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ABSTRACT. We consider analytic reproducing kernel Hilbert spaces H with
orthonormal bases of the form {(an + bnz)zn : n > 0}. If bn = 0 for all n,
then H is a diagonal space and multiplication by z, Mz, is a weighted shift.
Our focus is on providing extensive classes of examples for which Mz is a
bounded subnormal operator on a tridiagonal space H where bn 6= 0. The
Aronszajn sum of H and (1− z)H where H is either the Hardy space or the
Bergman space on the disk are two such examples.
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1. INTRODUCTION AND PRELIMINARIES

The function K(z, w) is positive semidefinite (denoted K � 0) on the set E×
E if for any finite collection z1, z2, . . . , zn in E and any complex numbers α1, α2,
. . . , αn the sum

n

∑
i,j=1

αiαjK(zi, zj) > 0

with strict inequality unless all the αi’s are zero. It is well known that if K � 0 on
E, then the set of functions in z given by{ n

∑
j=1

αjK(z, wj) : α1, . . . , αn ∈ C, w1, . . . , wn ∈ E
}

has dense span in a Hilbert space H(K) of functions on E with∥∥∥ n

∑
j=1

αjK(z, wj)
∥∥∥2

=
n

∑
i,j=1

αiαjK(wi, wj).
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A fundamental property of H(K) is the Reproducing Property which states
that f (w) = 〈 f (z), K(z, w)〉 for every w in E and f in H(K). Thus evaluation at w
is a bounded linear functional for each w in E.

Conversely, it is well known that if F is a Hilbert space of functions defined
on E such that evaluation at w is a bounded linear functional for each w in E,
then there is a unique K defined on E× E such that F = H(K). It follows from the
reproducing property that K(z, w) = K(w, z). Hence if K is analytic in the first
variable, then K is coanalytic in the second variable. In this case K is an analytic
kernel. In later sections of this paper, E will always be the unit disk D and K will
be an analytic kernel.

It is also well known, see N. Aronszajn [3], that if { fn(z)} is an orthonormal
basis for a reproducing kernel Hilbert space of functions on E , then

K(z, w) =
∞

∑
n=0

fn(z) fn(w)

for all z, w in E. Moreover if the largest common domain E′ of the functions
{ fn(z)} is larger than E, then the largest natural domain of H(K) is given by

Dom(K) =
{

z ∈ E′ :
∞

∑
n=0
| fn(z)|2 < ∞

}
.

When K is analytic and E contains the open unit disk, K(z, w) =
∞
∑

i,j=0
ai,jziwj has a

Taylor series expansion about (0, 0) with coefficient matrix A = [ai,j]. The matrix
A is positive and if A = BB∗ is any factorization of A, then H(K) is naturally
isomorphic to the range space R(B) = {B~x : ~x ∈ l2

+} via the map which identifies
B~x with the analytic function f whose Taylor coefficients are the components of
B~x. Thus, when B has no kernel, the columns of B correspond to an orthonormal
basis for H(K). It should be noted that the matrices are not necessarily bounded,
but this is not a problem for the general theory. The interested reader is referred
to Adams, McGuire, and Paulsen [2] for more details.

An analytic kernel is tridiagonal if there exists an orthonormal basis of poly-
nomials for H(K) of the form { fn(z) = (an + bnz)zn : n > 0} and diagonal if
bn = 0 for all n. In this case the coefficient matrix A has bandwidth 3, hence the
name tridiagonal, and A can be factored as LL∗ where

L =


a0 0 0 · · ·

b0 a1 0
. . .

0 b1 a2
. . .

...
... b2

. . .

 .

The natural domain Dom(K) of a tridiagonal kernel is either an open or
closed disk about the origin together with at most one point not in the disk. This
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was shown in Adams, McGuire [1] in which the properties of Mz were consid-
ered. For an > 0, H(K) contains the polynomials if and only if the sequence{

1,
bn

an+1
,

bnbn+1

an+1an+2
,

bnbn+1bn+2

an+1an+2an+3
, . . .

}
is square summable for each n. If Mz is bounded, then either H(K) contains
the polynomials or bn = λan for all n where λ is a constant. In the latter case
{(1 + λz)anzn} is a basis for H(K) and Mz is a bounded weighted shift. Also, an
example is given in Adams, McGuire [1] in which the polynomials are contained
in H(K), yet Mz is not bounded.

Recall that a bounded operator S on a separable complex Hilbert space X
is subnormal if there is a normal operator N on a Hilbert space Y containing X
such that X is an invariant subspace for N and S is the restriction of N to X. A
subnormal operator S is pure if there is no reducing subspace for S on which S is
normal. Since our interest is in Mz being a pure subnormal operator on a tridiag-
onal space, we can assume that the domain is an open disk (see Conway [4], page
398). Additionally, by replacing K = K(z, w) with a dilated kernel Kr = K(rz, rw)
we may assume that the domain is the open unit disk D. The details of the iso-
morphism of H(K) and H(Kr) can be found in [2]. By necessity H(K) contains the
polynomials and hence is isomorphic to the closure of the polynomials, denoted
P2(µ), in L2(µ) for some measure µ supported on the closed unit disk.

