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ABSTRACT. In this paper, we characterize invertible Toeplitz products on a
number of Banach spaces of analytic functions, including the weighted
Bergman space Lp

a (Bn, dvγ), the Hardy space Hp(∂D), and the standard
weighted Fock space Fp

α for p > 1. The common tool in the proofs of our char-
acterizations will be the theory of weighted norm inequalities and Ap type
weights. Furthermore, we prove weighted norm inequalities for the Fock pro-
jection, and compare the various Ap type conditions that arise in our results.
Finally, we extend the “reverse Hölder inequality" of Zheng and Stroethoff
(J. Funct. Anal. 195(2002), 48–70 and J. Operator Theory 59(2008), 277–308) for
p = 2 to the general case of p > 1.
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1. INTRODUCTION

Let Bn denote the unit ball in Cn and let dv denote the usual normalized
volume measure on Bn. For γ > −1, let dvγ(z) = cγ(1− |z|2)γdv(z) where cγ

is a normalizing constant. For 1 6 p < ∞, the Bergman space Lp
a (Bn, dvγ) is the

Banach space of analytic functions on Bn that belong to Lp(Bn, dvγ).
As a (formal) limiting case γ → −1+ of the spaces Lp

a (Bn, dvγ), one ob-
tains the Hardy space Hp(∂Bn), which is the closure in Lp(∂Bn, dσ) of analytic
polynomials on ∂Bn where dσ is the standard surface measure on ∂Bn (more pre-

cisely, dvγ
wk∗−→ dσ on C(Bn) as γ → −1+). As another (formal) limiting case

where γ → +∞, one obtains the Fock space Fp
α of all entire functions f where

f (·)e−(α/2)|·|2 is in Lp(Cn, (pα/2π)ndv) for α > 0 (and where Fp
α is equipped

with its canonical Banach space norm).
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It is well known [29] that the orthogonal projection Pγ from L2(Bn, dvγ)

onto L2
a(Bn, dvγ) is given by

Pγ f (z) =
∫
Bn

Kγ(z, u) f (u)dvγ(u)

where Kγ(z, u) is the Bergman kernel Kγ(z, u) = (1− z · u)−(n+1+γ). Let p > 1
and let q be the conjugate exponent of p. If g ∈ Lq(Bn, dvγ), then we can define
the Toeplitz operator Tg on Lp

a (Bn, dvγ) by the formula Tg = Pγ Mg (with Mg
being “multiplication by g"). Similarly, if g ∈ Lq(∂Bn), then the Toeplitz operator
Tg is defined on Hp(∂Bn) by Tg = P+Mg where P+ is the Hardy projection. Note
that while Tg = Pγ Mg obviously depends on γ, for the sake of notational ease
we will still refer to this Toeplitz operator on Lp

a (Bn, dvγ) by Tg. The same will be
true when we define Toeplitz operators on Fock spaces Fp

α in Section 3.
Toeplitz operators Tg on both the Hardy space and the Bergman space have

been extensively studied in the literature when p = 2. (See [30] and the references
therein.) However, it is well known [29] that both the Bergman projection Pγ and
the Hardy projection P+ are bounded on Lp(Bn, dvγ) and Lp(∂Bn, dσ), respec-
tively, whenever p > 1. Thus, many of the results regarding Toeplitz operators
for p = 2 can be appropriately generalized to the p > 1 case.

In [24], [25], the invertibility of the product of Toeplitz operators Tf Tg for
analytic f and g was characterized for the Bergman space L2

a(Bn, dvγ) and the
Hardy space H2(∂Bn) when n = 1. In particular, they proved the following result
(where dAγ is the weighted area measure on the unit disk D):

THEOREM 1.1. For functions f , g ∈ H2(∂D), the Toeplitz product Tf Tg is
bounded and invertible on H2(∂D) if and only if

inf
u∈D
| f (u)||g(u)| > 0 and sup

u∈D
|̂ f |

2
(u)|̂g|

2
(u) < ∞.

Moreover, for f , g ∈ L2
a(D, dAγ), Tf Tg is bounded and invertible on L2

a(D, dAγ) if and
only if

inf
u∈D
| f (u)||g(u)| > 0 and(1.1)

sup
u∈D

Bγ(| f |2)(u)Bγ(|g|2)(u) < ∞.(1.2)

Here, f̂ is the Poisson extension of a function f on ∂D and Bγ f is the Berezin
transform of a function f on D given by

Bγ( f )(z) =
∫
D

f (u)|kγ
z (u)|2dAγ(u)



INVERTIBLE TOEPLITZ PRODUCTS, WEIGHTED NORM INEQUALITIES, AND Ap WEIGHTS 383

where kγ
z is the normalized Bergman kernel kγ

z (u) = Kγ(u, z)/
√

Kγ(z, z) of
L2

a(D, dAγ). For the sake of notational ease, we will drop the γ in the notation
for kγ

z in the rest of the paper.
The main step in proving Theorem 1.1 (in both the Bergman and Hardy

space settings) is showing that the hypotheses in Theorem 1.1 are enough to guar-
antee the boundedness of Tf Tg. Once this is done, an easy argument from [24],
[25] completes the proof.

To prove the boundedness of Tf Tg, the authors first proved in [25] that for
f , g ∈ L2

a(D, dAγ), we have that Tf Tg is bounded on L2
a(D, dAγ) if there exists

ε > 0 such that

sup
u∈D

Bγ(| f |2+ε)(u)Bγ(|g|2+ε)(u) < ∞.

The authors then proved that Tf T
f
−1 is bounded by showing that there exists

some ε > 0 where

sup
u∈D

Bγ(| f |2+ε)(u)Bγ(| f |−(2+ε))(u) < ∞

whenever (1.2) holds for g = f−1 (which is true modulo a multiplicative constant
if (1.1) and (1.2) hold). The boundedness of Tf Tg then follows easily from this fact
and conditions (1.1) and (1.2). For the boundedness of the Toeplitz product Tf Tg
on the Hardy space, the authors use the same argument and Theorem 8 from [28].

It was remarked in [10], however, that the boundedness of Tf Tg on either
the Hardy space H2(∂D) or the Bergman space L2

a(D, dvγ) for analytic f and g
is equivalent to the boundedness of the Hardy projection P+ (respectively, the
Bergman projection Pγ) from the weighted space L2(∂D, |g|−2dσ) to the weighted
space L2(∂D, | f |2dσ) (where the obvious changes are made for the Bergman
space).

More generally, the boundedness of the Hardy projection P+ on Lp(∂Bn, dσ)
tells us that for any symbols f and g (not necessarily analytic), Tf Tg is bounded
on the Hardy space Hp(∂Bn) (in fact, bounded on Lp(∂Bn, dσ)) if P+ is bounded
from Lp(∂Bn, |g|−pdσ) to Lp(∂Bn, | f |pdσ). Moreover, a similar result holds for
the boundedness of Tf Tg on Lp

a (Bn, dvγ).
Unfortunately, the “two-weight" problem of characterizing the weights w

and v on ∂Bn where P+ is bounded from Lp(∂Bn, w dσ) to Lp(∂Bn, v dσ) is very
difficult and not fully understood even for n = 1 (the “two-weight" problem for
P+ when n = 1 can be found in [8], [9], but their condition is extremely difficult
to work with and is thus far from optimal). Furthermore, a similar statement can
be said about the corresponding problem for the Bergman projection on Bn.

If w = v, however, it is well known that P+ is bounded on Lp(∂D, w dσ) if
and only if w satisfies the Muckenhoupt Ap condition. Similarly, it is well known
that Pγ is bounded on Lp(Bn, w dvγ) if and only if w satisfies the Békollé–Bonami
condition Bp,γ (both of these conditions will be defined in the next section.)



384 JOSHUA ISRALOWITZ

In the next section, we will combine weighted norm inequalities for the
Hardy and Bergman projections with ideas from [24], [25] to characterize bounded
and invertible Tf Tg on both the Hardy space Hp(∂D) and the Bergman space
Lp

a (Bn, dvγ) when f and g are analytic. It should be noted that not only is this
approach much simpler than the one taken in [24], [25], but it also provides us
with an approach that is potentially adaptable to other spaces.

In particular, in Section 3, we will characterize weights w on Cn where the
Fock projection (which will be defined in Section 3) is bounded on the weighted
space Lp

α(w). Here, Lp
α(w) is the Banach space (equipped with its canonical Ba-

nach space norm) of all f where f (·)e−(α/2)|·|2 ∈ Lp(Cn, w dv) for α > 0. Also we
will use the general arguments from Section 2, along with our weighted norm in-
equalities for the Fock projection, to characterize bounded and invertible Toeplitz
products on Fp

α .
As a trivial consequence of these results, we will show that “Sarason’s con-

jecture" on the product of Toeplitz operators is trivially true for the Fock space
Fp

α , which is in stark contrast to the Hardy space where it is known that Sarason’s
conjecture is false (see [10] for detailed information about Sarason’s conjecture,
and see [18] for a counterexample in the Hardy space case). In particular we
prove that Tf Tg is bounded on Fp

α if and only if f = eq and g = ce−q for some
constant c ∈ C and some linear polynomial q. Note that this was shown very
recently in the preprint [5] using a simpler argument than the ones we employ
here. However, our arguments most likely work for a wide class of weighted
Fock spaces, and in particular for the so called “Fock–Sobolev spaces" from [4]
(see Section 3 for more details).

