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ABSTRACT. In this paper, we are interested in the properties of a new class of
operators, recently introduced by Shkarin, called strongly n-supercyclic oper-
ators. This notion is stronger than n-supercyclicity. We prove that such oper-
ators have interesting spectral properties and we give examples and counter-
examples answering some questions asked by Shkarin.
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1. INTRODUCTION

In what follows X will denote completely separable Baire vector spaces over
the field K = R,C and T will be a bounded linear operator on X. Since the last
1980’s, density properties of orbits of operators have been of great interest for
many mathematicians, particularly hypercyclic and cyclic operators for their link
with the invariant subspace problem. Another reason explaining this interest
is that they appear in many well-known classes of operators: weighted shifts,
composition operators, translation operators...

DEFINITION 1.1. A vector x ∈ X is said to be hypercyclic (respectively super-
cyclic) for T if its orbit O(x, T) := {Tnx, n ∈ Z+} (respectively projective orbit
{λTnx, n ∈ Z+, λ ∈ K}) is dense in X. The operator T is said to be hypercyclic
(respectively supercyclic) if it admits at least one hypercyclic (respectively super-
cyclic) vector.

One may remove linearity in this definition, then under the same assump-
tions, T is said to be universal. The definition of supercyclicity was introduced in
1974 by Hilden and Wallen [11]. As one can see, this notion does not deal with
orbits of vectors any more but with orbits of lines.

As we said before, these properties have been intensively studied and the
reader may refer to [3] and [10] for a deep and complete survey.
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One of the main ingredient providing such operators is the so called super-
cyclicity criterion given by H.N. Salas [13], which is only a sufficient condition
for supercyclicity.

SUPERCYCLICITY CRITERION. Let X be a separable Banach space and T ∈
L(X). T satisfies the supercyclicity criterion if there exist a strictly increasing sequence
(nk)k∈Z+

, two dense sets D1,D2 ⊂ X in X and a sequence of maps Snk : D2 → X such
that:

(i) ‖Tnk x‖‖Snk y‖ → 0 for any x ∈ D1 and y ∈ D2;
(ii) Tnk Snk y→ y for any y ∈ D2.

If T satisfies the supercyclicity criterion, then T is supercyclic.

This result is at the very heart of the theory. Indeed, only very few oper-
ators have been proved to be supercyclic without using this criterion. Recently,
some authors tried to generalise supercyclicity in a natural way. The first one is
N. Feldman [9] at the beginning of the 2000’s.

DEFINITION 1.2. An operator T is said to be n-supercyclic, n > 1, if there is
a subspace of dimension n in X with dense orbit.

These operators have been studied in [1], [2], [4] and [6] and [8] and many
other articles. Feldman gave various classes of n-supercyclic operators and in
particular the following:

EXAMPLE 1.3 ([9]). Let n ∈ N. If {∆k, 1 6 k 6 n} is a collection of open

disks, Sk = Mz on L2
a(∆k) for any 1 6 k 6 n and S =

n⊕
k=1

Sk, then S∗ is n-

supercyclic.

Then, in 2004, Bourdon, Feldman and Shapiro [6] proved in the complex
setting that n-supercyclicity is a purely infinite dimensional phenomenon.

THEOREM 1.4. Let n > 2. There is no (n − 1)-supercyclic operator on Cn. In
particular, there is no k-supercyclic operator on Cn for any 1 6 k 6 n− 1.

Recently, the present author [8] proved that things were different in the real
setting. These theorems recall the behaviour of supercyclic operators in finite
dimensional vector spaces.

Nevertheless, even though most of the supercyclic theorems have an
n-supercyclic counterpart, some questions remain open. In particular, one may
ask whether there exist a Birkhoff theorem, an n-supercyclicity criterion or even
if the Ansari theorem remains true for n-supercyclic operators. These questions
are “more difficult” than the previous ones mainly because X being a vector
space, we are not considering a “natural space” for working on orbits of n-dimen-
sional subspaces. In this spirit, in 2008, Shkarin [14] proposed the concept of
strong n-supercyclicity requiring a stronger condition as its name suggests. Let
us first recall some well-known facts before coming to the definition of strong
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n-supercyclicity. If X has dimension greater than n ∈ N, then one may define
a topology on the n-th Grassmannian, denoted by Pn(X), which is the set of all
n-dimensional subspaces of X. To do so, set Xn the open set of all linearly in-
dependent n-tuples x = (x1, . . . , xn) ∈ Xn and endow Xn with the topology
induced by Xn. Then set πn : Xn → Pn(X), πn(x) = Span(x1, . . . , xn) and define
the topology on Pn(X) as being the coarsest for which πn is continuous and open.
Actually, one can check that there exists only one topology on Pn(X) being both
continuous and open. Now, let us move to the awaited definition:

DEFINITION 1.5. Let n ∈ N. An n-dimensional subspace of X is said to be
strongly n-supercyclic for T if for every k ∈ Z+, Tk(L) has dimension n and if its
orbit

O(L, T) := {Tn(L), n ∈ Z+}
is dense in Pn(X). The set of all strongly n-supercyclic subspaces for T is de-
noted ESn(T). The bounded linear operator T is called strongly n-supercyclic if
ESn(T) 6= ∅.

REMARK 1.6. In this definition and all along this paper, we make no differ-
ence between L as a subspace of X and L as an element of Pn(X).

The main interest of this definition, compared to Feldman’s one, is that it
reduces to the universality of T on the space Pn(X). From this point of view,
the definition of strongly n-supercyclic operators seems quite natural. Moreover,
with this observation Shkarin [14] proved that strongly n-supercyclic operators
do satisfy the Ansari property:

THEOREM ANSARI–SHKARIN. Let k, n ∈ N. Then ESn(T) = ESn(Tk). In
particular, T is strongly n-supercyclic if and only if Tk is strongly n-supercyclic.

When he introduced the previous definition, Shkarin asked the question
whether n-supercyclicity is equivalent to strong n-supercyclicity. Indeed, a pos-
itive answer to this question would solve the Ansari property problem for n-
supercyclic operators. In fact, the present author gave a negative answer to this
question in [8] and we will construct some more counterexamples in the present
paper. Since [14] is very concise on strong n-supercyclicity, giving only the defi-
nition and the Ansari property, and [8] is only concerned with the finite dimen-
sional setting, the aim of this paper is to present a deeper study of strong n-
supercyclicity.

2. PRELIMINARIES AND EQUIVALENT CONDITIONS TO STRONG n-SUPERCYCLICITY

A useful theorem in linear dynamics is Birkhoff’s transitivity theorem be-
cause it permits to consider the ”orbit of an open set” instead of the orbit of a
point and is the key point to prove the hypercyclicity and supercyclicity criteria.
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This property is called topological transitivity. Such a result would be a stable an-
chor for studying strongly n-supercyclic operators and this is the purpose of this
section. But first, we are going to expose general properties that we need in the
sequel and which allow one to express strong n-supercyclicity in a more concrete
and handy way. The following property is easy to check and allows one to work
on the space Xn instead of the space Xn which is less structured.

PROPOSITION 2.1. Xn is dense in Xn.

REMARK 2.2. The following trivial fact is important in the sequel: let U
be a non-empty open set in Xn and L be an n-dimensional subspace of X, then
(L× · · · × L) ∩U 6= ∅⇔ L ∈ πn(U).

Thanks to the link between Xn and Xn, we are now able to characterise
strong n-supercyclicity by density properties in Xn rather than in Pn(X).

PROPOSITION 2.3. The following are equivalent:
(i) T is strongly n-supercyclic.