In Aronszajn [3] it is shown that if K1 � 0 and K2 � 0, then K1 + K2 � 0 and
the space H(K1 +K2) consists of the functions { f1 + f2 : f1 ∈ H(K1), f2 ∈ H(K2)}
with norm

‖ f ‖2
K1+K2

= inf{‖ f1‖2 + ‖ f2‖2 : f = f1 + f2, f1 ∈ H(K1), f2 ∈ H(K2)}.

We will denote the space H(K1 + K2) by H(K1)⊕̂H(K2). Note that if H(K1) and
H(K2) are invariant under multiplication by z, then so is H(K1)⊕̂H(K2).

In Vern Paulsen’s [6] notes, the following nice description is given of the
space which results by composing a reproducing kernel K on E× E with a func-
tion φ : S→ E.

PROPOSITION 1.1 (Paulsen). If E and S are sets, K : E × E → C is positive
definite and φ : S → E is a function, then the function (K ◦ φ)(z, w) = K(φ(z), φ(w))
is positive definite on S× S,

H(K ◦ φ) = { f ◦ φ : f ∈ H(K)},

and ‖g‖H(K◦φ) = inf{‖ f ‖H(K) : g = f ◦ φ}.

In Section 2 we will produce examples of tridiagonal reproducing kernel
Hilbert spaces that arise in part as compositions and for which Mz is a subnor-
mal operator. Interestingly, the spaces are also of the form H(K1)⊕̂H(K2) where
H(K1) and H(K2) are unitarily equivalent to diagonal reproducing kernel spaces
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for which Mz is subnormal. In particular it is shown that the tridiagonal repro-
ducing kernel Hilbert space H(K)⊕̂(1− z)H(K) where K(z, w) = 1

1−wz is identifi-
able as a P2(µ) space having a close relationship to β, the reciprocal of the square
of the Golden Ratio 1+

√
5

2 . More specifically, if Pβ(θ) denotes the Poisson kernel

at β and Xβ denotes the unit point mass at β, then dµ is equal to Pβ(θ)
dθ
2π + β√

5
Xβ.

In Section 3, a large class of tridiagonal kernels is introduced for which Mz
is subnormal. The approach in this section is to construct measures for which the
closure of the polynomials forms spaces for which an orthonormal polynomial
basis of the desired tridiagonal form exists. The examples in this section appear
to be quite distinct from those in Section 2.

We conclude in Section 4 with some open questions.
Before proceeding to Section 2, we first collect together a few well known

examples and facts regarding Mz on diagonal spaces. The reader is referred to
Conway [4], Shields [8], and Zhu [10] for details.

Assume K(z, w) =
∞
∑

n=0
an(wz)n has the unit disk D as its domain and an > 0

for all n with a0 = 1.

(i) { fn(z) =
√

anzn : n > 0} is an orthonormal basis for H(K).

(ii) Mz is a unilateral weighted shift with weight sequence
√

an
an+1

.

(iii) Mz is subnormal if and only if there exists a probability measure ν on [0, 1]
such that for all n > 0,

1
an

=

1∫
0

t2ndν(t).

In this case H(K) is a measure space with

‖ f ‖2
H(K) =

1
2π

2π∫
0

1∫
0

f (teiθ)dν(t)dθ

and the weight sequence
√

an
an+1

increases to 1.

(iv) If

K(z, w) =
∞

∑
n=0

(wz)n =
1

1− wz
,

then ν(t) = δ1(t) where δ1 denotes the unit point mass at 1, dµ = dν(t)dθ
2π is arc-

length measure on the unit circle, and H(K) is unitarily equivalent to the Hardy
space H2.

(v) If K(z, w) =
∞
∑

n=0
(n + 1)(wz)n = 1

(1−wz)2 , then dν(t) = 2tdt, dµ(teiθ) =

t dtdθ
π is normalized area measure on the unit disk, and H(K) is the Bergman space

L2
a(D).



TRIDIAGONAL REPRODUCING KERNELS AND SUBNORMALITY 481

(vi) For real numbers s > 1, if

Ks(z, w) =
1

(1− wz)s =
∞

∑
n=0

Γ(s + n)
n!Γ(s)

(wz)n,

then dµ(teiθ) = 2(s− 1)t(1− t2)s−2 dtdθ
2π , and we will denote H(Ks) by L2

a,s(D) and
refer to it as the Bergman-s space . Note L2

a,2(D) = L2
a(D) is the usual Bergman

space.

The reader will note above the connection between the classical moment
problem for the reciprocal sequence of the coefficients { 1

an
} and the subnormality

of Mz. It is well known (see the work of D. Widder and S. Bernstein summarized
in D.V. Widder [9]) that the sequence 1

an
is a moment sequence if and only if there

exists an h such that h(n) = 1
an

is completely monotonic on [0, ∞) and that in
this case the measure can be obtained as dν(t) = g(t)dt where g(t) is 1

t times the
inverse Laplace transform of h(s/2) evaluated at − ln(t). The presence of a point
mass will be signaled by the appearance of the dirac delta function centered at
the appropriate point. Note that if a, b, and r are positive numbers, then 1

(an+b)r

is an elementary example of a completely monotonic function of n on [0, ∞).

