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ABSTRACT. The Kadison–Singer problem (hereinafter K-S) began with a prob-
lem in [5] and has since expanded to a very large number of equivalent prob-
lems in various fields (see [4] for an extensive discussion). In the present paper
we will introduce the notion of weak paveability for positive elements of a von
Neumann algebra M. This new formulation implies the traditional version of
paveability [3] if and only if K-S is affirmed (see definitions below). We show
that the set of weakly paveable positive elements of M+ is open and norm
dense in M+. Finally, we show that to affirm K-S it suffices to show that pro-
jections with compact diagonal are weakly paveable. Therefore weakly pave-
able matrices will either contain a counterexample, or else weak paveability
must be an easier route to affirming K-S.
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1. DEFINITIONS

DEFINITION 1.1. Let Mn denote the n× n complex matrices and let Dn de-
note the diagonal matrices in Mn. The only matrix norm used will be the opera-

tor norm. Let M =
∞
∑

n=2

⊕
∞

Mn, so that the elements of M are bounded sequences

a = {an} , with an ∈ Mn. Let xn be the unit of Mn viewed as a summand of
M. Let K denote the compact elements of M, namely those a ∈ M such that
lim

n→∞
‖xna‖ = 0. Let π : M → M/K be the quotient (aka Calkin) map. Recall that

a state of M is singular if and only if it vanishes on K.
It is well-known that M is a von Neumann algebra under the sup norm

on M, i.e. if a = {an} ∈ M, ‖a‖ = sup
n
‖an‖. Let D =

∞
∑

n=2

⊕
∞

Dn, and write

P : M → D for the conditional expectation. We shall refer to the elements of M
as matrices.

Let w(b) denote the numerical radius of the matrix b ∈ M.
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DEFINITION 1.2. A matrix x ∈ M is paveable if for every ε > 0 there exist a
natural number m and projections p1, . . . , pm ∈ D such that ∑ pj = 1 and ‖pj(x−
P(x))pj‖ < ε for all j = 1, . . . , m.

One form of K-S asserts that every positive element of M is paveable. An-
other asserts that every pure state of D extends uniquely to a state of M.

Note that paveable matrices form a norm closed, self-adjoint subspace of M
[6]. It is widely believed that there are some matrices in M+ that are not paveable.
This view is not shared by the authors. Assume for the moment that this is the
case. Then it becomes of interest to understand which matrices are not paveable
and why not. In order to clarify this issue we introduce a definition that looks
similar, but is distinct.

DEFINITION 1.3. A non-compact matrix x ∈ M+ is weakly paveable if there
exist a natural number m and projections p1, . . . , pm ∈ D such that ∑ pj = 1 and
‖π(pj(x−P(x))pj)‖ < ‖π(x)‖ for all j = 1, . . . , m.

2. BASICS OF WEAK PAVING

It was noted above that the set of paveable matrices in M+ is closed. By
contrast, we now show that the set of weakly paveable positive elements is open
and dense in M+. From this it is clear that weak paveability implies paveability
if and only if all matrices in M+ are paveable. (i.e. if and only if K-S is affirmed.)

THEOREM 2.1. The set of weakly paveable elements of M+ is open for the norm
topology and closed under non-zero scalar multiplication.

Proof. Closure under non-zero scalar multiplication is immediate.
Now suppose b ∈ M+ is weakly paveable and ‖π(b)‖ = 1. This means

there exist a natural number m and projections p1, . . . , pm ∈ D with sum 1 such
that ∥∥∥π

( m

∑
j=1

pj(b−P(b))pj

)∥∥∥ = δ < 1.

Choose c ∈ M+ such that ‖π(b− c)‖ 6 ‖b− c‖ < (1/4)(1− δ). With this
we get ‖π(b)‖ − ‖π(c)‖ < (1/4)(1− δ), so

1− 1
4
(1− δ) =

3 + δ

4
< ‖π(c)‖.

Thus

6
∥∥∥π
( m

∑
j=1

pj(c−P(c))pj

)∥∥∥
6
∥∥∥π
( m

∑
j=1

pj(c− b−P(c− b))pj

)∥∥∥+ ∥∥∥π
( m

∑
j=1

pj(c−P(c))pj

)∥∥∥



WEAK PAVEABILITY AND THE KADISON–SINGER PROBLEM 297

6 2‖π(b− c)‖+ δ 6 2
1
4
(1− δ) + δ =

1 + δ

2
<

3 + δ

4
< ‖π(c)‖,

so c is weakly paveable. This shows that the set of weakly paveable elements of
M+ is open.

THEOREM 2.2. The set of weakly paveable elements in M+ is dense in M+.

Proof. Fix b ∈ M+ with ‖π(b)‖ = δ. Let ε > 0 be given and define c =
b + ε1. Then ‖π(c)‖ = δ + ε but

‖π(c−P(c))‖ = ‖π(b−P(b))‖ 6 ‖π(b)‖ 6 δ < ‖π(c)‖.

Thus c is weakly paveable and ‖c− b‖ = ε.

3. RELATIONSHIP TO THE KADISON–SINGER PROBLEM

THEOREM 3.1. If b ∈ M+, ‖π(b)‖ = 1, lim sup
n→∞

‖P(bxn)‖ < 1 and there is a

unitary u ∈ D such that
lim sup

n→∞
w(xnbub) = t < 1,

then b is weakly paveable.

