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ABSTRACT. For both nonrelativistic and relativistic Hamiltonians, the com-
plex absorbing potential (CAP) method has been applied extensively to cal-
culate resonances in physics and chemistry. We study clusters of resonances
for the perturbed Dirac operator near the real axis and, in the semiclassical
limit, we establish the CAP method rigorously by showing that resonances
are perturbed eigenvalues of the nonselfadjoint CAP Hamiltonian, and vice
versa.
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1. INTRODUCTION

The complex absorbing potential (CAP) method is widely used for comput-
ing resonances in quantum chemistry because it provides good approximations
to the true resonances and since its numerical implementation is fairly simple
[13], [14]. We study the CAP method in the semiclassical limit, i.e., as Planck’s
“constant" h̄ approaches zero, for the perturbed Dirac operator

D = −ich̄
3

∑
j=1

αj∂xj + βmc2 +V(x),

which acts on the Hilbert space H := L2(R3;C4) =
4⊕

j=1
L2(R3) =: (L2(R3))4.

By assumption the perturbation V, the electromagnetic potential, has compact
support and {αj}3

j=1 and β = α4 are the 4× 4 Dirac matrices satisfying the anti-
commutation relations

αjαk + αkαj = 2δjk I4, 1 6 j, k 6 4,

where In is the n× n identity matrix.
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Depending upon the definition of what a resonance is, its existence can
be verified in several ways. We analyze resonances in the spectral meaning by
defining resonances through the complex distortion method, which was origi-
nally used for Schrödinger operators and later applied to Dirac operators; see,
e.g., [18]. In this context the resonances z(h̄) = E(h̄) + iΓ(h̄)/2 manifest them-
selves as eigenvalues of a non-selfadjoint operator Dθ associated with D (see
Section 4). In applications the goal is to compute the resonance energy E and
the width Γ, which is the inverse of the life-time of the corresponding resonant
state. The CAP method provides a recipe for doing this: perturb the Hamilton-
ian D by an imaginary potential and, as a rule, the eigenvalues of the perturbed
Hamiltonian are supposed to be good approximations of the true resonances.
We limit ourselves to a detailed study of the behaviour of the resonances near
the real axis. By resonances near the real axis we mean resonances in a “box"
R(h̄) = [l0, r0] + i[−b(h̄), 0] where 0 < b(h̄) = O(h̄N), N � 1.

In a prior paper on resonances of the perturbed Dirac operator [12], we justi-
fied the CAP method rigorously for resonances with Γ(h̄) = O(h̄N), N � 1, and
we proved that such resonances give rise to eigenvalues of the CAP Hamilton-
ian J := D− iW within distance at most −h̄−5 log(h̄−1)Γ(h̄) (when E(h̄) > mc2).
Moreover, we established the reverse implication. These results are valid under
the hypothesis that the CAP equals zero in the interaction region, i.e., the support
of the potential V, and “switched on" outside this region. For numerical schemes,
however, the “switch-on" point is moved inwards towards the interaction region
as much as possible to minimize the number of grid points used. If the classical
Hamiltonian vector fields generated by the eigenvalues of the principal symbol
of D are nontrapping (see Definition 3.2), one can allow the supports to intersect
at the cost of worsening the error by a factor h̄−1. This requires the use of an
Egorov type theorem for matrix-valued Hamiltonians, which enables one to ex-
press the time evolution of quantum observables (self-adjoint operators) in the
semiclassical limit in terms of a classical dynamics of principal (matrix) symbols.
The afore-mentioned results deal with single resonances/eigenvalues and give
no information regarding multiplicities.

In the present paper we prove that also multiple resonances (close to the
real axis) of the perturbed Dirac operator can be estimated by the eigenvalues
of the corresponding CAP Hamiltonian; see Theorem 5.1 for the case supp (V) ∩
supp (W) = ∅, respectively, Theorem 5.2 for the case supp (V) ∩ supp (W) 6= ∅.
Only a few rigorous justifications of the CAP method are found in the math-
ematical literature, despite its success in physics and chemistry. Stefanov [24]
was the first to establish results, like the ones above, for (nonrelativistic scalar-
valued) Schrödinger operators with compactly supported potentials. For individ-
ual resonances in the “non-intersecting" case, he considers a cutoff resonant state
and constructs a quasimode (see Section 8) which generates a perturbed reso-
nance. In the “intersecting" case, the previous strategy only applies after a refined
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microlocal analysis, involving a propagation-of-singularities argument. Kungs-
man and Melgaard have recently carried over Stefanov’s results to matrix-valued
Schrödinger operators [11]. The matrix-valued framework is more intricate. In
the “intersecting" case it is necessary to start by solving Heisenberg’s equations
of motion semiclassically. Next, a localization result away from the semiclassi-
cal wavefront set allows one to describe how singularities propagate in this case.
The Egorov type statement, which is a vital ingredient in the proof by Kungsman
and Melgaard [11] also propagates the matrix degrees of freedom which is a new
feature compared to the scalar-valued situation. To carry through this strategy
for matrix-valued Schrödinger operators, an additional technical (and restrictive)
assumption in [11] had to be imposed. A nice outcome for the perturbed Dirac
operator (also a matrix structure) is that such technicalities are not necessary and,
therefore, more natural and better results are achieved, and the afore-mentioned
scheme of proof (using cutoff resonant states, Egorov type result, propagation of
singularities argument and quasimodes), developed in [11], was carried through
in [12], using a “full" version of the matrix-valued Egorov type theorem.

For clusters of resonances, treated herein, our scheme of proof is similar to
Stefanov’s [24] but key arguments do not apply in our setting. For instance, Ste-
fanov applies a variant of Burq’s dissipative estimate [6], whereas we carefully
analyze an explicit representation of the free deformed Dirac operator. Further-
more, the proofs of our main theorems require a “decomposition" approach to
treat clusters of resonances which are “too close" while ensuring that the multi-
plicities are kept the same. For this purpose the boxR(h̄) in (5.1) is expressed as a
union

⋃Rj(h̄) of disjoint boxes having smaller widths. By an application of The-
orem 8.1, describing how quasimodes generate resonances, we show that mj(h̄)
resonances of D(h̄) in Rj(h̄) imply that there exist at least mj(h̄) eigenvalues of
J(h̄) in a larger box R̃j(h̄), like (8.3). Since the domains R̃j(h̄) intersect each other,
we must ensure that we do not count some resonances more than once. We show
how to do avoid this and, as a matter of fact, there are at least m(h̄) = ∑

j
mj(h̄)

eigenvalues inR(h̄). The latter is shown by demonstrating that the set of all m(h̄)
cutoff resonant states satisfy (8.1). Once again the “propagation of singularities"
result from [12] is applied in the “intersecting" case.

Rigorous results on resonances for Dirac operators are found in [1], [3], [10],
[16], [17].

