Sk

αS∗kα .
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Proof. Observe that the sum in (0.2) is absolutely convergent in operator
norm as follows by Proposition 1.2. Let f ∈ Aα(E) be a function of the form (1.1).
By (1.2) we have that

‖S∗kα f ‖2
α = ∑

j>0

µ2
α;j+k

µα;j
‖aj+k‖2

for k > 0. We calculate that

∑
k>0

(−1)k
(

α + 2
k + 1

)
‖S∗kα f ‖2

α = ∑
k>0

∑
j>0

(−1)k
(

α + 2
k + 1

)µ2
α;j+k

µα;j
‖aj+k‖2

= ∑
l>0

( l

∑
k=0

(−1)k
(

α + 2
k + 1

)
1

µα;l−k

)
µ2

α;l‖al‖2,

where the last equality follows by a change of order of summation. Now use
Lemma 1.3 to conclude that

∑
k>0

(−1)k
(

α + 2
k + 1

)
‖S∗kα f ‖2

α = ∑
j>0

µ2
α;j

µα;j+1
‖aj‖2.

By Lemma 1.1 this last equality yields that

∑
k>0

(−1)k
(

α + 2
k + 1

)
‖S∗kα f ‖2

α = 〈(S∗αSα)
−1 f , f 〉α

for f ∈ Aα(E). The conclusion of the theorem now follows by a polarization
argument.

We mention that for n = α + 2 positive integer the result of Theorem 1.4
originates from Section 1 of [18] where it was used in a calculation of operator-
valued Bergman inner functions.

2. FUNCTIONAL CALCULUS

In this section and the next we shall study bounded linear operators T in
L(Aα(D)) satisfying the operator identity

(S′α)
∗TS′α = ∑

k>0
(−1)k

(
α + 2
k + 1

)
Sk

αTS∗kα ,

where S′α = Sα(S∗αSα)−1 is the so-called Cauchy dual of Sα. Observe that the sum
in (0.4) is absolutely convergent in operator norm by Proposition 1.2 since Sα is a
contraction. In this section we focus on the description of this class of operators
in terms of functional calculus for the shift operator Sα.
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For a Hilbert space operator T ∈ L(H) and integer k ∈ Z we use the nota-
tion

(2.1) T(k) =

{
Tk for k > 0,
T∗|k| for k < 0,

which is standard in dilation theory (see Chapter I of [24]).

PROPOSITION 2.1. Let α > −1 and n ∈ Z. Then the operator T = Sα(n) satisfies
(0.4).

Proof. For n > 0 we have

(S′α)
∗Sα(n)S′α = (S∗αSα)

−1S∗αSn
αSα(S∗αSα)

−1 = Sn
α(S
∗
αSα)

−1,

and using Theorem 1.4 we obtain that

(S′α)
∗Sα(n)S′α = Sn

α

(
∑
k>0

(−1)k
(

α + 2
k + 1

)
Sk

αS∗kα

)
= ∑

k>0
(−1)k

(
α + 2
k + 1

)
Sk

αSα(n)S∗kα .

This gives the result for n > 0. For n < 0 the result follows by a passage to
adjoints.

Notice that for n = 0 the result of Proposition 2.1 is merely a restatement of
Theorem 1.4.

The function space Aα(D) is naturally equipped by a unitary group of trans-
lation operators τ : eiθ 7→ τeiθ , where

τeiθ f (z) = f (ze−iθ), z ∈ D,

for f ∈ Aα(D) and eiθ ∈ T. The map τ : T 3 eiθ 7→ τeiθ ∈ L(Aα(D)) is contin-
uous in the strong operator topology. We say that an operator T ∈ L(Aα(D)) is
homogeneous of degree k ∈ Z with respect to the group of translations if it has
the property that

τeiθ Tτe−iθ = e−ikθT

for eiθ ∈ T. Observe that an operator of homogeneity 0 is a Fourier multiplier.
For a general operator T ∈ L(Aα(D)) we shall consider its k-th homoge-

neous part given by

(2.2) Tk f =
1

2π

∫
T

e−ikθτe−iθ Tτeiθ f dθ, f ∈ Aα(D),

for k ∈ Z, where the integral is interpreted as a standard Aα(D)-valued integral
of a continuous function. A change of variables in (2.2) shows that Tk is homo-
geneous of degree k in the above sense. Standard harmonic analysis arguments
show that a general operator T ∈ L(Aα(D)) can be reconstructed from its homo-
geneous parts as a Cesàro limit

(2.3) T = lim
N→∞

∑
|k|6N

(
1− |k|

N + 1

)
Tk
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in the strong operator topology in L(Aα(D)) (see Section 2 of [15] for details).
In the upcoming lemmas we consider operators T ∈ L(Aα(D)) satisfying

(0.4) and an additional homogeneity constraint.

LEMMA 2.2. Assume that T ∈ L(Aα(D)) is homogeneous of degree 0 and that T
satisfies (0.4). Then T is a constant multiple of the identity operator I on Aα(D).

Proof. The operator T being homogeneous of degree 0 amounts to saying
that T is a Fourier multiplier in the sense that

(T f )(z) = ∑
j>0

tjajzj, z ∈ D,

for f ∈ Aα(D) given by (0.1), where {tj}∞
j=0 is a sequence of complex numbers.

Boundedness of T corresponds to the multiplier sequence {tj}∞
j=0 being bounded.

