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ABSTRACT. A pair of commuting operators (S, P) defined on a Hilbert space
H for which the closed symmetrized bidisc I' = {(z1 + z2,2122) : |z1] <
1, |zo| < 1} C C? is a spectral set is called a I'-contraction in the literature.
A T'-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*" — 0
strongly as 1 — co. Here we construct a functional model and produce a set of
unitary invariants for a pure I'-contraction. The key ingredient in these con-
structions is an operator, which is the unique solution of the operator equation
S — S*P = DpXDp, where X € B(Dp), and is called the fundamental opera-
tor of the I'-contraction (S, P). We also discuss some important properties of
the fundamental operator.
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1. INTRODUCTION AND PRELIMINARIES

The closed symmetrized bidisc I is polynomially convex. Thus, a pair of
commuting bounded operators (S, P) is a I'-contraction if and only if || p(S, P)|| <
|p||eo,r for any polynomial p. The I'-contractions were introduced by Agler and
Young in [3] and have been thoroughly studied in [4], [7] and [15]. An under-
standing of this family of operator pairs has led to the solution of a special case
of the spectral Nevanlina—Pick problem [5], [8]], which is one of the problems that
arise in H* control theory [19]. Also they play a pivotal role in the study of com-
plex geometry of the set I" (see [6]], [9]).

Spectral sets and complete spectral sets for a bounded operator T on a
Hilbert space H or for a tuple of bounded operators have been well-studied for
long and several important results are known (see [14], [17], [22]). Dilation the-
ory for an operator or a tuple of operators is well-studied too and has made some
rapid progress in the last twenty years through Arveson [12], Popescu [23], [24],
Muller and Vasilescu [21], Pott [25] and others.
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Sz.-Nagy and Foias developed the model theory for a contraction [26]. They
found the minimal unitary dilation of a contraction and it has become a power-
ful tool for studying an arbitrary contraction. By von Neumann's inequality, an
operator T is a contraction if and only if ||p(T)|| < |p|lep for all polynomials
p, D being the open unit disc in the complex plane. This property itself is very
beautiful and so is the concept of spectral set of an operator. A compact subset X
of Cis called a spectral set for an operator T if

I7(T)|| < sup |7 (z)[| = || 7]
zeX

OO,X 4

for all rational functions 7t with poles off X. If the above inequality holds for
matrix valued rational functions 7, then X is called a complete spectral set for
the operator T. Moreover, T is said to have a normal dX-dilation if there is a
Hilbert space K containing H as a subspace and a normal operator N on K with
o(N) C 0X such that

7i(T) = Py7t(N)|y,

for all rational functions 7r with poles off X. It is a remarkable consequence of
Arveson’s extension theorem that X is a complete spectral set for T if and only
if T has a normal dX-dilation. Rephrased in this language, the Sz.-Nagy dilation
theorem says that if D is a spectral set for T then T has a normal dID-dilation.
For T to have a normal dX-dilation it is necessary that X be a spectral set for T.
Sufficiency has been investigated for many domains in C and several interesting
results are known including success of such a dilation on an annulus ([1]) and its
failure in triply connected domains ([2], [18]). When (T3, T,) is a commuting pair
of operators for which D? is a spectral set, Ando’s theorem provides a simulta-
neous commuting unitary dilation of (T, T>). Such classically beautiful concepts
led Agler and Young to the following definitions.

DEFINITION 1.1. A commuting pair (S, P) is called a I'-unitary if S and P
are normal operators and the joint spectrum o (S, P) of (S, P) is contained in the
distinguished boundary bI” defined by

bl = {(z1 + 22, 2120) : |z| = |z2| =1} C T.

DEFINITION 1.2. A commuting pair (S, P) on A is said to be a [-unitary
extension of a I'-contraction (S,P) on H if H C N, (S,P) is a I'-unitary, H is a
common invariant subspace of both S and P and S|y = S,P|y = P.

DEFINITION 1.3. A commuting pair (S, P) is called a I'-isometry if it has a
I-unitary extension. A commuting pair (S, P) is a I'-co-isometry if (S*,P*) is a
I'-isometry.

DEFINITION 1.4. Let (S, P) be a I'-contraction on H. A pair of commuting

operators (T, V) acting on a Hilbert space N' O #H is called a I'-isometric dilation
of (S, P) if (T,V) is a [-isometry, H is a co-invariant subspace of both T and V
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and T*|y = §*, V*|y = P*. Moreover, the dilation will be called minimal if
N =span{V"h:he€ Handn =0,1,2,...}.