2. PRELIMINARIES

NOTATION. Constants, typically denoted by C (with or without indices) do not
depend on h̄ and may change from line to line without any indication thereof. We
use the notation

B(x0, R) = {x : |x− x0| < R}



262 J. KUNGSMAN AND M. MELGAARD

for an open ball in R3, centered at x0 with radius R. For an open complex disk
with center at ζ and radius r we instead write D(ζ, r) = {z ∈ C : |z− ζ| < r, r >
0}. For x ∈ R3 we denote 〈x〉 := (1 + |x|2)1/2. For ζ ∈ C \ [−∞, 0), we denote
by ζ1/2 the principal branch of the square root. Rectangles {z ∈ C : l 6 Re z 6
r, b 6 Im z 6 t} are written

[l, r] + i[b, t].(2.1)

We shall denote by Mn(C) the set of all n × n matrices over C, equipped with
the induced norm ‖ · ‖n×n. We let H := L2(R3;C4) be the space of (equivalence
classes of) spinor-valued functions u = (u1, u2, u3, u4)

t on R3 endowed with the
inner product

〈u, v〉 =
∫
R3

(u, v)dx :=
4

∑
j=1

∫
R3

ujvj dx

such that 〈u, u〉 =: ‖u‖2 < ∞. The space C∞
0 (R3) consists of all compactly sup-

ported functions having continuous derivatives of all orders. In the context of
pseudodifferential operators it is convenient to use Dxj := −i∂/∂xj and multi-
index notation Dγ = Dγ1

x1 Dγ1
x2 Dγ3

x3 for γ = (γ1, γ2, γ3) ∈ N3
0. The first order semi-

classical Sobolev space is written H1(R3;C4) and is equipped with the norm

‖u‖2
H1 =

4

∑
j=1

∫
R3

(|h̄∇uj|2 + |uj|2)dx.

Moreover, the Schwartz space, consisting of all C4-valued infinitely differentiable
functions on R3 such that all seminorms sup

x∈R3
|xαDβ f (x)| are finite is written

S(R3;C4) and we let S ′(R3;C4) stand for its dual space of so called tempered
distributions. For cut-off functions χ1, χ2 ∈ C∞

0 (Rn; [0, 1]) we sometimes write
χ1 ≺ χ2 to mean that χ2 = 1 near supp χ1 (i.e., the support of χ1). We work
under the convention that cut-off functions take their values in [0, 1].

OPERATORS. If A is an operator onH we write Dom (A) for its domain. Its spec-
trum can be divided into two disjoint parts — the discrete and the essential spec-
trum, written spec (A) = specd(A)∪ specess(A). Moreover, the resolvent set of A
is denoted ρ(A) and the resolvent itself R(ζ) = (A− ζ)−1. The space of bounded
operators between Hilbert spaces H1 and H2 is denoted by B(H1,H2) and the
subspace of compact operators is B∞(H1,H2). If H := H1 = H2 we use the no-
tation B(H) and B∞(H) for short. The commutator of two operators A and B,
whenever defined, is denoted [A, B] = AB− BA. The number of eigenvalues or
resonances (counting multiplicities) of A in Ω ⊂ C is written Count (A, Ω). We
use capitals for scalar-valued operators and boldface capitals to denote matrix-
valued, e.g. χ = χI4. In Appendix B we have gathered some basic definitions
and terminology from the theory of pseudodifferential operators.
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3. DIRAC OPERATORS AND CAP HAMILTONIANS

Herein we define perturbed Dirac operators and we introduce various as-
sumptions. Furthermore, CAP Hamiltonians are defined.

THE FREE DIRAC OPERATOR. The motion of a relativistic electron or positron
without external forces is described by the free semiclassical Dirac operator, which
is the unique self-adjoint extension of the symmetric operator defined on
C∞

0 (R3;C4), in the Hilbert spaceH = L2(R3;C4), by

D0 := cα · h̄
i
∇+ βmc2 = c

h̄
i

3

∑
j=1

αj
∂

∂xj
+ βmc2

where∇ = (∂x1 , ∂x2 , ∂x3) is the gradient, c the speed of light, m the electron mass,
2πh̄ is Planck’s constant, and α := (α1, α2, α3) with α1, α2, α3, β being Hermitian
4× 4 matrices, which satisfy the anti-commutation relations{

αiαj + αjαi = 2δij I4 for i, j = 1, 2, 3,
αiβ + βαi = 0 for i = 1, 2, 3,

and β2 = I4. For instance, one can use the “standard representation”

αi =

(
0 σi
σi 0

)
, β =

(
I2 0
0 −I2,

)
where

(3.1) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are 2 × 2 Pauli matrices. It is well-known that the resulting self-adjoint oper-
ator D0 has domain Dom (D0) = H1(R3;C4) and spec (D0) = specess(D0) =

(−∞,−mc2] ∪ [mc2, ∞); see, e.g., [2].

PERTURBED DIRAC OPERATOR. To describe more interesting interactions we in-
troduce an external potential in the form of a multiplication operator V ∈ C∞(R3)
⊗M4(C).

ASSUMPTION 3.1. Let the potential V : R3 → M4(C) be Hermitian, smooth for
all x ∈ R3, and compactly supported; the number R′0 > 0 is chosen such that supp V ⊂
B(0, R′0).

Under Assumption 3.1 it is well-known that D := D0 +V is self-adjoint on
Dom (D0)=H1(R3;C4). Moreover it follows from Weyl’s theorem that specess(D)
= specess(D0) = spec (D0); see, e.g., [2]. From now on we will emphasize the de-
pendence of h̄ in D by writing D(h̄).
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HAMILTONIAN FLOW. Let d0 be the principal symbol of D(h̄) and let its eigen-
values be denoted by λj, j = 1, . . . , 4. The Hamiltonian trajectories (or bicharac-
teristics), denoted by (xj(t), ξ j(t)) =: Φt

j(x0, ξ0), j = 1, 2, 3, 4, are defined as the
solutions of Hamilton’s equations{

x′j(t) = ∇ξλj(xj(t), ξ j(t)),

ξ ′j(t) = −∇xλj(xj(t), ξ j(t)),
(xj(0), ξ j(0)) = (x0, ξ0).

NONTRAPPING CONDITION. We introduce the following nontrapping condition
for the Hamiltonian flow generated by the eigenvalues λj(x, ξ), j = 1, 2, 3, 4.

DEFINITION 3.2. We say that an energy band J ⊂ R is nontrapping for D(h̄) if
for any R > 0 there exists TR > 0 such that

|xj(t)| > R for λj(x0, ξ0) ∈ J provided |t| > TR and j = 1, 2, 3, 4.

HYPERBOLICITY CONDITION. In certain situations, we shall introduce the follow-
ing assumption to avoid the difficulty of energy level crossings.

ASSUMPTION 3.3. Distinct eigenvalues are said to satisfy the hyperbolicity con-
dition if

|λj(x, ξ)− λk(x, ξ)| > C〈ξ〉 for all (x, ξ) ∈ T∗R3

for some constant C > 0.

We refer to Example 3.4 of [12] which illustrates Assumption 3.3 for Dirac
operators describing a particle of mass m and charge e subject to external time-
independent electromagnetic fields E(x) = −∇φ(x) and B(x) = ∇ ×A(x),
where E is the electric field and B is the magnetic field.

COMPLEX ABSORBING POTENTIAL HAMILTONIAN.

ASSUMPTION 3.4. Suppose W ∈ L∞(R3;C) is smooth and let W = W I4 be the
operator on L2(R3;C4) induced by multiplication. Suppose, moreover, that W satisfy the
following properties:

(i) Re W > 0;
(ii) There is an R1 > 0 such that supp W ⊂ {|x| > R1};

(iii) For some δ0 > 0 and R2 > R1 we have Re W > δ0 for |x| > R2;
(iv) | Im W| 6 C

√
Re W for some constant C;

It is clear that iW is not Hermitian. We now define two CAP operators. First,

J∞(h̄) := D(h̄)− iW(x) on H.