(ii) There exists a subspace L of X with dimension n such that for every i ∈ Z+, Ti(L)

is n-dimensional and B :=
∞⋃

i=1
π−1

n (Ti(L)) is dense in Xn.

(iii) There exists a subspace L of X with dimension n such that for every i ∈ Z+, Ti(L)

is n-dimensional and E :=
∞⋃

i=1
(Ti(L)× · · · × Ti(L)) is dense in Xn.

Proof. We first prove that (i)⇔ (ii) and then (ii)⇔ (iii).
(i) ⇒ (ii) Let x = (x1, . . . , xn) ∈ Xn, M := πn(x) ∈ Pn(X) and V be a

non-empty open neighbourhood of x in Xn. Since πn is open, then W := πn(V)
is an open neighbourhood of M in Pn(X). Moreover, strong n-supercyclicity of T
implies that there exists an n-dimensional subspace L of X such that {Tn(L)}n∈N
is dense in Pn(X), thus there exists k ∈ N such that Tk(L) ∈ W. Hence, there
exists y ∈ V such that πn(y) = Tk(L) and then y ∈ π−1

n (Tk(L)) ⊂ B. This proves
the density of B in Xn and thus in Xn.

(i)⇐ (ii) Assume that B is dense in Xn, the fact that B ⊂ Xn yields that B is
dense in Xn. Since πn is continuous and onto, πn(B) is dense in Pn(X). Moreover

πn(B) = πn

( ∞⋃
i=1

π−1
n (Ti(L))

)
=

∞⋃
i=1

πn(π
−1
n (Ti(L))) =

∞⋃
i=1

Ti(L).

Thus, we proved that
∞⋃

i=1
Ti(L) is dense in Pn(X) and T is strongly n-supercyclic.

(ii)⇒ (iii) By definition of πn, for any k ∈ N, π−1
n (Tk(L)) ⊂ Tk(L)× · · · ×

Tk(L) ⊂ Xn, thus B ⊂ E and then E is dense in Xn.
(ii) ⇐ (iii) Let U be a non-empty open set of Xn. Since Xn is an open and

dense subset of Xn, then the set Xn ∩U is also non-empty and open in Xn and
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since E is dense in Xn, there exists x ∈ E ∩ Xn ∩ U = Xn ∩
( ∞⋃

i=1
Ti(L) × · · · ×

Ti(L)
)
∩U. Hence there is k ∈ N such that x ∈ Xn ∩ (Tk(L)× · · · × Tk(L)) ∩U,

so πn(x) = Tk(L) and then x ∈ B ∩U.

REMARK 2.4. In particular, (iii) above allows us to notice that if T = T1 ⊕
· · ·⊕Tn on X = E1⊕· · ·⊕En is strongly k-supercyclic, then for any i ∈ {1, . . . , n},
Ti is strongly ki-supercyclic where ki = min(dim(Ei), k).

The last proposition makes possible to characterise the strongly n-supercy-
clic subspaces for an operator and shows that ESn(T) is either empty or a Gδ

subset of Pn(X). Let us denote by (Vj)j∈Z+
an open basis of X.

PROPOSITION 2.5. ESn(T) =
⋂

(j1,...,jn)∈Nn

⋃
i∈N

πn((T ⊕ · · · ⊕ T)−i(Vj1 × · · · ×

Vjn) ∩ Xn).

Proof. Let L ∈ ESn(T), according to Proposition 2.3, this means that the set
∞⋃

i=1
Ti(L)× · · · × Ti(L) is dense in Xn. Then using the open basis this is equivalent

to saying that

∀(j1, . . . , jn) ∈ Nn, ∃i ∈ N : (Ti(L)× · · · × Ti(L)) ∩ (Vj1 × · · · ×Vjn) 6= ∅.

Thus, Xn being a dense open set of Xn, this can be re-written

∀(j1, . . . , jn) ∈ Nn, ∃i ∈ N : Xn ∩ (L× · · · × L) ∩
( n⊕

k=1

T
)−i

(Vj1 × · · · ×Vjn) 6= ∅.

Finally, applying πn to the previous line gives the relation we expect:

L ∈
⋂

(j1,...,jn)∈Nn

⋃
i∈N

πn((T ⊕ · · · ⊕ T)−i(Vj1 × · · · ×Vjn) ∩ Xn).

At that point, it is possible to give a similar result as Birkhoff’s transitivity
theorem for the strong n-supercyclicity setting:

PROPOSITION 2.6. The following are equivalent:
(i) T is strongly n-supercyclic;

(ii) ∀U ⊂ Pn(X), ∀V ⊂ Xn open and non-empty, ∃i ∈ N :
( n⊕

k=1
T
)i
(π−1

n (U)) ∩

V 6= ∅.
In particular, if T is strongly n-supercyclic, then ESn(T) is a Gδ dense subset of Pn(X).

Proof. Let L ∈ ESn(T). Since X does not have any isolated point, Pn(X)
does not have any either and then O(L, T) ⊂ ESn(T). Thus, ESn(T) is either
empty or dense and is also a Gδ with Proposition 2.5. In particular, T is strongly n-
supercyclic if and only if ESn(T) is dense in Pn(X), and using the characterisation
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of ESn(T) from Proposition 2.5, this means that for all non-empty open set U ∈
Pn(X) and any (j1, . . . , jn) ∈ Nn, there exists i ∈ N such that

πn((T ⊕ · · · ⊕ T)−i(Vj1 × · · · ×Vjn) ∩ Xn) ∩U 6= ∅

where (Vj)j∈Z+
is an open basis of X.

Thanks to the relation π−1
n (U) ∩ Xn = π−1

n (U), this can be re-written: for
all non-empty open set U ∈ Pn(X), for any (j1, . . . , jn) ∈ Nn, there exists i ∈ N
such that

(T ⊕ · · · ⊕ T)−i(Vj1 × · · · ×Vjn) ∩ π−1
n (U) 6= ∅

and the proposition is proved.

Thanks to these results, we are now able to prove the existence of strongly
n-supercyclic operators. This is a first class of examples.

COROLLARY 2.7. Suppose that T satisfies the supercyclicity criterion, then T is
strongly n-supercyclic for every n ∈ N.

Proof. We are going to check the equivalent condition given by Proposi-
tion 2.6. Bès and Peris have shown in [5] that T satisfies the supercyclicity cri-

terion if and only if
( n⊕

k=1
T
)

is supercyclic on Xn for any n ∈ N. Let n ∈ N, by

the supercyclic version of Birkhoff theorem, for any non-empty open sets V, W

in Xn, there exists i ∈ Z+ and λ ∈ K∗ so that
( n⊕

i=1
Ti
)
(λW) ∩ V 6= ∅. Let U

be a non-empty open set in Pn(X) and V be a non-empty open set in Xn. Then,
π−1

n (U) is non-empty and open in Xn by definition of πn and for any λ ∈ K∗,
λπ−1

n (U) = π−1
n (U). Set W := π−1

n (U) and use the supercyclic Birkhoff theorem

with sets V and W, then there exists i ∈ Z+ such that
( n⊕

i=1
Ti
)
(π−1

n (U))∩V 6= ∅.

This proves that T is strongly n-supercyclic.

Actually, one may deduce the following corollary. It is straightforward with
the above corollary but we state it to justify the remark following it.

COROLLARY 2.8. Let 1 6 n < ∞ and X1, . . . , Xn be Banach spaces and for any
i ∈ {1, . . . , n}, Ti ∈ L(Xi). Assume that the Ti satisfy the hypercyclicity criterion

with respect to the same sequence {nk}k∈N. Then
( n⊕

i=1
Ti

)
is strongly n-supercyclic on

X =
n⊕

i=1
Xi.