The relation (0.4) means that

(2.4) 〈TS′α f , S′α f 〉α = ∑
k>0

(−1)k
(

α + 2
k + 1

)
〈TS∗kα f , S∗kα f 〉α

for f ∈ Aα(D).
We shall next calculate the scalar products in (2.4). By (0.3) we have that

(2.5) 〈TS′α f , S′α f 〉α = ∑
j>0

tj+1
µ2

α;j

µα;j+1
|aj|2

for f ∈ Aα(D) given by (0.1). By (1.2) we have that

∑
k>0

(−1)k
(

α + 2
k + 1

)
〈TS∗kα f , S∗kα f 〉α = ∑

k>0
∑
j>0

(−1)k
(

α + 2
k + 1

)
tj

µ2
α;j+k

µα;j
|aj+k|2(2.6)

= ∑
j>0

( j

∑
k=0

(−1)k
(

α + 2
k + 1

) tj−k

µα;j−k

)
|aj|2µ2

α;j

for f ∈ Aα(D) given by (0.1), where the last equality follows by a change of order
of summation.

Using equations (2.4), (2.5) and (2.6) and varying f ∈ Aα(D) of the form
(0.1), we conclude that

(2.7)
tj+1

µα;j+1
=

j

∑
k=0

(−1)k
(

α + 2
k + 1

) tj−k

µα;j−k

for j > 0. Recall Lemma 1.3. By (2.7) we conclude that tj = t0 for j > 1. This gives
the conclusion that T = t0 I.

The following lemma allows for reduction to homogeneity 0.

LEMMA 2.3. Let T ∈ L(Aα(D)) be homogeneous of degree k > 0. Then T =
Sk

αLk
αT, where Lα = (S∗αSα)−1S∗α is the Moore–Penrose left-inverse of Sα.
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Proof. It is straightforward to check that the range of T is contained in the
range of Sk

α (see Lemma 3.2 of [15]). This gives the factorization T = Sk
αLk

αT.

We can now describe a general operator T ∈ L(Aα(D)) satisfying (0.4). Re-
call the notation (2.1).

THEOREM 2.4. Let T ∈ L(Aα(D)) be a bounded linear operator. Then T satisfies
(0.4) if and only if

Tk = ckSα(k), k ∈ Z,

for some sequence {ck}∞
k=−∞ of complex numbers, where Tk is the k-th homogeneous

part of T.

Proof. We consider first the if-part. By Proposition 2.1 every homogeneous
part Tk = ckSα(k) of T satisfies (0.4). By the approximation property (2.3) we
conclude that the operator T satisfies (0.4).

Assume next that T ∈ L(Aα(D)) satisfies (0.4). Since the operators Sα and
S′α are both homogeneous of degree 1, we have that

(S′α)
∗τe−iθ Tτeiθ S′α = τe−iθ (S′α)

∗TS′ατeiθ = τe−iθ

(
∑
n>0

(−1)n
(

α + 2
n + 1

)
Sn

α TS∗nα

)
τeiθ

= ∑
n>0

(−1)n
(

α + 2
n + 1

)
Sn

ατe−iθ Tτeiθ S∗nα

for eiθ ∈ T. Now using (2.2) we calculate that

(S′α)
∗TkS′α f =

1
2π

∫
T

e−ikθ(S′α)
∗τe−iθ Tτeiθ S′α f dθ

= ∑
n>0

(−1)n
(

α + 2
n + 1

)
1

2π

∫
T

e−ikθSn
ατe−iθ Tτeiθ S∗nα f dθ

= ∑
n>0

(−1)n
(

α + 2
n + 1

)
Sn

α TkS∗nα f

for f ∈ Aα(D). This shows that every k-th homogeneous part Tk of T satis-
fies (0.4).

Let now k > 0 and consider the k-th homogeneous part Tk. We shall show
that Tk = ckSk

α for some constant ck ∈ C. By Lemma 2.3 we have the factorization
Tk = Sk

αLk
αTk. Next we show that Lk

αTk satisfies (0.4). Since (S′α)∗ = Lα, we have

(S′α)
∗Lk

αTkS′α = Lk
α(S
′
α)
∗TkS′α = Lk

α

(
∑
n>0

(−1)n
(

α + 2
n + 1

)
Sn

α TkS∗nα

)
,

and using the factorization Tk = Sk
αLk

αTk we calculate that

(S′α)
∗Lk

αTkS′α = ∑
n>0

(−1)n
(

α + 2
n + 1

)
Lk

αSn+k
α Lk

αTkS∗nα = ∑
n>0

(−1)n
(

α + 2
n + 1

)
Sn

α Lk
αTkS∗nα .
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Since the operator Lα is homogeneous of degree−1, the operator Lk
αTk has homo-

geneity 0. By Lemma 2.2 we conclude that Lk
αTk = ck I for some ck ∈ C. Solving

for Tk we get Tk = ckSk
α for k > 0.

Assume now that k < 0. Then T∗k is homogeneous of degree |k| and satisfies

(0.4). By the result of the previous paragraph we have T∗k = ckS|k|α for some

ck ∈ C, and a passage to adjoints yields Tk = ckS∗|k|α . This completes the proof of
the theorem.

Let T ∈ L(H) be a Hilbert space contraction operator, and recall the nota-
tion (2.1). The existence of a unitary dilation of T yields existence of a positive
operator measure dωT on T such that∫

T

eikθdωT(eiθ) = T(k), k ∈ Z.