In Section 4, we will discuss in some detail the various classes of weights
used in Sections 2 and 3, and also discuss connections between these classes.

It should be noted that although the theory of weighted norm inequalities
simplifies the arguments in [24], [25], the techniques developed in these two pa-
pers (in particular, their “reverse Hölder inequality" and the Calderon–Zygmund
decomposition adapted to the hyperbolic disk) are of independent interest them-
selves. Thus, in our last section (Section 5), we will present a proof of our charac-
terization of invertible Toeplitz products on the Bergman space Lp

a (D, dAγ) that
extends these techniques to handle the general case p > 1, rather than just the
p = 2 case. In particular, we will extend the “reverse Hölder inequality" of Zheng
and Stroethoff [24], [25] for p = 2 to the general case of p > 1. It is hoped that the
ideas in Section 5 will have applications to other Bergman space problems where
Möbius invariance is unavailable, or where classical Calderon–Zygmund theory
techniques are relevant.

Finally, throughout the paper we will let C denote a constant that may
change from line to line (or even on the same line).
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2. INVERTIBLE TOEPLITZ PRODUCTS ON THE HARDY AND BERGMAN SPACES

We will first discuss invertible Toeplitz products on the Bergman space
Lp

a (Bn, dvγ). The result we wish to prove is the following:

THEOREM 2.1. If f ∈ Lp
a (Bn, dvγ) and g ∈ Lq

a(Bn, dvγ), then the Toeplitz prod-
uct Tf Tg is bounded and invertible on Lp

a (Bn, dvγ) if and only if

inf
u∈Bn

| f (u)||g(u)| > 0 and

sup
u∈Bn

{Bγ(| f k1−2/p
u |p)(u)}1/p{Bγ(|gk1−2/q

u |q)(u)}1/q < ∞.(2.1)

Before we prove this, we will need to discuss the Békollé–Bonami class Bp,γ.
For z, u ∈ Bn, let d be the pseudo-metric on Bn given by d(z, u) = | |z| − |u| |+
|1− (z/|z|) · (u/|u|)| and let D = D(z, R) denote a ball in Bn with respect to this
pseudo-metric. We say that a weight w on Bn is in Bp,γ if( 1

vγ(D)

∫
D

w dvγ

)( 1
vγ(D)

∫
D

w−1/(p−1) dvγ

)p−1
< C(2.2)

where D is any such ball that intersects ∂Bn and C is independent of D.
The following theorem was proved in [2], which solves the “one-weight"

problem for the Bergman projection Pγ.

THEOREM 2.2. The Bergman projection Pγ is bounded on the weighted space
Lp(Bn, w dvγ) if and only if w ∈ Bp,γ.

We will also need the following result found in [17].

THEOREM 2.3. If f ∈ Lp
a (Bn, dvγ) and g ∈ Lq

a(Bn, dvγ), then

sup
u∈Bn

{Bγ(| f k1−2/p
u |p)(u)}1/p{Bγ(|gk1−2/q

u |q)(u)}1/q < ∞

whenever Tf Tg is bounded on Lp
a (Bn, dvγ).

With the aid of Theorems 2.2 and 2.3, we can now prove Theorem 2.1.

Proof of Theorem 2.1. First we will prove necessity. The proof of this direc-
tion is similar to the corresponding result in [24] and [25], though we include
it for the sake of completion. Assume that Tf Tg is bounded and invertible on
Lp

a (Bn, dvγ), so that (Tf Tg)
∗ = TgTf is bounded and invertible on Lq

a(Bn, dvγ) =

(Lp
a (Bn, dvγ))∗. Let C1 = ‖(Tf Tg)

−1‖p and C2 = ‖(TgTf )
−1‖q. First note that

Tf Tgku = g(u) f ku, so that

‖ku‖p 6 C1‖Tf Tgku‖p = C1|g(u)|{Bγ(| f k1−2/p
u |p)(u)}1/p.
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Similarly, since (Tf Tg)
∗ = TgTf is bounded and invertible on Lq

a(Bn, dvγ) =

(Lp
a (Bn, dvγ))∗, we have that

‖ku‖q 6 C2| f (u)|{Bγ(|gk1−2/q
u |q)(u)}1/q.

By Theorem 2.2, we have that

{Bγ(| f k1−2/p
u |p)(u)}1/p{Bγ(|gk1−2/q

u |q)(u)}1/q 6 M(2.3)

for some M > 0 independent of u. Moreover, an application of Hölder’s inequal-
ity gives us that ‖ku‖p‖ku‖q > 1 for any u ∈ D, which tells us that

C1C2M| f (u)||g(u)| > ‖ku‖p‖ku‖q > 1

which means that inf
u∈Bn

| f (u)||g(u)| > 0.

Now we will prove sufficiency. Let M be the constant in (2.3) and let

η = inf
u∈Bn

| f (u)||g(u)|.

Let ϕu be the Möbius transformation that interchanges 0 and u. By Hölder’s
inequality, we have that

| f (u)| = (1− |u|2)((n+1+γ)/2)(1−2/p)| f ◦ ϕu(0)||ku ◦ ϕu(0)|1−2/p

6 (1− |u|2)((n+1+γ)/2)(1−2/p){Bγ(| f k1−2/p
u |p)(u)}1/p.(2.4)

and similarly

|g(u)| 6 (1− |u|2)((n+1+γ)/2)(1−2/q){Bγ(|gk1−2/q
u |q)(u)}1/q

which means that

sup
u∈Bn

| f (u)||g(u)| 6 M.

Also, since |g(u)|q > ηq| f−1(u)|q we have that

{Bγ(| f−1k1−2/q
u |q)(u)}1/q 6 η−1{Bγ(|gk1−2/q

u |q)(u)}1/q

which means that

sup
u∈Bn

{Bγ(| f k1−2/p
u |p)(u)}1/p{Bγ(| f−1k1−2/q

u |q)(u)}1/q < ∞.(2.5)

If w = | f |p, then it is easy to see that (2.5) and Lemma 2 in [2] implies that
w ∈ Bp,γ, so that Tf Tg is bounded on Lp

a (Bn, dvγ). Also, since φ = ( f g)−1 is
bounded, Tφ is bounded on Lp

a (Bn, dvγ). Moreover, it is easy to check that

Tf TgTφ = I = TφTf Tg

which completes the proof.
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We will now prove the Hardy space version of Theorem 2.1. First, recall that
the Muckenhoupt class Ap is the collection of all weights w on ∂D where

D sup
I⊆∂

( 1
|I|

∫
I

w dθ
)( 1
|I|

∫
I

w−1/(p−1) dθ
)p−1

< ∞(2.6)

and where the supremum is taken over all arcs I ⊆ ∂D. It is well known [7] that
the Hardy projection P+ is bounded on Lp(∂D, w dθ) if and only if w ∈ Ap. With
this result, we will now prove the following:

THEOREM 2.4. If f ∈ Hp(∂D) and g ∈ Hq(∂D), then the Toeplitz product Tf Tg
is bounded and invertible on Hp(∂D) if and only if

inf
u∈D
| f (u)||g(u)| > 0 and(2.7)

sup
u∈D
{ ̂| f k1−2/p

u |p(u)}1/p{ ̂|gk1−2q
u |q(u)}1/q < ∞.

Proof. First we prove necessity, so assume that Tf Tg is bounded and invert-
ible on Hp(∂D). By an argument that is almost identical to the argument (due to
S. Treil) in [21], we have that

sup
u∈D
{ ̂| f k1−2/p

u |p(u)}1/p{ ̂|gk1−2/q
u |q(u)}1/q < ∞.(2.8)

Thus, by an argument that is similar to the proof of Theorem 2.1, we have that

inf
u∈D
| f (u)||g(u)| > 0.

Now we prove sufficiency. Fix u ∈ D and let fr(u) = f (ru) for some fixed

0 < r < 1. If we replace f with fr in (2.4) then since dAγ
wk∗−→ dσ on C(D) as

γ→ −1+, (2.4) gives us that

| f (ru)| 6 (1− |u|2)(1/2)(1−2/q){ ̂| frk1−2/p
u |p(u)}1/p.

Thus, since f ∈ Hp(∂D), we can let r → 1− to get

| f (u)| 6 (1− |u|2)(1/2)(1−2/q){ ̂| f k1−2/p
u |p(u)}1/p.

Applying the same inequality to g and using the hypothesis of Theorem 2.4, we
have that

sup
u∈D
| f (u)||g(u)| < ∞.(2.9)

Combining (2.7), (2.8) and (2.9) as we did in the proof of Theorem 2.1, it is
easy to see that w = | f |p is in the Muckenhoupt Ap class, which implies that Tf Tg

is bounded. Finally, since φ = ( f g)−1 is bounded, it is again easy to see that

Tf TgTφ = I = TφTf Tg

which implies that Tf Tg is invertible.
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REMARK 2.5. It is known [16] that the Hardy projection P+ is bounded on
Lp(∂Bn, w dσ) if and only if w satisfies (2.5) (where the supremum is taken over
all non-isotropic balls in ∂Bn). Furthermore, except for the proof that the bound-
edness of Tf Tg implies (2.7) (which uses identities that only hold when n = 1,
see [21] for more details), the entire proof of Theorem 2.4 carries over to the case
n > 1. Thus, we will conjecture that Theorem 2.4 holds for the unit sphere ∂Bn
when n > 1.