REMARK 2.9. One could be interested in trying to replace the hypercyclic-
ity criterion above with the supercyclicity criterion. Feldman already proved that
such operators are n-supercyclic [9]. We will see later in Theorem 3.3 that Feld-
man’s theorem does not always provide strongly n-supercyclic operators because
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their spectral properties are different. In particular, this contradicts the affirma-
tion in [14] that the operators constructed by Feldman in Example 1.3 are strongly
n-supercyclic.

REMARK 2.10. In the same way that it has been done for hypercyclicity,
we can deduce from Proposition 2.6 a strong n-supercyclicity criterion. Unfortu-
nately, this criterion is equivalent to the hypercyclicity criterion.

3. SOME SPECTRAL PROPERTIES

It is a well-known fact for hypercyclic and supercyclic operators that the
point spectrum of their adjoint is very small, in fact it counts at most one ele-
ment for supercyclic operators and none for hypercyclic ones. Bourdon, Feldman
and Shapiro proved that this was also the case for n-supercyclic operators, and
therefore for strongly n-supercyclic operators, giving the following theorem:

THEOREM BOURDON, FELDMAN, SHAPIRO. Suppose that T : X → X is a
continuous linear operator and n is a positive integer. If T∗ has n + 1 linearly indepen-
dent eigenvectors, then T is not n-supercyclic.

One can ask whether this result can be improved for strongly n-supercyclic
operators. The following theorem shows that it is not the case. Moreover, it points
out that we can choose the eigenvalues of their adjoint.

THEOREM 3.1. Let X be a complex Banach space, λ1, . . . , λp ∈ C∗, m1, . . . , mp ∈

N and T be a bounded linear operator on X and define n =
p
∑

i=1
mi. Then the following

assertions are equivalent:

(i) S :=
m1⊕
i=1

λ1Id⊕ · · ·
mp⊕
i=1

λpId⊕ T is strongly n-supercyclic on Cn ⊕ X;

(ii)
m1⊕
i=1

T
λ1
⊕ · · · ⊕

mp⊕
i=1

T
λp

is hypercyclic.

Moreover, in that case, σp(S∗) = {λ1, . . . , λp} and for any i ∈ {1, . . . , p}, λi has
multiplicity mi.

Proof. For the sake of convenience we denote by λ1, . . . , λn the complex val-
ues we want to realise as eigenvalues of S∗ counted with multiplicity and let
R = T

λ1
⊕ · · · ⊕ T

λn
be hypercyclic by hypothesis. Assume that the equivalence

is already proved, then the definition of S implies that σp(S∗) = {λ1, . . . , λn}
because σp(T∗) = ∅.

According to the theorem of Bourdon, Feldman and Shapiro stated above,
S is not strongly k-supercyclic for every k < n.

We begin with (ii)⇒ (i). Assume that the operator R is hypercyclic and that
(y1, . . . , yn) ∈ Xn is hypercyclic for R, let {(ei,1, . . . , ei,n)}16i6n be the canonical
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basis of Cn and set M = Span{(ei,1, . . . , ei,n, yi)}16i6n. We are going to show
that M is strongly n-supercyclic for S i.e.

⋃
k∈Z+

Sk(M)× · · · × Sk(M)︸ ︷︷ ︸
n times

is dense in

(Cn ⊕ X)n. This reduces to prove

⋃
k∈Z+ ,µi,j∈C

{ n

∑
i=1

µ1,i

( n⊕
j=1

λk
j ei,j ⊕ Tkyi

)
⊕ · · · ⊕

n

∑
i=1

µn,i

( n⊕
j=1

λk
j ei,j ⊕ Tkyi

)}
is dense in (Cn ⊕ X)n.

For this purpose, let z = (zi,j)16i6n,16j6n+1 ∈ (Cn ⊕ X)n and ε > 0. We
have to find k and (µi,j)i,j in order to approach z from a distance at most ε.

Remark that if one defines µi,j =
zi,j

λk
j

we have:

n

∑
i=1

µ1,i

( n⊕
j=1

λk
j ei,j

)
⊕ · · · ⊕

n

∑
i=1

µn,i

( n⊕
j=1

λk
j ei,j

)
= (z1,1, . . . , z1,n, . . . , zn,1, . . . , zn,n).

This leads to two cases. Either det((zi,j)16i,j6n) 6= 0 and we set xi,j = zi,j for every
1 6 i, j 6 n. Or det((zi,j)16i,j6n) = 0 and since GLn(C) is dense in Mn(C) and
{(ei,1, . . . , ei,n)}16i6n is a basis of Cn, there exists A := (xi,j)16i,j6n ∈ GLn(C) such
that: ∥∥∥ n

∑
i=1

xi,j

λk
j

( n⊕
j=1

λk
j ei,j

)
⊕ · · · ⊕

n

∑
i=1

xi,j

λk
j

( n⊕
j=1

λk
j ei,j

)
− (z1,1, . . . , zn,n)

∥∥∥ <
ε

2
.

In both cases, we set µi,j =
xi,j

λk
j

, we apply A−1 and we need to find k ∈ Z+ so that

∥∥∥∥∥∥∥∥∥∥


(

T
λ1

)k
y1

...(
T

λn

)k
yn

− A−1

z1,n+1
...

zn,n+1


∥∥∥∥∥∥∥∥∥∥
<

ε

2‖A‖ .

But such a k ∈ Z+ exists because (y1, . . . , yn) is hypercyclic for R. Since we found
k ∈ Z+ and (µi,j)i,j such that∥∥∥ n

∑
i=1

µ1,i

( n⊕
j=1

λk
j ei,j ⊕ Tkyi

)
⊕ · · · ⊕

n

∑
i=1

µn,i

( n⊕
j=1

λk
j ei,j ⊕ Tkyi

)
− (zi,j)i,j

∥∥∥ < ε,

then S is strongly n-supercyclic.
(i) ⇒ (ii) Assume that S is strongly n-supercyclic and let M be a strongly

n-supercyclic subspace for S and denote by M0 its projection on Cn. Then, M0 is
strongly dim(M0)-supercyclic for S|Cn and Cn being of dimension n, the main
result of Bourdon, Feldman and Shapiro ([6]) implies that dim(M0) = n, i.e.



STRONGLY n-SUPERCYCLIC OPERATORS 435

M0 = Cn. Thus, it is possible to choose a basis of M like the following:

M = Span




1
0
...
0
x1

 ,


0
1
...
0
x2

 , . . . ,


0
0
...
1
xn



 .

Let us prove that R is hypercyclic.
Let (z1, . . . , zn) ∈ Xn. Since S is strongly n-supercyclic, there exists a strictly

increasing sequence (nk)k∈Z+
and complex numbers (µ

(nk)
i,j )16i,j6n such that for

every i ∈ {1, . . . , n} 
µ
(nk)
i,i λ

nk
i −→

k→+∞
1,

µ
(nk)
i,j λ

nk
j −→

k→+∞
0 for any j 6= i,

z(nk)
i :=

n
∑

j=1
µ
(nk)
i,j Tnk xj −→

k→+∞
zi.

Take also,

A(nk) =


µ
(nk)
1,1 λ

nk
1 · · · µ

(nk)
n,1 λ

nk
n

...
. . .

...
µ
(nk)
1,n λ

nk
1 · · · µ

(nk)
n,n λ

nk
n

 .

Obviously, with the preceding convergences, A(nk) −→
k→+∞

Id, so we may suppose

that A(nk) is invertible and thus (A(nk))−1 −→
k→+∞

Id too.