Proof. Select orthogonal spectral projections p1, . . . , pm of u corresponding

to arcs on the unit circle with centers z1, . . . , zm so that w =
m
∑
1

zj pj is unitary, and

‖u− w‖ < (1− t)/4.
If we assume that b is not weakly paved by p1, . . . , pm, then renumbering if

necessary, we may assume that ‖π(p1(b− P(b))p1)‖ = 1. This means there are
a subsequence {nj} of the natural numbers and vector states { fnj = xnj fnj} such
that

lim
j→∞
‖xnj p1(b−P(b))p1‖ = lim

j→∞
| fnj(p1(b−P(b))p1)| = 1.

Since lim sup
n→∞

‖P(bxn)‖ < 1, then the last equality implies that

lim
j→∞

fnj(p1bp1) = 1,

and so there is a singular state f of M ( f can be any subnet limit of { fnj}) such
that f (p1bp1) = 1 and f (P(b)) = 0. This implies that p1 f p1 = f and that b f b = f
by the Cauchy–Schwarz inequality. But then

t = lim sup
n→∞

w(xnbub) > lim sup
j→∞

| fnj(bub)| > | f (bub)| = | f (u)|

> | f (w)| − | f (u− w)| > |z1| −
1− t

4
= 1− 1− t

4
> t,

a contradiction.
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THEOREM 3.2. If q ∈ M+ is non-compact with compact diagonal, then the fol-
lowing conditions are equivalent:

(i) There is a unitary u ∈ D such that

lim sup
n→∞

w(xnquq) < 1.

(ii) q is weakly paveable.

Proof. By the last theorem, (i) implies (ii). Now assume that statement (ii)
holds. Because q has compact diagonal, there is a natural number m and orthog-
onal projections p1, . . . , pm ∈ D such that

∑ pj = 1 and ‖π(pjqpj)‖ < t < 1 for all j = 1, . . . , m.

Define a unitary matrix u =
m
∑
1

λj pj where the {λj} are distinct mth roots of

unity.
Now assume that statement (i) fails for u as defined above. Then there are a

subsequence {nj} and states { fnj} of M such that fnj(xnj) = 1 for all j and

| fnj(xnj quq)| =
∣∣∣ m

∑
i=1

λi fnj(xnj qpiq)
∣∣∣ = ∣∣∣ m

∑
i=1

λi(q fnj q)(pi)
∣∣∣→j→∞ 1.

Let f be a limit point of the { fnj}. Then f is a singular state and∣∣∣ m

∑
i=1

λi(q f q)(pi)
∣∣∣ = 1.

Since the projections {pi} sum to 1, this means that f (qpiq) = 1 for precisely one
index i (WLOG i = 1) and is zero for all others. Thus f (q) = 1 also f (p1) = 1, so
we get

1 > ‖π(p1qp1)‖ > f (p1qp1) = 1,

a contradiction. Thus statement (ii) implies statement (i).

THEOREM 3.3. The following statements are equivalent:
(i) Every non-compact projection with compact diagonal is weakly paveable.

(ii) Every non-compact projection in M is weakly paveable.
(iii) Pure states of D have unique pure state extensions to M.

Proof. By [3], (iii) implies (ii), and clearly (ii) implies (i).
If (ii) is true and (iii) is false, by [3] there are singular pure states f ⊥ g of M

that restrict to the same pure state of D and f = f ◦ P . By the non-commutative
Urysohn’s lemma, there is a projection q ∈ M such that f (q) = 0, g(q) = 1.

Since (ii) is assumed to be true, q is weakly paveable, so there are a natu-
ral number m and projections p1, . . . , pm ∈ D with sum 1 such that ‖π(pj(q −
P(q))pj)‖ < 1 for all j = 1, . . . , m. Since g|D is multiplicative, there is a unique j0
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such that f (pj0) = 1 = g(pj0). Now use the assumed facts about f , g, pj0 (such as
g|D = f |D) to get:

g(pj0(q−P(q))pj0) = g(q)− g(P(q)) = 1− f (P(q)) = 1− f (q) = 1,

contradicting
‖π(pj(q−P(q))pj)‖ < 1

for all j = 1, . . . , m. Thus statements (ii) and (iii) are equivalent.
Now assume (i) and we prove (ii). First we prove an intermediate fact.

Claim 1. There exists constants 0 < γ, 0 < ε 6 1/2 such that for every
finite rank projection q ∈ M with ‖P(q)‖ < γ, there is a unitary u ∈ D such that
w(quq) < 1− ε.

If the Claim 1 is false, then we may recursively construct finite rank projec-
tions {qj} ⊂ M that have orthogonal central covers and that satisfy ‖P(qj)‖ <
1/j and w(qjuqj) > 1− 1/j for all unitary u ∈ D. Define q = ∑ qj. Then q has
compact diagonal and for all unitary u ∈ D, w(quq) = 1. However, by assump-
tion q is weakly paveable, so by Theorem 4.2, we know that w(quq) is eventually
less than 1 for some unitary u ∈ D. Contradiction. So Claim 1 is true.

Using the γ, ε from the Claim 1, we claim the following is true.

Claim 2. For any projection q ∈ M with ‖P(q)‖ < γ, there exists unitary
u ∈ D such that w(quq) 6 1− ε.

Choose a projection q ∈ M with ‖P(q)‖ < γ. By Claim 1 for each n we may
choose unitary un = xnun ∈ D such that w(qunq) < 1− ε. Let u = ∑ un, then
w(quq) 6 1− ε. This proves Claim 2.

Therefore q is weakly paveable by Theorem 4.1.
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