Second, given R > R2 let HR(h̄) be the restriction of H to the ball B(0, R) and let
DR(h̄) be the Dirichlet realization of D(h̄) there. Define

JR(h̄) := DR(h̄)− iW(x).
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Then both J∞(h̄) and JR(h̄) are closed unbounded operators with

Dom (J∞(h̄)) = Dom (D(h̄)) and Dom (JR(h̄)) = Dom (DR(h̄)).

Furthermore, since Re W > 0, we see that C+ is contained in their resolvent sets.

4. COMPLEX DISTORTION AND RESONANCES

We summarize the spectral deformation theory for the Dirac operator, fol-
lowing Hunziker’s approach in the spirit of Aguilar–Balslev–Combes theory, and
we define resonances. We state the basic facts but omit the proofs; for further de-
tails the reader may consult [7], [8], [10].

4.1. COMPLEX DISTORTION. We carry out complex distortion away from B(0, R2)
∪B(0, R′0) and, therefore, we introduce a smooth vector field g satisfying the fol-
lowing assumption.

ASSUMPTION 4.1. Suppose g : R3 → R3 is a smooth function which satisfies the
following properties:

(i) g(x) = 0 for |x| 6 R0 where R0 > max(R′0, R2);
(ii) g(x) = x for |x| > R0 + η for some η > 0;

(iii) sup
x∈R3
‖(Dg)(x)‖3×3 <

√
2 with (Dg)(x) being the Jacobian matrix of g.

The parameter R0 will be chosen suitably in different circumstances. This
will not affect the set of resonances we study, see (P4) below.

For fixed ε ∈ (0, 1) and

θ ∈ Dε :=
{

θ ∈ C : |θ| < rε :=
ε√

1 + ε2

}
,

we let φθ : R3 → R3 be defined by φθ(x) = x + θg(x) and we denote the Jacobian
determinant of φθ by Jθ . We then define Uθ : S(R3;C4) → S(R3;C4) for θ ∈
(−rε, rε) by

Uθ f (x) = J1/2
θ (x) f (φθ(x)).

One has:

(P1) The map Uθ extends, for θ ∈ (−rε, rε), to a unitary operator on L2(R3;C4).

DEFINITION 4.2. Let A be the linear space of all entire functions f =
( fi)16i64 such that for any 0 < ε < 1 and k ∈ N we have

lim
|z|→∞ ,z∈Cε

|z|k| fi(z)| = 0 for 1 6 i 6 4,

where

(4.1) Cε = {z ∈ C3 : | Im z| 6 ε|Re z|, |Re z| > max(R′0, R2)}.
The class of analytic vectors is defined as follows:
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DEFINITION 4.3. Let B ⊂ L2(R3;C4) be the set of ψ ∈ L2(R3;C4) such that
there exists f ∈ A with f (x) = ψ(x) for x ∈ R3.

Then:

(P2) The set B is dense in L2(R3;C4).
This statement follows from the fact that B is a linear space containing the

set of Hermite functions which has a dense span. Moreover, for B to be a set of
analytic vectors for Uθ (see e.g. [7]), we need the following fact, wherein we allow
θ to become non-real.

(P3) We have, for all θ ∈ Dε,
(i) The map θ 7→ Uθ f is analytic for all f ∈ B.

(ii) The set UθB is dense in L2(R3;C4).

We may proceed to the definition of the family of spectrally deformed Dirac
operators.

DEFINITION 4.4. For θ ∈ D+
ε := Dε ∩ {Imz > 0} we define

Dθ(h̄) := UθD(h̄)U−1
θ = UθD0(h̄)U−1

θ + UθVU−1
θ =: D0,θ(h̄) +V(φθ(x)).

Then we have:

(P4) For θ0 ∈ D+
ε the eigenvalues of Dθ0(h̄) are independent of the spectral deformation

family {Uθ0}.
The following explicit representation of the free deformed Hamiltonian

D0,θ(h̄) = UθD0(h̄)U−1
θ plays an important role in the sequel. The result is found

in Lemma 3 of [10].

LEMMA 4.5. For θ ∈ Dε

D0,θ(h̄) =
c

1 + θ

h̄
i

α · ∇+ βmc2 + Qθ(x, h̄∂xj),

where Qθ(x, h̄∂xj) = ∑
|γ|61

aγ(x, θ)(h̄∂xj)
γ with aγ(x, ·) analytic, bounded by O(θ),

and aγ(·, θ) ∈ C∞
0 (B(0, R0 + 2η);C4).

REMARK 4.6. In particular we see that, for θ ∈ Dε, θ 7→ D0,θ(h̄) is a holo-
morphic family of type (A) in the sense of Kato (see p. 375 of [9]).

By adding and subtracting−J−1/3
θ ich̄α ·∇ and using the fact that J1/3

θ equals
1 for |x| < R0 and 1+ θ for |x| > R0 + η the above representation can be modified
to the following more variable one:

LEMMA 4.7. For θ ∈ Dε we have, using the principal branch of the cube root,

Dθ = −J−1/3
θ ich̄α · ∇+ βmc2 + Q̃θ(x, h̄∂xj),

where Q̃θ(x, h̄∂xj) = ∑
|γ|61

ãγ(x, θ)(h̄∂xj)
γ with the ãγ(·, θ) supported in {R0 < |x| <

R0 + 2η}.
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In [12] we applied Lemma 4.7 to obtain the following.

PROPOSITION 4.8. For θ ∈ D+
ε , Re z > mc2 and any K ∈ Z+ there is CK > 0

such that

‖(Dθ − z)−1‖ 6 CK
Im z

for Im z > h̄K,

provided h̄ is small enough.

4.2. RESONANCES AND RESONANT STATES. We define the set

Σθ :=
{

z ∈ C : z = ±c
( λ

(1 + θ)2 + m2c2
)1/2

, λ ∈ [0, ∞)
}

,

where we have chosen the principal branch of the square root function. Further-
more, let

Sθ0 :=
⋃

θ∈D+
ε,θ0

Σθ

with

D+
ε,θ0

:=
{

θ ∈ D+
ε : arg(1 + θ) < arg(1 + θ0),

1
|1 + θ| <

1
|1 + θ0|

}
.

We have:

(P5) specess(D0,θ(h̄)) = Σθ .
(P6) specess(Dθ(h̄)) = Σθ .

Property (P6) asserts that the essential spectrum of D0,θ(h̄) is invariant un-
der the influence of a potential satisfying Assumption 3.1. As a consequence of
Property (P4), the following set is well-defined:

DEFINITION 4.9. The set of resonances of D(h̄) in Sθ0 ∪ R, denoted by
Res (D(h̄)) (with θ0 suppressed), is the set of eigenvalues of Dθ0(h̄). If z0 is a
resonance, then the spectral (or Riesz) projection

Πz0 =
1

2πi

∮
|z−z0|�1

(Dθ(h̄)− z)−1 dz

is well-defined and it has finite rank. The multiplicity of z0 is defined to be the
rank of Πz0 .

We limit ourselves to the investigation of resonances with positive energies;
specifically, the resonances are supposed to be located in a box R satisfying the
following conditions:

ASSUMPTION 4.10. A complex rectangle R, as in (2.1), is said to satisfy the as-
sumption (A+

R) provided l > mc2, b < 0 < t and there exists θ0 ∈ D+
ε such that

R∩ Σθ0 = ∅.

