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1. INTRODUCTION

The study of commutative algebras of Toeplitz operators has shown to be a
very interesting subject. Some previous results in this topic serve as background
to this work. First, it was shown the existence of symbols defining interesting
commutative C∗-algebras of Toeplitz operators on bounded symmetric domains
(see [3], [9], [10] and [11]). Also, it was exhibited in [13] the existence of commu-
tative Banach algebras, which are not C∗, of Toeplitz operators on the unit ball
Bn. And, in [8] we constructed commutative C∗-algebras of Toeplitz operators on
complex projective spaces.

A remarkable fact is that the currently known commutative C∗-algebras of
Toeplitz operators on Bn are naturally associated to Abelian subgroups of the
group of biholomorphisms of Bn. In fact, their systematic description is best un-
derstood with the use of such groups of biholomorphisms (see [10] and [11]). Fur-
thermore, this provided the guiding light to construct commutative C∗-algebras
of Toeplitz operators in the complex projective space Pn(C): the currently known
C∗-algebras for Pn(C) are naturally associated and described from the maximal
tori of the group of isometric biholomorphisms of Pn(C) (see [8]).
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The known Banach (not C∗) algebras of commutative Toeplitz operators first
introduced in [13] for Bn are given by the so called quasi-homogeneous symbols.
Such symbols are defined in terms of radial and spherical coordinates of compo-
nents in Bn (see Section 3 below). However, their introduction lacked the stronger
connection with the geometry of the domain observed for the commutative C∗-
algebras of Toeplitz operators on Bn.

Given these lines of research, there are two natural problems to consider.
First, to determine whether or not there are any interesting Banach algebras, that
are not C∗, of commutative Toeplitz operators on Pn(C). Second, assuming that
such Banach algebras exist, to find any possible special links between the geom-
etry of Pn(C) and those Banach algebras of commutative Toeplitz operators. The
goal of this work is to solve these problems.

On one hand, we define quasi-homogeneous symbols in the complex pro-
jective space Pn(C), and show that these provide Banach algebras of commuta-
tive Toeplitz operators on every weighted Bergman space of Pn(C). The results
that exhibit the commuting Toeplitz operators are obtained in Section 4, where
Theorem 4.7 is the main result. On the other hand, we also prove that the Ba-
nach algebras defined by quasi-homogeneous symbols turn out to have a strong
connection with the geometry of the supporting space Pn(C); the main results
in this case are presented in Section 5. In particular, we prove that the quasi-
homogeneous symbols on Pn(C) can be associated to an Abelian group of holo-
morphic isometries of the corresponding space (see Theorem 5.2). Such group is
a subgroup of a maximal torus in the corresponding isometry group.

We further prove that the groups associated to quasi-homogeneous symbols
afford pairs of foliations with distinguished Lagrangian and Riemannian geome-
try known as Lagrangian frames (see Section 5 below and [9], [10] and [11]). This
recovers the behavior observed for the C∗-algebras of commutative Toeplitz oper-
ators constructed in [8], [10], and [11], for which such Lagrangian frames appear
as well. Nevertheless, it is important to note a key difference between the C∗ case
and the Banach case. For the C∗-algebras of Toeplitz operators on Bn and Pn(C),
as constructed in [8], [10], and [11], the Lagrangian frames are obtained for the
whole space, i.e. they come from Lagrangian submanifolds of the whole space,
either Bn or Pn(C). But for the Banach algebras given by the quasi-homogeneous
symbols considered here the Lagrangian frames are obtained on submanifolds
of Pn(C) that provide both an stratification and a partition into principal fiber
bundles. The existence of the principal bundles and the Lagrangian frames on
suitable submanifolds is obtained in Theorems 5.5 and 5.7, respectively. Never-
theless, as in the case of C∗-algebras, the Riemannian leaves of the Lagrangian
frames that we exhibit are precisely the orbits of the Abelian group associated to
the symbols. Also, it is proved in Theorem 5.9 that a full maximal torus of isome-
tries continues to play an important role, since the complement to the group that
defines the fiberwise Lagrangian frames acts by automorphisms of such frames.
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2. PRELIMINARIES ON THE GEOMETRY AND ANALYSIS OF Pn(C)

In this section we establish our notation concerning the n-dimensional com-
plex projective space Pn(C). We will freely use the well known properties of the
projective space and refer to the bibliography for further details. In particular, we
recall that for w ∈ Cn+1 \ {0} the element [w] ∈ Pn(C) is said to have homoge-
neous coordinates given by w.

There is a natural realization of Cn as an open conull dense subset given by

Cn → Pn(C), z 7→ [1, z],

which defines a biholomorphism onto its image. Note that the points of Pn(C)
are denoted by [w], the complex line through w ∈ Cn+1 \ {0}. We will refer to
this embedding as the canonical embedding of Cn into Pn(C).

Let us denote by ω the canonical Kähler structure on Pn(C) that defines
the Fubini–Study metric, whose volume is then given by Ω = (ω/2π)n. These
induce on Cn the following Kähler form and volume element, respectively

ω0 = i
(1 + |z|2)∑n

k=1 dzk ∧ dzk −∑n
k,l=1 zkzldzk ∧ dzl

(1 + |z|2)2 ,

Ω0 =
1

πn
dV(z)

(1 + |z1|2 + · · ·+ |zn|2)n+1 ,

where dV(z) denotes the Lebesgue measure on Cn.
Let H denote the dual bundle of the tautological line bundle of Pn(C). We

recall that H carries a canonical Hermitian metric h obtained from the (flat) Her-
mitian metric of Cn+1. Then, it is also well known that the curvature Θ of (H, h)
satisfies the identity

Θ = −iω,

which amounts to say that (H, h) is a quantum line bundle over Pn(C).
We will denote by Γ(Pn(C), Hm) and Γhol(Pn(C), Hm) the smooth and holo-

morphic sections of Hm, respectively. Note that Hm denotes the m-th tensorial
power of H. Clearly, both of these spaces lie inside L2(Pn(C), Hm).

For every m ∈ Z+ and with respect to the canonical embedding of Cn into
Pn(C), we define the weigthed measure on Pn(C) with weight m by

dνm(z) =
(n + m)!

m!
Ω(z)

(1 + |z1|2 + · · ·+ |zn|2)m

=
(n + m)!

πnm!
dV(z)

(1 + |z1|2 + · · ·+ |zn|2)n+m+1 .

A simple computation shows that dνm is a probability measure for all m ∈ Z+.
For simplicity, we will use the same symbol dνm to denote the weighted mea-
sures for both Pn(C) and Cn. It is also straightforward to show that the canonical
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embedding of Cn into Pn(C) induces a canonical isometry

Φ : L2(Pn(C), Hm)→ L2(Cn, νm)

with respect to which we will identify these spaces in the rest of this work. Also,
we will denote by 〈·, ·〉m the inner product of this Hilbert spaces.

The weighted Bergman space on Pn(C) with weight m ∈ Z+ is defined by:

A2
m(Pn(C)) = {ζ ∈ L2(Pn(C), Hm) : ζ is holomorphic} = Γhol(Pn(C), Hm).