3. INVERTIBLE TOEPLITZ PRODUCTS AND WEIGHTED NORM INEQUALITIES
FOR THE FOCK PROJECTION

For any α > 0 and any positive a.e. function w on Cn, let Lp
α(w) be the

Banach space of all f where f (·)e−(α/2)|·|2 ∈ Lp(Cn, wdv). Furthermore, we will
let Lp

α denote Lp
α(w) when w is the constant (pα/2π)n. It is well known (see [15])

that the orthogonal projection Pα from L2
α onto the Fock space F2

α is given by

Pα f (z) =
∫
Cn

eαz·u f (u)dµα(u)

where dµα is the Gaussian measure

dµα(u) =
( α

π

)n
e−α|u|2dv(u).

In this section, we will first state and prove weighted norm inequalities for
the Fock projection Pα, and then use these weighted norm inequalities to char-
acterize bounded and invertible Toeplitz products Tf Tg on the Fock space Fp

α for
p > 1 when f and g are entire. In particular, as was stated in the introduction, we
will show that Tf Tg is bounded if and only if f = eP for a linear polynomial P on
Cn and g = ce−P for some c ∈ C (assuming that neither f nor g vanish on Cn).
Furthermore, as was mentioned in the introduction, although this result (with a
simpler proof) has recently appeared in [5], our methods most likely easily gen-
eralize to a wide class of weighted Fock spaces.

Let Qr(z) be the cube in Cn with center z and side length r > 0. Let Ap,r
denote the class of weights w on Cn where

sup
z∈Cn

( 1
v(Qr(z))

∫
Qr(z)

w dv
)( 1

v(Qr(z))

∫
Qr(z)

w−1/(p−1) dv
)p−1

< Cr(3.1)

for some 0 < Cr < ∞.

THEOREM 3.1. The following are equivalent for any weight w on Cn and any
α > 0:

(i) w ∈ Ap,r for some r > 0.
(ii) Hα is bounded on Lp(Cn, w dv).

(iii) Pα is bounded on Lp
α(w).
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(iv) w ∈ Ap,r for all r > 0.
Here, Hα is the integral operator given by

Hα f (z) =
∫
Cn

e−(α/2)|z−u|2 f (u)dv(u).

We will need three simple lemmas to prove Theorem 3.1. It should be noted
that the proofs of the first two lemmas use standard arguments from the classical
theory of weighted norm inequalities. In what follows, we will let

w(S) :=
∫
S

w dv

for any measurable S ⊆ Cn.

LEMMA 3.2. Let Qr = Qr(z) be any cube in Cn of side length r, and let 3Qr
denote the cube with the same center but with side length 3r. If w ∈ Ap,3r, then
w(3Qr) 6 Cw(Qr) for some constant C > 0 independent of Qr (but obviously de-
pending on r).

Proof. By Hölder’s inequality and (3.1), there exists C > 0 such that

r2n =
∫

Qr

w1/pw−1/p dv 6 (w(Qr))
1/p
( ∫

Qr

w−1/(p−1) dv
)(p−1)/p

6
( w(Qr)

w(3Qr)

)1/p( ∫
3Qr

w dv
)1/p( ∫

3Qr

w−1/(p−1) dv
)(p−1)/p

6 C
( w(Qr)

w(3Qr)

)1/p

where C is independent of Qr.

LEMMA 3.3. Let Qr be any cube in Cn of side length r and let f be any measurable
function on Cn. If w ∈ Ap,3r, then there exists C > 0 independent of Qr and f where( ∫

Qr

| f |dv
)p

6 C
1

w(Qr)

∫
Qr

| f |pw dv.

Proof. The proof is similar to the proof of Lemma 3.2. In particular, since
Ap,3r ⊆ Ap,r, there is some C > 0 independent of Qr where( ∫

Qr

| f |dv
)p

6
( ∫

Qr

| f |pw dv
)( ∫

Qr

w−1/(p−1) dv
)p−1

6 C
1

w(Qr)

∫
Qr

| f |pw dv.

For the next lemma we will need the notion of a discrete path from [14]. For
each r > 0, let rZ2n denote the set {(rk1, . . . , rk2n) ∈ R2n : ki ∈ Z}. Since R2n can
canonically be identified with Cn, we will treat rZ2n as a subset of Cn. A subset
G = {p0, . . . , pk} of rZ2n with k > 1 is said to be a discrete segment in rZ2n if
there exists j ∈ {1, . . . , 2n} and z ∈ rZ2n such that

p` = z + `(rej), 0 6 ` 6 k
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where ej is the standard jth basis vector of R2n. In this setting, we say that p0 and
pk are the endpoints of G. Also, we define the length |G| of G to be |G| = k. Let
ν = (rν1, . . . , rν2n) and ν′ = (rν′1, . . . , rν′2n) be elements of rZ2n where ν 6= ν′. We
can enumerate the integers {j : νj 6= ν′j , 1 6 j 6 2n} as j1, . . . , jm in ascending
order, so that j1 < · · · < jm when m > 1. Set z0(ν, ν′) = ν, and inductively define
zt(ν, ν′) = zt−1(ν, ν′) + (ν′jt − νjt)(rejt) for t ∈ {1, . . . , m}. Note that zm(ν, ν′) = ν′.
Let Gt(ν, ν′) be the discrete segment in rZ2n which has zt−1(ν, ν′) and zt(ν, ν′)
as its endpoints. The union of the discrete segments G1(ν, ν′), . . . , Gm(ν, ν′) will
be denoted by Γ(ν, ν′). We call Γ(ν, ν′) the discrete path in rZ2n from ν to ν′.
Furthermore, we define the length |Γ(ν, ν′)| of Γ(ν, ν′) to be |G1(ν, ν′)| + · · · +
|Gm(ν, ν′)|. That is, the length of Γ(ν, ν′) is just the sum of the lengths of the
discrete segments which make up Γ(ν, ν′). In the case ν = ν′, we define the
discrete path from ν to ν to be the singleton set Γ(ν, ν) = {ν}.

LEMMA 3.4. If w ∈ Ap,3r then there exists C > 0 independent of ν, ν′ ∈ rZ2n

such that

w(Qr(ν))

w(Qr(ν′))
6 C|ν−ν′ |.

Proof. Enumerate the elements in Γ(ν, ν′) as a0, a1, . . . , ak where a0 = ν, ak =
ν′, k = |Γ(ν, ν′)|, and

Qr(aj−1) ⊆ 3Qr(aj)

for each j ∈ {1, . . . , k}. Then by Lemma 3.2, there exists C > 0 where

w(Qr(ν))

w(Qr(ν′))
=

k

∏
j=1

w(Qr(aj−1))

w(Qr(aj))
6

k

∏
j=1

w(3Qr(aj))

w(Qr(aj))
6 C|Γ(ν,ν′)|.

However, an easy application of the Cauchy–Schwarz inequality tells us that
|Γ(ν, ν′)| 6 ((2n)1/2|ν− ν′|/r), which completes the proof.

We will now prove Theorem 3.1.

Proof of Theorem 3.1. We will first prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Then
since trivially (iv)⇒ (i), we will complete the proof by showing that (ii)⇒ (iv).

Let r′ = (1/3)r. To show that (i)⇒ (ii), we have:

‖Hα f ‖p
Lp(Cn ,w dv)

6
∫
Cn

( ∫
Cn

e−(α/2)|z−u|2 | f (u)|dv(u)
)p

w(z)dv(z)

= ∑
ν∈r′Z2n

∫
Qr′ (ν)

(
∑

ν′∈r′Z2n

∫
Qr′ (ν

′)

e−(α/2)|z−u|2 | f (u)|dv(u)
)p

w(z)dv(z)(3.2)
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6 C ∑
ν∈r′Z2n

∫
Qr′ (ν)

(
∑

ν′∈r′Z2n

e−(α/4)|ν−ν′ |2
∫

Qr′ (ν
′)

| f (u)|dv(u)
)p

w(z)dv(z)

= ∑
ν∈r′Z2n

w(Qr′(ν))
(

∑
ν′∈r′Z2n

e−(α/4)|ν−ν′ |2
∫

Qr′ (ν
′)

| f (u)|dv(u)
)p

.

By Hölder’s inequality, we have

∑
ν∈r′Z2n

w(Qr′(ν))
(

∑
ν′∈r′Z2n

e−(α/4)|ν−ν′ |2
∫

Qr′ (ν
′)

| f (u)|dv(u)
)p

6 C ∑
ν∈r′Z2n

w(Qr′(ν)) ∑
ν′∈r′Z2n

e−(pα/8)|ν−ν′ |2
( ∫

Qr′ (ν
′)

| f (u)|dv(u)
)p

.(3.3)

However, since w ∈ Ap,3r′ , Lemmas 3.3 and 3.4 give us that

w(Qr′(ν))
( ∫

Qr′ (ν
′)

| f |dv
)p

6 C
w(Qr′(ν))

w(Qr′(ν′))

∫
Qr′ (ν

′)

| f |pw dv

6 C|ν−ν′ |+1
∫

Qr′ (ν
′)

| f |pw dv.(3.4)

Plugging (3.4) into (3.3) and switching the order of summation, we have
that

∑
ν∈r′Z2n

w(Qr′(ν)) ∑
ν′∈r′Z2n

e−(pα/8)|ν−ν′ |2
( ∫

Qr′ (ν
′)

| f (u)|dv(u)
)p

6 ∑
ν∈r′Z2n

∑
ν′∈r′Z2n

C|ν−ν′ |+1e−(pα/8)|ν−ν′ |2
∫

Qr′ (ν
′)

| f |pw dv

= ∑
ν′∈r′Z2n

∫
Qr′ (ν

′)

| f |pw dv ∑
ν∈r′Z2n

C|ν−ν′ |+1e−(pα/8)|ν−ν′ |2

6 C
∫
Cn

| f |pw dv.