2. SOME COMPOSITION EXAMPLES

The goal of this section is to produce examples of tridiagonal reproducing
kernels where Mz on the corresponding space is a bounded subnormal operator
and for which there is a fairly close connection to Mz on a diagonal space.

One trivial way to obtain a space on which Mz is subnormal is to take
K(z, w) = L(z)L(w)K0(z, w) where L is any analytic function on D, K0 is a di-
agonal kernel and Mz on H(K0) is a subnormal operator. In this case H(K) is
simply L(z)H(K0) = { f (z) = L(z)g(z) : g ∈ H(K0)} with ‖ f ‖H(K) = ‖g‖H(K0)

.
Clearly Mz on H(K) is unitarily equivalent to Mz on H(K0). Hence a trivial way
to obtain a non-diagonal tridiagonal space on which Mz is subnormal is to simply
take L(z) = az + b. This connection is too close to the diagonal case and the main
focus of this section is to present a nontrivial way to obtain subnormal operators
on tridiagonal spaces.

We first consider, for β > 0, the diagonal kernel

Kβ,s(z, w) =
( 1 + βwz
(1− wz)s

)
.

resulting from the Aronszajn sum H(Ks)⊕̂
√

βzH(Ks). Note that when β = 0,
Kβ,s(z, w) reduces to the previously defined Ks(z, w). Also note that when s = 1,

Kβ,1(z, w) = 1 +
∞

∑
n=1

(1 + β)(wz)n,
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when s = 2,

Kβ,2(z, w) =
∞

∑
n=0

((1 + β)n + 1)(wz)n,

and for general s > 1,

Kβ,s(z, w) =
∞

∑
n=0

Γ(s + n− 1)(n(1 + β) + s− 1)
n!Γ(s)

(wz)n.

When s = 1 and s = 2 it is clear that the reciprocals of the coefficients form
moment sequences as { 1

an+b} is a completely monotonic sequence for positive a
and b. The measure in the s = 1 case is given by gβ,1(t)dtdθ

2π where

gβ,1(t) =
( β

1 + β
δ0(t) +

1
1 + β

δ1(t)
)

where δx denotes the Dirac delta function positioned at x. The measure in the
s = 2 case is given by gβ,2(t)dtdθ

2π where

gβ,2(t) =
2

1 + β
t(1−β)/(1+β).

When s > 1, the reciprocals of the coefficients

n!Γ(s)
Γ(s + n− 1)(n(1 + β) + s− 1)

are recognizable as the product of the completely monotonic sequence { n!Γ(s)
Γ(s+n)}

associated with L2
a,s and the sequence { n+s−1

n(1+β)+s−1}. The latter sequence can be

expressed as h(n) = 1
1+ βn

n+s−1
. Since β and s− 1 are positive, the function βn

n+s−1 is

known to be a complete Bernstein function (see page 218 of Schilling, Song, and
Vondraček [7]). By theorem 7.5 on page 63 of [7], h is a Stieltjes function. Since
Stieltjes functions are completely monotonic (see Theorem 2.2, page 12, of [7]),
h is a completely monotonic function. Thus, the product n!Γ(s)

Γ(s+n−1)(n(1+β)+s−1)
is completely monotonic and it follows from Widder [9], page 145, that this is
a moment sequence. We will denote the associated measure by gβ,s(t)dtdθ

2π . In
the case when s is an integer, by using partial fractions and the inverse Laplace
transform, we can explicitly determine

gβ,s(t) =
(−1)s−22(s− 1)!(β + 1)s−2

(1 + β)(s− 2− β)(s− 3− 2β) · · · (1− (s− 2)β)
t−(3+β−2s)/(1+β)

+
s−3

∑
k=0

(−1)k2(s− 1)(s− 2)
s− 2− k− (k + 1)β

(
s− 3

k

)
t2k+1.
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Hence f ∈ H(Kβ,s) has norm given by

‖ f ‖2
H(Kβ,s)

=
1

2π

2π∫
0

1∫
0

| f (teiθ)|2gβ,s(t)dtdθ

and Mz on H(Kβ,s) is a subnormal unilateral shift. For convenience we will de-
note by µβ,s the measure gβ,s(t)dtdθ.

THEOREM 2.1 (Composition Theorem). If β > 0, s > 1, a ∈ C, α ∈ D,
φ(z) = z+α

1+αz , ψ(z) = a(1− αz)s−1, and

Kφ,ψ,β,s(z, w) = (ψ ◦ φ)(z)(ψ ◦ φ)(w)(Kβ,s ◦ φ)(z, w)

= ψ(φ(z))ψ(φ(w))
1 + βφ(z)φ(w)

(1− φ(z)φ(w))s
,

then Kφ,ψ,β,s is an analytic tridiagonal reproducing kernel onD for which Mz is a bounded
subnormal operator on H(Kφ,ψ,β,s).

Moreover, there is a constant c and a linear function L such that

H(Kφ,ψ,β,s) = H(cKs)⊕̂L(z)H(cKs).