This last property determines dωT uniquely within the class of positive operator
measures justifying the notation dωT . A classical result of Sz.-Nagy and Foias
gives that dωT is absolutely continuous with respect to Lebesgue measure on T if
T ∈ L(H) is a completely non-unitary contraction (see Theorem II.6.4 of [24]). In
the case of a shift operator S the absolute continuity of dωS is more easily verified
(see for instance [15]). For dωT absolutely continuous the functional calculus

(2.8) L∞(T) 3 f 7→
∫
T

f (eiθ)dωT(eiθ) ∈ L(H)

has the approximation property that

(2.9)
∫
T

f (eiθ)dωT(eiθ) = lim
N→∞

∑
|k|6N

(
1− |k|

N + 1

)
f̂ (k)T(k)

in the strong operator topology in L(H) for every f ∈ L∞(T), where

f̂ (k) =
1

2π

∫
T

e−ikθ f (eiθ)dθ, k ∈ Z,

are the Fourier coefficients of f (see for instance Section 4 of [15]).
Next we describe the operators T ∈ L(Aα(D)) satisfying identity (0.4) using

functional calculus integrals.

THEOREM 2.5. Let α > −1 and T ∈ L(Aα(D)). Then T satisfies (0.4) if and
only if T has the form of an operator integral

(2.10) T =
∫
T

f (eiθ)dωSα
(eiθ) inL(Aα(D))

for some function f ∈ L∞(T). Furthermore, we have that ‖T‖ = ‖ f ‖∞.
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Proof. Assume first that T satisfies (0.4). By Theorem 2.4 and (2.3) we have
that

(2.11) T = lim
N→∞

∑
|k|6N

(
1− |k|

N + 1

)
ckSα(k)

in the strong operator topology in L(Aα(D)), where {ck}∞
k=−∞ is a sequence of

complex numbers. By Lemma 5.1 of [15] the harmonic function

h(z) =
∞

∑
k=−∞

ckr|k|eikθ , z = reiθ ∈ D,

is bounded with uniform bound |h(z)| 6 ‖T‖ for z ∈ D. Passing to boundary
values we obtain a function f ∈ L∞(T) with Fourier coefficients f̂ (k) = ck for
k ∈ Z (see for instance Chapter 11 of [20]). Now

T = lim
N→∞

∑
|k|6N

(
1− |k|

N + 1

)
f̂ (k)Sα(k) =

∫
T

f (eiθ)dωSα
(eiθ)(2.12)

in the strong operator topology in L(Aα(D)) by the continuity property (2.9) for
the functional calculus.

Conversely, if T ∈ L(Aα(D)) has the form of an operator integral (2.10),
then (2.12) holds and Proposition 2.1 gives that T satisfies (0.4). The norm equality
‖T‖ = ‖ f ‖∞ when T has the form (2.10) holds more generally for an operator
integral with respect to the shift operator on a Hilbert space of analytic functions
on D (see Theorem 5.2 of [15]).

We wish to mention here also an interesting result by Conway and Ptak ([10],
Theorem 2.2) saying that if an operator T ∈ L(H) has an isometric H∞(D) func-
tional calculus and dωT is absolutely continuous, then the L∞(T) functional cal-
culus (2.8) is isometric. This generalizes the norm equality in Theorem 2.5.

For k > 0 we denote by ek the monomial

ek(z) = zk, z ∈ C.

Recall that the monomials {ek}∞
k=0 form an orthogonal basis for Aα(D) such that

‖ek‖2
α = µα;k for k > 0.

LEMMA 2.6. Let α > −1 and f ∈ L∞(T). Then〈 ∫
T

f (eiθ)dωSα
(eiθ)ek, ej

〉
α
= f̂ (j− k)µα;max(j,k)

for j, k > 0, where f̂ (k) is the k-th Fourier coefficient of f .

Proof. A straightforward calculation shows that

〈Sα(n)ek, ej〉α =

{
µα;max(j,k) for n = j− k,
0 otherwise.
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By (2.9) we now have that〈 ∫
T

f (eiθ)dωSα
(eiθ)ek, ej

〉
α
= lim

N→∞
∑
|n|6N

(
1− |n|

N + 1

)
f̂ (n)〈Sα(n)ek, ej〉α

= f̂ (j− k)µα;max(j,k).

This completes the proof of the lemma.

3. TOEPLITZ OPERATORS

In this section we continue our study of operators T ∈ L(Aα(D)) satisfy-
ing (0.4) with particular emphasis on the relation to Toeplitz operators. By the
Toeplitz operator on Aα(D) with bounded harmonic symbol h we mean the op-
erator Th defined by

(3.1) (Th f )(z) =
∫
D

1
(1− ζz)α+2

h(ζ) f (ζ)dµα(ζ), z ∈ D,

for f ∈ Aα(D). Notice that the integral kernel 1/(1− ζz)α+2 in (3.1) is the ker-
nel function for Aα(D) and that formula (3.1) has the interpretation that the op-
erator Th is the compression to Aα(D) of the operator of multiplication by h on
L2(D, dµα). It is well-known that ‖Th‖ = sup

z∈D
|h(z)| for h harmonic (see Section 6.1

of [25]).
Trieu Le has pointed out to us that the statement of Lemma 6.1 in [15] con-

tains an unfortunate typo. The following lemma supplies the correct statement.