Thus (T, V) is a I'-isometric dilation of a I'-contraction (S, P) if and only if (T*, V*)
is a I'-co-isometric extension of (S*, P¥).

A T-contraction (S, P) acting on a Hilbert space # is said to be pure if
P is a pure contraction, i.e.,, P*" — 0 strongly as n — oco. The class of pure
I'-contractions plays a pivotal role in deciphering the structure of a class of I'-
contractions. In Theorem 2.8 of [7], Agler and Young proved that every
I'-contraction (S, P) acting on a Hilbert space H can be decomposed into two
parts (S1,P1) and (Sy, P,) of which (Sq,Py) is a I'-unitary and (Sp, P») is a I'-
contraction with P being a completely non-unitary contraction. This shows an
analogy with the decomposition of a single contraction. Indeed, if H; is the max-
imal subspace of H which reduces P and on which P is unitary, then H; reduces
S as well and (Sy, P;) is same as (S|4, P|y,). Also both S and P are reduced
by the subspace Hj, the orthocomplement of H; in H, and (Sy, P») is same as
(5124, P|3,)- The functional model and unitary invariants we produce here give
a good vision of those I'-contractions (S, P) for which the part (S, P,) described
above is a pure I'-contraction.

The program that Sz.-Nagy and Foias carried out for a contraction had two
parts. The dilation was the first part which was followed by a functional model
and a complete unitary invariant. For a I'-contraction, the first part of that pro-
gram was carried out in [7] by Agler and Young. The second half is the content
of this article.

For a contraction P defined on a Hilbert space H, let Ap be the set of all
complex numbers for which the operator I — zP* is invertible. For z € Ap, the
characteristic function of P is defined as

(1.1) Op(z) = [P +zDp+(I — zP*) ' Dp]|p,.

Here the operators Dp and Dp+ are the defect operators (I — P*P)'/2 and (I —
PP*)l/ 2 respectively. By virtue of the relation PDp = Dp+P ([26], Section 1.3),
Op(z) maps Dp = RanDp into Dp+ = RanDp- for every z in Ap.

For a pair of commuting bounded operators S, P on a Hilbert space H with
|IP]| < 1, we introduced in [15] the notion of the fundamental equation. For the
pair S, P it is defined as

(1.2) S—S*P=DpXDp, X € B(Dp),
and the same for the pair §*, P* is
(1.3) S* —SP* = Dp«YDp+, Y € B(Dp*)

In the same paper we also proved the existence and uniqueness of solutions of
such equations when (S, P) is a I'-contraction ([15], Theorem 4.2). The unique
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solution was named the fundamental operator of the I'-contraction because it led
us to a new characterization for I'-contractions ([15], Theorem 4.4).

In Section 2, we discuss some interesting properties of the fundamental op-
erator. In Section 3, we construct a functional model for a pure I'-contraction
(S, P) and this is the main content of this paper. The fundamental operator F, of
(S*, P*) is taken as the key ingredient in that construction. In Section 4, we pro-
duce a set of unitary invariants for pure I'-contractions. For the unitary equiv-
alence of two pure I'-contractions (S, P) and (S1,P;) on Hilbert spaces H and
H1 respectively, we produce here a set of unitary invariants which consists of
two things mainly. The first one demands the coincidence of the characteristic
functions of P and P;. The second condition is the unitary equivalence of the fun-
damental operators F, and F,q of (S*, P*) and (S], P;') by the same unitary from
Dp- to Dpy that is involved in establishing the coincidence of the characteristic
functions of P and P;.

2. AUTOMORPHISMS AND THE FUNDAMENTAL OPERATOR

For a I'-contraction (S, P) we find out an explicit form of the fundamental
operator of 7(S, P), where T is an automorphism of the open symmetrized bidisc

G={(z1 +2z2,2122) : |z1| < 1,|z2| < 1}.

It is well-known, see [10] and [20], that any automorphism T of G is given as
follows:

(2.1) t(z1+422,2120)=Tim(z1+22, 2122)=(m(21) +m(z2), m(z1)m(z2)), z1,22€D,

where m is an automorphism of the disc D. Recall that the joint spectrum ¢ (S, P)
of a I'-contraction (S, P) is contained in I'. Thus if T is a C?-valued holomorphic
map in a neighbourhood N(I') of I' mapping I into itself, then by functional
calculus (see [27), (S¢, Pr) := 7(S, P) is well defined as a pair of commuting
bounded operators.