That (ii)⇒ (iii) follows from a simple computation.
Let us now prove that (iii) ⇒ (i). The proof will involve a modification

of the proof of the corresponding result in [7] for the Hilbert transform on the
weighted space Lp(R, w dx). Fix some cube Q with center z0 and side length r0
where r0 > 0 is a small number to be determined. If

f (u) = w−1/(p−1)(u)e(α/2)|u|2e−iαIm(z0·u)χQ(u),
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then

|Pα f (z)| =
( α

π

)n∣∣∣ ∫
Q

eα(z·u)e−(α/2)|u|2e−iαIm(z0·u)w−1/(p−1)(u)dv(u)
∣∣∣.(3.5)

However,

eα(z·u) = |eα(z·u)|eiαIm(z·u) = |eα(z·u)|eiαIm(z−z0)·(u−z0)eiαIm(z0·u)eiαIm(z−z0)·z0 .(3.6)

Plugging (3.6) into (3.5) gives

|Pα f (z)| =
( α

π

)n
e(α/2)|z|2

∣∣∣ ∫
Q

e−(α/2)|z−u|2eiαIm(z−z0)·(u−z0)w−1/(p−1)(u)dv(u)
∣∣∣.

Picking r0 > 0 small enough, we get that |1− eiαIm(z−z0)·(u−z0)| 6 1/2 for all
z and u ∈ Q, so writing eiαIm(z−z0)·(u−z0) = 1− (1− eiαIm(z−z0)·(u−z0)) and using
the triangle inequality, we get that

|Pα f (z)| > 1
2

( α

π

)n
e(α/2)|z|2 χQ(z)

∫
Q

e−(α/2)|z−u|2 w−1/(p−1)(u)dv(u)

> Ce(α/2)|z|2 χQ(z)
∫
Q

w−1/(p−1) dv.(3.7)

The boundedness of Pα on Lp
α(w) applied to (3.6) now gives us that

w(Q)
( ∫

Q

w−1/(p−1) dv
)p

6 C
∫
Q

w−1/(p−1) dv

which proves (i). Finally, the proof that (ii)⇒ (iv) is similar to the proof that (iii)
⇒ (i).

REMARK 3.5. By Theorem 3.1 we have that the classes Ap,r coincide for each
r > 0. Thus, to emphasize this fact, we will denote the space Ap,r by Arestricted

p .
Also, since Arestricted

p is obviously independent of α, we have that Pα0 is
bounded on Lp

α0(w) for some α0 > 0 if and only if Pα is bounded on Lp
α(w) for

all α > 0.

REMARK 3.6. The definition of Arestricted
p can obviously be defined on Rn

for all n ∈ N. Moreover, we also have that Arestricted
p is the same as the class of

weights w on Rn where Hα is bounded on Lp(Rn, w dv) for any (or all) α > 0 .

We will now connect the class Arestricted
p with an appropriate BMO type

space. For 1 6 p < ∞, let BMOp
r be the space of functions f on Rn such that

sup
z∈Rn

1
v(B(z, r))

∫
B(z,r)

| f − fB(z,r)|pdv < ∞
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where B(z, r) is an Euclidean ball of center z ∈ Rn and radius r > 0. It is easy to
show that as a vector space, BMOp

r is independent of r > 0, and so we will write
BMOp instead of BMOp

r . It is also not hard to show that BMOp = BAp + BO
where f ∈ BO if

sup
z∈Rn

ωr( f )(z) < ∞

for some (or any) fixed r > 0 where ωr( f )(z) = sup
w∈B(z,r)

| f (z) − f (w)| and f ∈

BAp if

sup
z∈Rn

1
v(B(z, r))

∫
B(z,r)

| f |pdv < ∞.

for some (or any) fixed r > 0. Note that both of these conditions are independent
of r > 0. Also note that this decomposition is explicit. In particular, if f ∈ BMOp,
then one can verify that fB(·,r) ∈ BO and f − fB(·,r) ∈ BAp for any r > 0. Unlike
in the classical BMO setting, note that the John–Nirenberg theorem is not true
for the spaces BMOp since the space BAp depends on p. For more details about
BMOp (and for proofs of the above assertions) see p. 3023 of [6].

However, similar to the classical BMO setting, one can show that log w ∈
BMO1 if w ∈ Arestricted

p , where the proof is identical to the proof in the classical
Ap-BMO setting (see p. 151 of [11]). It is also well known that in the classical
setting, eδ f ∈ Ap for f ∈ BMO with δ > 0 small enough (again see p. 151 of [11]).
It would be interesting to know if any similar relationship between BMOp and
Arestricted

p exists.
With Theorem 3.1 proved, we can now characterize invertible Toeplitz prod-

ucts on the Fock space. In fact, we will characterize bounded Toeplitz products
Tf Tg when f , g are entire and as a consequence, as mentioned before, we will
show that Sarason’s conjecture is trivially true for the Fock space. First, for a
function f on Cn, let f̃ (α) be the Berezin transform of f given by

f̃ (α)(z) =
( α

π

)n ∫
Cn

e−α|z−u|2 f (u)dv(u).

Note that f̃ (α) can obviously be defined for a function f on Rn. Moreover, for a
function f on Rn, note that f̃ (α) is just the convolution of f with the heat kernel
H(x, t) = 1/(4πt)n/2 exp{−|x|2/4t} at time t = 1/4α.

THEOREM 3.7. Let p > 1 and let q be the conjugate exponent of p. If f ∈ Fp
α and

g ∈ Fq
α , then the following are equivalent:

(i) Tf Tg is bounded on Fp
α .

(ii) f and g satisfy

sup
z∈Cn

(|̃ f |p
(αp/2)

(z))1/p(|̃g|q
(αq/2)

(z))1/q < ∞.
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Furthermore, if either of these are true then f g is identically constant, and if both f and
g never vanish on Cn, then f = eP for a linear polynomial P on Cn and g = ce−P for
some c ∈ C (in which case Tf T

f
−1 is invertible on Fp

α ).

Proof. We first prove that (i) ⇒ (ii). Assume that Tf Tg is bounded on Fp
α .

Since span{kη : η ∈ Cn} is dense in Fp
α and Fq

α (see [15]), we have that

Tf Tgkz = g(z) f kz.

Moreover, it is easy to see that | f (z)| 6 C(|̃ f |p
(αp/2)

(z))1/p for some C > 0 inde-
pendent of f and z, so that

sup
z∈Cn

| f (z)g(z)| 6 sup
z∈Cn

|g(z)|(|̃ f |p
(αp/2)

(z))1/p = sup
z∈Cn

‖Tf Tgkz‖Fp
α

(3.8)

which implies that f g is identically a constant since ‖kz‖Fp
α
= 1. Also, it is easy

to see that either f ≡ 0 or g ≡ 0 if either f or g vanishes anywhere on Cn. Thus,
assume that both f and g never vanish on Cn.

Since (Tf Tg)
∗ = TgTf is bounded on (Fp

α )
∗ = Fq

α (again see [15]), we also
have that

sup
z∈Cn

| f (z)|(|̃g|q
(αq/2)

(z))1/q = sup
z∈Cn

‖TgTf kz‖Fq
α
.(3.9)

Combining (3.8) and (3.9) now gives us that

sup
z∈Cn

(|̃ f |p
(αp/2)

(z))1/p(|̃g|q
(αq/2)

(z))1/q < ∞.

Now we prove that (ii) ⇒ (i). If (ii) is true, then again f g is identically
constant, and if either f or g vanish anywhere on Cn, then one of these functions
is identically zero. Moreover, if (ii) is true and both f and g never vanish on Cn,
then it is easy to see that | f |p ∈ Arestricted

p , which means that Tf T
f
−1 (and also

Tf Tg) is bounded on Fp
α .

To finish the proof, we show that if f is an entire function with | f |p ∈
Arestricted

p and f−1 is entire, then there exists costants C1, C2, C3, C4 where

C1eC2|z| 6 | f (z)| 6 C3eC4|z|

for any z ∈ Cn. A simple argument using the Weierstrass factorization theorem
in one dimension then shows that f = eP for a linear polynomial P (see [5] for
more details). To see this, first note that by essentially the definition of BO, we
have

|g(z)| 6 A + B|z|
for some constants A, B > 0 if g ∈ BO. Now since log | f | ∈ BMO1 and is subhar-
monic, we have that

log | f |(z) 6 (log | f |)B(z,1) 6 C1 + C2|z|
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since (log | f |)B(z,1) ∈ BO. Applying the same reasoning to | f |−p/(p−1) completes
the proof.