LEMMA 3.1. Let α > −1 and let h be a bounded harmonic function in D with
power series expansion

(3.2) h(z) =
∞

∑
k=−∞

ckr|k|eikθ , z = reiθ ∈ D.

Then
〈Thek, ej〉α = cj−kµα;max(j,k)

for j, k > 0, where Th is the Toeplitz operator on Aα(D) with symbol h.

Proof. Recall the interpretation of Th as multiplication by h followed by an
orthogonal projection onto Aα(D). By straightforward calculation we have that

〈Thek, ej〉α =
∫
D

h(z)zkzjdµα(z) = cj−kµα;max(j,k)

for j, k > 0.
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Recall the classical fact that bounded harmonic functions h in D correspond
to functions f ∈ L∞(T) by means of the Poisson integral formula

h(z) = P[ f ](z) =
1

2π

∫
T

P(ze−iθ) f (eiθ)dθ, z ∈ D,

where P(z) = (1− |z|2)/|1− z|2 for z ∈ D is the Poisson kernel for D. For h given
by (3.2) this correspondence means that ck = f̂ (k) for k ∈ Z, where f̂ (k) is the
k-th Fourier coefficient of f . See for instance Chapter 11 of [20] for details.

We next show that Toeplitz operators and functional calculus of shifts
amount to the same class of objects.

THEOREM 3.2. Let α > −1 and f ∈ L∞(T). Then

Th =
∫
T

f (eiθ)dωSα
(eiθ) in L(Aα(D)),

where h = P[ f ] is the Poisson integral of f and Th is the Toeplitz operator on Aα(D)
with symbol h.

Proof. By Lemmas 2.6 and 3.1 we have that

〈Thek, ej〉α =
〈 ∫
T

f (eiθ)dωSα
(eiθ)ek, ej

〉
α

for j, k > 0. An approximation argument now yields the result.

We next characterize the Toeplitz operators using the operator identity (0.4).

THEOREM 3.3. Let α > −1 and let T ∈ L(Aα(D)) be a bounded linear operator.
Then T satisfies (0.4) if and only if T is a Toeplitz operator T = Th on Aα(D) with
bounded harmonic symbol h.

Proof. By Theorem 3.2 the Toeplitz operators on Aα(D) with bounded har-
monic symbols and the operator integrals

∫
T

f dωSα
of functions f ∈L∞(T) amount

to the same class of operators. The result now follows by Theorem 2.5.

Given the information that an operator T is a Toeplitz operator on Aα(D)
with bounded harmonic symbol it is of interest to know how to calculate its sym-
bol h in (3.1) or equivalently the symbol f in the operator integral representation
(2.10). In Section 2 we described how to calculate these symbols from the ho-
mogeneous parts Tk, k ∈ Z, of T. Another method is to calculate the Berezin
transform T̃ of T and use that h(z) = T̃(z) for z ∈ D (see Chapter 6 of [25] or
Proposition 5.2 of [15]).

We mention that for n = α + 2 positive integer the characterizations of op-
erators T ∈ L(Aα(D)) satisfying (0.4) in terms of functional calculus for the shift
(Theorem 2.5) or as Toeplitz operators (Theorem 3.3) originate from [15]. The
novelty here is the extension of these results to the full parameter scale α > −1.
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4. OPERATOR INEQUALITIES

In this section we shall discuss two operator inequalities naturally derived
from (0.2) and, as a consequence, we shall obtain (0.5). By the notation T ∈ L(H)
we understand that T is a bounded linear operator on a general not necessarily
separable Hilbert space H. For H a Hilbert space we denote by `2(H) the stan-
dard Hilbert space of square-summable sequences from H over an appropriate
index set.

Let α > −1. We shall consider left-invertible operators T ∈ L(H) such that

(4.1) (T∗T)−1 6 ∑
k>0

(−1)k
(

α + 2
k + 1

)
TkT∗k

with the sum convergent in the weak operator topology in L(H). The assump-
tion of left-invertibility of T is needed for the operator (T∗T)−1 to exist in L(H).
Inequality (4.1) is to be interpreted in the operator sense that

(4.2) 〈(T∗T)−1x, x〉 6 ∑
k>0

(−1)k
(

α + 2
k + 1

)
‖T∗kx‖2, x ∈ H.

The sum in (4.2) is always absolutely convergent since the coefficients (−1)k(α+2
k+1)

are of constant sign for k > α + 1 as follows by Proposition 1.2.
Let −1 < α 6 0. A related property of an operator T ∈ L(H) is that it

satisfies the operator inequality

(4.3)
∥∥∥x + ∑

k>1
Cα;kTkxk

∥∥∥2
6 (α + 2)

(
‖Tx‖2 + ∑

k>1
‖xk‖2

)
for x ∈ H and {xk}k>1 ∈ `2(H) finitely supported, where {Cα;k}k>1 are arbi-
trary complex numbers such that (0.6) holds. Notice that (−1)k+1(α+2

k+1) > 0 for
k > 1 by Proposition 1.2 which ensures existence of complex numbers {Cα;k}k>1
satisfying (0.6).

For the sake of easy reference we record that

(4.4) ‖(T∗T)1/2x‖2 = 〈(T∗T)1/2x, (T∗T)1/2x〉 = 〈T∗Tx, x〉 = ‖Tx‖2

for x ∈ H, where the positive square root is used.
We shall next investigate the relation between (4.1) and (4.3).