LEMMA 2.1. For (S, P) and T as above, (S, Pr) is a I'-contraction.

Proof. We show that I' is a spectral set of (Sr,Pr). Let f be a polynomial
over C in two variables. Then

1f(Sz, Po)ll = [l f o (S, P)| < [If o Tlleo,r = Sup f (@) < flleo,r

since 7(z) € I for all z € I" and hence (S, Pr) is a I'-contraction. 1
The following is the main result of this section.

THEOREM 2.2. Let (S, P) be a I'-contraction defined on a Hilbert space H and
let T be an automorphism of G. Let T = Ty as in and m be given by m(z) =
B(z—a)/(1—az) for some a € D and B € T. Let F and Fr be the fundamental
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operators of (S, P) and (S, Pr) respectively. Then there is a unitary U : Dp. — Dp
such that
Fr = U*((1+|a*) —aF —aF*)"Y2B(F +a*F* —2a)((1+ |a|?) —aF —aF*)~1/2U.

Proof. We have

Z1—a  zp—a (z1 —a)(zp —a)
T(S,p) = T(Zl +22/Z122) = ('8<1l—ﬁzl + 12—522>,'82 (1 iﬁzl)(f—ﬁzz))

B ([3 (z1 +20) — 2az120 + |a|*(z1 + 22) — 2a ,82 z12p — a(z1 + zp) + a? )

1—a(z1 +22) + 82120 1—a(z1 +22) + #2120
:(ﬁ(1+|a|2)s—25p—2a g2 p—as+a2>'
1—as+a’p T 1-as+atp

It is obvious that T can be defined on the open set I; = {(z1 +z2,2122) : |z1] <
1/la|,|z2| < 1/|a|}, which contains I'. Clearly

(S¢,Pr)=1(S,P)
= (B(1+|al*)S—2aP—2a)(I—aS+a*P) !, B2 (P—aS+a*)(I—aS+a*P) ).
Here
Dj, = (I—P;Py)
=1—(I—aS*+a*P*)"1(P* —aS* +a)(P —aS +a®)(I — aS +a*P) !
= (I —aS* +a*P*) (I — aS* + a®P*)(I — @S + a*P)
— (P* —aS* +a@)(P —aS +a®))(I —aS +a°P) !
= (I—aS* +a?P*) " [—a(1 — |a|?)(S — S*P) — a(1 — |a[>)(S* — P*S)
(1— |a*)(I — P*P)](I —aS +a*P) !
= (1—|a]*)(I —aS* +a*P*)"Y[(1 + |a*)(I — P*P)
—a(S—S*P) —a(S* — P*S)|(I —aS +a*P) !
= (1—|a|®)(I — aS* +a*P*)"Y[(1 4 |a|*) D3 — @DpFDp — aDpF*Dp]
(I —aS+a*P)~!, (sinceS—S*P = DpFDp)
= (1—|a|*)(I —aS* +a*P*)"'Dp[(1 + |a|*) — @F — aF*|Dp(I —aS +a*P)" L.
Now we show that the operator (1 + |a|?) — aF — aF* defined on Dp is invertible.

Since F € B(Dp), it is enough to show that (1 + |a|?) — aF — aF* is bounded
below, i.e.,

inf (((1+ |a?) —aF —aF*)x,x) >0,

[lx[l<1
or equivalently
sup |a(Fx,x) +a(F*x,x)| < (1+ |a]?).

[lxlI<1
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Since the numerical radius of F is not greater than 1,

sup |a(Fx,x) +a(F*x,x)| <2la] < (1+ |a]?)
[lxll<1

as 1+ |a|> —2[a| = (1—a])®> > 0 for a € D and consequently the operator
(1+ |a]? — @F — aF*) is invertible.