Then, remark that the previous system is equivalent to the following:
Tnk x1

λ
nk
1
...

Tnk xn
λ

nk
n

 = (A(nk))−1


z(nk)

1
...

z(nk)
n

 −→
k→+∞

z1
...

zn

 .

This proves the hypercyclicity of R.

Feldman showed in [9] that there exists operators that are n-supercyclic but
not (n− 1)-supercyclic. The last result allows us to give an example of a strongly
n-supercyclic operator which is not strongly k-supercyclic, for every k < n.

EXAMPLE 3.2. Let B be the classical backward shift on the Hilbert space
`2(Z+) being defined by B(a0, a1, a2, . . .) = (a1, a2, . . .) and let also λ1, . . . , λn ∈ D.
Then, the operator defined on Cn ⊕ `2(Z+) by T = λ1Id ⊕ · · · ⊕ λnId ⊕ B is
strongly n-supercyclic but not strongly k-supercyclic for every k < n.

Indeed, a classical result says that B
λ satisfies the hypercyclicity criterion for

the whole sequence of integers if and only if |λ| < 1. Thus, B
λ1
⊕ · · · ⊕ B

λn
satisfies
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also the hypercyclicity criterion and T is strongly n-supercyclic by Theorem 3.1.
Nevertheless, the fact that T is not k-supercyclic for k < n is clear because if it was,
then the restriction of T to Cn would also be k-supercyclic but this contradicts
Theorem 1.4 of [6].

Since strongly n-supercyclic operators are in particular n-supercyclic, they
inherit their spectral properties, hence the circle theorem applies to these ones.
Therefore, for every strongly n-supercyclic operator, there exists a set of at most n
circles intersecting every component of the spectrum of T. This was obtained by
Feldman [9] for n-supercyclic operators and he provided also examples for which
n circles were necessary. In the case of strongly n-supercyclic operators, we are
able to improve the circle theorem.

THEOREM 3.3. Assume that X is a complex Banach space and T is a strongly
n-supercyclic operator on X.

Then we can decompose X = F ⊕ X0, where F and X0 are T-invariant, F has
dimension at most n and there exists R > 0 such that the circle {z ∈ C : |z| = R}
intersects every component from the spectrum of T0 := T|X0

.
Moreover, in the particular case n = 2, T|F is a diagonal operator.

Proof. The theorem is trivial if there already exists a circle intersecting all
the components from the spectrum of T.

If such a circle does not exist, then there exist R > 0 and two components
C1, C2 from σ(T) such that C1 ⊂ B(0, R) and C2 ⊂ C \ B(0, R). Upon considering
a scalar multiple of T, one may suppose that R = 1. Thus σ(T) = σ1 ∪ σ2 ∪ σ3
where σ1 ⊂ D, σ2 ⊂ C \ D and σ1, σ2, σ3 are closed and pairwise disjoint. Then,
thanks to Riesz theorem [3] one can write T = T1 ⊕ T2 ⊕ T3 on X = X1 ⊕ X2 ⊕ X3
where σ(Ti) = σi for i = 1, 2, 3.

We are first going to prove that dim(X1) 6 n− 1. Assume to the contrary
that dim(X1) > n.

Then, one can choose (u1, . . . , un) ∈ Xn
1 such that for every i ∈ {1, . . . , n},

‖z− ui‖ > 1 for any z ∈ Span(u1, . . . , ui−1, ui+1, . . . , un).

Let L = Span




x1
y1
z1

,...,


xn
yn
zn


 be a strongly n-supercyclic subspace for T,

(nk)k∈Z+
be a strictly increasing sequence and Ak ∈ Mn(C) such that

Ak

Tnk
1 x1

...
Tnk

1 xn

 −→
k→+∞

u1
...

un

 and Ak

Tnk
2 y1

...
Tnk

2 yn

 −→
k→+∞

0
...
0

 .

In addition, by density of GLn(C) in Mn(C), one can assume that Ak is invertible
for every k ∈ Z+.
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This yields Tnk
1 x1

...
Tnk

1 xn

 = A−1
k

u1,k
...

un,k

 := A−1
k

u1 + ε1,k
...

un + εn,k


where for every i ∈ {1, . . . , n}, ‖εi,k‖ −→

k→+∞
0.

Set A−1
k =

ak
1,1 · · · ak

1,n
...

. . .
...

ak
n,1 · · · ak

n,n

. Moreover we know that Ak

Tnk
2 y1

...
Tnk

2 yn

 −→
k→+∞

0
...
0


and σ(T2)⊂C\D thus it follows that ‖A−1

k ‖ −→k→+∞
+∞. Therefore max(|ak

i,j|)16i,j6n

−→
k→+∞

+∞ and thus for any m ∈ {1, . . . , n}, we deduce that T
nk
1 xm

max(|ak
i,j |)16i,j6n

−→
k→+∞

0.

Let then k be a positive integer such that for any m ∈ {1, . . . , n}, ‖Tnk
1 xm‖

max(|ak
i,j |)16i,j6n

<

1
2 and ‖εm,k‖ < 1

2 and set |ak
p,q| := max(|ak

i,j|)16i,j6n. Then, we have Tnk
1 xp =

n
∑

i=1
ak

p,iui,k, yielding

∥∥∥uq,k +
n

∑
i=1, i 6=q

ak
p,i

ak
p,q

uk
i

∥∥∥ =
∥∥∥Tnk

1 xp

ak
p,q

∥∥∥ <
1
2

.

This result contradicts our first assumption that for every i ∈ {1, . . . , n}, ‖z −
ui‖ > 1 for any z ∈ Span(u1, . . . , ui−1, ui+1, . . . , un). Hence dim(X1) 6 n− 1 and
if n = 2, we get dim(X1) = 1.

We can do the same process with T2 ⊕ T3 which is strongly n-supercyclic
thus either there exists a circle intersecting every component of the spectrum of
T2 ⊕ T3 and the proof is finished, or we can decompose T2 ⊕ T3 as a direct sum of
two operators where the first one is defined on a space of dimension lower than
n − 1. Then, as there is an at most n-dimensional subspace in this decomposi-
tion because there is no strongly n-supercyclic operators on a space of dimension
strictly greater than n according to Theorem 1.4. Thus, we can iterate this pro-
cess only a finite number of times. This proves the first part of the theorem. The
particular case n = 2 part is clear from the proof.

In particular, considering n = 2 in the preceding theorem gives an alter-
native generalising the case of supercyclic operators. Indeed, for a supercyclic
operator it is well-known that the point spectrum is either empty or a singleton
{λ} and in the last case, λ−1T is hypercyclic on an hyperplane of X. The follow-
ing corollary gives a similar result for strongly 2-supercyclic operators.

COROLLARY 3.4. Assume that X is a complex Banach space and T is a strongly
2-supercyclic operator on X. Then, one of the following properties applies:
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(i) There exists R > 0 such that the circle {z ∈ C : |z| = R} intersects every
component from the spectrum of T.

(ii) T =
( a 0

0 S
)

with S being a supercyclic operator, a ∈ C∗.
(iii) T =

( a 0 0
0 b 0
0 0 S

)
with S

a ⊕
S
b hypercyclic, a, b ∈ C∗.