REMARK 3.8. Using ideas from the proof of Theorem 5.1 in Section 5, it is
not difficult to see that the following are equivalent for any measurable f on Cn:

(i) sup
z∈Cn

(|̃ f |p
(α)

(z))1/p(|̃ f |−q
(β)

(z))1/q < Cα,β for some α, β > 0.

(ii) sup
z∈Cn

(|̃ f |p
(α)

(z))1/p(|̃ f |−q
(β)

(z))1/q < Cα,β for all α, β > 0.

(iii) w = | f |p belongs to Arestricted
p .

Finally note that the following is a direct consequence of Theorem 3.1.

COROLLARY 3.9. Let f be any measurable function on Cn where f 6≡ 0 a.e. and
where w = | f |p is in Arestricted

p . Then Tf T
f
−1 is bounded on Lp

α (and in particular,

bounded on Fp
α ) for any α > 0. Also, the same statement holds for Tf Tf−1 .

4. CLASSES OF WEIGHTS

In this section, we will analyze the classes of weights relevant to the results
of the previous sections.

First, for p > 1, define the invariant Ap class (which will be denoted by
Ainv

p ) to be the class of all weights w on ∂Bn such that

sup
z∈Bn

{ŵ(z)}{ ̂w−1/(p−1)(z)}p−1 < ∞.

Note that by definition, Ainv
p is Möbius invariant. For a definition and discussion

of Ainv
∞ weights on ∂D, see [26] and [27].
For p = 2, it is not difficult to show that A2 and Ainv

2 coincide. However, for
general p > 1, Ainv

p is strictly larger than Ap (see [26], [27] for examples). Also,
for a discussion of Ainv

p weights on R for 1 < p < ∞, see [12].
With this in mind, one can similarly define Binv

p,γ to be the class of all weights
w on Bn where

sup
z∈Bn

{Bγ(w)(z)}{Bγ(w−1/(p−1))(z)}p−1 < ∞.

Note that Binv
p,γ is also Möbius invariant.

We can also describe Bp,γ in terms of the Berezin transform. In particular,
we have:

PROPOSITION 4.1. A weight w on Bn is in Bp,γ if and only if

‖w‖BBer
p,γ

= sup
z∈Bn

{Bγ(w|kp−2
z |)(z)}{Bγ(w−1/(p−1)|kq−2

z |)(z)}p−1 < ∞.
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In particular, there exists a constant C independent of w where

1
C
‖w‖Bp,γ 6 ‖w‖BBer

p,γ
6 C‖w‖max{p+1,q+1}

Bp,γ
.

Note that this proposition tells us that Binv
p,γ = Bp,γ when p = 2.

If we define wζ(z) = (1− |z|2)ζ for ζ ∈ R, then a messy but elementary
application of the Rudin–Forelli estimates (see [29]) gives us the following two
propositions:

PROPOSITION 4.2. wζ ∈ Bp,γ if and only if −1− γ < ζ < (1 + γ)(p− 1).

PROPOSITION 4.3. wζ ∈ Binv
p,γ if and only if

(i) −1− γ < ζ < (1 + γ)(p− 1), and
(ii) −(p− 1)(n + 1 + γ) < ζ < n + 1 + γ.

These two propositions tell us that the classes Binv
p,γ and Bp,γ do not coincide

when either p > 2 + n/(1 + γ) or p < 1 + (1 + γ)/(n + 1 + γ). However, it is
unlikely that Binv

p,γ and Bp,γ coincide for any p > 1, n > 1, and γ > −1.
Also, we have the following analog of Proposition 4.1 for ∂Bn:

PROPOSITION 4.4. A weight w on ∂Bn is in Ap if and only if w satisfies

‖w‖APoi
p

= sup
z∈Bn

{ ̂w|kz|p−2(z)}{ ̂w−1/(p−1)|kz|q−2(z)}p−1 < ∞.

In fact, there exists a constant C independent of w where

1
C
‖w‖Ap 6 ‖w‖APoi

p
6 C‖w‖max{p+1,q+1}

Ap
.

Here, kz(w) = (1− |z|2)n/2/(1− w · z)n is the normalized reproducing ker-
nel of H2(∂Bn).

We will defer the proof of Propositions 4.1 and 4.4 until the last section since
the proof uses ideas found there. It should be noted that Propositions 4.1 and 4.4
are interestingly not true in the Rn setting when n > 2. In particular, if w(x) =
|x|α, then w ∈ A2 if and only if |α| < n, whereas the integrals in the expression
for the APoi

2 characteristic of w diverge if α > 1 (see [23]).
When p = 2, Proposition 4.4 was proven to be sharp in [12] for R. In partic-

ular, if −1 < α < 1/2 and if

w =

{
1 for x ∈ [0, 1)c,
(1− α)n for x ∈ (1/2n+1, 1/2n],

(4.1)

then ‖w‖A2 ≈ (1− 2α)−1, while ‖w‖Ainv
2
≈ (1− 2α)−2. Since virtually the same

example produces the same conclusion on ∂D, it would be interesting to know if
some example similar to (4.1) can be cooked up for the unit disk or the unit ball.

Note that Proposition 4.2 immediately gives us that one can not define the
class Bp,γ in terms of Bergman balls of a fixed radius. In particular, note that
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wζ(z) = (1− |z|2)ζ for any ζ ∈ R satisfies

sup
z∈Bn

( 1
vγ(D(z, r))

∫
D(z,r)

wζ dvγ

)( 1
vγ(D(z, r))

∫
D(z,r)

w−1/(p−1)
ζ dvγ

)p−1
< Cr

for some Cr > 1, where here D(z, r) ⊆ Bn is a ball with respect to the Bergman
metric with center z and radius r.

It should be remarked that the Muckenhoupt Ap class on Rn coincides with
the class of all weights w on Rn such that

‖w‖Aheat
p

= sup
(x,α)∈Rn×R+

(w̃(α)(x))( ˜w−1/(p−1)
(α)

(x))p−1 < ∞

(this was proven in [20] for n = 1, but the proof can easily be extended to the n >
1 case). Moreover, the characteristics defined by the corresponding supremums
are equivalent.

On the other hand, an argument that is similar to (but easier than) the proof
of Theorem 3.1 tells us that Arestricted

p coincides with the class of all weights w on
Rn where for each α, β > 0, there is some Cα,β < ∞ such that

sup
x∈Rn

(w̃(α)(x))( ˜w−1/(p−1)
(β)

(x))p−1 < Cα,β.(4.2)

Unfortunately, the argument gives no relationship between (4.2) for fixed α, β and
the Ap,r characteristic of a weight for a fixed r, though trivially there exists Cr,α,β
where

‖w‖Ap,r 6 Cr,α,β sup
x∈Rn

(w̃(α)(x))( ˜w−1/(p−1)
(β)

(x))p−1.

We will end our discussion of Ap and Bp,γ weights by comparing one last
property of Ap and Bp,γ weights. Recall that Coifmann and Fefferman proved in
[7] that

Ap =
⋃

1<q<p
Aq

if p > 1. Note that one side of this equality holds trivially by Hölder’s inequality.
Using Lemma 5.8 in Section 5, it is not difficult to see that

A∩ Bp,γ ⊆
⋃

1<q<p
Bq,γ(4.3)

where A is the collection of all | f | such that f is analytic on D with no zeros in D.
When γ = 0, Borichev generalized (4.3) and proved (among other things)

that

ES ∩ Bp,γ ⊆
⋃

1<q<p
Bq,γ
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where ES is the class of all functions eu for u subharmonic on D (see [3]). Fur-
thermore, it was shown in [3] that if S is the class of non-negative subharmonic
functions on D, then

S ∩ Bp,γ *
⋃

1<q<p
Bq,γ.

Given these results, it would be interesting to know if the results in [3], can be
extended to general γ > −1 and n > 1, or if (4.3) is true for n > 1.

5. A “REVERSE HÖLDER INEQUALITY" ON D

In this last section, we will provide a proof of Theorem 2.1 for the disk D by
extending the ideas of [24], [25] from the p = 2 case to the general p > 1 case. In
particular, we will prove the following “reverse Hölder inequality".

THEOREM 5.1. Let f ∈ Lp
a (D, dAγ) and f−1 ∈ Lq

a(D, dAγ) satisfy

sup
z∈D
{Bγ(| f k1−2/p

z |p)(z)}1/p{Bγ(| f−1k1−2/q
z |q)(z)}1/q < ∞.(5.1)

Then there exists ε > 0 such that

sup
z∈D
{Bγ(| f k1−2/p

z |p+ε)(z)}1/(p+ε){Bγ(| f−1k1−2/q
z |q+ε)(z)}1/(q+ε) < ∞.(5.2)

Once this is proved, Theorem 1.2 of [17] will give us that Tf T
f
−1 is bounded

on Lp
a (D, dAγ). Easy arguments from Section 2 will then complete the proof of

Theorem 2.1 for n = 1.
When p = 2, condition (5.2) is Möbius invariant, so that it is only necessary

to prove that (5.1) implies (5.2) when z = 0 in (5.2) (which was done in [24], [25]).
In other words, it is proven in [24], [25] that if both f , f−1 ∈ L2

a(D, dAγ) satisfy

sup
z∈D
{Bγ(| f |2)(z)}1/2{Bγ(| f |−2)(z)}1/2 < ∞,

then there exists ε > 0 and C > 0 such that( ∫
D

| f |2+ε dAγ

)1/(2+ε)
6 C

( ∫
D

| f |2 dAγ

)1/2
.(5.3)

When p 6= 2, condition (5.2) is not necessarily Möbius invariant, which means
that it is not enough to just verify (5.3) (where p replaces 2).