These Bergman spaces are finite-dimensional and are described by the fol-
lowing well known result.

PROPOSITION 2.1. For every m ∈ Z+, the Bergman space A2
m(Pn(C)) satisfies

the following properties:
(i) A2

m(Pn(C)) can be identified with the space P(m)(Cn+1) of homogeneous poly-
nomials of degree m over Cn+1.

(ii) For Φ : L2(Pn(C), Hm) → L2(Cn, νm) the canonical isometry described above,
we have Φ(A2

m(Pn(C))) = Pm(Cn), the space of polynomials on Cn of degree at most m.

In what follows, we will use this realization of the Bergman spaces without
further notice.

Recall the following notation for multi-indices α, β ∈ Zn
+ and z ∈ Cn

|α| = α1 + · · ·+ αn,

α! = α1! · · · αn!,

zα = zα1 · · · zαn ,

δα,β = δα1,β1 · · · δαn ,βn .

The Bergman space A2
m(Pn(C)) has a basis consisting of the polynomials

zα = zα1
1 · · · z

αn
n where α ∈ Zn

+ and |α| 6 m. Hence we will consider the set

Jn(m) = {α ∈ Zn
+ : |α| 6 m}.

More precisely, an easy computation shows that the set

(2.1)
{( m!

α!(m− |α|)!

)1/2
zα : α ∈ Jn(m)

}
is an orthonormal basis of A2

m(Pn(C)).
For ψ ∈ L2(Pn(C), Hm), and considering the identification Φ, we define the

Bergman projection by

Bm(ψ)(z) =
(n + m)!

πnm!

∫
Cn

ψ(w)K(z, w)dV(w)

(1 + w1w1 + · · ·+ wnwn)n+m+1

where
K(z, w) = (1 + z1w1 + · · ·+ znwn)

m.
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Note that the above integral is a polynomial of degree at most m in the variable
z, and so it defines an element of A2

m(Pn(C)) with respect to the identification Φ.
Also, the operator Bm satisfies the well known reproducing property.

PROPOSITION 2.2. If ψ ∈ L2(Pn(C), Hm), then Bm(ψ) belongs to the weighted
Bergman space A2

m(Pn(C)). Also, Bm(ψ) = ψ if ψ ∈ A2
m(Pn(C)).

Using this, we define the Toeplitz operator Ta on A2
m(Pn(C)) with bounded

symbol a ∈ L∞(Pn(C)) by

Ta(ϕ) = Bm(aϕ),

for every ϕ ∈ A2
m(Pn(C)).

Let us denote by Sn the unit sphere in Cn. In this work, we will use the
following identity on the sphere Sn

(2.2)
∫
Sn

ξαξ
β
dS(ξ) = δα,β

2πnα!
(n− 1 + |α|)!

where dS is the corresponding surface measure on Sn (see [14]).

3. TOEPLITZ OPERATORS WITH QUASI-HOMOGENEOUS SYMBOLS

Quasi-homogeneous symbols were introduced in [13] on the unit ball Bn in
Cn. The same sort of symbols can be defined on the complex projective space
Pn(C) using the homogeneous coordinates of its elements.

Let k = (k0, . . . , kl) ∈ Zl+1
+ be a multi-index so that |k| = n + 1. We will

call such multi-index k a partition of n + 1. For the sake of definiteness, we will
always assume that k0 6 · · · 6 kl . This partition provides a decomposition of the
coordinates w ∈ Cn+1 as w = (w(0), . . . , w(l)) where

w(j) = (wk0+···+kj−1+1, . . . , wk0+···+kj
),

for every j = 0, . . . , l, and the empty sum is 0 by convention. For w ∈ Cn+1, we
define rj = |w(j)| and

ξ(j) =
w(j)

rj

if w(j) 6= 0. Besides the quasi-radii (r0, . . . , rl), this provides a set of coordinates
(ξ(0), . . . , ξ(l)) ∈ Sk0 × · · · × Skl .

DEFINITION 3.1. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1 and let

p, q ∈ Zn+1
+ be such that

p · q = p0q0 + · · ·+ pnqn = 0, |p| = |q|.
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With the above notation, the k-quasi-homogeneous symbol associated to p, q is
the function ϕ : Pn(C)→ C given by

ϕ([w]) = ξ pξ
q
=

l

∏
j=0

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)
=

l

∏
j=0

(w(j)

rj

)p(j)
(w(j)

rj

)q(j)
.

We will denote byHk the set of k-quasi-homogeneous symbols on Pn(C).

It is a simple exercise to prove that the condition |p| = |q| implies that the
function ϕ from Definition 3.1 is well defined, i.e. its expression is independent
of the choice of homogeneous coordinates. Furthermore, for the canonical em-
bedding Cn ↪→ Pn(C) the symbols from Definition 3.1 have as a particular case
the symbols considered in [13]. The latter is the content of the following easy to
prove result.

LEMMA 3.2. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1 with k0 = 1, so

that k′ = (k1, . . . , kl) is a partition of n. If p, q ∈ Zn+1
+ satisfy p · q = 0 and |p| = |q|,

then with respect to the canonical embedding Cn ↪→ Pn(C) the k-quasi-homogeneous
symbol ϕ ∈ Hk associated to p, q restricted to Cn satisfies

ϕ([1, z]) =
l

∏
j=1

( z(j)

|z(j)|

)p(j)
( z(j)

|z(j)|

)q(j)
.

In particular, ϕ restricted to Bn ⊂ Cn ⊂ Pn(C) is a k′-quasi-homogeneous symbol in
the sense of [13].

As a consequence, the quasi-homogeneous symbols on Pn(C) from Defini-
tion 3.1 correspond to those considered in [13] for the unit ball.

DEFINITION 3.3. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1. With

the above notation, a k-quasi-radial symbol is a function function a : Pn(C) → C
that can be written in the form a([w]) = ã(|w(0)|, . . . , |w(l)|) for some function
ã : [0,+∞)l+1 → C which is homogeneous of degree 0. We will denote byRk the
set of k-quasi-radial symbols on Pn(C).

Note that the degree 0 homogeneity condition ensures that such quasi-radial
symbols are well defined. Also, the following obvious result shows that suitable
quasi-radial symbols restrict to those defined in [13].

LEMMA 3.4. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1 with k0 = 1, so

that k′ = (k1, . . . , kl) is a partition of n. Then, with respect to the canonical embedding
Cn ↪→ Pn(C), every k-quasi-radial symbol a ∈ Rk restricted to Cn defines a function
Cn → C that depends only |z(1)|, . . . , |z(l)|, where z ∈ Cn. In particular, the symbol a
restricted to Bn ⊂ Cn ⊂ Pn(C) is a k′-quasi-radial symbol in the sense of [13].

By putting together both definitions above, we obtain the notion of quasi-
homogeneous quasi-radial symbol.
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DEFINITION 3.5. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1. Then, a

k-quasi-homogeneous quasi-radial symbol is a function Pn(C) → C of the form
aϕ, where a ∈ Rk and ϕ ∈ Hk; in this case, we will refer to a and ϕ as the quasi-
radial and quasi-homogeneous parts of the symbol, respectively. We will denote
byHRk the set of k-quasi-homogeneous quasi-radial symbols.