Proof. First, note that with Kψ,β,s(z, w) = ψ(z)ψ(w)Kβ,s(z, w), the Hilbert
space H(Kψ,β,s) consists of the functions

{ψ(z) f (z) : f ∈ H(Kβ,s) = H(Ks)⊕̂
√

βzH(Ks)}

with ‖ψ f ‖H(Kψ,β,s)
= ‖ f ‖H(Kβ,s)

= ‖ f ‖H(Ks)⊕̂
√

βzH(Ks)
.

Now consider the reproducing kernel Kφ,ψ,β,s = Kψ,β,s ◦ φ. Since φ is in-
jective on D, Proposition 1.1 asserts that H(Kφ,ψ,β,s) = { f ◦ φ : f ∈ H(Kψ,β,s)}
and ‖ f ◦ φ‖H(Kφ,ψ,β,s)

= ‖ f ‖H(Kψ,β,s)
. A computation shows that Kφ,ψ,β,s(z, w) =

(Kψ,β,s ◦ φ)(z, w) is equal to

a2
(

1−|α|2
1+αz

)s−1( 1−|α|2
1+αw

)s−1( (1+αw)(1+αz)+β(w+α)(z+α)
(1+αw)(1+αz)

)
(
(1−|α|2)(1−wz)
(1+αw1)(1+αz)

)s

=
a2(1− |α|2)s−2(1 + αw + αz + |α|2wz + βwz + βαz + βαw + β|α|2)

(1− wz)s

which, if β > 0, can be expressed as

a2β(1− |α|2)s

β + |α|2 (1 + L(z)L(w))
1

(1− wz)s

where

L(z) =
α(1 + β) + (β + |α|2)z

(1− |α|2)
√

β
.
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Noting that L is a linear function and recalling that Ks(z, w) = 1
(1−wz)s is a diago-

nal kernel, it is now clear that Kφ,ψ,β,s is a tridiagonal kernel.
If β = 0, then Kφ,ψ,β,s reduces to

Kφ,ψ,β,s(z, w) =
a2(1− |α|2)s−2|α|2

(1− wz)s

( 1
α
+ z
)( 1

α
+ w

)
and H(Kφ,ψ,β,s) is the trivial case of a linear function times the diagonal space
H(Ks).

Assuming β > 0 and letting c = a2β(1−|α|2)s

β+|α|2 we note that

H(Kφ,ψ,β,s) = H(cKs)⊕̂L(z)H(cKs)

is invariant under multiplication by z since both of the summands are. Since
evaluation is a continuous linear functional, the closed graph theorem implies
Mz is bounded on H(Kφ,ψ,β,s).

In the preliminary remarks to this theorem we observed that Mz on H(Kβ,s)
is subnormal with measure µβ,s. Since H(Kψ,β,s) = ψ(z)H(Kβ,s) with the norm of
h = ψ f given by

‖h‖2
H(Kψ,β,s)

= ‖ f ‖2
H(Kβ,s)

=
∫
D

| f |2dµβ,s =
∫
D

|h(z)|2
dµβ,s(z)
|ψ(z)|2 ,

Mz is bounded on H(Kψ,β,s) and unitarily equivalent to Mz on H(Kβ,s). Recall
h ∈ H(Kφ,ψ,β,s) is uniquely represented by h = f ◦ φ for some f ∈ H(Kψ,β,s).
With the change of variables z = φ(ζ) at the appropriate step, we see that

‖h‖2
H(Kφ,ψ,β,s)

= ‖ f ◦ φ‖2
H(Kφ,ψ,β,s)

= ‖ f ‖2
H(Kψ,β,s)

=
∫
D

| f (z)|2dµψ,β,s(z)

=
∫
D

| f (φ(ζ))|2|φ′(ζ)|dµψ,β,s(ζ) =
∫
D

|h(ζ)|2|φ′(ζ)|dµψ,β,s(ζ)

where dµψ,β,s is the measure associated with the space H(Kψ,β,s). Thus H(Kφ,ψ,β,s)
is a measure space and Mz is a subnormal operator.

REMARK 2.2. In the composition theorem just completed, the choice of ψ is
almost, but not quite, unique for a given α. If ψ(z) = a(1− 1

α z)s−1, then

Kφ,ψ,β,s(z, w) =
a2β(1− |α|2)s|α|2(1−s)

β + |α|2 (1 + L(z)L(w))
(wz)s−1

(1− wz)s

where L is the same as in the composition theorem. The essential effect of this is to

replace the diagonal kernel Ks(z, w) = 1
(1−wz)s with the diagonal kernel (wz)s−1

(1−wz)s .

This simply replaces the role of the space H(Ks) with the space zs−1H(Ks) and
results in a very similar tridiagonal kernel for which Mz is subnormal. This is
the only other choice of ψ which will lead via the above composition method to a
tridiagonal kernel for a given α ∈ D.