To prove Theorem 5.1, we will decompose D into convenient Carleson
squares using the “Bergman tree" of [1]. We will then run a Calderon–Zygmund
decomposition on each of these Carleson squares to prove a reverse Hölder type
inequality on each of these Carleson squares that is similar to (5.3). This will
allow us to prove that f satisfies an “A∞ type" condition with respect these Car-
leson squares if f satisfies (5.1). The decay provided by the normalized Bergman
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kernel, combined with this “A∞ type" condition, will then allow us to prove The-
orem 5.1.

We will now go through the details of the proof of Theorem 5.1. In what
follows, we will use the notation A ≈ B for two quantities A and B if there exists
C > 0 depending only on γ, n, and p where

1
C

A 6 B 6 CA.

The notation A . B and A & B will have similar meanings. For any 0 < h 6 1
and 0 6 θ < 2π, let Sh,θ ⊆ D denote the Carleson square defined by

Sh,θ = {re2πit : 1− h 6 r < 1, θ 6 t < θ + h}
and let

Th,θ =
{

re2πit : 1− h 6 r < 1− h
2

, θ 6 t < θ + h
}

denote the “bottom half" of the Carleson square Sh,θ . Here we will only be in-
terested in Carleson and bottom half Carleson squares of the form Sh,θ where
h = 2−n and θ = (k2−n) for n = 0, 1, 2, . . . and k = 0, 1, . . . , 2n − 1.

Let us now introduce the “Bergmann tree" of Arcozzi, Rochberg, and Sawyer
for D from [1]. Let D be the index set defined by

D = {(n, k) : n = 0, 1, 2, . . . and k = 0, 1, . . . , 2n − 1}.
We call o = (0, 1) the root of D. We give D a partial ordering by declaring η 6 β
if Sβ ⊆ Sη , and call D with this partial ordering the Bergman tree. Note that this
partial ordering means that So 6 Sβ for every β ∈ D. Also, we will let cβ denote
the center (radially and angularly) of Tβ and let d(β) = n if β = (n, k). Moreover,
if β 6 β′ with d(β) = d(β′)− 1 then we say β′ is a child of β. Cleary each β ∈ D
has only two children. Note that by definition we have that

Sη =
⋃

β>η

Tβ.

If z, w ∈ D where z = reiθ , w = seiϑ, and 0 6 θ, ϑ < 2π, then it is easy to see
that

|1− zw|2 = (1− rs)2 + 4rs sin2((θ − ϑ)/2).(5.4)

Thus, there exists R > 0 independent of β ∈ D such that

D(cβ, 1/R) ⊆ Tβ ⊆ D(cβ, R)(5.5)

where D(z, r) is a Bergman disk of radius r and center z. Also, it is not difficult to
see that

Aγ(Tβ) ≈ Aγ(Sβ) ≈ 2−d(β)(2+γ)

for each β ∈ D.
Given any Sβ with β ∈ D, we can form dyadic partitions of Sβ by dyadically

bisecting Sβ in the angular and radial direction. Any subset Q ⊂ Sβ formed in
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this way will be called a dyadic subrectangle of Sβ. Note that since D = So, the
“dyadic rectangles" of [24], [25] are dyadic subrectangles of D according to our
definition. In particular, any dyadic subrectangle of D can be written in the form

Qn,m,k = {re2πiθ : (m− 1)2−n 6 r < m2−n and (k− 1)2−nπ 6 θ < k2−nπ}
where k, m, and n are positive integers such that m, k 6 2n. Also, the center
of Q = Qn,m,k is the point zQ = (m − 1/2)2−neiϑ with ϑ = (k − 1/2)21−nπ.
Throughout this section we will use zQ to denote the center (angularly and ra-
dially) of a dyadic subrectangle of D, whereas cβ will denote the center of Tβ for
β ∈ D.

LEMMA 5.2. Let f ∈ Lp
a (D, dAγ) satisfy (5.1) and let R > 0. Then there exists

CR > 0 such that

1
CR

6
| f (z)|
| f (w)| 6 CR

whenever z ∈ D(w, R).

Proof. The proof is very similar to the proof of Lemma 4.3 in [25], though we
include it for the sake of completeness. According to Lemma 4.30 in [30], there
exists C > 0 depending on n, p, R, and γ such that

1
C
(1− |w|2)(2/p−1)((2+γ)/2) 6 |k1−2/p

w (z)| 6 C(1− |w|2)(2/p−1)((2+γ)/2)

whenever z ∈ D(w, R).
For z ∈ D(w, R), let z = ϕw(u) with u ∈ D(0, R). Then we have that

| f (z)| 6 C(1− |w|2)(1−2/p)((2+γ)/2)| f (ϕw(u))||k1−2/p
w (ϕw(u))|

6 C(1− |w|2)(1−2/p)((2+γ)/2){Bγ(| f k1−2/p
w |p)(w)}1/p.

Similarly, for f−1 we have that

1
| f (w)| 6 C(1− |w|2)(1−2/q)((2+γ)/2){Bγ(| f−1k1−2/q

w |q)(w)}1/q

which means that
| f (z)|
| f (w)| 6 C{Bγ(| f k1−2/p

w |p)(w)}1/p{Bγ(| f−1k1−2/q
w |q)(w)}1/q 6 C

where here C depends on R and the the supremum in (5.1). Replacing f by f−1

and p with q in the above argument now completes the proof.

The following two results were proven in [25].

PROPOSITION 5.3. For every dyadic subrectangle Q of D and every z ∈ Q, we
have that

|kzQ(z)|
2 &

1
(1− |zQ|2)2+γ

.
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PROPOSITION 5.4. There exists R > 0 such that Q ⊆ D(zQ, R) for every dyadic
subrectangle Q of D that has positive distance to ∂D.

LEMMA 5.5. Let f ∈ Lp
a (D, dAγ) satisfy (5.1) and let w = | f |p. Then for each

β ∈ D and each dyadic subrectangle Q of Sβ, we have that( 1
Aγ(Q)

∫
Q

w dAγ

) ( 1
Aγ(Q)

∫
Q

w−1/(p−1) dAγ

)p−1
6 C(5.6)

where C is independent of β and Q.

Proof. Clearly it is enough to show that there exists C > 0 independent of β
and Q where( 1

Aγ(Q)

∫
Q

| f |pdAγ

)1/p( 1
Aγ(Q)

∫
Q

| f |−qdAγ

)1/q
6 C.

First assume that β = o, so that Sβ = D. If Q = D, then this follows im-
mediately from (5.1). If d(Q, ∂D) > 0 then the result immediately follows from
Proposition 5.4 and Lemma 5.2. If d(Q, ∂D) = 0 then the lemma follows from
Proposition 5.3 and the fact that Aγ(Q) = 23+2γ|zQ|1+γ(1− |zQ|)2+γ (see [25]).

Now assume that β 6= o. Note that if we dyadically quadrisect Sβ any num-
ber of times, then an easy induction shows that we either obtain one of three
types of sets: Sβ′ where β′ > β, the left (or right) angular half of some Tβ′ , or re-
peated quadrisection of the left (or right) angular half of some Tβ′ . In particular,
this tells us that any dyadic subrectangle Q of Sβ is either Sβ′ for some β′ > β or
is contained in the hyperbolic disk D(cβ′ , R) where β′ > β and R is the constant
from (5.5).

In the latter case, the lemma follows immediately from Lemma 5.2. To finish
the proof, we will show that Lemma 5.5 is true for each Sβ. If z ∈ Sβ with z = reiθ

where 0 6 θ < 2π, then by the definition of Sβ we have that |θ − ϑ| 6 2−d(β)

where cβ = seiϑ with 0 6 ϑ < 2π. Thus, since (1− |cβ|2) ≈ 2−d(β), we have from
(5.4) that

|kcβ
(z)| =

(1− |cβ|2)(2+γ)/2

|1− zcβ|2+γ
&

1
Aγ(Sβ)1/2

which tells us that

{Bγ(| f k1−2/p
cβ

|p)(cβ)}1/p =
( ∫
D

| f kcβ
|p dAγ

)1/p
>
( ∫

Sβ

| f kcβ
|p dAγ

)1/p

&
1

Aγ(Sβ)1/2

( ∫
Sβ

| f |p dAγ

)1/p
.(5.7)

Switching f with 1/ f , and switching p with q, now completes the proof.
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The proof of the following is a standard application of Lemma 5.5 (and is
very similar to the proof of Lemma 4.6 of [25]). The proof will therefore be omit-
ted. Note that for the rest of this section γ > −1 will be fixed and for a measurable
set E ⊆ D we will use the notation w(E) =

∫
E

w dAγ.

LEMMA 5.6. Let f ∈ Lp
a (D, dAγ) satisfy (5.1) and let C1 be the constant in

Lemma 5.5. If w = | f |p and if δ = 1− 1/(2pC1), then we have

w(E) 6 δw(Q)

whenever E is a subset of a dyadic subrectangle Q of any Sβ where Aγ(E)6 (1/2)Aγ(Q).