As a consequence of Lemmas 3.2 and 3.4, for a partition of n + 1 of the form
k = (k0 = 1, k1, . . . , kl) the symbols in HRk restrict to functions on Bn ⊂ Cn ⊂
Pn(C) that are quasi-homogeneous quasi-radial symbols in the sense of [13], with
the latter corresponding to the partition k′ = (k1, . . . , kl) of n. On the other hand,
it turns out that the condition k0 = 1 is not very restrictive. In fact, the following
result shows that assuming k0 = 1 already provides the more general notion of
quasi-homogeneous quasi-radial symbol.

LEMMA 3.6. Let k = (k0, . . . , kl) ∈ Zl+1
+ be a partition of n + 1 and assume that

k0 > 1. If we consider the partition k̃ = (1, k0 − 1, k1, . . . , kl) of n + 1, then we have
HRk ⊂ HRk̃. In particular, every element of HRk when restricted to Bn ⊂ Cn ⊂
Pn(C) is a quasi-homogeneous quasi-radial symbol in the sense of [13].

Proof. For every element w ∈ Ck0 we will write w = (w1, w′) where w1 ∈ C
and w′ ∈ Ck0−1. In particular, for every w ∈ Ck0 we have |w| =

√
|w1|2 + |w′|2,

which clearly implies the inclusionRk ⊂ Rk̃.

On the other hand, for w ∈ Ck0 and p ∈ Zk0
+ we have the identity( w

|w|

)p
=

|w1|p1 |w′||p′ |

(|w1|2 + |w′|2)|p|/2

( w1

|w1|

)p1
( w′

|w′|

)p′
.

We observe that the first fraction in the right-hand side of the identity is quasi-
radial with respect to the partition (1, k0 − 1). Hence, it is easy to see that the
last identity implies the inclusion Hk ⊂ HRk̃. Since HRk̃ is clearly closed under
multiplication of functions, the result follows from these remarks.

As a consequence of this result, without loss of generality in the study of
quasi-homogeneous quasi-radial symbols we will assume that every partition of
the homogeneous coordinates of Pn(C) is of the form (1, k1, . . . , kl), where k =
(k1, . . . , kl) ∈ Zl

+ is thus a partition of n. In other words, it is enough to study
the set of symbols HR(1,k) where k ∈ Zl

+ is a partition of n. Furthermore, once
we have such assumption, Lemmas 3.2 and 3.4 provide the expression for the
symbols on Cn ⊂ Pn(C).

Also, since the local chart given by the canonical embedding Cn ↪→ Pn(C)
covers a conull subset of Pn(C), every computation involving integrals can be
performed on Cn. We will make use of such simplification in the rest of this
work.

REMARK 3.7. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n. In the rest of this

work, if a symbol ξ pξ
q

inH(1,k) is considered as a function Cn → C, then we will
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assume that it is an expression of the form

ξ pξ
q
=

l

∏
j=1

( z(j)

|z(j)|

)p(j)
( z(j)

|z(j)|

)q(j)
,

where ξ ∈ Sk1 × · · · ×Skl is given by ξ(j) = z(j)/|z(j)|, for z = (z(1), . . . , z(l)) ∈ Cn,

and p, q ∈ Zn
+. In particular, such a symbol ξ pξ

q
satisfies Definition 3.1 for the

exponents (0, p), (0, q) ∈ Zn+1
+ and the homogeneous coordinates of Pn(C).

Observe that for every partition k ∈ Zl
+ of n the family R(1,k) is contained

in R(1,...,1). Hence, the Toeplitz operators Ta for symbols a ∈ R(1,k) can be simul-
taneously diagonalized with respect to the monomial basis in the corresponding
Bergman space (see [8] and [10]). Furthermore, the following result provides the
multiplication operator so obtained.

LEMMA 3.8. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n, and let a ∈ R(1,k)

be a (1, k)-quasi-radial bounded measurable symbol considered as a function Cn → C.
Let Ta be the Toeplitz operator defined by a on A2

m(Pn(C)) ' Pm(Cn) (identified by
Proposition 2.1). Then Tazα = γa,k,m(α)zα, for every α ∈ Jn(m), where

γa,k,m(α) = γa,k,m(|α(1)|, . . . , |α(l)|)

=
2l(n + m)!

(m− |α|)! ∏l
j=1(k j − 1 + |α(j)|)

(3.1)

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj.

Proof. Let α ∈ Zn
+ with |α| 6 m. Then, we have

〈Tazα, zα〉m = 〈azα, zα〉m =
(n + m)!

πnm!

∫
Cn

a(r1, . . . , rl)zαz αdV(z)
(1 + |z1|2 + · · ·+ |zn|2)n+m+1 .

Making the substitution z(j) = rjξ(j), where rj ∈ [0, ∞) and ξ(j) ∈ Skj , for j =
1, . . . , l, we obtain

〈azα, zα〉m

=
(n+m)!

πnm!

∫
Rn
+

a(r1, . . . , rl)(1+r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj×

l

∏
j=1

∫
Skj

ξ
α(j)
(j) ξ

α(j)
(j) dS(ξ(j))

=
2lα!(n + m)!

m! ∏l
j=1(k j − 1 + |α(j)|)!

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj

and the result follows from (2.2)
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We now find the action of the Toeplitz operators with quasi-homogeneous
symbols on the canonical monomial basis. Note that the following result corre-
sponds to Lemma 3.3 from [13].

LEMMA 3.9. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n, and let p, q ∈ Zn

+

be such that p · q = 0 and |p| = |q|. Consider a bounded measurable (1, k)-quasi-
homogeneous quasi-radial symbol that as a function Cn → C is written as aξ pξ

q
=

a(r1, . . . , rl)ξ
pξ

q. Then, the Toeplitz operator Taξ pξ
q acts on monomials zα with α ∈ Zn

+

and |α| 6 m as follows

Taξ pξ
q zα =

{
γ̃a,k,p,q,m(α)zα+p−q for α + p− q ∈ Jn(m),
0 for α + p− q 6∈ Jn(m),

where

γ̃a,k,p,q,m(α) =
2l(α + p)!(n + m)!

(α + p− q)!(m− |α + p− q|)! ∏l
j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
|2α(j)+p(j)−q(j) |+2kj−1
j drj .(3.2)

Proof. Let α, β ∈ Zn
+ satisfy |α|, |β| 6 m. Then, we have

〈Taξ pξ
q zα, zβ〉m = 〈aξ pξ

qzα, zβ〉m =
(n + m)!

πnm!

∫
Cn

a(r1, . . . , rl)ξ
pξ

qzαzβdV(z)
(1 + |z1|2 + · · ·+ |zn|2)n+m+1 .

Applying the change of the variables z(j) = rjξ(j), where rj ∈ [0, ∞) and

ξ(j) ∈ Skj , for j = 1, . . . , l, this yields

〈aξ pξ
qzα, zβ〉m =

(n + m)!
πnm!

∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)

×
l

∏
j=1

r
|α(j) |+|β(j) |+2kj−1
j drj ×

l

∏
j=1

∫
Skj

ξ
α(j)+p(j)
(j) ξ

β(j)+q(j)
(j) dS(ξ(j))

= δα+p,β+q
2l(α + p)!(n + m)!

m! ∏l
j=1(k j − 1 + |α(j) + p(j)|)!

(3.3)

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)×
l

∏
j=1

r
|2α(j)+p(j)−q(j) |+2kj−1
j drj .

Observe that this expression is non zero if and only if β = α + p − q, which a
priori belongs to Jn(m). We conclude the result from the orthonormality of the
basis defined in (2.1).



208 RAUL QUIROGA-BARRANCO AND ARMANDO SANCHEZ-NUNGARAY

4. COMMUTATIVITY RESULTS FOR QUASI-HOMOGENEOUS SYMBOLS ON Pn(C)

The results in this section show that the commuting identities proved in [13]
for the unit ball Bn have corresponding ones for the complex projective space
Pn(C).

THEOREM 4.1. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n and p, q ∈ Zn

+

a pair of orthogonal multi-indices. Let a1, a2 ∈ R(1,k) be non identically zero and let
ξ pξ

q ∈ H(1,k). Then the Toeplitz operators Ta1 and Ta2ξ pξ
q commute on each weighted

Bergman space A2
m(Pn(C)) if and only if |p(j)| = |q(j)| for each j = 1, . . . , l.

Proof. Let α ∈ Jn(m) be given. First note that if α + p− q 6∈ Jn(m), then the
Lemmas 3.8 and 3.9 imply that both Ta1 Ta2ξ pξ

q zα and Ta2ξ pξ
q Ta1 zα vanish. Hence,

we can assume that α + p− q ∈ Jn(m). Applying again Lemmas 3.8 and 3.9 we
obtain

Ta1 Ta2ξ pξ
q zα =

2l(α + p)!(n + m)!
(α + p− q)!(m− |α + p− q|)! ∏l

j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a2(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
|2α(j)+p(j)−q(j) |+2kj−1
j drj

× 2l(n + m)!
(m− |α + p− q|)! ∏l

j=1(k j − 1 + |α(j) + p(j) − q(j)|)!

×
∫
Rn
+

a1(r1, . . . , rl)(1+r2)−(n+m+1)
l

∏
j=1

r
|2α(j)+p(j)−q(j) |+2kj−1
j drj×zα+p−q.

And similarly, we have

Ta2ξ pξ
q Ta1 zα =

2l(n + m)!
(m− |α|)! ∏l

j=1(k j − 1 + |α(j)|)!

×
∫
Rn
+

a1(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj

× 2l(α + p)!(n + m)!
(α + p− q)!(m− |α + p− q|)! ∏l

j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a2(r1, . . . , rl)(1+r2)−(n+m+1)
l

∏
j=1

r
|2α(j)+p(j)−q(j) |+2kj−1
j drj×zα+p−q.

From which we conclude that Ta1 Ta2ξ pξ
q zα = Ta2ξ pξ

q Ta1 zα if and only if |p(j)| =
|q(j)| where j = 1, . . . , l.
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If we assume that |p(j)| = |q(j)| for all j = 1, . . . , l, then the equations (3.1)
and (3.2) combine together to yield the following identity.

γ̃a,k,p,q,m(α) =
2l(α + p)!(n + m)!

(α + p− q)!(m− |α + p− q|)! ∏l
j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj

=
(α + p)! ∏l

j=1(k j − 1 + |α(j)|)!
(α + p− q)! ∏l

j=1(k j − 1 + |α(j) + p(j)|)!
γa,k,m(α)

=
l

∏
j=1

( (α(j) + p(j))!(k j − 1 + |α(j)|)!
(α(j) + p(j) − q(j))!(k j − 1 + |α(j) + p(j)|)!

)
γa,k,m(α).(4.1)

As a consequence of the previous computations, we also obtain the follow-
ing very special property of Toeplitz operators with quasi-homogeneous sym-
bols.

COROLLARY 4.2. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n and p, q ∈ Zn

+

a pair of orthogonal multi-indices such that |p(j)| = |q(j)| for all j = 1, . . . , l. Then for
each function a ∈ R(1,k), we have TaT

ξ pξ
q = T

ξ pξ
q Ta = Taξ pξ

q .

Consider k = (k1, . . . , kl) and a pair of multi-indices p, q such that p ⊥ q and
|p(j)| = |q(j)| for j = 1, . . . , l. we define

p̃(j) = (0, . . . , 0, p(j), 0, . . . , 0), q̃(j) = (0, . . . , 0, q(j), 0, . . . , 0)

where the only possibly non zero part is placed in the j-th position. In particular,
we have p = p̃(1) + · · ·+ p̃(l) and q = q̃(1) + · · ·+ q̃(l). Now let Tj = T

ξ
p̃(j) ξ

p̃(j) for

every j = 1, . . . , l. As a consequence of the previous computations we obtain the
following result.

COROLLARY 4.3. The Toeplitz operators Tj = T
ξ

p̃(j) ξ
p̃(j) , for j = 1, . . . , l mutu-

ally commute and
l

∏
j=1

Tj = T
ξ pξ

q .

We now obtain a necessary and sufficient condition for two given quasi-
homogeneous symbols to determine Toeplitz operators that commute with each
other. For the next result we switch to the homogeneous coordinates of Pn(C) to
obtain a result whose statement is independent of the choice of charts.

THEOREM 4.4. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n so that (1, k) ∈ Zl+1

+

is a partition of n+ 1, and let p, q, u, v ∈ Zn+1
+ be multi-indices that satisfy the following

properties:
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(i) p ⊥ q and u ⊥ v,
(ii) |p(j)| = |q(j)| and |u(j)| = |v(j)| for all j = 0, . . . , l.

We are assuming the enumerations p = (p0, p1, . . . , pn) = (p(0), p(1), . . . , p(l)), so that
in particular p0 = p(0) = 0. Also, the corresponding properties hold for q, u, v as well.

Let aξ pξ
q
, bξuξ

v ∈ HR(1,k) be corresponding (1, k)-quasi-homogeneous quasi-
radial symbols on Pn(C), where a, b ∈ R(1,k) are measurable and bounded symbols.
Then, the Toeplitz operators Taξ pξ

q and Tbξuξ
v commute on each weighted Bergman space

A2
m(Pn(C)) if and only if for each s = 1, . . . , n one of the following conditions holds:

(i) ps = qs = 0,
(ii) us = vs = 0,

(iii) ps = us = 0,
(iv) qs = vs = 0.

Proof. As remarked, the first entry of the multi-indices p, q, u, v ∈ Zn+1
+ van-

ishes. Hence, we will replace such multi-indices with their counterparts in Zn
+ ob-

tained by removing the first entry. In particular, the multi-indices p, q, u, v ∈ Zn
+

so obtained are such that both pairs (p, q) and (u, v) satisfy the hypothesis of
Theorem 4.1. We will proceed to compute the composition of operators for the
corresponding symbols in Cn as considered in Remark 3.7.