Proof. According to Theorem 3.3 we have the following alternative: either
there exists a circle intersecting every component of the spectrum of T or we can
decompose X = F ⊕ X0 with F and X0, F being of dimension at most 2 and
S := T|F being diagonal and there exists a circle intersecting every component of
the spectrum of T0 := T|X0

.
If dim(F) = 1 then T =

( a 0
0 S
)

for some a ∈ C∗.
We can suppose that L = Span

(
( 1

x ) ,
( 0

y
))

is a strongly 2-supercyclic sub-
space for T. Let z ∈ X0. Since T is strongly 2-supercyclic, there exists an increas-

ing sequence (nk)k∈Z+
and an invertible matrix Ak :=

(
λ

nk
1 λ

nk
2

µ
nk
1 µ

nk
2

)
such that

Ak

(
Snk x
Snk y

)
=

(
0 + ε

nk
1

z + ε
nk
2

)
where ε

nk
1 −→

k→+∞
0 and ε

nk
2 −→

k→+∞
0, and

Ak

(
ak

0

)
=

(
1 + δ

nk
1

0 + δ
nk
2

)
where δ

nk
1 −→

k→+∞
0 and δ

nk
2 −→

k→+∞
0.

Thus, considering the inverse of Ak we get Snk y =
−µ

nk
1 ε

nk
1 +λ

nk
1 (z+ε

nk
2 )

λ
nk
1 µ

nk
2 −λ

nk
2 µ

nk
1

. Multiply

the last equality by ak to obtain:

ak(λ
nk
1 µ

nk
2 − λ

nk
2 µ

nk
1 )Snk y = −akµ

nk
1 ε

nk
1 + akλ

nk
1 (z + ε

nk
2 )

= −δ
nk
2 ε

nk
1 + (1 + δ

nk
1 )(z + ε

nk
2 ) −→

k→+∞
z.

Hence S is supercyclic on X0.

If dim(F) = 2 then T =
( a 0 0

0 b 0
0 0 S

)
, for some a, b ∈ C∗.

It suffices to apply Theorem 3.1 to conclude that S
a ⊕

S
b is hypercyclic.

REMARK 3.5. Actually, these three conditions are necessary, and we give an
example for each one.

The first point is easy, simply consider an operator satisfying the super-
cyclicity criterion: the circle exists because the operator is supercyclic and it is
strongly 2-supercyclic thanks to Corollary 2.7.

The second one is trickier: let φ ∈ H∞(D) be defined by φ(z) = 1 + ı + z,
and let us denote by Mφ the multiplication operator associated to φ on H2(D). Set

also Rn :=
n−1
∑

i=1
(M∗φ)

i. Then, one may prove following Exercise 1.9 in [3] that there

exists a universal vector for Rn: u ∈ H2(D) and u /∈ Im(M∗φ − I) and that
(

1 0
u M∗φ

)
is supercyclic and is not similar to an operator of the form I ⊕ S. Noticing also
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that {Rn ⊕ (M∗φ)
n}n>2 satisfies the universality criterion, then one can prove that

T :=

a 0 0
0 1 0
0 u M∗φ

 is strongly 2-supercyclic on C2 ⊕ H2(D) and is not similar to

any operator of the form bI⊕ cI⊕ T0 and does not even admit a circle intersecting
every component of its spectrum for a well-chosen complex number a.

Finally, the third case is simple: T=

−1 0 0
0 − 1

2 0
0 0 M∗φ

 is strongly 2-supercyclic

on C2 ⊕ H2(D) with φ(z) = 1 + z by Theorem 3.1 but its spectrum is σ(T) =

{−1,− 1
2} ∪ D(1, 1).

4. OTHER CLASSES OF INTERESTING EXAMPLES

Until now, we proved several properties of strongly n-supercyclic opera-
tors and we came across different classes of examples but links between strong
(n − 1), n, (n + 1)-supercyclic operators are not well understood yet. This part
provides some answers but also some interesting questions on the subject.

4.1. A CLASS OF STRONGLY k-SUPERCYCLIC OPERATORS WITH k > n. The fol-
lowing proposition generalises Corollary 2.7. It has been proved in [6] and [8]
that strong n-supercyclicity is purely infinite dimensional. We are going to make
use of this fact to construct an operator being strongly k-supercyclic if and only if
k > n.

PROPOSITION 4.1. Assume that S satisfies the hypercyclicity criterion on a Ba-
nach space Y and define T = Id⊕ S on X = Kn ⊕ Y. Then T is strongly k-supercyclic
if and only if k > n.

Proof. We first prove that if T is strongly k-supercyclic, then k > n. Assume
to the contrary that k < n, then restricting T to Kn, one obtains that Id is strongly
k-supercyclic on Kn with k < n. This is impossible by [6] for the complex case
and [8] for the real case.

Let us prove now that for every p > n, T is strongly p-supercyclic. The
following lemma is the key of the proof.

LEMMA 4.2. Let p > 1. Then, there exist p vectors y1, . . . , yp belonging to Y such
that for any invertible matrix A = (λi,j)16i,j6p ∈ GLp(K), the set

{
Sk
( p

∑
i=1

λ1,iyi

)
⊕ · · · ⊕ Sk

( p

∑
i=1

λp,iyi

)}
k∈Z+

is dense in Yp.
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Proof. Since S satisfies the hypercyclicity criterion, then L := S⊕ · · · ⊕ S︸ ︷︷ ︸
p times

is hypercyclic too [5]. Let (y1, . . . , yp) ∈ Yp is a hypercyclic vector for L. Since
(y1, . . . , yp) ∈ Yp is hypercyclic for L. Then (Sk(y1), . . . , Sk(yp))k>0 is dense in Yp.
Since A is invertible, some simple computations imply the result of the lemma.

We come back to the proof of the proposition.
Let p > n and {e1, . . . , ep} be a generating family of Kn with p elements and

(y1, . . . , yp) given by the previous lemma and denote xi = (ei, yi) ∈ X, for every
i ∈ {1, . . . , p}.

It is easy to show that M := Span(x1, . . . , xp) is strongly p-supercyclic for T.
Actually, it suffices to prove that

⋃
k∈Z+

Tk(M)× · · · × Tk(M)︸ ︷︷ ︸
p times

is dense in Xp thanks

to Proposition 2.3.
The use of the definition of M reduces the proof to the following assertion:

⋃
k∈Z+ ,(λi,j)16i,j6p∈Mp(K)

p

∑
i=1

λ1,i(ei ⊕ Skyi)⊕ · · · ⊕
p

∑
i=1

λp,i(ei ⊕ Skyi) is dense in Xp.

For this purpose, let ε > 0, (t1, . . . , tp) ∈ (Kn)p and (z1, . . . , zp) ∈ Yp. Since
GLp(K) is dense in Mp(K), there exists A = (λi,j)16i,j6p ∈ GLp(K) so that∥∥∥∥∥∥∥A

e1
...

ep

−
t1

...
tp


∥∥∥∥∥∥∥ <

ε

2
.

On the other hand, Lemma 4.2 implies that there is k ∈ Z+ satisfying:∥∥∥Sk
( p

∑
i=1

λ1,iyi

)
⊕ · · · ⊕ Sk

( p

∑
i=1

λp,iyi

)
− (z1, . . . , zp)

∥∥∥ 6 ε

2
.

Hence, ∥∥∥ p

∑
i=1

λ1,i(ei ⊕ Skyi)⊕ · · · ⊕
p

∑
i=1

λp,i(ei ⊕ Skyi)−
p⊕

i=1

(ti ⊕ zi)
∥∥∥ < ε.

This is the relation we were looking for. Thus, T is strongly p-supercyclic.

REMARK 4.3. In the same spirit, one may easily prove that strongly n-su-
percyclic operators given by Theorem 3.1 are not strongly k-supercyclic for k < n.