THEOREM 4.1. Let −1 < α 6 0 and let T ∈ L(H) be a left-invertible operator
satisfying (4.1). Then T satisfies (4.3).

Proof. Notice first that (4.1) is equivalent to

(4.5) ‖(T∗T)−1/2x‖2 + ∑
k>1
‖Cα;kT∗kx‖2 6 (α + 2)‖x‖2, x ∈ H.

Now introduce the operator M on H by Mx = {yk}k>0, where y0 = (T∗T)−1/2x
and yk = Cα;kT∗kx for k > 1. By (4.5) the operator M maps H boundedly into
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`2(H) and ‖M‖2 6 α + 2. Passing to the adjoint we have that M∗ maps `2(H)
intoH and ‖M∗‖2 6 α + 2. A calculation gives that

M∗({xk}k>0) = (T∗T)−1/2x0 + ∑
k>1

Cα;kTkxk

for {xk}k>0 ∈ `2(H) finitely supported. This gives the inequality that

(4.6)
∥∥∥(T∗T)−1/2x0 + ∑

k>1
Cα;kTkxk

∥∥∥2
6 (α + 2) ∑

k>0
‖xk‖2

for {xk}k>0 ∈ `2(H) finitely supported. Setting x = (T∗T)−1/2x0 in (4.6) using
(4.4) we obtain the conclusion of the theorem.

As a consequence we obtain (0.5) for the Bergman shift operator.

COROLLARY 4.2. Let −1 < α 6 0 and let E be a Hilbert space. Then the shift
operator Sα on Aα(E) satisfies the inequality∥∥∥ f + ∑

k>1
Cα;kSk

α fk

∥∥∥2

α
6 (α + 2)

(
‖Sα f ‖2

α + ∑
k>1
‖ fk‖2

α

)
for all f ∈ Aα(E) and { fk}k>1 ∈ `2(Aα(E)) finitely supported, where the Cα;k’s are as
in (0.6).

Proof. Recall Theorem 1.4. An application of Theorem 4.1 now yields the
conclusion of the corollary.

We next turn to the converse of Theorem 4.1.

THEOREM 4.3. Let −1 < α 6 0. Let T ∈ L(H) be an operator satisfying (4.3).
Then T is left-invertible and satisfies (4.1).

Proof. Setting xk = 0 for k > 1 in (4.3) we see that ‖x‖2 6 (α + 2)‖Tx‖2 for
x ∈ H, showing that T is left-invertible.

Using the substitution x = (T∗T)−1/2x0 and (4.4) in (4.3) we get∥∥∥(T∗T)−1/2x0 + ∑
k>1

Cα;kTkxk

∥∥∥2
6 (α + 2) ∑

k>0
‖xk‖2

for {xk}k>0 ∈ `2(H) finitely supported. Introduce now the operator N by

N({xk}k>0) = (T∗T)−1/2x0 + ∑
k>1

Cα;kTkxk

for {xk}k>0 ∈ `2(H) finitely supported. It is clear that N extends uniquely by
continuity to a bounded linear operator from `2(H) into H with ‖N‖2 6 α + 2.
Passing to the adjoint we have that N∗ is a bounded operator from H into `2(H)
with norm control ‖N∗‖2 6 α + 2. A calculation shows that N∗x = {yk}k>0,
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where y0 = (T∗T)−1/2x and yk = Cα;kT∗kx for k > 1. This gives

‖(T∗T)−1/2x‖2 + ∑
k>1
|Cα;k|2‖T∗kx‖2 6 (α + 2)‖x‖2, x ∈ H.

By this last inequality (4.1) follows.

We wish to mention that Theorems 4.1 and 4.3 are extracted from the method
of proof of Shimorin ([21], Theorem 3.6). A similar analysis can be found in Mc-
Cullough and Richter ([16], Section 3).

For a left-invertible operator T ∈ L(H) we denote by T′ = T(T∗T)−1 its
Cauchy dual. We shall need also the following estimate of powers of T′.

PROPOSITION 4.4. Let −1 < α 6 0 and let T ∈ L(H) be a left-invertible
operator satisfying (4.1). Then

‖T′kx‖26
(

k+α

k−1

)
(‖T′x‖2−‖x‖2)+

((k+α+1
k

)
−(α+1)

(
k+α

k−1

))
‖x‖2, x∈H,

for k = 2, 3, . . . , where T′ is the Cauchy dual of T.

Proof. Let x ∈ H. We shall consider the sequence

am = ‖T′mx‖2, m = 0, 1, 2, . . . ,

of non-negative real numbers. Recall that T′∗T′ = (T∗T)−1. Substituting T′mx for
x in (4.2) we have

‖T′m+1x‖2 6
m

∑
k=0

(−1)k
(

α + 2
k + 1

)
‖T′m−kx‖2 +

∞

∑
k=m+1

(−1)k
(

α + 2
k + 1

)
‖T∗(k−m)x‖2

6
m

∑
k=0

(−1)k
(

α + 2
k + 1

)
‖T′m−kx‖2

since T∗T′ = I, where the last inequality follows by an estimation using Proposi-
tion 1.2. For the numbers {am}m>0 this gives the inequalities

am+1 6
m

∑
k=0

(−1)k
(

α + 2
k + 1

)
am−k, m = 0, 1, 2, . . . .