In Figure 1, page 18 of [12] we show a typical scenario when we fix a θ0 ∈
D+

ε to uncover the resonances in Sθ0 .
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Throughout the paper we shall repeatedly use the following upper bound
on the number of resonances, not necessarily having small imaginary parts. Its
proof is found in Khochman [10], who follows Nedelec’s work on matrix-valued
Schrödinger operators [15] (which is inspired by Sjöstrand [19]).

THEOREM 4.11. Suppose V satisfies Assumption 3.1 and let R be a complex rec-
tangle satisfying Assumption (A+

R). Then the following bound is valid:

Count (D(h̄),R) 6 C(R)h̄−3.

5. MAIN RESULTS

Henceforth we always impose Assumption 3.1 and Assumption 3.4. More-
over, J(h̄) represents either J∞(h̄) or JR(h̄). Throughout we shall assume that
mc2 < l0 < r0 < ∞ (here l0 and r0 are independent of h̄).

Bear in mind that the notation Count (D(h̄),R(h̄)) is used for the num-
ber of resonances of D in a rectangle R(h̄) counting multiplicities and, similarly,
Count (J(h̄),R(h̄)) denotes the number of eigenvalues of J(h̄) in R(h̄), counting
multiplicities.

5.1. THE CASE R′0 < R1 .

THEOREM 5.1. Suppose R′0 < R1. Let J(h̄) denote either J∞(h̄) or JR(h̄), and let

(5.1) R(h̄) = [l(h̄), r(h̄)] + i[−b(h̄), 0],

where l0 6 l(h̄) 6 r(h̄) 6 r0, and h̄K 6 b(h̄) 6 h̄M for K > M > 36. Then there exists
L > 0 such that

Count (J,R−(h̄)) 6 Count (D,R(h̄)) 6 Count (J,R+(h̄)),

where

R−(h̄) =
[
l(h̄) + h̄−L log(1/h̄)

√
b(h̄), r(h̄)− h̄−L log(1/h̄)

√
b(h̄)

]
+ i
[
−
( h̄L

log 1/h̄

)2
b(h̄)2, 0

]
R+(h̄) = [l(h̄)− h̄−L log(1/h̄)b(h̄), r(h̄) + h̄−L log(1/h̄)b(h̄)]

+ i[−h̄−L log(1/h̄)b(h̄), 0].

5.2. THE CASE R1 < R′0 . We obtain the following result.

THEOREM 5.2. Suppose that R1 < R′0, and let D(h̄) be nontrapping on the inter-
val J = [l0, r0] in the sense of Definition 3.2. Moreover, let Assumption 3.3 be satisfied.
Then the assertions of Theorem 5.1 remain valid.

REMARK 5.3. By taking a larger L the logarithmic factor in Theorems 5.1
and 5.2 can be avoided.
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6. RESOLVENT ESTIMATE AWAY FROM RESONANCES

In order to apply the semiclassical maximum principle (see [26] and Ap-
pendix A of [12]), the following a priori resolvent estimate for Dθ , away from the
critical set, is very useful.

PROPOSITION 6.1. Let R be a complex rectangle satisfying Assumption (A+
R)

and assume g : (0, h̄0] → R+ is o(1). Then there are constants A = A(R) > 0 and
h̄1 ∈ (0, h̄0) such that

(6.1) ‖(Dθ(h̄)−z)−1‖6AeAh̄−3 log(1/g(h̄)) for all z∈R \
⋃

zj∈Res (D)∩R
D(zj, g(h̄))

for all 0 < h̄ 6 h̄1.

Before we proceed to the proof, we mention that a similar estimate was first
established by Stefanov and Vodev [25] and it enabled them to prove that for
scattering by compactly supported perturbations in odd dimensional Euclidean
spaces, existence of localized quasimodes implies existence of resonances con-
verging to the real axis. Our proof, within the context of Dirac operators, bor-
rows ideas from Sjöstrand and Zworski [20], Sjöstrand [19], Tang and Zworski
[26], and Khochman [10].

To prepare for the proof, we first recall the following result, which is the
analogue of Lemma 6.4 in [11]. A proof can be found in [10].

PROPOSITION 6.2. There exists an operator K : Dom (D(h̄)) → H of rank
O(h̄−3), compactly supported in the sense that K = χKχ for some χ ∈ C∞

0 (R3) such
that

K = O(1) : Dom (D(h̄)N)→ Dom (D(h̄)M), for all M, N ∈ N.

Moreover, for every N ∈ N, the operator D̂θ(h̄) := Dθ(h̄) + K satisfies

(D̂θ(h̄)− z)−1 = O(1) : Dom (D(h̄)N)→ Dom (D(h̄)N+1),

uniformly for z ∈ R.

From

(Dθ(h̄)− z)(D0,θ(h̄)− z)−1 = 1 +V(φθ(x))(D0,θ(h̄)− z)−1, z ∈ C \ Γθ ,

where V(φθ(x))(D0,θ − z)−1 is compact by Assumption 3.1 we see that Dθ − z is
Fredholm. Furthermore,

(6.2) ind (Dθ − z) = − ind ((D0,θ − z)−1) = ind (D0,θ − z)) = 0.

With these preparations in place, we are ready to establish Proposition 6.1.

Proof of Proposition 6.1. We will divide this long proof into several stages.
For simplicity we suppress the dependence of h̄ when we write operators.
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SETTING UP A WELL-POSED GRUSHIN PROBLEM. Let K be as in Proposition 6.2
and let {ej}∞

j=1 ⊂ C∞
0 (R3) be an orthonormal basis ofH with respect to the scalar

product 〈u, v〉Dom (D) = 〈(D2 + 1)u, v〉 such that {ej}N
j=1 span Ran (K⊗), where

N = O(h̄−3) by Theorem 4.11. Here K⊗ denotes the adjoint of K : Dom (D)→ H.
Thus, for u ∈ Dom (D) and v ∈ H it follows from

〈Ku, v〉 = 〈(D2 + 1)u, (D2 + 1)−1K∗v〉 = 〈u, (D2 + 1)−1K∗v〉Dom (D)

that K⊗ = 〈D〉−2K∗ where K∗ is the adjoint of K : H → H. Notice that {ej}∞
j=N+1

⊂ (Ran K⊗)⊥ = Ker K.
We now define Xb : CN → H and Xa : Dom (D)→ CN by

Xb(z)u− =
N

∑
j=1

u−(j) f j where f j = (Dθ + K − z)ej, z ∈ R,

(Xau)(j) = 〈u, ej〉Dom (D)

and consider the Grushin problem(
Dθ − z Xb

Xa 0

)(
u

u−

)
=

(
v

v−

)
.

It follows from (6.2) that this problem is of index 0 so in order to show bijectivity
it suffices to prove injectivity. So suppose{

(Dθ − z)u + Xbu− = 0,
Xau = 0,

and write u =
∞
∑
1

ujej with uj = 〈u, ej〉Dom (D). From the second equation we

obtain that u1 = · · · = uN = 0. Recalling that {uj}∞
j=N+1 ⊂ Ker K we may write

the first equation as

(Dθ + K − z)
( ∞

∑
j=N+1

ujej +
N

∑
j=1

u−(j)ej

)
= 0.

The bijectivity of Dθ + K − z now implies that uj = 0 for j > N + 1 and that
u−(j) = 0, 1 6 j 6 N and, consequently, the Grushin problem is well-posed.