Building on the same ideas as in the previous example but using proper-
ties of rotations, one may easily construct an operator being n-supercyclic from a
particular rank and being strongly n-supercyclic from a strictly greater rank.
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4.2. A SUPERCYCLIC OPERATOR WHICH IS NOT STRONGLY n-SUPERCYCLIC FOR

SOME n > 2. We already noticed in the previous part that strong n-supercyclicity
does not imply strong (n − 1)-supercyclicity. It is a natural question to ask
whether the contrary is true or not: does strong n-supercyclicity imply strong
(n + 1)-supercyclicity? In the following, we prove that it is not the case for
n = 1. To do so, we will construct a supercyclic operator which is not strongly
p-supercyclic for p > 2. Operators satisfying the supercyclicity criterion are use-
less in this context because we noticed in Corollary 2.7 that these operators are
strongly n-supercyclic for any n > 1. Thus, we are forced to consider operators
that are less handy. Actually, we are modifying the construction of a hypercyclic
operator which is not weakly mixing from Bayart and Matheron [3] to achieve it.

THEOREM 4.4. Assume that X is a Banach space with an unconditional nor-
malised basis (ei)i∈Z+

for which the associated forward shift (ei)i∈Z+
is continuous and

let p > 2. Then, there exists a supercyclic operator which is not strongly h-supercyclic
for any 2 6 h 6 p.

The proof of this theorem is long and is based on the work of Bayart and
Matheron ([3], Section 4.2). The proof is a succession of intermediate results lead-
ing to the final proof. The main idea is to construct an operator and to create a
criterion to check that this operator is not strongly h-supercyclic. We will refer
the reader to the book [3] for certain proofs.

Let us define some material we need in the sequel.
Assume that T is a linear bounded operator on a topological vector space X

and let e0 ∈ X, then we set:

K[T](e0) = {P(T)(e0), P ∈ K[X]} = Span{Ti(e0), i ∈ Z+}.
Since two polynomials with variable T always commute, we can also define a
product on K[T](e0) by

P(T)e0 ·Q(T)e0 = PQ(T)e0.

We first give a technical lemma proving the convergence of a sequence of
unit spheres if there is a sequence of basis converging to another basis.

LEMMA 4.5. Assume that X is a normed vector space, h > 2, and that E =
Span(u1, . . . , uh) is a subspace of dimension h. For every 1 6 i 6 h, let (vn

i )n∈Z+
be

a sequence of elements of X such that ‖vn
i − ui‖ 6 1

n and set Fn = Span(vn
1 , . . . , vn

h).
Then, sup

z∈Fn ,‖z‖=1
inf

x∈E,‖x‖=1
‖x− z‖ −→

n→+∞
0.

Proof. Let n > N, and Tn : X → X be defined by Tn(x) =
h
∑

i=1
u∗i (x)(ui − vn

i )

for every 1 6 i 6 h. Remark that

‖Tn‖ = sup
‖x‖=1

∥∥∥ h

∑
i=1

u∗i (x)(ui − vn
i )
∥∥∥ 6 h

∑
i=1
‖u∗i ‖‖ui − vn

i ‖ 6
Mh
n

6
1
2

.
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Thus, it follows that the operator Sn := I − Tn : X → X satisfies Sn(ui) = vn
i

for any 1 6 i 6 h and is invertible with S−1
n =

+∞
∑

i=0
Ti

n. Moreover, we deduce the

following upper bound for S−1
n :

‖S−1
n ‖ =

∥∥∥ +∞

∑
i=0

Ti
n

∥∥∥ 6 +∞

∑
i=0
‖Tn‖i 6

+∞

∑
i=0

1
2i = 2.

Set zn = an
1 vn

1 + · · ·+ an
h vn

h ∈ Fn with ‖zn‖ = 1. Then, we notice that ‖S−1
n (zn)‖ =

‖an
1 u1 + · · ·+ an

h uh‖ 6 2. Thus, u1, . . . , uh being a linearly independent family, we
deduce that the sequences of coefficients (an

i )n∈N are bounded and upon passing
to a subsequence, we can suppose that zn converges to some vector on the unit
sphere of E. This proves the lemma.

To provide an operator as claimed in Theorem 4.4, we need to be able to
check the non-strong h-supercyclicity for the operator T we are going to construct.
The following lemma gives such a criterion.

LEMMA 4.6. Assume that X is a topological vector space and T ∈ L(X) is cyclic
with cyclic vector e0 and set h > 2. Assume that there exist 2h linear forms Φδ :
K[T](e0)→ K for 0 6 δ 6 2h− 1, such that the maps

(P(T)e0, Q(T)e0) 7→ Φδ((PQ)(T)e0)

are continuous on K[T](e0)×K[T](e0) and satisfy

Φδ(Tδe0) = 1 and Φδ(Tie0) = 0 for 0 6 i 6= δ 6 2h− 1.

Then T is not strongly h-supercyclic.

REMARK 4.7. In particular, T does not satisfy the supercyclicity criterion.

Proof. Assume that T is strongly h-supercyclic on X and n ∈ N. Set also

(4.1) E=Span(e0, . . . , Th−1e0) and En∈πh(B((e0, . . . , Th−1e0); 1
n ))∩ESh(T).

Then, there exists mn ∈ N, xn, yn ∈ En linearly independent such that Tmn xn ∈
B(e0; 1

2n ) and Tmn yn ∈ B(The0; 1
2n ). Let εn = min( 1

n , 1
2n‖Tmn‖ , ‖xn‖

2n+1 , ‖yn‖
2n+1 ), then e0

being cyclic for T and there exists Pn, Qn ∈ K[X] such that

Pn(T)e0 ∈ B(xn; εn) and Qn(T)e0 ∈ B(yn; εn).

Thus,

Tmn(Pn(T)e0) ∈ B(e0; 1
n ) and Tmn(Qn(T)e0) ∈ B(The0; 1

n ).

Pick also an
0 e0 + · · ·+ an

h−1Th−1e0 ∈ E such that

‖an
0 e0 + · · ·+ an

h−1Th−1e0‖ = 1 and∥∥∥an
0 e0 + · · ·+ an

h−1Th−1e0 −
Pn(T)e0

‖Pn(T)e0‖

∥∥∥ = inf
x∈E,‖x‖=1

∥∥∥x− Pn(T)e0

‖Pn(T)e0‖

∥∥∥.
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Then,

inf
x∈E,‖x‖=1

∥∥∥x− Pn(T)e0

‖Pn(T)e0‖

∥∥∥ −→
n→+∞

0.

Let us prove this last point. First, we split the norm:

inf
x∈E,‖x‖=1

∥∥∥x− Pn(T)e0

‖Pn(T)e0‖

∥∥∥ 6 inf
x∈E,‖x‖=1

∥∥∥x− xn

‖xn‖

∥∥∥+ ∥∥∥ xn

‖xn‖
− Pn(T)e0

‖Pn(T)e0‖

∥∥∥
and it suffices to prove that each part tends to 0 when n grows. In fact, the first
convergence to 0 is given by Lemma 4.5 (with ui = Ti−1(e0) and (vn

1 , . . . , vn
h) =

the basis of En given by (4.1)) and let us deal with the second part:∥∥∥ xn

‖xn‖
− Pn(T)e0

‖Pn(T)e0‖

∥∥∥ =
∥∥∥ xn

‖xn‖
− xn

‖Pn(T)e0‖
+

xn

‖Pn(T)e0‖
− Pn(T)e0

‖Pn(T)e0‖

∥∥∥
6 ‖xn‖

∣∣∣ 1
‖xn‖

− 1
‖Pn(T)e0‖

∣∣∣+ ‖xn − Pn(T)e0‖
‖Pn(T)e0‖

6
εn

‖xn‖ − εn
+

εn

‖xn‖ − εn
6

1
n

by definition of εn.