We now introduce numbers bm such that

am+1 + bm =
m

∑
k=0

(−1)k
(

α + 2
k + 1

)
am−k, m = 0, 1, 2, . . . .

Notice that bm > 0 for m > 0. Passing to generating functions we have

(4.7)
A(z)− A(0)

z
+ B(z) =

( ∞

∑
k=0

(−1)k
(

α + 2
k + 1

)
zk
)

A(z)

for |z| small, where

A(z) =
∞

∑
k=0

akzk and B(z) =
∞

∑
k=0

bkzk.
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Solving for A(z) in (4.7) using the binomial series (1.3) we have that

A(z) =
A(0)− zB(z)
(1− z)α+2 .

Now

A(z) =
a0 − b0z

(1− z)α+2 −
z(B(z)− b0)

(1− z)α+2

and the rightmost function in this last equality has non-negative Taylor coeffi-
cients since bm > 0 for m > 1. This leads to the estimate

am 6
(

m + α + 1
m

)
a0 −

(
m + α

m− 1

)
b0, m = 2, 3, . . . .

Using a1 + b0 = (α + 2)a0 we calculate that

am 6
(

m + α + 1
m

)
a0 −

(
m + α

m− 1

)
((α + 2)a0 − a1)

=

(
m + α

m− 1

)
(a1 − a0) +

((m + α + 1
m

)
− (α + 1)

(
m + α

m− 1

))
a0,

for m = 2, 3, . . . . This yields the conclusion of the proposition.

For α = 0 Proposition 4.4 gives the bounds

‖T′kx‖2 6 k(‖T′x‖2 − ‖x‖2) + ‖x‖2, x ∈ H,

for k = 2, 3, . . . , which were used in [17] to prove Cesàro summability in a context
of wandering subspace theorems.

5. KERNEL FUNCTIONS

Let E be a Hilbert space. By a Hilbert space of E -valued analytic functions in
a domain Ω we mean a Hilbert space H whose elements f are E -valued analytic
functions in Ω in such a way that the point evaluations

H 3 f 7→ f (ζ) ∈ E
at points ζ ∈ Ω are all continuous. Associated to such a space H there is a re-
producing kernel function KH : Ω × Ω → L(E) uniquely determined by the
properties that KH(·, ζ)e ∈ H and

(5.1) 〈 f (ζ), e〉 = 〈 f , KH(·, ζ)e〉, f ∈ H,

for all ζ ∈ Ω and e ∈ E . The essential property of a kernel function is that of
positive definiteness and it is well-known that the kernel function determines the
space completely (see [5]). As an example of kernel functions we mention the
Bergman kernels Kα from Section 1.

Assuming that the shift operator

S f (z) = z f (z), z ∈ Ω,
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operates on a Hilbert space H of E -valued analytic functions on Ω it is well-
known that the adjoint shift S∗ acts on reproducing elements by

(5.2) S∗KH(·, ζ)e = ζKH(·, ζ)e

for ζ ∈ Ω and e ∈ E . We next consider the backward shift.

LEMMA 5.1. Let H be a Hilbert space of E -valued analytic functions on a domain
Ω containing the origin such that the backward shift operator

B f (z) =
f (z)− f (0)

z
, z ∈ Ω,

operates in H. Then

B∗KH(·, ζ)e =
KH(·, ζ)e− KH(·, 0)e

ζ

for ζ ∈ Ω and e ∈ E .

Proof. Let e1, e2 ∈ E and set f = B∗KH(·, ζ)e1. Using the reproducing prop-
erty (5.1) we calculate that

〈 f (z), e2〉 = 〈B∗KH(·, ζ)e1, KH(·, z)e2〉 = 〈KH(·, ζ)e1, BKH(·, z)e2〉

= 〈BKH(·, z)e2, KH(·, ζ)e1〉 = 〈(KH(ζ, z)e2 − KH(0, z)e2)/ζ, e1〉
= 〈(KH(z, ζ)e1 − KH(z, 0)e1)/ζ, e2〉

for z, ζ ∈ Ω. This yields the conclusion of the lemma.

Let us recall briefly the so-called Wold map V from [4], [21] which is a con-
venient device for the purpose of modeling a general Hilbert space operator as a
shift operator on a Hilbert space of analytic functions. Let T ∈ L(H) be a left-
invertible operator and denote by L = (T∗T)−1T∗ its Moore–Penrose left-inverse.
The operator P = I − TL is the orthogonal projection of H onto the wandering
subspace E = H	 T(H) = ker T∗ for T. For x ∈ H we consider the E -valued
analytic function

Vx(z) = P(I − zL)−1x = ∑
k>0

(PLkx)zk, |z| < 1
ρ(L)

,

where ρ(L) is the spectral radius of L. The map V : x 7→ Vx has the intertwining
properties

VTx(z) = zVx(z) and VLx(z) =
Vx(z)−Vx(0)

z
for |z| < 1/ρ(L). In other words, the map V intertwines T with the shift S and L
with the backward shift B. The map V : x 7→ Vx being injective corresponds to
the operator T being pure in the sense that⋂

k>0

Tk(H) = {0}
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(see Lemma 2.2 of [21]). For T pure we equip the range H = V(H) with the norm
induced by the map V, that is, we set ‖ f ‖2 = ‖x‖2 when f = Vx for some x ∈ H.
This norm makes H a Hilbert space of E -valued analytic functions and the map
V : H → H unitary.