TRIDIAGONAL REPRODUCING KERNELS AND SUBNORMALITY 485

REMARK 2.3. If A1 = r1eiθ1 and A2 = r2eiθ2 are any two complex numbers
and L(z) = A1 + A2z = r1eiθ1 + r2eiθ2 z, then

L(z)L(w) = (r1 + r2ei(θ2−θ1)z)(r1 + r2e−i(θ2−θ1)w)

implies A1 can be taken to be real. By a rotation of z and w by (θ1 − θ2), we can
assume A2 is also real in our representation of Kφ,ψ,β,s. It is noteworthy that if A1
and A2 are any given real numbers and s is a fixed positive integer, then there
exists α ∈ D and β > 0 such that

Kφ,ψ,β,s(z, w) = (1 + (A1 + A2z)(A1 + A2w))Ks(z, w).

In fact

α =
1 + A2

1 + A2
2 −

√
A4

1 − 2A2
1(A2

2 − 1) + (A2
2 + 1)2

2A1 A2
and

β = A2
2 − A2

1 + α(1 + A2
1 − A2

2)
A1

A2
.

Thus a correspondence exists between the reproducing kernel sum spaces H(Ks)⊕̂
L(z)H(Ks) and the composition spaces H(Kφ,ψ,β,s).

Next we are going to look at two examples from a dual perspective. The
first is through the theorem just proved. The second is a different approach that
illuminates the relationship between the composition and the reproducing kernel
sum from the point of view of the matricial range space of the tridiagonal kernels.

EXAMPLE 2.4. The Aronszajn sum H2⊕̂(1− z)H2 can be realized from the
composition theorem by taking α = 1

2 (3−
√

5), β = −α, s = 2, a = 1√
(1−|α|2)(α+1)

,

and ψ(z) = a(1− αz). The resulting measure is Pβ(θ)
dθ
2π + β√

5
Xβ where Pβ(θ) de-

notes the Poisson kernel 1−|β|2
|1+βeiθ |2 and Xβ denotes the unit point mass at β. Notice

that β = −α is the reciprocal of the square of the Golden Ratio.
Now, from the matricial perspective, consider

K(z, w) =
1 + (1− z)(1− w)

1− wz
= v(z)Av(w)∗

= (1, z, z2, . . .)



2 −1 0 0 · · ·

−1 3 −1 0
. . .

0 −1 3 −1
. . .

0 0 −1 3
. . .

...
...

. . . . . . . . .




1
w
w2

...

 .
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Factoring A = LL∗ where

L =



a0 0 0 · · ·
b0 a1 0 · · ·

0 b1 a2
. . .

0 0 b2
. . .

...
...

. . . . . .


,

we arrive at the recursion a0 =
√

2, bn = −1
an

, and a2
n + 1

a2
n−1

= 3. This is easily

solved to produce an =
α2(n+1)

α2n
where αn is the n-th Fibonacci number. Note the

zeros of fn(z) are 0 and −an
bn

= a2
n. The latter converges to φ2 where φ = 1+

√
5

2 is
the Golden Ratio. The negative reciprocal of this is the α above.

EXAMPLE 2.5. Similarly, the Aronszajn sum L2
a(D)⊕̂(1− z)L2

a(D) can be re-
alized from the composition theorem by taking α = 1

2 (3−
√

5), β = −α, s = 2,
a = 1√

(1−|α|2)(α+1)
, and ψ(z) = a(1− αz). Note that

K(z, w) =
1 + (1− z)(1− w)

(1− wz)2 = v(z)Av(w)∗

= (1, z, z2, . . .)



2 −1 0 0 · · ·

−1 5 −2 0
. . .

0 −2 8 −3
. . .

0 0 −3 11
. . .

...
...

. . . . . . . . .




1
w
w2

...

 .

Factoring A = LL∗ as in the previous example

L =



a0 0 0 · · ·
b0 a1 0 · · ·

0 b1 a2
. . .

0 0 b2
. . .

...
...

. . . . . .


,

we arrive at the recursion a0 =
√

2, bn = −(n+1)
an

, and

a2
n +

n2

a2
n−1

= 2 + 3n.

Alternatively, setting an =
√

tn+1
tn

,

tn+1 = (2 + 3n)tn − n2tn−1.
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This type of non-constant coefficient linear recursion is difficult to solve directly.
However, working in reverse the transformation in the composition theorem with
ζ = S(z) = z−α

1−αz , we see that K(z, w)

= K(S−1(ζ), S−1(ω)) = Q(ζ)Q(ω)
[1 + α2+(1−α)2

1+(1−α)2 ωζ

1−ωζ

]
,

where

Q(ζ) =

√
1 + (1− α)2

1− α2 (1 + αζ).

So S−1 transforms K to a new kernel which is a linear function times a diagonal
space which has associated measure g(t)dt with

g(t) =
(

1 +
1√
5

)
t1/
√

5.

The resulting transformed measure on H(K) is given by

‖h‖2
H(K) =

α

π

2π∫
0

1∫
0

|h(reiθ)|2
∣∣∣ reiθ − α

1− αreiθ

∣∣∣1/
√

5 rdrdθ

|reiθ − α||1− αreiθ |
.