First, we observe that the quantities Tbξuξ
v Taξ pξ

q zα and Taξ pξ
q Tbξuξ

v zα are
always simultaneously zero or non zero. Hence, we compute such expressions
for α ∈ Jn(m) assuming that both are non zero.

By (4.1), we have the following expression

Tbξuξ
v Taξ pξ

q zα =
2l(α + p)!(n + m)!

(α + p− q)!(m− |α|)! ∏l
j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj

× 2l(α + p− q + u)!(n + m)!
(α + p− q + u− v)!(m− |α|)! ∏l

j=1(k j − 1 + |α(j) + u(j)|)!

×
∫
Rn
+

b(r1, . . . , rl)(1+r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj×zα+p−q+u−v.

Similarly, we also have

Taξ pξ
q Tbξuξ

v zα =
2l(α + u)!(n + m)!

(α + u− v)!(m− |α|)! ∏l
j=1(k j − 1 + |α(j) + u(j)|)!

×
∫
Rn
+

b(r1, . . . , rl)(1 + r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj
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× 2l(α + u− v + p)!(n + m)!
(α + p− q + u− v)!(m− |α|)! ∏l

j=1(k j − 1 + |α(j) + p(j)|)!

×
∫
Rn
+

a(r1, . . . , rl)(1+r2)−(n+m+1)
l

∏
j=1

r
2|α(j) |+2kj−1
j drj×zα+p−q+u−v.

Therefore, we conclude that Tbξuξ
v Taξ pξ

q zα = Taξ pξ
q Tbξuξ

v zα if and only if

(α + p)!(α + p− q + u)!
(α + p− q)!

=
(α + u)!(α + u− v + p)!

(α + u− v)!
.

Finally, one can easily check that the latter identity holds for every α ∈ Jn(m)
and m ∈ Z+ if and only if the conclusion of the statement holds. This proves the
theorem.

We now present one of our main results: the construction of a commutative
Banach algebra of Toeplitz operators on Pn(C). Our construction is parallel to the
one presented in [13].

DEFINITION 4.5. Let k = (k1, . . . , kl) ∈ Zl
+ be a partition of n and h ∈ Zl

+

be such that 1 6 hj 6 k j − 1, for all j = 1, . . . , l. We denote with Ak,h the set of
symbols ϕ ∈ HR(1,k) that satisfy the following properties:

(i) The symbol ϕ = aξ pξ
q

is (1, k)-quasi-homogeneous quasi-radial on Pn(C),
in other words, it is a function of the form

ϕ([w]) = a(|w0|, . . . , |wn|)
l

∏
j=0

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)

where a is a degree 0 homogeneous function and p, q ∈ Zn+1
+ .

(ii) The multi-indices p, q are orthogonal and satisfy |p(j)| = |q(j)| for all j =
0, . . . , l. In particular, p0 = p(0) = q0 = q(0) = 0.

(iii) The multi-indices p, q satisfy

pk0+···+kj−1+r = 0, qk0+···+kj−1+s = 0,

whenever 1 6 s 6 hj < r 6 k j and j = 1, . . . , l.

REMARK 4.6. Note that with the notation of Definition 4.6 we have k0 = 1.
Then, for a symbol ϕ ∈ Ak,h as described in Definition 4.5 we can write

ϕ([w]) = a(|w0|, . . . , |wn|)
l

∏
j=1

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)

= a(1, |w1|/|w0|, . . . , |wn|/|w0|)
l

∏
j=1

( w(j)/w0

|w(j)|/|w0|

)p(j)
( w(j)/w0

|w(j)|/|w0|

)q(j)

= a(1, |z1|, . . . , |zn|)
l

∏
j=1

( z(j)

|z(j)|

)p(j)
( z(j)

|z(j)|

)q(j)
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where z(j) = w(j)/w0 are components of the inhomogeneous coordinates of
Pn(C). Here we have used the degree 0 homogeneity of a and the property
|p(j)| = |q(j)| for all j = 1, . . . , l. This shows that the symbols in Ak,h have a
homogeneity property and that they can thus be expressed through inhomoge-
neous coordinates of Pn(C).

An immediate consequence of Definition 4.5 is that, with the notation of
Theorem 4.4, for every s = 1, . . . , n either (iii) or (iv) from the conclusion of such
theorem is always satisfied for two given symbols in Ak,h. In particular, we con-
clude the following result.

THEOREM 4.7 (Banach algebra of symbols with commuting operators). Let
k = (k1, . . . , kl) ∈ Zl

+ be a partition of n and h ∈ Zl
+ be such that 1 6 hj 6 k j − 1, for

all j = 1, . . . , l. Then, the Banach algebra of Toeplitz operators generated by the symbols
in Ak,h is commutative on each weighted Bergman space A2

m(Pn(C)).

5. BUNDLES OF LAGRANGIAN FRAMES AND QUASI-HOMOGENEOUS SYMBOLS

In the rest of this work, we fix a partition k = (k1, . . . , kl) ∈ Zl
+ of n and

h ∈ Zl
+ that satisfy the conditions from Definition 4.5. We will provide in this

section a geometric construction on the projective space Pn(C) which is relevant
to the set of symbols Ak,h ⊂ HR(1,k).

Recall that the special linear, projective special groups on Cn+1, as well as
their unitary counterparts, are defined, respectively, as follows

SL(n + 1,C) = {A ∈ Mn+1(C) : det(A) = 1},
PSL(n + 1,C) = SL(n + 1,C)/(TIn+1 ∩ SL(n + 1,C)),

SU(n + 1) = {A ∈ Mn+1(C) : A∗A = In+1, det(A) = 1},
PSU(n + 1) = SU(n + 1)/(TIn+1 ∩ SU(n + 1)).

It is easily seen that TIn+1 ∩ SL(n + 1,C) = TIn+1 ∩ SU(n + 1), that it is cyclic of
order n+ 1 and that it is precisely the center of both of the Lie groups SL(n+ 1,C)
and SU(n + 1). Observe that the quotient map SL(n + 1,C) → PSL(n + 1,C)
is a covering homomorphism whose (finite) kernel is TIn+1 ∩ SL(n + 1,C). A
corresponding observation holds for the covering homomorphism obtained by
restricting to SU(n + 1) → PSU(n + 1). In what follows, for A ∈ SL(n + 1,C)
we will denote with [A] its image in PSL(n + 1,C) with respect to this natural
covering homomorphism.

There is a natural action of PSL(n + 1,C) on Pn(C) given by the assigment

([A], [w]) 7→ [Aw],

where A ∈ SL(n + 1,C) and w ∈ Cn+1. Furthermore, it is well known that this
action realizes the group of biholomorphisms of Pn(C). Also, the restriction of
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this action to SU(n + 1) realizes the connected component of the identity of the
group of isometries for Pn(C) with the Fubini–Study metric.

The following is an elementary result from the theory of compact semisim-
ple Lie groups (e.g. see [4]).

PROPOSITION 5.1. Let us denote

T = {[D] ∈ PSU(n + 1) : D ∈ SU(n + 1) is diagonal }.

Then T is isomorphic as a Lie group to Tn and it is a maximal Abelian subgroup of
PSU(n+ 1). Furthermore, every maximal Abelian subgroup of PSU(n+ 1) is conjugate
to T .