The following proposition is from Shimorin ([21], Proposition 2.13). For the
sake of completeness we include a proof.

PROPOSITION 5.2. Let T ∈ L(H) be a pure left-invertible operator and H =
V(H) as above. Then the kernel function for H is given by the formula

KH(z, ζ) = P(I − zL)−1(I − ζL∗)−1|E

for |z|, |ζ|<1/ρ(L). In particular KH(·, 0)= IE , where IE is the identity operator on E .

Proof. For f = Vx ∈ H, x ∈ H, e ∈ E and |ζ| < 1/ρ(L) we have

〈 f (ζ), e〉 = 〈P(I − ζL)−1x, e〉 = 〈x, (I − ζL∗)−1e〉 = 〈Vx, V(I − ζL∗)−1e〉

= 〈 f , P(I − ·L)−1(I − ζL∗)−1e〉.

This gives the formula for KH. The property KH(·, 0) = IE is evident by the
formula.

Let us comment on the property KH(·, 0) = IE of a kernel function.

PROPOSITION 5.3. Let H be a Hilbert space of E -valued analytic functions in a
domain Ω containing the origin. Then

KH(z, 0) = IE , z ∈ Ω,

if and only if the space E identified as constant functions on Ω is isometrically contained
in H in such a way that H admits the orthogonal sum decomposition

(5.3) H = E ⊕ { f ∈ H : f (0) = 0}.
Proof. Assume first that KH(·, 0) = IE . It is straightforward to check that the

constant functions are isometrically contained in H. A straightforward calculation
using the reproducing property (5.1) gives

H	 E = { f ∈ H : f (0) = 0},

which yields the orthogonal sum decomposition.
Assume next that E is isometrically contained in H in such a way that (5.3)

holds. We show first that KH(0, 0) > IE in L(E). For this purpose let f ≡ e be a
constant function in H. By the reproducing property (5.1) we have

‖e‖2 = 〈 f (0), e〉 = 〈 f , KH(·, 0)e〉 6 ‖ f ‖‖KH(·, 0)e‖ = ‖ f ‖〈KH(0, 0)e, e〉1/2

using Cauchy–Schwarz inequality. Since ‖ f ‖ = ‖e‖, a cancellation argument
gives ‖e‖26 〈KH(0, 0)e, e〉 for e∈E , which proves the assertion that KH(0, 0)> IE .
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We now show that KH(·, 0) = IE . Consider a function f ∈ H of the form
f = KH(·, 0)e for some e ∈ E . By (5.3) we have ‖ f ‖2 = ‖ f − f (0)‖2 + ‖ f (0)‖2.
Using the reproducing property (5.1) we have

‖ f − f (0)‖2 = ‖ f ‖2 − ‖ f (0)‖2 = 〈KH(0, 0)e, e〉 − ‖KH(0, 0)e‖2(5.4)

= 〈KH(0, 0)(IE − KH(0, 0))e, e〉 6 0,

where the last inequality follows from the inequality KH(0, 0) > IE shown in the
previous paragraph. As a consequence f = f (0) is constant. Varying e ∈ E we see
that KH(·, 0) = KH(0, 0). Another look at (5.4) reveals that KH(0, 0)2 = KH(0, 0)
by a polarization argument, showing that the operator KH(0, 0) is an orthogonal
projection. Since KH(0, 0) > IE , this gives that KH(0, 0) = IE . We now conclude
that KH(·, 0) = IE .

Let α>−1. We shall next consider left-invertible operators T∈L(H) such that

(5.5) (T∗T)−1 = ∑
k>0

(−1)k
(

α + 2
k + 1

)
TkT∗k

with convergence in the weak operator topology in L(H). By a polarization ar-
gument (5.5) is equivalent to

〈(T∗T)−1x, x〉 = ∑
k>0

(−1)k
(

α + 2
k + 1

)
‖T∗kx‖2, x ∈ H,

and this last sum is absolutely convergent since the coefficients (−1)k(α+2
k+1) are of

constant sign for k > α + 1 by Proposition 1.2.

THEOREM 5.4. Let α > −1. Let T ∈ L(H) be a pure left-invertible operator
satisfying (5.5), and set H = V(H). Then H = Aα(E) is the standard weighted Bergman
space with weight parameter α and multiplicity E = H 	 T(H). In particular, the
operator T is unitarily equivalent to a vector-valued Bergman shift Sα.

Proof. We calculate the kernel function KH from Proposition 5.2. Observe
first that

(5.6) KH(z, ζ) = IE + ζz
(

∑
j,k>0

PLj+1L∗(k+1)|E ζ
kzj
)

for |ζ|, |z| < 1/ρ(L). Recall that LL∗ = (T∗T)−1. Using (5.5) we calculate

PLj+1L∗(k+1)|E = ∑
n>0

(−1)n
(

α + 2
n + 1

)
PLjTnT∗nL∗k|E

=
min(j,k)

∑
n=0

(−1)n
(

α + 2
n + 1

)
PLj−nL∗(k−n)|E
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using that LT = I and PT = 0. Going back to (5.6) we have

KH(z, ζ) = IE + ζz
(

∑
j,k>0

min(j,k)

∑
n=0

(−1)n
(

α + 2
n + 1

)
PLj−nL∗(k−n)|E ζ

kzj
)