Of particular interest is the recursion a2
n + n2

a2
n−1

= 2 + 3n with a0 =
√

2

which is now seen to have solution expressed as

an =

√√√√√√√√√
(n + 1)

2π∫
0

1∫
0

rn+1ei(n+1)θ
(√

2− 1√
2

re−iθ
)∣∣∣ reiθ− 1

φ2

1− 1
φ2 reiθ

∣∣∣1/
√

5
rdrdθ∣∣reiθ− 1

φ2

∣∣∣∣1− 1
φ2 reiθ

∣∣
2π∫
0

1∫
0

rneinθ
(√

2− 1√
2

re−iθ
)∣∣∣ reiθ− 1

φ2

1− 1
φ2 reiθ

∣∣∣1/
√

5
rdrdθ∣∣reiθ− 1

φ2

∣∣∣∣1− 1
φ2 reiθ

∣∣
.

While this is neither an elegant nor a direct solution, the authors know of
no other method of solving this type of recursion.

3. A CLASS OF SUBNORMAL OPERATORS

We begin this section with a result which gives a characterization of K being
a tridiagonal kernel.

PROPOSITION 3.1. An analytic reproducing kernel K on the unit disk is a tridi-
agonal kernel such that H(K) contains the polynomials if and only if for m > n + 1,

κn =
〈zn, zm〉
〈zn+1, zm〉
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is independent of m and the sequence{ 1
a0

,
κ0

a1
,

κ0κ1

a2
,

κ0κ1κ2

a3
, . . .

}
is an l2 sequence where 1

an
= ‖zn − κnzn+1‖.

Proof. Suppose that K(z, w) =
∞
∑

n=0
fn(z) fn(w) is an analytic reproducing

kernel on the unit disk where fn(z) = anzn + bnzn+1 form an orthonormal basis
and H(K) contains the polynomials. Recall that zm ∈ H(K) for all m > 0 implies
that the sequence {

1,
bm

am+1
,

bmbm+1

am+1am+2
,

bmbm+1bm+2

am+1am+2am+3
, . . .

}
is square summable for each m (see [1] ). Writing zm =

∞
∑

n=0
cn fn(z) and observing

that the derivatives of zm at 0 must match the derivatives of the series at 0, we

see that cn = 0 for 0 6 n < m. Thus zm =
∞
∑

n=m
cn fn(z) . Hence 〈 fn, zm〉 =

〈anzn + bnzn+1, zm〉 = 0 for m > n which implies that κn = 〈zn ,zm〉
〈zn+1,zn〉 = −

bn
an

for all

m > n. Noting that ‖zn + κnzn+1‖2

=
〈

zn +
bn

an
zn+1, zn +

bn

an
zn+1

〉
=
〈 1

an
fn(z),

1
an

fn(z)
〉
=

1
|an|2

,

we conclude that { 1
a0

,
κ0

a1
,

κ0κ1

a2
,

κ0κ1κ2

a3
, . . .

}
is an l2 sequence.

Conversely, assume κn = 〈zn ,zm〉
〈zn+1,zn〉 is independent of m > n and{ 1

a0
,

κ0

a1
,

κ0κ1

a2
,

κ0κ1κ2

a3
, . . .

}
is an l2 sequence. Let gn(z) = zn − κnzn+1 and note that for m > n,

〈gn(z), zm〉 = 〈zn, zm〉 − κn〈zn+1, zm〉 = 0.

It follows that {gn} is an orthogonal set and { fn} =
{ gn
‖gn‖

}
is an orthonormal

basis for the tridiagonal kernel K(z, w) =
∞
∑

n=0
fn(z) fn(w). Since

{ 1
a0

,
κ0

a1
,

κ0κ1

a2
,

κ0κ1κ2

a3
, . . .

}
is an l2 sequence, the polynomials are in H(K).
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In Examples 2.2 and 2.3, κn converges to λ = 3−
√

5
2 which is the reciprocal

of the square of the Golden Ratio. In the next family of examples the measure is
constructed to satisfy Proposition 3.1.

LEMMA 3.2. Let a and b be real numbers, p > −1, and |λ| > 1. If

u(r, θ) = (a + (r− 1)b)rp + 2rp<
{ ∞

∑
j=1

[ a− (1− r)(b + 2|j|a)
λ|j|

]
r|j|eijθ

}
is a non-negative function on D, then dµ(reiθ) = u(r, θ)drdθ

2π is a bounded Borel measure
on D for which

〈zn, zm〉L2(µ)

〈zn+1, zm〉L2(µ)

=
1
λ

(2n + p + 2)a− b
(2n + p + 4)a− b

.

Proof. First note that u(r, θ) is real-valued, bounded, and absolutely conver-
gent for reiθ ∈ D since |λ| > 1. Given du(r, θ) = u(r, θ)dθdr

2π defined as above and
assuming m > n, we see that formally

〈zn, zm〉L2(µ) =

1∫
0

2π∫
0

rm+ne−i(m−n)θu(r, θ)
dθdr
2π

=

1∫
0

rm+n
( a− (1− r)(b + 2(m− n)a)

λm−n

)
rm−n+pdr

=
1

λm−n

1∫
0

r2m+p[a(1− 2(m− n))− b] + r2m+p+1[b + 2(m− n)a]dr

=
1

λm−n
(2n + p + 2)a− b

(2m + p + 1)(2m + p + 2)
.

Consequently, if m > n, then

κn =
〈zn, zm〉
〈zn+1, zm〉 =

1
λ

(2n + p + 2)a− b
(2n + p + 4)a− b

is independent of m. Moreover, note that as long as a 6= 0, κn is not a constant.