Thus we have the expected convergence.
Doing the same thing, we also pick bn

0 e0 + · · ·+ bn
h−1Th−1e0 ∈ E such that

‖bn
0 e0 + · · ·+ bn

h−1Th−1e0‖ = 1 and∥∥∥bn
0 e0 + · · ·+ bn

h−1Th−1e0 −
Qn(T)e0

‖Qn(T)e0‖

∥∥∥ = inf
x∈E,‖x‖=1

∥∥∥x− Qn(T)e0

‖Qn(T)e0‖

∥∥∥ −→
n→+∞

0.

Moreover, extracting an appropriate strictly increasing subsequence (sk)k∈N from
the sequence of natural numbers, we get

ask
0 e0 + · · ·+ ask

h−1Th−1e0 −→
k→+∞

a0e0 + · · ·+ ah−1Th−1e0 and also

bsk
0 e0 + · · ·+ bsk

h−1Th−1e0 −→
k→+∞

b0e0 + · · ·+ bh−1Th−1e0

where (a0, . . . , ah−1), (b0, . . . , bh−1) ∈ Kh \ {0}.
It follows that∥∥∥ Psk (T)e0

‖Psk (T)e0‖
− (a0e0 + · · ·+ ah−1Th−1e0)

∥∥∥ −→
k→+∞

0 and∥∥∥ Qsk (T)e0

‖Qsk (T)e0‖
− (b0e0 + · · ·+ bh−1Th−1e0)

∥∥∥ −→
k→+∞

0.

Since the vectors a0e0 + · · ·+ ah−1Th−1e0 and b0e0 + · · ·+ bh−1Th−1e0 have norm
one, we can choose two integers 0 6 i, j 6 h− 1 such that aj 6= 0 and bi 6= 0. Then,
we define two linear forms which are continuous for the product on K[T]e0:

Ψi,j = Φi + Φh+j and Ψ̃i,j = Φi + 2Φh+j.
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Thus, thanks to the continuity for the product, we have

Ψi,j

(
Tmsk e0 · Psk (T)e0 ·

Qsk (T)e0

‖Qsk (T)e0‖

)
= Ψi,j

(
Tmsk Psk (T)e0 ·

Qsk (T)e0

‖Qsk (T)e0‖

)
−→

k→+∞
Ψi,j(e0 · (b0e0 + · · ·+ bh−1Th−1e0))(4.2)

= bi by definition of Ψi,j

and also

Ψi,j

(
Tmsk e0 ·

Psk (T)e0

‖Psk (T)e0‖
·Qsk (T)e0

)
= Ψi,j

(
Tmsk Qsk (T)e0 ·

Psk (T)e0

‖Psk (T)e0‖

)
−→

k→+∞
Ψi,j(The0 · (a0e0 + · · ·+ ah−1Th−1e0))

= Ψi,j(a0The0 + · · ·+ ah−1T2h−1e0) = aj.(4.3)

Doing the same thing with the second linear form Ψ̃i,j, we obtain similar results:

lim
k→∞

Ψ̃i,j

(
Tmsk e0 · Psk (T)e0 ·

Qsk (T)e0

‖Qsk (T)e0‖

)
= bi and(4.4)

lim
k→∞

Ψ̃i,j

(
Tmsk e0 ·

Psk (T)e0

‖Psk (T)e0‖
·Qsk (T)e0

)
= 2aj.(4.5)

We now consider the quotient of equations (4.2) and (4.3) and of equations (4.4)
and (4.5). This gives

‖Qsk (T)e0‖
‖Psk (T)e0‖

NNNNNNNNNNN

NNNNNNNNNNN

ppppppppppp

ppppppppppp

Ψi,j

(
Tmsk e0·

Psk (T)e0
‖Psk (T)e0‖

·Qsk (T)e0

)
Ψi,j

(
Tmsk e0·Psk (T)e0·

Qsk (T)e0
‖Qsk (T)e0‖

)
k→+∞

��

Ψ̃i,j

(
Tmsk e0·

Psk (T)e0
‖Psk (T)e0‖

·Qsk (T)e0

)
Ψ̃i,j

(
Tmsk e0·Psk (T)e0·

Qsk (T)e0
‖Qsk (T)e0‖

)
k→+∞

��
aj
bi

2aj
bi

This equality contradicts the fact that aj 6= 0 and bi 6= 0. This contradiction proves
the lemma!

Assume now and for the following that X is a Banach space having a nor-
malised unconditional basis (ei)i∈Z+

for which the associated forward shift is con-
tinuous.

We set:
c00 = Span{ei : i ∈ Z+}.



STRONGLY n-SUPERCYCLIC OPERATORS 445

Since Lemma 4.6 gives a criterion for checking non-strong h-supercyclicity,
the proof of Theorem 4.4 reduces to the proof of the following points:

Span{Tie0 : i ∈ Z+} = Span{ei : i ∈ Z+}.(4.6a)

K[T]e0 ⊆ {λTie0 : i ∈ Z+, λ ∈ K}.(4.6b)

T is continuous.(4.6c)

There exist 2h linear forms Φδ : K[T](e0)→ K such that(4.6d)

for every δ = 0, . . . , 2h− 1, the maps (P(T)e0, Q(T)e0)→ Φδ((PQ)(T)e0)

are continuous on K[T](e0)×K[T](e0).

For every 2 6 h 6 p, every δ ∈ {0, . . . , 2h− 1} and every(4.6e)

0 6 i 6= δ 6 2h− 1, Φδ(Tδe0) = 1 and Φδ(Tie0) = 0.

4.2.1. CONSTRUCTION OF T. Our construction of T is a modification of the con-
struction of Bayart and Matheron ([3], Section 4.2). We will give the definition of
the operator and theorems leading to the continuity of T but we will omit some
proofs because they are the same as in [3] up to some details.

Let us begin with a few terminology.
Set a countable dense subset Q of K. A sequence of polynomials P =

(Pn)n∈Z+
is said to be admissible if P0 = 0 and P contains all polynomials whose

coefficients are in Q. Let also deg(P) denote the degree of P, |P|1 the sum of the
moduli of its coefficients and cd(P) its leading coefficient. We are going to con-
struct T as an almost weighted forward shift in order to satisfy (4.6a). Actually,
we need two sequences to construct T: the first one is the sequence of weights
(wn)n∈Z+

and the second one is a strictly increasing sequence (bn)n∈Z+
indexing

the iterates of e0 for which the shift will be perturbed.
We define T such that the iterates of e0 corresponding to the perturbation

satisfy: (4.6b)

(4.7) for every n ∈ N, Tbn e0 = Pn(T)e0 + ebn

and we also define:

(4.8) for every i ∈ [bn−1, bn − 1[ and n ∈ N, T(ei) = wi+1ei+1.

Thus we can express the vectors Tebn−1:

Tbn e0 = Tbn−bn−1 Tbn−1 e0 = Tbn−bn−1(Pn−1(T)e0 + ebn−1)

= Tbn−bn−1 Pn−1(T)e0 + wbn−1+1 · · ·wbn−1Tebn−1.

And replacing Tbn e0 with Pn(T)e0 + ebn yields to:

Tebn−1 = εnebn + fn
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where

εn =
1

wbn−1+1 · · ·wbn−1
,(4.9)

fn =
1

wbn−1+1 · · ·wbn−1
(Pn(T)e0 − Tbn−bn−1 Pn−1(T)e0).