A remarkable fact about the commutative C∗-algebras of Toeplitz operators
introduced in [3], [8], [10], and [11] is that the corresponding sets of symbols have
a naturally associated maximal Abelian subgroup of the group of isometries of
the complex spaces supporting the Bergman spaces. We now prove that a similar
situation is also valid for the sets of symbolsAk,h. This will be given by subgroups
of the torus T .

THEOREM 5.2 (Torus associated toAk,h). Let k = (k1, . . . , kl) ∈ Zl
+ be a parti-

tion of n and let h ∈ Zl
+ be such that the conditions of Definition 4.5 hold. Consider the

subgroup Tk of T defined by the condition

• For M ∈ T , we have M ∈ Tk if and only if ϕ(M[w]) = ϕ([w]) for every
ϕ ∈ Ak,h and [w] ∈ Pn(C).

Then, Tk is a closed subgroup of T isomorphic to Tl . Furthermore, M ∈ Tk if and only if
we have

(5.1) M =




t k1
1 · · · t

kl
l 0 · · · 0

0 t1 Ik1 · · · 0
...

...
. . .

...
0 0 · · · tl Ikl




for some t1, . . . , tl ∈ T.

Proof. Let us consider any given symbol ϕ ∈ Ak,h. In particular, we have

ϕ([w]) = a(|w0|, . . . , |wn|)
l

∏
j=0

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)

where a and p, q ∈ Zn+1
+ satisfy the conditions from Definition 4.5. In particular,

as observed in Remark 4.6, we have p0 = q0 = 0 and we further have

ϕ([w]) = a(|w0|, . . . , |wn|)
l

∏
j=1

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)
.
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Let M ∈ T be an element defined a diagonal matrix in SU(n + 1) with diagonal
elements t0, . . . , tn ∈ T in that order. Hence, a direct computation shows that

ϕ(M[w]) = a(|w0|, . . . , |wn|)
l

∏
j=1

tp(j)
(j) t q(j)

(j)

l

∏
j=1

( w(j)

|w(j)|

)p(j)
( w(j)

|w(j)|

)q(j)
.

We conclude that, for our choice of M, we have M ∈ T if and only if

(5.2)
l

∏
j=1

tp(j)
(j) t q(j)

(j) = 1

for every p, q ∈ Zn+1
+ that satisfy conditions (ii) and (iii) from Definition 4.5.

From the latter remarks it is easy to see that every M of the form given by
equation (5.1) belongs to T . This is true since for p, q satisfying condition (ii) from
Definition 4.5 we have |p(j)| = |q(j)| for all j = 1, . . . , l.

Conversely, let us assume that M ∈ T , so that one has ϕ(M[w]) = ϕ([w]) for
ϕ as above and every [w] ∈ Pn(C). We will pick a particular choice of p, q ∈ Zn+1

+ .
Given 1 6 j0 6 l choose r, s such that 1 6 r 6 hj < s 6 k j and define for
j = 1, . . . , l

(p(j))i =

{
1 if j = j0 and i = r,
0 otherwise,

(q(j))i =

{
1 if j = j0 and i = s,
0 otherwise.

We also choose a = 1. Then, it is easy to check that the corresponding symbol ϕ
belongs to Ak,h. For this symbol, the condition given by equation (5.2) reduces to

(t(j0))r = (t(j0))s

for all r, s satisfying 1 6 r 6 hj < s 6 k j for our arbitrarily given 1 6 j0 6 l. In
particular, the diagonal entries of the matrix D such that M = [D] are all the same
on each one of the index intervals defined by the partition k. Since det(D) = 1
we thus conclude that M is the form shown in equation (5.1).

Hence we have proved the last claim of the statement. From this it clearly
follows that Tk is closed and isomorphic to Tl , for which one uses that the canon-
ical map SU(n + 1) → PSU(n + 1) is a covering homomorphism with finite ker-
nel.

REMARK 5.3. It is interesting to note that the group Tk associated to the set
of symbols Ak,h only depends on the partition k and not on the multi-index h.

As remarked above, the commutative C∗-algebras of Toeplitz operators in-
troduced in [3], [8], [10], and [11] came with a natural maximal Abelian sub-
group. Furthermore, such subgroup allowed to introduce a foliation with a dis-
tinguished symplectic geometry. We will now show that the group Tk can be used
to obtain a similar geometric construction associated to the set of symbols Ak,h.
Such construction will be performed on a stratification of the projective space
Pn(C).
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First, we consider the complexification of the torus Tk as described by the
conclusion of Theorem 5.2. More precisely, we denote

T C
k =





z0 0 · · · 0
0 z1 Ik1 · · · 0
...

...
. . .

...
0 0 · · · zl Ikl


 : z0, . . . , zl ∈ C∗, z0zk1

1 · · · z
kl
l = 1

 .

In other words, T C
k consists of the elements [A] ∈ PSL(n + 1,C) where A is a

block diagonal matrix whose blocks along the diagonal are (z0, z1 Ikj
, . . . , zkl

Ikl
)

for some z0, . . . , zkl
∈ C∗ such that z0zk1

1 · · · z
kl
l = 1.

Hence, T C
k is a subgroup of PSL(n + 1,C) isomorphic to C∗l containing Tk.

In particular, T C
k acts biholomorphically on the projective space Pn(C). But, as

it is easily seen, the T C
k -orbits in Pn(C) have varying dimensions. We deal with

this situation considering a stratification associated to the partition k.
For the given partition k = (k1, . . . , kl) of n, consider the decomposition

Cn+1 = C×Ck1 × · · · ×Ckl that induces the corresponding decomposition w =
(w0 = w(0), w(1), . . . , w(l)) for every w ∈ Cn+1. With this notation we define

V0 = {[w] ∈ Pn(C) : w0, w(1), . . . , w(l) 6= 0},
Vj = {[w] ∈ Pn(C) : w(j), . . . , w(l) 6= 0, w0 = 0, . . . , w(j−1) = 0},

where j = 1, . . . , l. Note that V0, . . . , Vl provides a partition a.e. of Pn(C) into
smooth complex quasi-projective subvarieties. Furthermore, a direct inspection
shows that V0 is the largest subset of Pn(C) where T C

k acts freely. Recall that a
group acting on a set is said to do so freely if the stabilizers are all trivial, in which
case one also says that the action is free.

Consider the following finite sequence of subgroups of T C
k . First we let

G0 = T C
k . And for every j = 1, . . . , l we define Gj as the subgroup of G0 which

consists of the elements [A] ∈ PSL(n + 1,C) where A is a block diagonal matrix
whose blocks along the diagonal are

(z0, Ik1 , . . . , Ikj−1
, zj Ikj

, . . . , zl Ikl
)

for some z0, zj, . . . , zl ∈ C∗ such that z0z
kj
j · · · z

kl
l = 1. In particular, we clearly

have that Gj is isomorphic to C∗(l−j+1) for every j = 0, . . . , l. We will also consider
for j = 0, . . . , l the following compact groups which can be thought as real forms
of the groups Gj

Tj = Gj ∩ Tk.