REMARK 3.3. Next, note that

u(r, θ) = (a + (r− 1)b)rp + 2<
{ ∞

∑
j=1

rp(a + (r− 1)b + 2a(r− 1)j)
( reiθ

λ

)j}
= (a + (r− 1)b)rp + 2rp<

{ reiθ

λ

( a + (r− 1)b

1− reiθ

λ

+
2(r− 1)a(
1− reiθ

λ

)2

)}
.

If a and b are chosen so that a + (r − 1)b is positive for 0 6 r 6 1 and |λ| is
taken to be sufficiently large, then u(r,θ)

rp is easily seen to be a positive function on



490 GREGORY T. ADAMS, NATHAN S. FELDMAN, AND PAUL J. MCGUIRE

D. Hence, there is a wide range for the values a, b, and λ such that du(r, θ) =

u(r, θ)dθdr
2π is a positive measure on the disk.

THEOREM 3.4. If a and b are real numbers such that a + (r− 1)b is positive for
0 6 r 6 1, p > −1 , and

u(r, θ) = (a + (r− 1)b)rp + 2rp<
{ ∞

∑
j=1

[ a− (1− r)(b + 2|j|a)
λ|j|

]
r|j|eijθ

}
,

where λ is a complex number sufficiently large in modulus so that dµ(reiθ)=u(r, θ)drdθ
2π

is a positive Borel measure on D, then P2(µ) is an analytic tridiagonal reproducing kernel
Hilbert space of functions on the unit disk D for which Mz is a subnormal operator.

Proof. By Lemma 3.2 and Remark 3.3 above, u(r,θ)
rp is a positive function on

D and dµ(reiθ) = u(r, θ)drdθ
2π is a positive bounded Borel measure on D for which

κn =
〈zn, zm〉L2(µ)

〈zn+1, zm〉L2(µ)

=
1
λ

(2n + p + 2)a− b
(2n + p + 4)a− b

.

If w ∈ D \ {0}, B(w, r1) denotes the disk of radius r1 about w, and p is a polyno-
mial, then the mean-value theorem implies

|p(w)| =
∣∣∣ 1
r1

∫
B(w,r1)

p(reiθ)
dθdr
2π

∣∣∣ = ∣∣∣ 1
r1

r1∫
0

2π∫
0

p(w + reiθ)
dθdr
2π

∣∣∣
=
∣∣∣ 1
r1

r1∫
0

2π∫
0

p(w + reiθ)
√

u(w + reiθ)
1√

u(w + reiθ)

dθdr
2π

∣∣∣.
Since p

√
u and 1√

u are square-integrable functions on B(w, r1) with respect to
dθdr
2π , Holder’s inequality gives

|p(w)| 6 1
r1

( ∫
B(w,r1)

|p
√

u|2 dθdr
2π

)1/2( ∫
B(w,r1)

| 1√
u
|2 dθdr

2π

)1/2
6 Cw‖p‖µ

where Cw is a constant dependent on w. When w = 0, a similar argument can be
applied to an annulus A(r0, r1) about 0 of inner radius r0 and outer radius r1 to
obtain

|p(0)| 6 1
r1 − r0

( ∫
A(r0,r1)

|p
√

u|2 dθdr
2π

)1/2( ∫
A(r0,r1)

| 1√
u
|2 dθdr

2π

)1/2
6 Cw‖p‖µ.

Thus for each w ∈ D, evaluation at w extends to a unique bounded linear func-
tional for which there is a unique function Kw ∈ P2(µ) such that 〈p, Kw〉 = p(w)
for all polynomials. Note that ‖Kw‖ 6 Cw is uniformly bounded for w in any
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small disk B compactly contained in D. By Proposition 7.6, page 63, of Con-
way [4], every point in the unit disk is an analytic bounded point evaluation and
hence P2(µ) is an analytic reproducing kernel Hilbert space of functions on D.

From the proof of Lemma 3.2,

〈zn, zn〉 = (2n + p + 2)a− b
(2n + p + 1)(2n + p + 2)

≈ a
2n + p + 4

and

〈zn, zn+1〉 = (2n + p + 2)a− b
λ(2n + p + 3)(2n + p + 2)

≈ a
2n + p + 3

.

Since κn ≈ 1
λ ,

‖zn−κnzn+1‖2=‖zn‖2 + κ2
n‖zn+1‖2 − 2<{κn〈zn, zn+1〉}

≈ a
2n+p+1

+
1

λ2
a

2n+p+3
− 2

λ2
a

2n+p+3
≈ a

2n+p+1

(
1− 1

λ2

)
.

Thus an = 1
‖zn−κnzn+1‖ ≈ c

√
n and{ 1
a0

,
κ0

a1
,

κ0κ1

a2
,

κ0κ1κ2

a3
, . . .

}
is seen to be an l2 sequence as its terms are approximately a constant times 1

λn−1√n
where |λ| > 1. By Proposition 3.1, P2(µ) is a tridiagonal reproducing kernel
Hilbert space for which the functions fn(z) = zn−κnzn+1

‖zn−κnzn+1‖ form an orthonormal

basis for P2(µ). Since µ is a bounded measure on a compact set, Mz is a bounded
subnormal operator on P2(µ) and the proof is complete.