Let X = (1— |a|?)V2[(1 + |a|?) — @F — aF*]"/2Dp(I — aS 4 a*P*)~!. Then X
is an operator from # to Dp. Also DI%T = X*X and RanX = Dp as (1 + |a|?) —
aF — aF* is invertible. Now define

U:Dp, — RanX = Dp
Dp_ h — Xh.
Clearly U is onto. Moreover,
IUDp1||* = (| Xh|[* = (X*Xh,h) = (D h, h) = ||Dpt]|*.
So U is a surjective isometry i.e., a unitary. Also
S¢ — SiPr = B[((1 + |a|?)S — 2aP — 2a)(I — aS +a*P) ! — (I — aS* + a*P*) ™!
((1+|a|?)S* —2aP* —2a)(P — aS + a®)(I — @S + @*P) )]
= (I —aS* +a*P*)'B[(I — aS* 4 a®P*)((1 + |a|*)S — 2aP — 2a)
—((1+1a®)S* —2aP* —2a)(P — aS + a?)](I —aS +a*P) !
= (I—aS*+a*P*)"1B[(1—|a|?)(S—S*P)+242(S* —P*S) —a?(1+]a|?)
(S§* — P*S) — 2a(I — P*P) 4 2ala|*(I — P*P)](I —aS + a*P)~!
= (I —aS* +a*P*) 7 'B[(1 — |al*)(S — S*P) 4 a®(1 — |a]?)(S* — P*S)
—2a(1— |a|*)(I = P*P))(I — @S +a*P) !
= (1—|a|?)(I—aS*+a?P*) "1 B[(S—S*P)+a*(S* —P*S)—2a(I—P*P)]
(I—-as+a*pP)™!
= (1—|a|®)(I — aS* + a®>P*) " 'B[DpFDp + a®>DpF*Dp — 2aD3]
(I —aS+a*P)~!, (sinceS—S*P = DpFDp)
= (1—|a*)(I —aS* +a?P*)"'BDp[F + a®F* — 2a]Dp(I — aS + a*P) !
= X*[((1 + |a|?) — @F — aF*)"V2B(F + a®F* — 2a)
((1+|a|?) —aF —aF*)~V2]X
= Dp, U*[((1 4+ |a|?) — @F — aF*)~Y2B(F + a®F* — 2a)
(14 |a|?) —aF —aF*)~/2)UDp,.
Again since St — S;Pr = Dp_F:Dp_and F; is unique, we have

Fr=U*((1+|a|?)—aF—aF*)"Y2B(F4a?F* —2a)((1+|a|?) —aF—aF*)~Y2U. ¥
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Here is an interesting result which relates the fundamental operator of a
I-contraction (S, P) with that of (S*, P*).

PROPOSITION 2.3. Let (S, P) be a I'-contraction on H and let F, F, be the funda-
mental operators of (S, P) and (S*, P*) respectively. Then PF = F,*P|p,.
Proof. Since F € B(Dp) and F, € B(Dp+), both PF and F,"P|p, are in
B(Dp, Dp+). For Dph € Dp and Dp+l’ € Dp«, we have
(PFDph, Dp<h') = (Dp«PFDph, ')
= (PDpFDph,l'), (since PDp = Dp+P)
= (P(S—S*P)h, 1), (sinceS—S*P = DpFDp)
= ((PS — PS*P)h, 1) = ((SP — PS*P)h, 1"y = ((S — PS*)Ph, 1)
= (Dp+F.*Dp«Ph, 1), (since S* — SP* = Dp«F.Dp-+)
= (E,*PDph, Dp-1).

Hence PF = F,*P|p,. 1

3. FUNCTIONAL MODEL

In [26], Sz.-Nagy and Foias showed that every pure contraction P defined
on a Hilbert space # is unitarily equivalent to the operator P = Py, (M, ® I)|p,.
on the Hilbert space Hp = (H?(D) ® Dp+) © Mg, (H?(D) ® Dp), where M, is the
multiplication operator on H?(D) and Mg, is the multiplication operator from
H?(D) ® Dp into H?(D) ® Dp+ corresponding to the multiplier @p, which is the
characteristic function of P defined in Section 1. This is known as Sz.-Nagy-Foias
model for a pure contraction. Here analogously we produce a model for a pure
I'-contraction.

THEOREM 3.1. Every pure I'-contraction (S, P) defined on a Hilbert space H is
unitarily equivalent to the pair (S1, P1) on the Hilbert space Hp = (H?(D) ® Dp+) ©
Me, (H?(D) ® Dp) defined as S; = Py, (I ® F.* + M: ® F,) |, and P, = Py, (M: ®
D)

REMARK 3.2. It is interesting to see here that the model space for a pure
I'-contraction (S, P) is same as that of P and the model operator for P is the same
given in 5z.-Nagy-Foias model.