In particular, one can easily check that Tj ' Tl−j+1, for every j = 0, . . . , l, and that
T0 = Tk.
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We now state the following easy to prove result. The main point is to ob-
serve that Vj ∪ · · · ∪ Vl is the subvariety defined by the homogeneous equations
w0 = 0, . . . , w(j−1) = 0. The rest follows from this or it can be verified directly.

LEMMA 5.4. For a.e. the partitionPn(C)=V0∪ · · · ∪Vl and the groups G0, . . . , Gl
defined above, the following properties are satisfied for every j = 0, . . . , l:

(i) The subset Vj ∪ · · · ∪Vl is a closed smooth projective subvariety of Pn(C).
(ii) The smooth variety Vj is open in Vj ∪ · · · ∪Vl .

(iii) The group Gj leaves invariant the set Vj ∪ · · · ∪Vl .
(iv) The smooth variety Vj is the largest subset of Vj ∪ · · · ∪Vl where Gj acts freely.

We now construct a finite collection of principal fiber bundles whose total
spaces are the subvarieties Vj and whose structure groups are subgroups of Gj.
We refer to [5] for the notion of principal fiber bundle. This yields a partition
of Pn(C) into principal fiber bundles associated to the partition k, and it thus
provides a geometric structure for the set of symbols Ak,h.

THEOREM 5.5 (Principal bundles associated to Ak,h). For k = (k1, . . . , kl) ∈
Zl
+ a partition of n, consider the subvarieties V0, . . . , Vl of Pn(C) and the subgroups

G0, . . . , Gl of T C
k as defined above. Then, the following property is satisfied for every

j = 0, . . . , l:

• The quotient space Gj\Vj is a smooth complex manifold so that the natural
quotient map Vj → Gj\Vj is a smooth complex principal fiber bundle with
structure group Gj ' C∗(l−j+1). In particular, every Gj-orbit is a complex
submanifold of Pn(C).

Proof. It is well known that a free proper action of a Lie group provides a
quotient map that defines a principal fiber bundle (see for example [1]). By virtue
of Lemma 5.4 it is enough to show that the action of Gj on Vj is proper.

We recall that a group G acts properly on a manifold V if for every compact
subset K ⊂ V the set

{g ∈ G : gK ∩ K 6= ∅}

is relatively compact in G.
Choose K ⊂ Vj a compact subset. Then, there exists K̂ ⊂ Cn+1 \ {0} a

compact subset such that K = {[w] : w ∈ K̂}. If we denote with π the canonical
projection Cn+1 \ {0} → Pn(C), then we can choose, for example, K̂ = π−1(K) ∩
Sn+1. Note that from the definition of Vj we have w(j), . . . , w(l) 6= 0 for every
w ∈ K̂. And by compactness of K̂, there exist constants c1, c2 > 0 such that

(5.3) c1 6 |w(r)| 6 c2

for every w ∈ K̂ and r = j, . . . , l.
Let [A]∈Gj be such that [A]K∩K 6=∅. Hence we can assume the following:
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(i) the matrix A is a diagonal block matrix whose blocks along the diagonal are

(z0, Ik1 , . . . , Ikj−1
, zj Ikj

, . . . , zl Ikl
)

for some z0, zj, . . . , zl ∈ C∗ such that z0z
kj
j · · · z

kl
l = 1,

(ii) there exist w, w′ ∈ K̂ and λ ∈ C∗ such that for every r = j, . . . , l we have

λzrw(r) = w′(r).

We conclude from (5.3) and (ii) that for every r = j, . . . , l we have

(5.4) d1 6 |λzr| 6 d2

where d1 = c1/c2 and d2 = c2/c1. This and (i) imply in turn that

d
σj
1 6 |λ|σj = |λz0|

l

∏
r=j
|λzr|kr 6 d

σj
2 ,

where σj = k j + · · ·+ kl + 1. Hence we have d1 6 |λ| 6 d2, which together with
equation (5.4) yields for r = j, . . . , l the estimate

d1

d2
6 |zr| 6

d2

d1
.

Since d1, d2 > 0, the latter inequalities define a compact subset of Gj ' C∗(l−j+1).
This completes the proof of the properness of the Gj-action on Vj.

We recall the definition of Lagrangian frame introduced in [9], [10], [11]. We
refer to the latter works for further details on the notions involved.

DEFINITION 5.6. On a Kähler manifold N, a Lagrangian frame is a pair (O,F)
of smooth foliations that satisfy the following properties:

(i) Both foliations are Lagrangian. In other words, the leaves of both foliations
are Lagrangian submanifolds of N.

(ii) If L1 and L2 are leaves of O and F, respectively, then TxL1 ⊥ TxL2 at every
x ∈ L1 ∩ L2.

(iii) The foliation O is Riemannian. In other words, the Riemannian metric of
N is invariant by the leaf holonomy of O.

(iv) The foliation F is totally geodesic. In other words, its leaves are totally
geodesic submanifolds of N.

We will refer to O and F as the Riemannian and totally geodesic foliations,
respectively, of the Lagrangian frame.

The next result shows that the fibers of the submersion of the principal bun-
dles Vj → Gj\Vj carry Lagrangian frames naturally associated to the symbols
Ak,h. We observe and emphasize that the Kähler structure considered on any
complex submanifold of Pn(C) is the one obtained by restriction of the Fubini–
Study metric to the corresponding submanifold.
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THEOREM 5.7 (Lagrangian frames associated toAk,h). For k = (k1, . . . , kl) ∈
Zl
+ a partition of n, consider the subvarieties V0, . . . , Vl of Pn(C) and the subgroups

G0, . . . , Gl of T C
k as defined above. Then, for every j = 0, . . . , l and for every fiber F of

the principal bundle Vj → Gj\Vj, the following properties hold:
(i) The action of Tj restricted to F defines a Riemannian foliation OF on whose leaves

every symbol that belongs to Ak,h is constant.
(ii) The vector bundle TO⊥F defined as the orthogonal complement of TOF inside of

TF is integrable to a totally geodesic foliation JOF.
(iii) The pair (OF,JOF) is a Lagrangian frame of the complex manifold F for the

Kähler structure on F inherited from Pn(C).

Proof. Let us fix j and F as described in the statement.
By Lemma 5.4 the group Gj acts freely on F, because F ⊂ Vj. Furthermore,

note that by Theorem 5.5 and our choices, F is in fact a free Gj-orbit. In particular,
dimC F = dimC Gj = l − j + 1. Also, since Tj is a subgroup of Gj, we conclude
that Tj acts freely on F, thus defining a foliation OF whose leaves have (real)
dimension dim Tj = l − j + 1.

We now recall that the Tj ⊂ T and that, by Proposition 5.1, the latter acts
by isometries. This implies that the Tj-action on F is isometric as well. This last
property implies that the foliationOF is Riemannian (see, for example, [9]). Also,
since Tj ⊂ T , Theorem 5.2 implies that the symbols belonging to Ak,h are Tj-
invariant and so constant on the leaves of OF. This proves (i).