ESTIMATING Yba(z). The remainder of the proof is all about estimating a
z-dependent N × N matrix away from Res (D). Namely, set(

Dθ − z Xb
Xa 0

)−1

=:
(

Y(z) Ya(z)
Yb(z) Yba(z)

)
: H⊕CN → Dom (D)⊕CN ,

which is uniformly O(1) for all z ∈ R. By definition it holds that

(6.3) (Dθ − z)Y(z) + XbYb(z) = 1, (Dθ − z)Ya(z) + XbYba(z) = 0.
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Therefore

1=(Dθ−z)Y(z)−(Dθ−z)Ya(z)Y−1
ba (z)Yb(z)=(Dθ−z)[Y(z)−Ya(z)Y−1

ba (z)Yb(z)]

so that for z ∈ R \ Res (D) we have the representation

(6.4) (Dθ − z)−1 = Y(z)−Ya(z)Y−1
ba (z)Yb(z).

Since ‖Y(z)‖, ‖Ya(z)‖ and ‖Yb(z)‖ are all uniformly O(1) for z ∈ R it suffices to
obtain an upper bound for

Y−1
ba (z) =

1
det Yba(z)

Ỹba(z)

where Ỹba stands for the adjugate of Yba. Since for a general N × N matrix A =
(aij) we have the estimates

‖A‖ 6 N sup |aij| and |det A| 6 ‖A‖N

we get

‖Ỹba(z)‖ 6 Bh̄−3eBh̄−3
(6.5)

for some constant B = B(R) > 0. For later reference we also record the estimate

|det Yba| = O(eCh̄−3
).(6.6)

It remains to obtain lower bounds on |det Yba(z)| at distance g(h̄) away from
Res (D). For this reason we define G(z) = G(z, h̄) through the factorization

det Yba(z) = G(z) ∏
zj∈Res (D)∩R

(z− zj)(6.7)

and estimate |G(z)| from below. It is a direct consequence of (6.3) and XaYa = IN
that

Y−1
ba (z) = −Xa(Dθ − z)−1Xb

so that ‖Y−1
ba (z)‖ = O(1) onRδ0 := {z ∈ R : Im z > δ0} where δ0 > 0. Therefore

|det Yba(z)| = |det Y−1
ba |
−1 > e−Ch̄−3

for all z ∈ Rδ0 .(6.8)

Clearly we also have the estimate

∏
zj∈Res (D)∩R

|z− zj| 6 eCh̄−3
for all z ∈ Rδ0 ,(6.9)

so putting (6.7), (6.8) and (6.9) together we get

|G(z)| > e−Ch̄−3
for all z ∈ Rδ0 .(6.10)

Consider now the family of curves with fixed end points {γ̃t}t∈J where J ⊂
R is an interval and where we assume smooth dependence on t ∈ J. We assume
that γ̃t moves transversally in R \ Rδ0/2 in such a way that if zj ∈ γ̃tj for some
tj ∈ J then dist (zj, γ̃t) > |t− tj| for all t ∈ J whereas if zj intersects no γ̃t for t ∈ J
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then dist (zj, γ̃t) > dist (t, ∂J). This allows us to use Lemma A.1 (see Appendix A)
and we get, for z ∈ γ̃t,

∏
zj∈Res (D)∩R

|z− zj| > e−Ch̄−3
(6.11)

where C = C(|J|). Using (6.6) it follows that |G(z)| 6 eCh̄−3
for z ∈ γ̃t. Since

clearly the estimate (6.11) holds for z ∈ Rδ0 it follows from the maximum princi-
ple for the holomorphic function G(z) that

|G(z)| 6 eCh̄−3

for all z ∈ R̃where R̃ b R is any simply connected relatively open h̄-independent
subset of R provided that we choose the family {γ̃t}t∈J so that γ̃t ∩R ∩ R̃ = ∅
for all t ∈ J.

We may thus, for some C > 0, consider the non-negative harmonic function

0 6 `(z) = Ch̄−3 − log |G(z)| for z ∈ R̃.

Next recall Harnack’s inequality for non-negative harmonic functions which says
that for any R̂ b R̃ we have

sup
R̂

` 6 CR̂ inf
R̂
`.

Decreasing the size of R̃ by an arbitrarily small amount we may assume R̂ = R̃.
Moreover, it follows from (6.10) that `(z) 6 Ch̄−3 for z ∈ Rδ0 . Therefore

`(z) 6 Ch̄−3 for all z ∈ R̃,

which by the definition of ` implies

|G(z)| > e−Ch̄−3
for all z ∈ R̃.

So for z ∈ R̃ \ ⋃
zj∈Res (D)∩R

D(zj, g(h̄)) we get

|det Yba(z)|= |G(z)| · ∏
zj∈Res (D)∩R

|z−zj|>e−Ch̄−3
(g(h̄))Ch̄−3

>Ce−Ch̄−3 log(1 g(h̄)).

It finally follows from this, (6.4) and (6.5) that

‖(Dθ − z)−1‖ 6 Ch̄−3eCh̄−3
eCh̄−3 log(1/g(h̄)) 6 AeAh̄−3 log(1/g(h̄)).

7. PROPERTIES OF CAP HAMILTONIANS

Herein we collect a few spectral properties of the CAP Hamiltonians. The
following estimate for the number of eigenvalues of the CAP Hamiltonian J(h̄)
on a rectangle was established in Proposition 6.2 of [12]. The result is an analogue
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of the estimate in Theorem 4.11 for D(h̄), however this time for the number of
eigenvalues of J(h̄) rather than the resonances of D(h̄).

PROPOSITION 7.1. Let Assumption 3.1 and Assumption 3.4 hold. Let R be a
complex rectangle satisfying Assumption (A+

R). Then the number of eigenvalues of J(h̄)
inR satisfies

Count (J(h̄),R) = O(h̄−4).

Moreover, we need an a priori resolvent estimate for the CAP Hamiltonian
J(h̄), which takes into account the distance to its eigenvalues wj; this is the ana-
logue of Proposition 6.2 above and it is found as Proposition 6.3 in [12].

PROPOSITION 7.2. Let Assumption 3.1 and Assumption 3.4 hold. Let R be a
complex rectangle satisfying Assumption (A+

R) and assume g : (0, h̄0] → R+ is o(1).
Then there are constants A = A(R) > 0 and h̄1 ∈ (0, h̄0) such that

‖(J(h̄)− z)−1‖ 6 Ae−Ah̄−4 log 1
g(h̄) , z ∈ R \

⋃
wj∈spec (J(h̄))∩R′

D(wj, g(h̄)),

whereR ( R′ for h̄ ∈ (0, h̄1).

REMARK 7.3. The results above, established for J∞(h̄) and its resolvent, can
be carried over to the CAP Hamiltonian JR(h̄) and its resolvent.

Finally, we notice that

− Im 〈(J− z)u, u〉 = ‖
√

Re (W)u‖2 + Im z‖u‖2 > Im z‖u‖2

implies

‖(J− z)−1‖ 6 1
Im z

for Im z > 0.(7.1)

8. QUASIMODES AND RESONANCES

As explained in the Introduction, a key ingredient in our scheme of proof
is to relate quasimodes of D(h̄) with resonances of D(h̄). This is the content of the
following theorem, established in Theorem 7.2 of [12], which informs us that if
we have a number of approximate resonant states which are linearly independent
under small perturbations then there are as many resonances close to the real axis.
Such a result was first established by Tang and Zworski [26] for Schrödinger op-
erators. Our version, valid for the perturbed Dirac operator, is powerful enough
to treat higher multiplicities and clusters of resonances. In this paper we use the
full strength of this result as opposed to [12]. The proof is adopted from Ste-
fanov [21] who managed to treat multiplicities in the Schrödinger operator case
when quasimodes are very close to each other. He showed that such clusters of
quasimodes generate (asymptotically) at least the same number of resonances. In
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[24] he improved the latter result in several ways by modifying the reasoning in
Theorem 1 of [21]. The underlying ideas, however, are the same as in Tang and
Zworski [26].