To prove the above theorem, we define an operator W in the following way:

W:H — H*(D) ® Dp:

h— Y z"®Dp:P*"h.
n=0
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It is obvious that W embeds H isometrically inside H?(ID) ® Dp+ (see proof of
Theorem 4.6 of [15]) and its adjoint L : H?>(D) ® Dp+ — H is given by

L(f®¢) = f(P)Dp:¢, forall f € C[z], and ¢ € Dp-.

Here we mention an interesting and well-known property of the operator L which
we use to prove the above theorem.

LEMMA 3.3. For a pure contraction P, the identity
L*L + M@PMap - IHZ(D)®DP*
holds.

Proof. As observed by Arveson in the proof of Theorem 1.2 in [11]], the op-
erator L satisfies the identity

Lk, ® &) = (I —zP) 'Dp:& forz € D, € Dps,

where k;(w) = (1 — (w,z))~!. Therefore, for z,w in D and ¢, 7 in Dp+, we obtain
that

((L°L + Mo, Mo, )z © G, kv ® 1)
= {Lk: © ), Llk © 7)) + (M, (k: ), M, (ko @ 1))
= ((I=2P)"'Dp+g, (I = @P) ' Dpe1p) + {kz © Op(2)E, ko ® Op(w) ")
= (Dp+ (I —wP*) "1 (I = ZP)"'Dpg, 1) + (kz, ku) (Op (w)Op(2)E, 1)
= (k2 ® ¢, kw ®17).
The last equality follows from the following well-known identity,
1—0p(w)Op(z)* = (1 — wz)Dp+(1 —wP*)"}(1 —ZP) ' Dp,

where Op is the characteristic function of P. Using the fact that the vectors k,
forms a total set in H?(D), the assertion follows. 1

Proof of Theorem It is evident from Lemma 3.3]that
L*(H) = W(H) = Hp = (H*(D) ® Dp+) © Mg, (H*(D) ® Dp).
LetT=I®F; +M,®F,and V = M, ® I. For a basis vector z" ® ¢ of H*(D) ®

Dp+ and h € H we have

(L ©8)0) = (2 @8, ) 2 @ DpPH0) = (6, Dpe P") = (P"Dp. 1),
k=0

This implies that
L(z"®¢&) = P"Dp:&, forn=20,1,2,3,....
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Therefore

(LIM; @ )(z2" @ &), h) = <z”+1 ®F, i e Dp*P*kh>
k=0

= (&, Dp-P*"'h) = (P"1Dp:¢, ).

Consequently, LV = PL on vectors of the form z" ® ¢ which span H? ® Dp: and
hence

LV = PL.
Therefore V* leaves the range of L* (isometric copy of H) invariant and V*|j«y =
L*P*L which is the copy of the operator P* on range of L*. Also

LT(z"®¢) = L(IQF; + M, ®F,)(z"®&) =L(IQF;) (2" ®¢)+ L(M; ®F;) (2" ®¢)
= L(z" @ F/&) + L(z""! @ F.&) = P"Dp«F;& 4+ P""1Dp-F.¢.

Again SL(z" ® ) = SP"Dp+¢. Therefore for showing LT = SL, it is enough to
show that

P"Dp<F;} + Pn+1Dp*P* = SP"Dp+« = P"SDp« i.e., Dp+F} + PDp«F, = SDp-.

Let H = Dp«F} + PDp«F, — SDp+. Then H is defined from Dp+ — H. Since F, is
a solution of (1.3), we have

HDp*:DP*F:DP*—Q—PDP*F*DP*—SDz*:(S—PS*)—i—P(S*—SP*)—S(I—PP*):0.
Hence H = 0. So we have
Dp+«F} + PDp«F, = SDp+«

and therefore

L(I®F; + M, ® F,) = SL.
This shows that T* leaves L* () invariant as well as T*|«(3) = L*S*L. Thus Hp
is co-invariant under I ® F; + M, ® F, and M, ® I. Hence Hp is a model space
and Py, (I ® F.* + M, ® F,)|m, and Py, (M, ® I)|y, are model operators for S
and P respectively. 1

4. A SET OF UNITARY INVARIANTS FOR PURE I'-CONTRACTIONS

The characteristic function of a contraction is a classical complete unitary
invariant devised by Sz.-Nagy and Foias [26]. In [23], Popescu gave the character-
istic function for an infinite sequence of non-commuting operators. The same for
a commuting contractive tuple of operators was invented by Bhattacharyya, Es-
chmeier and Sarkar [13]. Popescu’s characteristic function for a non-commuting
tuple, when specialized to a commuting one, gives the same function. Given two
contractions P and P; on Hilbert spaces ‘H and H, the characteristic functions of
P and P; are said to coincide if there are unitary operators ¢ : Dp — Dp, and
0% : Dp- — Dp: such that the following diagram commutes for all z € D
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Op(z
pp— 2
(% O«
D Dpx
P ®P1 (Z) Py

The following result is due to Sz.-Nagy and Foias.