While the class of examples in the above theorem appear to be distinctly
different than the examples in Section 2, it is possible that the examples are some
type of composition with a diagonal kernel for which multiplication by z is a
subnormal operator. The authors leave this as an open question.

4. OPEN QUESTIONS

(i) In the composition examples, can we determine the limit of

κn =
〈zn, zm〉
〈zn+1, zm〉 ?

(ii) Is Mz subnormal if the nontrivial zero of fn(z) = (an + bnz)zn diverges
to infinity? In particular suppose fn(z) = (n + 1 + z)zn? In this case K(z, w) =

1+wz
(1−wz)3 + w+z

(1−wz)2 + wz
(1−wz) , while for m > n, 〈zn, zm〉 =

∞
∑

j=m+1

n!m!(−1)(m−n)

(j!)2 , and

κn = 〈zn ,zm〉
〈zn+1,zm〉 =

−1
n+1 .
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The following table consists of examples of such kernels for which Mz passes
several numerical tests for subnormality (polynomial hyponormality). The tests
consisted of checking positivity of commutators of the operator as well as some
polynomials of the operator.

More precisely, the positivity of the self commutator of Mz was checked by
a computation of the first 25 sub-determinants of size k × k. The precision was
set to 80 and the size of the original matrix for Mz was 80× 80. Additionally, the
positivity of several sub-determinants of the self commutator of Mφ were checked
with φ(z) = −z + 3z2 + z3 + 12z4. A few other polynomials were randomly cho-
sen. The symbolic algebra package Mathematica was used for the computations.

The computations suggest that large classes of tridiagonal kernels exist for
which Mz is a subnormal operator and which are not of the types described in
Sections 2 and 3.

an bn range of k conjecture
(n + 1)2 n + k −3 6 k 6 3 subnormal?
(n + 2)2 n + k −7 6 k 6 8 subnormal?
(n + 3)2 n + k −12 6 k 6 15 subnormal?
(n + 4)2 n + k −18 6 k 6 22 subnormal?
(n + 5)2 n + k −26 6 k 6 31 subnormal?
(n + 6)2 n + k −35 6 k 6 41 subnormal?
(n + 7)2 n + k −45 6 k 6 52 subnormal?
(n + 8)2 n + k −57 6 k 6 64 subnormal?
(n + 9)2 n + k −69 6 k 6 78 subnormal?
(n + 10)2 n + k −83 6 k 6 93 subnormal?
(n + 11)2 n + k −99 6 k 6 109 subnormal?
(n + 1)4 (n + k)2 −3 6 k 6 3 subnormal?
(n + 2)4 (n + k)2 −7 6 k 6 8 subnormal?
(n + 1)5 (n + k)2 −6 6 k 6 5 subnormal?
(n + 1)6 (n + k)2 −9 6 k 6 8 subnormal?
(n + 1)6 n + k −84 6 k 6 83 subnormal?√

n + 1 4
√

n + 1 none subnormal?
1 +
√

n + 1 4
√

n + 1 none subnormal?

(iii) Assume K1(z, w) = ∑ an(wz)n and K2(z, w) = ∑ bn(wz)n satisfy:

(a) lim an
an+1

= lim bn
bn+1

= 1;
(b) lim an = lim bn = +∞;

(c) 1
an

=
1∫

0
t2ndν1(t) and 1

bn
=

1∫
0

t2ndν2(t) for all n.

Note ν1{1} = ν2{1} = 0, H(Ki) = P2(µi) where dµi(reiθ) = νi(r)drdθ
2π , and

Mz is a bounded subnormal operator. So condition (a) ensures D is a common
domain and condition (b) ensures the measures live only on D and not on the
boundary.
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Conjecture. Under the above conditions, multiplication by z on H(K1 +
K2) = H(K1)⊕̂H(K2) is a subnormal operator.

This is equivalent to any of the below:

(a) The parallel sum of 1
an

and 1
bn

defined as(( 1
an

)−1
+
( 1

bn

)−1)−1
=

1
an + bn

is a moment sequence. (The parallel sum has an extensive history in electric en-
gineering applications and is simply half the harmonic mean.)

(b) The harmonic mean of 1
an

and 1
bn

defined as

2
(( 1

an

)−1
+
( 1

bn

)−1)−1
=

2
an + bn

is a moment sequence.
(c) The Hankel matrix below must be positive for all n

H{ 1
an+bn

} =



1
a0+b0

1
a1+b1

· · · 1
an+bn

1
a1+b1

1
a2+b2

· · · 1
an+1+bn+1

...
...

...
...

1
an+bn

1
an+1+bn+1

· · · 1
a2n+b2n

 .

(d) For each k > 0,

(−1)k∆k
( 1

an + bn

)
> 0

where ∆k denotes the k-th finite difference.
(iv) General question. If K1 and K2 are measure spaces on a common open do-

main Ω with the measures supported only on Ω, under what conditions is the
space H(K1)⊕̂H(K2) with kernel K1 + K2 a measure space?
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