We state the result for positive energies; see Theorem 7.2 of [12] for its proof.

THEOREM 8.1. Assume mc2 < l0 6 l(h̄) 6 r(h̄) 6 r0 < ∞. Assume that
for any h̄ ∈ (0, h̄0] there is m(h̄) ∈ Z+, Ej(h̄) ∈ [l(h̄), r(h̄)] and normalized uj(h̄)
(quasimodes) for 1 6 j 6 m(h̄), having support in a ball B(0, R) where R < R0 does
not depend on h̄. Assume, moreover, that

‖(D(h̄)− Ej(h̄))uj(h̄)‖ 6 ρ(h̄)(8.1)

and

all ũj(h̄) ∈ H such that ‖ũj(h̄)− uj(h̄)‖ 6
h̄N

M
, 1 6 j 6 m(h̄),

are linearly independent,(8.2)

where ρ(h̄) 6 h̄4+N/(C log h̄−1), C � 1, N > 0 and M > 0. Then there exists C0 =
C0(l0, r0) > 0 such that for any B > 0 and K ∈ Z+ there is an h̄1 = h̄1(A, B, M, N) 6
h̄0 such that for any h̄ ∈ (0, h̄1] there will be at least m(h̄) resonances of D in

[l(h̄)− b(h̄) log(1/h̄), r(h̄) + b(h̄) log(1/h̄)] + i[−b(h̄), 0],(8.3)

where
b(h̄) = max (C0BMρ(h̄)h̄−4−N , e−B/h̄, h̄K).

In the other direction we also have:

COROLLARY 8.2. Assume mc2 < l0 6 l(h̄) 6 r(h̄) 6 r0 < ∞. Assume that
for any h̄ ∈ (0, h̄0] there is m(h̄) ∈ Z+, Ej(h̄) ∈ [l(h̄), r(h̄)] and normalized uj(h̄)
(quasimodes) for 1 6 j 6 m(h̄), having support in a ball B(0, R) where R < R0 does
not depend on h̄. Assume, moreover, that

‖(J(h̄)− Ej(h̄))uj(h̄)‖ 6 ρ(h̄)(8.4)

and

all ũj(h̄) ∈ H such that ‖ũj(h̄)− uj(h̄)‖ 6
h̄N

M
, 1 6 j 6 m(h̄),

are linearly independent,(8.5)

where ρ(h̄) 6 h̄5+N/(C log h̄−1), C � 1, N > 0 and M > 0. Then there exists C0 =
C0(l0, r0) > 0 such that for any B > 0 and K ∈ Z+ there is an h̄1 = h̄1(A, B, M, N) 6
h̄0 such that for any h̄ ∈ (0, h̄1] there will be at least m(h̄) eigenvalues of J(h̄) in

[l(h̄)− b(h̄) log(1/h̄), r(h̄) + b(h̄) log(1/h̄)] + i[−b(h̄), 0],(8.6)

where
b(h̄) = max (C0BMρ(h̄)h̄−5−N , e−B/h̄).

We refer to Corollary 7.3 of [12] for its proof.
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9. PROOF OF MAIN RESULTS

DECOMPOSITION INTO CLUSTERS. Consider the boxR(h̄), defined in (5.1). After
possibly altering the box slightly without changing its properties we may assume
∂R(h̄) contains no resonances. We gather all resonances in R(h̄) into the interior
of “thin” non-intersecting domains of the form

Rj(h̄) = [lj(h̄), rj(h̄)] + i[−b(h̄), 0], j = 1, . . . , N(h̄),

and denote by mj = mj(h̄) the number of resonances, counting multiplicities, in
Rj(h̄). Clearly N(h̄) = O(h̄−3) by Theorem 4.11. The latter bound also enable us
to make the grouping of resonances so that for j, k ∈ {1, . . . , N(h̄)}, j 6= k,

dist (Rj(h̄),Rk(h̄)) > 4h̄−8b(h̄) whenever j 6= k,

and 0 < rj(h̄)− lj(h̄) 6 h̄−11b(h̄). In view of Proposition 7.1 a similar decompo-
sition can be made for the eigenvalues of J(h̄), but now with

dist (Rj(h̄),Rk(h̄)) > 4h̄−21/2b(h̄) whenever j 6= k,

and 0 < rj(h̄)− lj(h̄) 6 h̄−29/2b(h̄). We define

ΠRj(h̄) =
1

2πi

∮
∂Rj(h̄)

(Dθ(h̄)− z)−1 dz.

Then ΠRj(h̄)H is the span of generalized eigenvectors of Dθ(h̄) corresponding to
eigenvalues inRj(h̄) (see e.g. [9]) and Dθ(h̄) is invariant on this subspace.

RESONANT STATE ESTIMATES. We work with a fixed subdomain Rj in the fol-
lowing few lemmas and we shall therefore suppress subscripts.

First we apply the resolvent estimate in Proposition 6.1 and the semiclassical
maximum principle (see, e.g., Corollary 1 of [24] or Appendix A of [12], and we
prove that ‖(Dθ |ΠR(h̄)H

− z0)u‖ = O(h̄−22b(h̄))‖u‖ for any linear combination u
of resonant states associated to resonances belonging to a cluster. The strategy of
the proof follows closely Lemma 2 of [22] (see also Proposition 3.2 of [23]).

The next result is a standard application of the semiclassical maximum prin-
ciple.

LEMMA 9.1. For h̄ sufficiently small we have

‖(Dθ(h̄)− z)−1‖ 6 C
b(h̄)

for z ∈ ∂R̃(h̄)

where R̃(h̄) = [l(h̄)− h̄−8b(h̄), r(h̄) + h̄−8b(h̄)] + i[−h̄−3b(h̄), b(h̄)] and b(h̄) > h̄k

for some k.

Proof. We follow closely the proof of Proposition 3.2 in [23] . Let z1, . . . , zN
be the resonances in

[l, r] + i[−b, 0],
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repeated according to multiplicity. Denote by z̃j = zj + 2ib the conjugate of zj
with respect to the line Im z = b. Put

F(z) = G(z)〈(Dθ − z)−1Uθ f , Uθ g〉, f , g ∈ B,

where G(z; h̄) =
N
∏
j=1

(z − zj)(z − z̃j)
−1 which is holomorphic and bounded by 1

for Im z 6 b. It is a consequence of the fact that N = O(h̄−3) that we may arrange
so that there are no resonances within distance h̄4 from the boundary of

R1 := [l − 2h̄−8b, r + 2h̄−8b] + i[−h̄−7b, b].

It follows from Proposition 6.1 that |F(z)| 6 exp(Ch̄−3 log h̄−1) for z ∈ ∂R1 and
by the maximum principle the same bound holds in R1. By Proposition 4.8
|F(z)| 6 C/ Im z for Im z = b so by the semiclassical maximum principle we
obtain |F(z)| 6 C/b for z ∈ R̃. Since |G| is uniformly bounded from below for
z ∈ ∂R̃ and UθB is dense in L2(R3;C4) the conclusion follows.