Now, suppose that we have a dyadic subrectangle Q of Sβ for some β ∈ D.
If Q is formed from k > 1 repeated dyadic quadrisections of Sβ, then we define
the double 2Q of Q to be the unique dyadic subrectangle of Sβ formed by k − 1
repeated dyadic quadrisections of Sβ that also contains Q. We will now establish
a doubling property that extends Proposition 4.9 of [25].

LEMMA 5.7. For any β ∈ D and any dyadic subrectangle Q $ Sβ, we have that
Aγ(2Q) . Aγ(Q).

Proof. If Q is a dyadic subrectangle of D, then this was proven in Proposi-
tion 4.9 of [25], so assume that Q is a dyadic subrectangle of Sβ with d(β) > 1.

As stated in the proof of Lemma 5.5, repeated quadrisection of Sβ gives
us one of the following three sets: Sβ′ where β′ > β, the left (or right) angular
half of Tβ′ , or the repeated quadrisection of the left (or right) angular half of Tβ′ .
However, since Aγ(Sβ) ≈ Aγ(Tβ) ≈ 2−d(β)(2+γ), it is easy to see that Aγ(2Q) 6
CAγ(Q) for either of these cases, where C > 0 is independent of Q.

LEMMA 5.8. Let f ∈ Lp
a (D, dAγ) satisfy (5.1). Also, let C̃ > 0 be the constant

in Lemma 5.7 and let δ be the constant from Lemma 5.6. If β ∈ D, then for any dyadic
subrectangle Q of Sβ (including Sβ itself), we have that( 1

Aγ(Q)

∫
Q

w1+ε dAγ

)1/(1+ε)
6
(

1 +
(2C̃)ε

1− (2C̃)εδ

)1/(1+ε) 1
Aγ(Q)

∫
Q

w dAγ

whenever (2C̃)εδ < 1.

Using Lemmas 5.6 and 5.7, the proof is identical to the proof of Theorem 7.4
in [11].

LEMMA 5.9. Let f ∈ Lp
a (D, dAγ) satisfy (5.1) and let w = | f |p. Then for any

β ∈ D, any E ⊂ Sβ, and small enough ε, we have∫
E

w1+ε dAγ 6 C
( ∫

Sβ

w1+ε dAγ

)( Aγ(E)
Aγ(Sβ)

)ε/(1+ε)

where C is independent of E and β.
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Proof. The proof is similar to the proof of Corollary 7.6 of [11], but requires
a somewhat careful tracking of the constants involved. Let β ∈ D and let Q be
any dyadic subrectangle of Sβ. By Lemma 5.8,

( 1
Aγ(Q)

∫
Q

w1+ε1dAγ

)1/(1+ε1)
6
(

1+
(2C̃)ε1

1−(2C̃)ε1 δ

)1/(1+ε1) 1
Aγ(Q)

∫
Q

wdAγ(5.8)

whenever (2C̃)ε1 δ<1 where δ=1−1/(2pC1) and C1 is the constant in Lemma 5.5.
Similarly, since w−1/(p−1) satisfies the conclusion of Lemma 5.5 with Aq

characteristic Cq−1
1 , we have that( 1

Aγ(Q)

∫
Q

w−(1+ε1)(1/(p−1)) dAγ

)1/(1+ε1)

6
(

1+
(2C̃)ε1

1−(2C̃)ε1 δ′

)1/(1+ε1) 1
Aγ(Q)

∫
Q

w−1/(p−1) dAγ(5.9)

whenever (2C̃)ε1 δ′ < 1 where δ′ = 1− (1/2qCq−1
1 ).

Combining (5.6), (5.8), and (5.9), we have that( 1
Aγ(Q)

∫
Q

w1+ε1 dAγ

)( 1
Aγ(Q)

∫
Q

w−(1+ε1)(1/(p−1)) dAγ

)p−1

6 C1+ε1
1

(
1 +

(2C̃)ε1

1− (2C̃)ε1 δ

)(
1 +

(2C̃)ε1

1− (2C̃)ε1 δ′

)p−1
(5.10)

which means that w1+ε1 satisfies the conclusion of Lemma 5.5 (for small enough
ε1) with Ap characteristic

C1,ε1 = C1+ε1
1

(
1 +

(2C̃)ε1

1− (2C̃)ε1 δ

)(
1 +

(2C̃)ε1

1− (2C̃)ε1 δ′

)p−1
.

Moreover, (5.10) implies that Lemma 5.6 holds for w1+ε1 with constant δε1 =
1− 1/2pC1,ε1 , and so another application of Lemma 5.8 with Q = Sβ gives us that( 1

Aγ(Sβ)

∫
Sβ

w(1+ε1)(1+ε2)dAγ

)1/(1+ε2)

6
(

1 +
(2C̃)ε2

1− (2C̃)ε2 δε1

)1/(1+ε2) 1
Aγ(Sβ)

∫
Sβ

w1+ε1 dAγ(5.11)

so long as ε2 > 0 is chosen small enough to make (2C̃)ε2 δε1 < 1.
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Finally, setting ε = ε2 = ε1 where ε is chosen small enough and using (5.11)
and Hölder’s inequality, we have

w1+ε(E) =
∫
Sβ

χEw1+ε dAγ 6 (w(1+ε)(1+ε)(Sβ))
1/(1+ε)Aγ(E)ε/(1+ε)

6 Cw1+ε(Sβ)
( Aγ(E)

Aγ(Sβ)

)ε/(1+ε)
.

We may now complete the proof of Theorem 5.1. If β ∈ D with β = (n, k),
then define S̃β to be

S̃β = S(n,k−1) ∪ S(n,k) ∪ S(n,k+1).

Fix u ∈ D and pick β ∈ D such that u ∈ Tβ. Because of Lemma 5.8, we may
assume that d(β) > 2. For any o < η 6 β, let η̃ be the parent of η. Then by (5.4)
and the definition of S̃η , we have that

sup
z∈D\S̃η

|ku(z)|2 . 2−d(β)(2+γ)22d(η)(2+γ) .
1

Aγ(S̃η̃)
2−(d(β)−d(η))(2+γ).(5.12)

Using (5.12) and the fact that

D =
( ⋃

o<η6β

S̃η̃\S̃η

)
∪ S̃β,

we have that

{Bγ(| f k1−2/p
u |p+ε1)(u)}1/(p+ε1)=

( ∫
D

| f k1−2/p
u |p+ε1 |ku|2 dAγ

)1/(p+ε1)

6 ∑
o<η6β

2−d(β)((2+γ)/2)(1−2/p)2d(η)(2+γ)(1−2/p)

×2−(2+γ)/(p+ε1)(d(β)−d(η))
(| f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)
.

Similarly, we have

{Bγ(| f−1k1−2/q
u |q+ε2)(u)}1/(q+ε2)(5.13)

=
( ∫
D

| f−1k1−2/q
u |q+ε2 |ku|2 dAγ

)1/(q+ε2)

. ∑
o<η′6β

2−d(β)((2+γ)/2)(1−2/q)2d(η′)(2+γ)(1−2/q)

×2−((2+γ)/(q+ε2))(d(β)−d(η′))
( | f |−q−ε2(S̃

η̃′)

Aγ(S̃η̃′)

)1/(q+ε2)
.
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Combining these two inequalities gives us that

{Bγ(| f k1−2/p
u |p+ε1)(u)}1/(p+ε1){Bγ(| f−1k1−2/q

u |q+ε2)(u)}1/(q+ε2)

. ∑
o<η,η′6β

2d(η)(2+γ)(1−2/p)2d(η′)(2+γ)(1−2/q)2−(2+γ)/(p+ε1)(d(β)−d(η))

× 2−(2+γ)/(q+ε2)(d(β)−d(η′))
( | f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)( | f |−q−ε2(S̃
η̃′)

Aγ(S̃η̃′)

)1/(q+ε2)
.

Now observe that if η, η′ 6 β, then we either have that η 6 η′ or η′ 6 η.
Thus, without loss of generality, we need to bound the following quantity by a
constant that is independent of β ∈ D:

∑
o<η6η′6β

2d(η)(2+γ)(1−2/p)2d(η′)(2+γ)(1−2/q)2−(2+γ)/(p+ε1)(d(β)−d(η))

× 2−((2+γ)/(q+ε2))(d(β)−d(η′))
( | f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)( | f |−q−ε2(S̃
η̃′)

Aγ(S̃η̃′)

)1/(q+ε2)
(5.14)

and we need to do the same when the above sum is taken over {η, η′ ∈ D : o <
η′ 6 η 6 β}.