= IE + ζz
(

∑
n>0

∑
j,k>n

(−1)n
(

α + 2
n + 1

)
PLj−nL∗(k−n)|E ζ

kzj
)

= IE + ζz
(

∑
n>0

(−1)n
(

α + 2
n + 1

)
ζ

nzn
)

KH(z, ζ)

for |ζ|, |z| < 1/ρ(L) by changes of order of summation. Using the binomial series
(1.3) we see that

KH(z, ζ) = IE − ((1− ζz)α+2 − 1)KH(z, ζ)

for |ζ|, |z| < 1/ρ(L). Solving for KH we conclude that KH(z, ζ) = 1/(1− ζz)α+2 IE
for |ζ|, |z| < 1/ρ(L), that is, KH is the kernel function for Aα(E). By the well-
known fact that a Hilbert space of analytic functions is completely determined
by its kernel function we arrive at the conclusion that H = Aα(E) (see Section I.2
of [5]).

We mention that Theorem 5.4 generalizes a recent result from Giselsson and
Olofsson ([12], Theorem 3.1) for n = α + 2 positive integer to the full parameter
scale α > −1. In conclusion, the operator identity (5.5) together with a pureness
condition characterize the Bergman shift operator Sα up to unitary equivalence
allowing for a general multiplicity.

We next consider operators satisfying the operator inequality (4.1).

THEOREM 5.5. Let α > −1. Let T ∈ L(H) be a pure left-invertible operator and
set H = V(H). Assume also that ρ(L) 6 1. Then T satisfies (4.1) if and only if the
kernel function for H admits the representation

(5.7) KH(z, ζ) =
1

(1− ζz)2+α
(IE − ζz`(z, ζ)), (z, ζ) ∈ D2,

for some positive definite sesqui-analytic L(E)-valued kernel ` in D2.

Proof. The assumption ρ(L) 6 1 ensures that H is a Hilbert space of analytic
functions in D. Recall that LL∗ = (T∗T)−1. Observe also that VT∗ = S∗V which
follows from the intertwining relation VT = SV since the map V : H → H is
unitary. Similarly VL∗ = B∗V, where B is the backward shift on H. Applying the
map V : H → H we see that (4.1) equivalently says that

(5.8) ‖B∗ f ‖2 6 ∑
n>0

(−1)n
(

α + 2
n + 1

)
‖S∗n f ‖2, f ∈ H.

Recall also that the sign of coefficients in (5.8) is constant for n > α + 1 by Propo-
sition 1.2 showing that the sum is absolutely convergent.
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We shall next evaluate (5.8) on an element f in H of the form

(5.9) f =
N

∑
j=1

KH(·, ζ j)ej,

where ζ1, . . . , ζN ∈ D and e1, . . . , eN ∈ E . Observe that

B∗ f =
N

∑
j=1

KH(·, ζ j)ej − IE ej

ζ j

by Lemma 5.1 and Proposition 5.2. Observe also that

S∗n f =
N

∑
j=1

ζ
n
j KH(·, ζ j)ej

for n > 0 by (5.2). Substituting (5.9) into (5.8) we get
N

∑
j,k=1

1
ζ jζk

(〈KH(ζk, ζ j)ej, ek〉 − 〈IE ej, ek〉)

6 ∑
n>0

(−1)n
(

α + 2
n + 1

) N

∑
j,k=1

ζ
n
j ζn

k 〈KH(ζk, ζ j)ej, ek〉,

which simplifies to
N

∑
j,k=1

1
ζ jζk

(〈KH(ζk, ζ j)ej, ek〉 − 〈IE ej, ek〉)(5.10)

6
N

∑
j,k=1

1− (1− ζ jζk)
α+2

ζ jζk
〈KH(ζk, ζ j)ej, ek〉

after a change of order of summation and use of the binomial series (1.3).
Introduce now the L(E)-valued function

`(z, ζ) =
1− (1− ζz)α+2

ζz
KH(z, ζ)− 1

ζz
(KH(z, ζ)− IE ), (z, ζ) ∈ D2.

Observe that the function ` is sesqui-analytic by Proposition 5.2. Notice that (5.10)
can be restated as

N

∑
j,k=1
〈`(ζk, ζ j)ej, ek〉 > 0.

Varying f ∈ H over the dense set of elements of the form (5.9) we conclude that
(5.8) is equivalent to positive definiteness of `. Solving for KH in terms of ` the
representation formula (5.7) follows.

REMARK 5.6. The assumption ρ(L) 6 1 in Theorem 5.5 is inserted to ensure
that H is a Hilbert space of analytic functions in D. In the restricted parameter
range −1 < α 6 0, the spectral radius control ρ(L) 6 1 is a consequence of (4.1)
as follows by Proposition 4.4 and the spectral radius formula. Elaborating the
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proof of Proposition 4.4 we can more generally show that ρ(L) 6 1 follows from
(4.1) when 2m− 1 6 α 6 2m for some integer m > 0. The details are omitted.

For α = 0 the structure formula (5.7) goes back to Shimorin ([21], formula
(3.4)); see also Section 6 of [13].

For a general result along similar lines as Theorem 5.5, see McCullough and
Richter ([16], Theorem 3.2). From the point of view of normalized reproducing
kernels for general shift invariant subspaces of Aα(D) structure formulas of the
form (5.7) with ` positive definite seem relevant only in the parameter range−1 <
α 6 0, see McCullough and Richter [16].
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