It is clear from Propositions 7.1–7.2 that with appropriate adjustments the
proof also works with Dθ replaced by J (and resonances replaced by eigenvalues);
therein, however, we do not require b > h̄k since we instead use the inequality at
the very end of Section 7.

As a consequence we also have

COROLLARY 9.2. For h̄ sufficiently small we have

‖(J(h̄)− z)−1‖ 6 C
b(h̄)

for z ∈ ∂R̃(h̄)

where R̃(h̄) = [l(h̄)− h̄−21/2b(h̄), r(h̄) + h̄−21/2b(h̄)] + i[−h̄−4b(h̄), b(h̄)].

LEMMA 9.3. For z0(h̄) ∈ [l(h̄), r(h̄)] we have

‖(Dθ(h̄)− z0(h̄))u(h̄)‖ 6 Ch̄−22b(h̄)‖u(h̄)‖ for all u ∈ ΠR(h̄)H.

Proof. For u ∈ ΠRH we have, with R̃ as in Lemma 9.1,

‖(Dθ − z0)u‖ = ‖(Dθ − z0)ΠR̃u‖ =
∥∥∥ 1

2πi

∮
∂R̃

(Dθ − z0)(Dθ − z)−1u dz
∥∥∥

=
∥∥∥ 1

2πi

∮
∂R̃

(z− z0)(Dθ − z)−1u dz
∥∥∥

6
1

2π
|∂R̃| · d([l, r], ∂R̃) · ‖(Dθ − z)−1‖‖u‖

6 C(r− l + h̄−8b)(b + h̄−8b)
1
b
‖u‖,



COMPLEX ABSORBING POTENTIAL METHOD FOR DIRAC OPERATORS. CLUSTERS OF RESONANCES 277

where Lemma 9.1 has been used in the last inequality. We use the fact that 2b 6
r− l to obtain

‖(Dθ − z0)u‖ 6 C
(r− l + h̄−8b)2

b
‖u‖ 6 C

( (r− l)2

b
+ h̄−16b

)
‖u‖ 6 Ch̄−22b‖u‖,

where we used the fact that r− l 6 Ch̄−11b in the last step.

In view of Corollary 9.2 it is clear that also this proof goes through with
Dθ replaced by J and ΠR,J := (2πi)−1

∮
∂R

(J− z)−1 dz. Taking into account the

necessary modifications we thus have

COROLLARY 9.4. For z0(h̄) ∈ [l(h̄), r(h̄)] we have

‖(J(h̄)− z0(h̄))u(h̄)‖ 6 Ch̄−29b(h̄)‖u(h̄)‖ for all u ∈ ΠR(h̄),JH.

We continue to work with a fixed subdomain Rj in the next few lemmas
and we shall thus suppress the subscripts. The degree of linear independence
of resonant states associated to resonances “too close" to each other is addressed
in the following result. As a direct consequence of Lemma 9.1 we establish a
bound which ensures that the spectral projector ΠR related to appropiately se-
lected clusters of resonances of D(h̄) contained in “thin" boxes are polynomially
bounded provided the ΠR is restricted to generalized eigenfunctions associated
to eigenvalues in the “thin" box. This estimate is the crucial ingredient which
ensures that the assumptions in Proposition 8.1 hold.

LEMMA 9.5. There exists a constant C > 0 such that

‖ΠR(h̄)u‖ 6 Ch̄−11‖u‖ for all u ∈ ΠR(h̄)H.

Proof. Again, let

R̃ = [l − h̄−8b, r + h̄−8b] + i[−h̄−3b, b].

Since Dθ |ΠR(H) has no eigenvalues in R̃ \ R we have

ΠR =
1

2πi

∮
∂R̃

(Dθ |ΠR(H) − z)−1 dz.

We estimate this integral using Lemma 9.1 to obtain

‖ΠR‖ 6 C
|∂R̃|

b
6 C

r− l + h̄−8b + h̄−3b
b

6 Ch̄−11,

since r− l 6 Ch̄−11b.

From Corollary 9.2 we see that the same arguments applies also if Dθ is
replaced by J in which case we obtain

COROLLARY 9.6. There exists a constant C > 0 such that

‖ΠR(h̄),Ju‖ 6 Ch̄−29/2‖u‖ for all u ∈ ΠR(h̄),JH.
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By imitating the proof of Theorem 3.1 of [23] we extract the following result,
which measures how well cutoff generalized eigenfunctions v = χu approximate
the equation (D(h̄)− z0(h̄))v = 0 and how close these are to u.

LEMMA 9.7. Fix z0(h̄) ∈ [l(h̄), r(h̄)] and let χ ∈ C∞
0 (B(0, R0)) equal 1 near

B(0, R′0). Then for any u(h̄) ∈ ΠR(h̄)H with ‖u(h̄)‖ = 1 we have

(9.1) ‖(D(h̄)− z0(h̄))χu(h̄)‖+ ‖u(h̄)− χu(h̄)‖ 6 Ch̄−22b(h̄).

Proof. Let χ1 ∈ C∞
0 (B(0, R0)) equal 1 near B(0, R′0). Using Lemma 4.7 we

have

Im 〈(1 + θ)(Dθ − z0)(1− χ1)u, (1− χ1)u〉
= (Im θ)mc2〈β(1− χ1)u, (1− χ1)u〉

+ Im 〈(1 + θ)Qθ(1− χ1)u, (1− χ1)u〉 − (Im θ)z0‖(1− χ1)u‖2

6 (Im θ)(mc2 − z0)‖(1− χ1)u‖2 + ‖(1− χ1)u‖H1‖(1− χ1)u‖.(9.2)

Since z0 ∈ ρ(D0,θ) for Im θ > 0 we have

‖(1− χ1)u‖H1 6 C‖(D0,θ − z0)(1− χ1)u‖ = C‖(Dθ − z0)(1− χ1)u‖
6 C(‖(Dθ − z0)u‖+ ‖[D0,θ , χ1]u‖)
6 C(‖(Dθ − z0)u‖+ h̄‖u‖supp (∇χ1)

).

Now we can take χ2 with the same properties as χ1 but also χ2 ≺ χ1 and continue
in the same way so that

‖u‖supp (∇χ1)
= ‖(1− χ2)u‖supp (∇χ1)

6 C(‖(Dθ − z0)u‖+ h̄‖u‖supp (∇χ2)
).

This leads to the estimate

‖(1− χ1)u‖H1 6 C‖(Dθ − z0)u‖+O(h̄∞).

From (9.2) and Lemma 9.1 we now obtain

(Im θ)(z0 −mc2)‖(1− χ1)u‖ 6 C‖(Dθ − z0)u‖+O(h̄∞) 6 Ch̄−22b(h̄).

In the same way the remaining part of the lemma also follows since

‖(D− z0)χu)‖ = ‖(Dθ − z0)χu)‖ 6 ‖(Dθ − z0)u)‖+ ‖[D0,θ , χu]‖

With these preparations we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We divide the proof into two parts. As often h̄-depen-
dence is suppressed.