We first estimate (5.14) for η 6 η′ 6 β. Note that that

1
Aγ(S̃η̃′)

≈ 2(d(η
′)−d(η))(2+γ) 1

Aγ(S̃η̃)
.(5.15)

Moreover, since the conclusion of Lemma 5.5 holds when S̃η̃ replaces Sη̃ for any
η ∈ D, it is not difficult to check that the conclusion of Lemma 5.9 holds when S̃η̃

replaces Sη̃ . Thus, since S̃
η̃′ ⊆ S̃η̃ , we have that∫

S̃
η̃′

| f |−q−ε2 dAγ . 2−(d(η
′)−d(η))(2+γ)(ε2/(q+ε2))

∫
S̃η̃

| f |−q−ε2 dAγ(5.16)

for small enough ε2. Also, an application of Lemma 5.5 and Lemma 5.8 (where
again S̃η̃ replaces Sη̃) gives us that

( | f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)( | f |−q−ε2(S̃η̃)

Aγ(S̃η̃)

)1/(q+ε2)
6 C(5.17)

where C is independent of η ∈ D.
Plugging (5.15), (5.16), and (5.17) into (5.14) gives us that

∑
o<η6η′6β

2d(η)(2+γ)(1−2/p)2d(η′)(2+γ)(1−2/q)2−(2+γ)/(p+ε1)(d(β)−d(η))
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× 2−(2+γ)/(q+ε2)(d(β)−d(η′))
( | f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)

×
( | f |−q−ε2(S̃

η̃′)

Aγ(S̃η̃′)

)1/(q+ε2)

. ∑
η6η′6β

2d(η)(2+γ)(1−2/p)2d(η′)(2+γ)(1−2/q)2(2+γ)/(q+ε2)(d(η′)−d(η))

× 2−ε2/(q+ε2)
2(d(η′)−d(η))(2+γ)2−(2+γ)/(p+ε1)(d(β)−d(η))

× 2−(2+γ)/(q+ε2)(d(β)−d(η′))

= ∑
η′6β

2−(d(β)−d(η′))(2+γ)(1/(p+ε1)+(1/(q+ε2)))

× ∑
η6η′

2−(d(η
′)−d(η))(2+γ)(ε2/(q+ε2)

2−ε1/p(p+ε1)+ε2/q(q+ε2)).(5.18)

Similarly, we have that

∑
o<η′6η6β

2d(η)(2+γ)(1−2/p)2d(η′)(2+γ)(1−2/q)2−(2+γ)/(p+ε1)(d(β)−d(η))

× 2−(2+γ)/(q+ε2)(d(β)−d(η′))
( | f |p+ε1(S̃η̃)

Aγ(S̃η̃)

)1/(p+ε1)

×
( | f |−q−ε2(S̃

η̃′)

Aγ(S̃η̃′)

)1/(q+ε2)

. ∑
η6β

2−(d(β)−d(η))(2+γ)(1/(p+ε1)+1/(q+ε2))

× ∑
η′6η

2−(d(η)−d(η′))(2+γ)(ε1/(p+ε1)
2−ε2/q(q+ε2)+ε1/p(p+ε1)).(5.19)

Clearly the sums (5.18) and (5.19) converge to a sum that has an upper
bound independent of β ∈ D if we simultaneously have

ε2
(q+ε2)2 +

ε2
q(q+ε2)

> ε1
p(p+ε1)

,
ε1

(p+ε1)2 +
ε1

p(p+ε1)
> ε2

q(q+ε2)
.

Moreover, both of these are trivially satisfied if ε2/q(q + ε2) = ε1/p(p + ε1) or
ε1 = ε2 p2/(q2 + ε2q− ε2 p) and so the proof is complete so long as ε2 > 0 is set
small enough.

Finally in this paper, we will prove Propositions 4.1 and 4.4, starting with
Proposition 4.4. The proof is similar to the proof of Theorem 3.2.2 in [12], though
we include it since some of the details are different. Let d(u, v) denote the non-
isotropic metric on ∂Bn given by d(u, v) = |1− u · v|1/2 and let B = B(u, r) denote
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a ball in this metric. It is well known (see [29]) that B(u, r) = ∂Bn when r >
√

2
and that there exists C > 0 independent of r and u such that

1
C

r2n 6 σ(B(u, r)) 6 Cr2n(5.20)

where σ is the canonical surface measure on ∂Bn.
Fix some large M > 0 such that C2M−n 6 1/2 where C is the constant in

(5.20). Without loss of generality fix some z ∈ Bn where 1/M < 1− |z| < 1 and
pick J ∈ N such that M−J−1 6 1− |z| < M−J , and let Bk = B(z/|z|, M(k−J)/2) for
k ∈ {0, 1, . . . , J + 1}. Now, for any 0 6 t 6 1, 0 6 a 6 1, and θ ∈ R, we have

|1− taeiθ |2 = t|1− aeiθ |2 + (1− t)(1− ta2) > t|1− aeiθ |2.

Thus, if ζ ∈ ∂Bn\Bk, then writing ζ · z = taeiθ where t = |z| and aeiθ = ζ · (z/|z|)
gives us that

|kz(ζ)| =
(1− |z|2)n/2

|1− ζ · z|n . M−nJ/2M−n(k−J) .
M−nk/2

(σ(Bk+1))1/2 .

Also, if ζ ∈ B0, then we have that |kz(ζ)| ≈ (σ(B0))
−1/2.

Thus, if we define B−1 = ∅ then we have that( ∫
∂Bn

w|kz|p dσ
)1/p( ∫

∂Bn

w−1/(p−1)|kz|q dσ
)1/q

6
J

∑
k,k′=−1

( ∫
Bk+1\Bk

w|kz|p dσ
)1/p( ∫

Bk′+1\Bk′

w−1/(p−1)|kz|q dσ
)1/q

.
J

∑
k,k′=−1

M−nk/2

(σ(Bk+1))1/2
M−nk′/2

(σ(Bk′+1))1/2

( ∫
Bk+1

wdσ
)1/p( ∫

Bk′+1

w−1/(p−1)dσ
)1/q

.(5.21)

Now break the sum in (5.21) into two sums, the first of which is taken over
k 6 k′ and the second over k′ < k. In the first case, we have that

M−nk/2

(σ(Bk+1))1/2 .
M−nk/2Mn(k′−k)/2

(σ(Bk′+1))1/2 =
M−nk Mnk′/2

(σ(Bk′+1))1/2 .

Moreover, similar to Lemma 5.6, we have that w(Bk+1)/w(Bk′+1) 6 δk′−k
1 where

δ1 = 1− (2p‖w‖Ap)
−1. Thus, we have that

J

∑
k6k′

M−nk/2

(σ(Bk+1))1/2
M−nk′/2

(σ(Bk′+1))1/2

( ∫
Bk+1

w dσ
)1/p( ∫

Bk′+1

w−1/(p−1) dσ
)1/q

.
J

∑
k6k′

M−nkδk′−k
1

(σ(Bk′+1))1/2

( ∫
Bk′+1

w dσ
)1/p( ∫

Bk′+1

w−1/(p−1) dσ
)1/q
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=
J

∑
k=−1

M−nk
J

∑
k′=k

δ
(k′−k)/p
1

( 1
(σ(Bk′+1))1/2

∫
Bk′+1

wdσ
)1/p( 1

(σ(Bk′+1))1/2

∫
Bk′+1

w−1/(p−1)dσ
)1/q

.‖w‖1+1/p
Ap

.

Similarly, for k′ < k we have that (w− 1/(p−1)(Bk′+1))/(w−1/(p−1)(Bk+1)) 6

δk−k′
2 where δ2 = 1− (2q‖w‖q/p

Ap
)−1, so that

J

∑
k′<k

M−nk/2

(σ(Bk+1))1/2
M−nk′/2

(σ(Bk′+1))1/2

( ∫
Bk+1

wdσ
)1/p( ∫

Bk′+1

w−1/(p−1)dσ
)1/q

. ‖w‖(1+q)/p
Ap

which proves Proposition 4.4.
Now to prove Proposition 4.1, let d be the pseudo-metric d(z, u) = ||z| −

|u|| + |1 − (z/|z|) · (u/|u|)| on Bn. According to Lemma 2 in [2], there exists
C > 0 such that

1
C

rn+1+γ 6 vγ(B(u, r)) 6 Crn+1+γ

whenever r > 1− |u| (and u ∈ Bn). As before, pick some large M > 0 where
C2M−(n+1+γ) 6 1/2 and for some fixed 1/M < 1 − |z| < 1, pick J where
M−J−1 6 1− |z| < M−J and let Bk = B(z, Mk−J) for k ∈ {0, 1, . . . , J + 1}. Note
that we clearly have z/|z| ∈ Bk for each k and note that Mk−J > 1− |z|. Further-
more, if we can show that

(5.22) sup
u∈Bn\Bk

|kz(u)| .
M−(k/2)(n+1+γ)

(vγ(Bk+1))1/2

then the proof of Proposition 4.1 will be almost identical to the proof of Proposi-
tion 4.4 above.

To that end, set t = |z||u| and aeiθ = (z/|z|) · (u/|u|) so 0 6 a, t < 1. Then
as before we can write

|1− z · u|2 = t|1− aeiθ |+ (1− t)(1− ta2)

> |z||u||1− z
|z| ·

u
|u| |

2 + (1− |z||u|)1/2.(5.23)

First note that we can obviously assume that |u| > 1/2 since otherwise (5.1) is
obviously true. Now if u 6∈ Bk then either ||z| − |u|| > (1/2)Mk−J or |1− (z/|z|) ·
(u/|u|)| > (1/2)Mk−J . In the latter case we clearly have |1− z · u| & Mk−J and
the former case we have

1− |u| > 1− |z|+ 1
2

Mk−J > M−J−1 +
1
2

Mk−J & Mk−J

so again |1− z · u| & Mk−J . Thus,

sup
u∈Bn\Bk

|kz(u)| .
M−(J/2)(n+1+γ)

M(k−J)(n+1+γ)
≈ M−(k/2)(n+1+γ)

(vγ(Bk+1))1/2 .
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