It is known that the T -action on Pn(C) has isotropic orbits: the T -orbits are
null with respect to the symplectic form of Pn(C). This has been verified in [8] for
V0 ⊂ Pn(C). More precisely, the latter claim is the content of Theorems 6.7 and
6.8 from [8], whose proof is a direct consequence of Theorems 2.1 and 3.1 from [7].
We now observe that the results found in [7] are in fact stated for arbitrary orbits
of the maximal compact subgroup T . This can be easily applied to conclude that
the every T -orbit is in fact an isotropic submanifold of Pn(C). Next, the elements
[w] ∈ Vj are characterized by the conditions

w(j), . . . , w(l) 6= 0, w0 = 0, . . . , w(j−1) = 0,

from which it is easily seen that for every t ∈ T there exists t′ ∈ Tj such that
t[w] = t′[w] (e.g. define the components of t′ as 1 at the positions where w
vanishes). This implies that the T -orbits in Vj are precisely Tj-orbits, thus that
the foliation OF has isotropic leaves. Since the real dimension of such leaves is
dim Tj = l− j+1=dimC F, we conclude that the foliation OF is Lagrangian in F.

Since the orthogonal complement of a Riemannian foliation is totally geo-
desic (see, for example, [9]), to prove (ii) and (iii) it suffices to show that TO⊥F =
iTOF is integrable.

To prove the integrability of iTOF let us consider {Xr : r = 1, . . . , l − j + 1}
a base for the Lie algebra of Tj. The Tj-action on F induces a family of vector
fields {X∗r : r = 1, . . . , l − j + 1} on F characterized as those having flows given
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by {exp(Xr) : r = 1, . . . , l − j + 1}, respectively. We refer to [4] for further details
on this construction. Since the Tj-action on F is free, it follows that the vector
fields {X∗r : r = 1, . . . , l− j + 1} are linearly independent at every point of F, thus
defining a generating set for TOF at every point of F. Furthermore, since Tj is
Abelian [X∗r , X∗s ] = 0 for every r, s.

On the other hand, for J the complex structure, the set of vector fields {JX∗r :
r = 1, . . . , l − j + 1} yields a generating set for iTOF at every point of F.

Claim. For every r, the vector fields X∗r and JX∗r are holomorphic, i.e. they
integrate to holomorphic local flows.

To prove the claim, we first note that the vector fields X∗r integrate by defi-
nition to local flows which are 1-parameter subgroups of the Tj-action. Since the
latter is holomorphic, we conclude that the vector fields X∗r are holomorphic.

We now consider the vector fields JX∗r . First we recall that Tj ⊂ T ⊂
PSL(n + 1,C), which implies that

Xr ∈ Lie(Tj) ⊂ Lie(PSL(n + 1,C)) = Lie(SL(n + 1,C)) = sl(n + 1,C).

Let us denote with π : Cn+1 \ {0} → Pn(C) the canonical quotient map. From our
definitions, it is clear that the natural SL(n + 1,C)-action on Cn+1 \ {0} descends
through π to the PSL(n + 1,C)-action on Pn(C). Hence, if we denote with X̂r the
vector field on Cn+1 \ {0} induced from Xr and the SL(n + 1,C)-action, then it is
clear that X̂r and X∗r are π-related; in other words, we have

X∗r = dπ(X̂r).

And since π is holomorphic, we also have

JX∗r = dπ(JX̂r).

In particular, to prove that JX∗r is holomorphic, it is enough to prove that JX̂r
integrates to a holomorphic local flow.

Since Xr ∈ Lie(T ) ⊂ sl(n+ 1,C), its matrix is diagonal and pure imaginary.
If ic0, . . . , icn are its diagonal elements, then X̂r integrates to the flow on Cn+1 \
{0} given by

R×Cn+1 \ {0} → Cn+1 \ {0}

(θ, w) 7→ (eic0θw0, . . . , eicnθwn).

In particular, we have on Cn+1 \ {0} that

X̂r|w = (ic0w0, . . . , icnwn),

and so that
JX̂r|w = (c0w0, . . . , cnwn).

The latter vector field clearly integrates to the flow on Cn+1 \ {0} given by

R×Cn+1 \ {0} → Cn+1 \ {0}

(θ, w) 7→ (ec0θw0, . . . , ecnθwn),
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which is clearly holomorphic. This implies the holomorphicity of JX∗r and thus
completes the proof of the Claim.

Once the above is given, we have for every r, s

[JX∗r , JX∗s ] = J[X∗r , JX∗s ] = J2[X∗r , X∗s ] = 0.

Here we have used in the first and second identities the fact that JX∗r and X∗r , re-
spectively, define Lie derivatives that commute with J; the latter is a consequence
of the fact that both vector fields are holomorphic (see [6]). Thus, we have proved
that the bundle iTOp has a set of sections that generate the fibers and commute
pairwise. Hence, the integrability of iTOp follows from Frobenius theorem.

Finally, we prove that a suitable complement of Tj in Gj acts by symmetries
of the bundle obtained in Theorem 5.5.

As above, consider a partition k = (k1, . . . , kl) ∈ Zl
+ of n. For every j =

0, . . . , l define the group Hj as the subgroup of PSL(n + 1,C) which consists of
the classes [D] where D is a block diagonal matrix with diagonal entries

(1, Ik1 , . . . , Ikj−1
, Dj, . . . , Dl).

where Dr is a kr × kr diagonal matrix such that det(Dr) = 1.
Following our previous notation, we will also denote

T C = {[D] : D ∈ SL(n + 1,C) is diagonal}.
Then the next result is a simple exercise.

LEMMA 5.8. For k = (k1, . . . , kl) ∈ Zl
+ a partition of n, and for every j =

0, . . . , l, the map

Gj × Hj → T C

([D], [E]) 7→ [DE]

is an isomorphism of Lie groups.

Let us fix j = 0, . . . , l. As a subgroup of PSL(n + 1,C), the group Hj clearly
acts holomorphically on Pn(C). Also, from the definition of Vj, the Hj-action
clearly satisfies the following properties:

• Hj leaves invariant Vj.
• The Hj-action on Vj is free.

Furthermore, by Lemma 5.8 the actions of the groups Gj and Hj commute with
each other. In particular, the Hj-action maps every Gj-orbit in Vj onto some Gj-
orbit in Vj. This construction allows us to obtain the following result. We refer to
[5] for the definition of an automorphism of a principal bundle.

THEOREM 5.9. For k = (k1, . . . , kl) ∈ Zl
+ a partition of n, and for every j =

0, . . . , l the Hj-action on Vj descends to an action on Gj\Vj so that the Hj-action defines
an automorphism of the principal bundle

πj : Vj → Gj\Vj .
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In particular, the Hj-action maps fibers onto fibers (of πj). Furthermore, the Hj ∩ T -
action maps the Lagrangian frames (as defined by Theorem 5.7) into the corresponding
Lagrangian frames.

Proof. By the above, only the last part requires justification. But such claim
is also clear since the leaves of the Riemannian foliation of the Lagrangian frames
are defined as orbits of a subgroup of Gj, the totally geodesic foliation as its or-
thogonal complement, and because the Hj ∩ T -action is isometric.
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