THEOREM 4.1. Two completely non-unitary contractions are unitarily equivalent
if and only if their characteristic functions coincide.

Let (S, P) and (S1, P1) be two pure I'-contractions on Hilbert spaces H and
H1 respectively. As we mentioned in Section 1, the complete unitary invariant
that we shall produce has two contents namely the equivalence of the funda-
mental operators of (S*, P*) and (S, P;') and the coincidence of the characteristic
functions of P and P;.

PROPOSITION 4.2. If two I'-contractions (S, P) and (S1, Py) defined on H and
*H1 respectively are unitarily equivalent then so are their fundamental operators F and F;.

Proof. Let U : H — Hj be a unitary such that US = 51U and UP = P;U.
Then clearly UP* = P;'U and consequently

UDp = U(I— P*P) = (U - PyUP) = (U - P{PU) = D3 U,

which implies that UDp = Dp U. Let V = U|p,. Then V € B(Dp, Dp,) and
VDp = Dp1V. Now

Dp, VEV*Dp, = VDpFDpV* = V(S — S*P)V* = S; — S{P; = Dp FiDp,.
Thus F; = VFV* and the proof is complete. 1

The next result is a partial converse to the previous proposition for pure
I'-contractions.

PROPOSITION 4.3. Let (S, P) and (Sq, Py) be two pure I'-contractions on H and
H1 respectively such that the characteristic functions of P and P coincide. Also suppose
that the fundamental operators Fy of (S*, P*) and Fy, of (S, Py’) are unitarily equivalent
by the unitary from Dp- and Dpy that establishes the coincidence of the characteristic
functions of P and Py. Then (S, P) and (Sq, Py ) are unitarily equivalent.

Proof. Let yy : Dp — Dp, and 171 : Dp+ — Dpl* be unitaries such that the
following diagram
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Op(z
Dp— " ) Dp.
M1 Uil
DP1 ®P1 (Z) Dpl*

commutes for all z € D and #1F; = Fj,#;. Let us define
7= (®mn): H(D)® Dp: — H*(D) ® Dp:.
Since 1771@p = Op, ji1, we have for any f € H?(D) ® Dp
n(RanMe, f) = mOpf = Oppirf = Mo, (H1f)-

Therefore,
n(Hp) = Hp,, asHp= Ram(M@P)L and Hp, = Ran(M@P1 )t
Now clearly
U(Mz ® IDP*)* - (Mz ® IDPT)*T],
which shows that 77(Hp) i.e., Hp, is co-invariant under M; ® Ip,, and Py, (M; ®
1
Ip,, )|, coincides with Ple (M; ® Ippl* ) \le ,i.e., P defined on H coincides with
Py defined on H;.
Again
NIQFE*+M, ®@F)" =n(I®F.+M; ® F*) =@y Fx + M} @ 1 F
=I®@F,m+M;@Fim=I®F,+M;®F;)(I®1n)
=(I®F;+M®@F,)"(I®n),
which shows that S(= Py, (I ® F; + M, ® Fi)|p,) and S1(= Py, (I®QF;+M:®

Fl*)|HP1) are unitarily equivalent. Hence (S, P) and (Sq,P;) are also unitarily
equivalent and the proof is complete. 1

Combining the last two propositions we obtain the main result of this sec-
tion.

THEOREM 4.4. Let (S,P) and (S1,Py) be two pure I'-contractions on Hilbert
spaces H and Hq respectively and let F, and Fy,, be the fundamental operators of (5*, P*)
and (S5, Py). Then (S, P) is unitarily equivalent to (S, Py) if and only if the characteris-
tic functions of P and Py coincide and F, and Fy, are unitarily equivalent by the unitary
from Dp- and Dpy that establishes the coincidence of the characteristic functions of P
and Py.
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Proof. Since (S,P) and (S1, Py) are unitarily equivalent, so are (5%, P*) and
(S7, Pf). Now we apply Propositionto the I'-contractions (S*, P*) and (S5, Py’)
to have the unitary equivalence of F; and F,. 1
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