Step 1. First we establish the estimate Count (D,R) 6 Count (J,R+). For

fixed but arbitrary 1 6 j 6 J(h̄), let {ujk}
Count (D,Rj)

k=1 be an orthonormal basis in
ΠRjH. Since ΠRj ΠRk = δjkΠRj it follows that {ujk}j,k are linearly independent
and since Dχ = Jχ if χ is taken as in Lemma 9.7 with supp χ ⊂ B(0, R1), {χujk}
can be considered quasimodes for J by (9.1). By using the subdivision of R into
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smaller domains Rj that comprises Res (D) ∩ R, we show that this linear inde-
pendence remain under small perturbations as in (8.2). So let {ũjk}j,k be another
set of functions such that ‖ũjk − χujk‖ 6 Ch̄N for some N > 0. Assume to the
contrary that {ũjk}j,k are linearly dependent so that for some choice of scalars c̃jk
with max

j,k
|c̃jk| = 1 we have

∑
j,k

c̃jkũjk = 0.

Using this together with (9.1) we get

(9.3)
∥∥∥∑

j,k
c̃jkujk

∥∥∥ 6 ∑
j,k
(‖ujk − χujk‖+ ‖χujk − ũjk‖) 6 Ch̄−3(h̄−22b + h̄N).

Choose the index j0 such that |c̃j0k0 | = 1 for some k0. Invoking ΠRj0
and using

that the set {uj0k}k is orthogonal in ΠRj0
H, Lemma 9.5 and (9.3) imply that

1 6
∥∥∥∑

k
c̃j0kuj0k

∥∥∥ =
∥∥∥ΠRj0 ∑

j,k
c̃jkujk

∥∥∥ 6 Ch̄−11
∥∥∥∑

j,k
c̃jkujk

∥∥∥ 6 C(h̄M−36 + h̄N−14),

which leads to a contradiction for M > 36 and N > 14. By Theorem 8.1 it follows
that J has at least as many eigenvalues in

R+ = [l − h̄−Mb, r + h̄−Mb] + i[−h̄−Mb, 0], for some M > 0,

(for instance, L = 28 + N) as there are resonances inR.
Step 2. We establish the estimate Count (J,R−) 6 Count (D,R): Choose

uj ∈ ΠRj ,JH with ‖uj‖ = 1. Then, by Corollary 9.4,

(9.4) ‖(Re W)1/2uj‖2 = − Im 〈(J− lj)uj, uj〉 6 Ch̄−29b.

It follows (see also the proof of Theorem 5.1, assertion 2 of [12]), with χ ∈
C∞

0 (B(0, R0)) being equal to one near B(0, R2), that

(D− lj)χuj = [D, χ]uj + iχWuj + χ(J− lj)uj

is O(h̄−29/2√b). Since Re W > δ0 for |x| > R2 we also have

‖uj − χuj‖ 6
1√
δ0
‖
√

δ0(1− χ)uj‖ 6 C‖(Re W)1/2uj‖

which is also O(h̄−29/2√b) by (9.4). From this the linear independence follows
as in the first part of the proof. Using Theorem 8.1 we obtain Count (J,R) 6
Count (D,R+). We finish the proof by setting R+ = [l̃, r̃] + i[−b̃, 0] and solving
for l, r and b to obtainR−.

Proof of Theorem 5.2. We divide the proof into two steps as in the proof of
Theorem 5.1, establishing the two estimates. This time around, however, since
R1 6 R′0 it is necessary to argue as in the proof of Theorem 5.2 of [12]. Specifically,
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we use Lemma B.1 and Lemma 9.7 to deduce that χuj, with χ ∈ C∞
0 (B(0, R0))

equal to 1 near B(0, R′0), is small on all of supp W, whence

‖(J− lj)χuj)‖+ ‖uj − χuj‖ 6 Ch̄−23b(h̄) +O(h̄∞) 6 Ch̄−23b(h̄).

Using this we argue as in the proof of Theorem 5.1.

Appendix A. AUXILIARY RESULT FROM REAL ANALYSIS

We use the following auxiliary lemma, due to Sjöstrand [19], in the proof of
Proposition 6.1.

LEMMA A.1. Let x1, . . . , xN ∈ R and let I ⊂ R be an interval of length |I| ∈
(0, ∞). Then there exists an x ∈ I such that

N

∏
j=1
|x− xj| > e−N(1+log(2/|I|)).(A.1)

Proof. From

∫
I

log(1/|x− xj|)dx 6 2

|I|/2∫
0

log(1/t)dt = |I|(1 + log(2/|I|))

it follows that ∫
I

N

∑
j=1

log(1/|x− xj|)dx 6 N|I|(1 + log(2/|I|)).

Thus there is an x ∈ I such that

N

∑
j=1

log(1/|x− xj|) 6 N(1 + log(2/|I|)),

which is equivalent to (A.1).

Appendix B. PROPAGATION OF SINGULARITIES

We state the propagation-of-singularities result which plays a crucial role in
the proof of Theorem 5.2. For the sake of completeness we begin by recalling a
few definitions and basic terminology of pseudo-differential operator theory.
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PSEUDODIFFERENTIAL OPERATORS. Let T∗R3 be the (trivial) cotangent bundle
of R3; convenient to think of as the product of space and frequency, i.e. T∗R3 =
R3

x × R3
ξ . An order function m : T∗R3 → R+ is a smooth function so that there

exist C, N > 0 such that

m(x, ξ) 6 C(1 + (x− y)2 + (ξ − η)2)N/2m(y, η)

for all (x, ξ), (y, η) ∈ T∗R3. Then we define S(m) ⊂ C∞(T∗R3)⊗M4(C) to consist
of all a ∈ C∞(T∗R3)⊗M4(C) such that for all multi-indices α, β ∈ N3

0 there are
constants Cα,β > 0 with

‖∂α
ξ ∂

β
x a(x, ξ)‖ 6 Cα,βm(x, ξ) for all (x, ξ) ∈ T∗R3.

For a ∈ S(m) we can define a corresponding Weyl quantization A = opW [a] on
L2(R3;C4) by

(Au)(x) = (2πh̄)−3
∫∫

T∗R3

ei〈x−y,ξ〉/h̄a
( x + y

2
, ξ
)

u(y)dy dξ.

We recall that if m1, m2 are order functions and a ∈ S(m1), b ∈ S(m2) then
m1m2 is an order function and there exists a#b ∈ S(m1m2) so that

opW [a]opW [b] = opW [a#b].(B.1)

If for a ∈ S(m) there are aj ∈ S(m) so that for any N ∈ N and α, β ∈ N3
0 there

exists CN,α > 0 such that∥∥∥∂α
ξ ∂

β
x

(
a−

N−1

∑
j=0

h̄jaj

)∥∥∥ 6 CN,α h̄Nm

then we write a ∼ ∑
j>0

h̄jaj and we call a0 and a1 the principal, and subprincipal

symbol of opW [a], respectively. The principal symbol of a#b in (B.1) is given by
the product of the principal symbols of a and b.

PROPAGATION OF SINGULARITIES. The following result was proved in Section 8.2
of [12].

LEMMA B.1 (Propagation of singularities). Let R′0 < R′1 and suppose that for
some z0(h̄) ∈ [l0, r0] and v(h̄) ∈ Dom (D) with supp v(h̄) ⊂ B(0, R′1) and ‖v(h̄)‖ 6
C for some C > 0 we have

(D(h̄)− z0(h̄))v(h̄) = g(h̄)

with ‖g(h̄)‖ = O(ε(h̄)), ε(h̄) = O(h̄N) for some N > 0. If (x0, ξ0) ∈ T∗R3 is
such that the norms of the x-projections of ΦT

j (x0, ξ0), j = 1, . . . , 4, exceed R′1 for some

0 < T < ∞ then v(h̄) is microlocally O(h̄−1ε(h̄) + h̄∞) at (x0, ξ0).
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