Obviously, this definition is non-ambiguous if deg(Pn) < bn − 1. Thus, from now
on we assume that deg(Pn) < bn − 1 for any n ∈ N.

We also make the following choices for the values of (bn)n∈Z+
and (wn)n∈Z+

:

b0 = 1, bn = (2p + 1)n for every n ∈ N,

wn = 4
(

1− 1
2
√

n

)
for every n ∈ N.

The choice of bn is motivated by the fact that we will need b1 > 2p to check (4.6e).
We denote also dn = deg(Pn).

Defined in this way, one can quickly check that T : c00 → c00 satisfies (4.6a)
and (4.6b) by definition.

4.2.2. CONTINUITY OF T. We are now checking (4.6c). We introduce the follow-
ing terminology: one will say that P is controlled by a sequence of natural num-
bers (cn)n∈Z+

if for all n ∈ Z+, deg(Pn) < cn and |Pn|1 6 cn. This is an easy fact
that if lim sup

n→∞
cn = +∞ then there exists an admissible sequence which is con-

trolled by (cn)n∈Z+
. We also denote

∥∥∥ ∑
i∈Z+

xiei

∥∥∥
1
= ∑

i∈Z+

|xi| the `1 norm on c00.

To check (4.6c), we need the following lemma which is almost the same as
Lemma 4.20 from [3]. The reader should refer to it for a proof.

LEMMA 4.8. The following properties are satisfied:
(i) εn 6 1 for all n ∈ N.

(ii) If n ∈ N and if ‖ fk‖1 6 1 for every k < n then

‖ fn‖1 6 4max(dn ,dn−1)+1
( |Pn|1

2bn−1
+ |Pn−1|1 exp(−c

√
bn−1)

)
where c > 0 is a numerical constant.

The following lemma proves that (4.6c) is satisfied for an appropriate choice
of P. For the same reasons as before, see p. 88 of [3] for a proof.

LEMMA 4.9. There exists a control sequence (un)n∈Z+
tending to infinity such

that the following holds: if the sequence P is controlled by (un)n∈Z+
then T is continuous

on c00 with respect to the topology of X.

4.2.3. CONSTRUCTION OF Φδ . Since we have completed the construction of T
and proved that it is continuous, we need to focus on the functionals Φδ satisfying
(4.6d) and (4.6e). We have to define 2p maps Φδ, δ ∈ {0, . . . , 2p− 1} continuous
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for the product on K[T]e0. The following lemma from p. 89 of [3] permits to check
the continuity of such functionals more easily.

LEMMA 4.10. Let φ be a linear functional on c00. Suppose that ∑
r,q
|φ(er · eq)| <

∞. Then, the map (x, y) 7→ φ(x · y) is continuous on c00 × c00.

Let us construct the functionals Φδ. In the following, a vector x ∈ c00 is
said to be supported on some set I ⊂ Z+ if x ∈ Span{Tie0, i ∈ I}. We want to
construct Φδ satisfying Lemma 4.10. Thus, we have to be able to give an upper
bound of |φ(er · eq)|.

Take r 6 q, and write r = bk + u and q = bl + v with u ∈ {0, . . . , bk+1 − bk −
1} and v ∈ {0, . . . , bl+1 − bl − 1}. By definition of T, we can re-express:

er =
1

wbk+1 · · ·wbk+u
(Tbk−Pk(T))Tu(e0), eq =

1
wbl+1 · · ·wbl+u

(Tbl−Pl(T))Tv(e0).

Hence, for any linear functional φ : c00 → K, we have:

|φ(er · eq)| 6
1

2u+v |φ(y(k,u),(l,v))|,

where y(k,u),(l,v) = (Tbk − Pk(T))(Tbl − Pl(T))Tu+ve0 because wi > 2 for every
i ∈ Z+.

To ensure the convergence of the summation from Lemma 4.10, we set:

Φδ(Tie0) =


1 if i = δ,
0 if i ∈ {0, b1 − 1} \ {δ},
Φδ(Pn(T)Ti−bn e0) if i ∈ [bn, 3

2 bn[∪[2bn, 5
2 bn[,

0 otherwise.

Moreover, Φδ is well defined on c00 because deg(Pn) + i − bn < i, hence
Pn(T)Ti−bn e0 is supported in {0, . . . , i− 1}.

To ensure the continuity of Φδ, we need the following lemma which can be
essentially found in p. 90 of [3].

LEMMA 4.11. Assume that deg(Pn) < bn
3 for all n ∈ Z+. Then, the following

properties hold whenever 0 6 k 6 l:

Φδ(y(k,u),(l,v)) = 0 if u + v <
bl
6

,(4.10)

|Φδ(y(k,u),(l,v))| 6 Ml(P) := max
06j6l

(1 + |Pj|1)2
l+1

∏
j=1

max(1, |Pj|1)2.(4.11)

The next proposition ([3], p. 91) makes use of the two previous lemmas to
ensure the continuity of (x, y) 7→ Φδ(x · y) if P is suitably chosen.
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PROPOSITION 4.12. There exists a control sequence (vn)n∈Z+
such that the fol-

lowing holds: if the enumeration P is controlled by (vn)n∈Z+
, then the map (x, y) 7→

Φδ(x · y) is continuous on c00 × c00.

Thus, by Lemmas 4.9 and 4.11, with a well-chosen control sequence, T is
continuous and Φδ, δ ∈ {0, . . . , 2p− 1} are continuous for the product defined on
K[T]e0 and therefore (4.6d) is satisfied. Then, a simple computation proves that

Ψ satisfies (4.6e) because Φδ(Tie0) =

{
1 if i = δ,
0 else ,

for every 0 6 i 6 b1 − 1 = 2p.

The combination of Lemma 4.6, Lemma 4.9 and Proposition 4.12 completes
the proof of Theorem 4.4.

4.3. A SUPERCYCLIC OPERATOR WHICH IS NOT STRONGLY p-SUPERCYCLIC FOR

ANY p > 2. The previous example of a supercyclic operator which is not
strongly h-supercyclic for a fixed h answers the question of the existence of
strongly h-supercyclic operators which are not strongly (h + 1)-supercyclic in the
particular case h = 1. In fact, we can improve this result.

THEOREM 4.13. There exists a supercyclic operator which is not strongly h-super-
cyclic for any h > 2.

To achieve this construction, we take a direct sum of some previously con-
structed operators to ensure the non-strong h-supercyclicity of this operator. The
first part of this section is devoted to the construction of infinitely many operators
Tp which are supercyclic but not strongly h-supercyclic for 2 6 h 6 p. Moreover,
we want that these operators satisfy some more properties to be able to “match“
them later. For that purpose we have to modify the parameter (bn)n∈Z+

and the
admissible sequence of polynomials P that we used in the previous section. From
now on, we take bn = 5n for every n ∈ N and b0 = 0.

4.3.1. CONSTRUCTION OF MANY OPERATORS WITH DIFFERENT PARAMETERS.
Given infinitely many increasing control sequences (ui

n)n∈Z+
satisfying lim

n→+∞
ui

n

= +∞ for every i > 2, then it is possible to consider an enumeration (Si
n)n∈Z+

not necessarily bijective of (Q[X])i+1×{0}Z+ for every i ∈ Z+ with the following
properties: for every i, k, n ∈ Z+, and 0 6 j 6 bi+1, Si

j(k) = 0, deg(Si
n(k)) 6 uk+2

n

and |Si
n(k)|1 6 uk+2

n . These enumerations will be useful to construct infinitely
many admissible sequences (Pk)k∈Z+

, providing a construction of the desired op-
erator, with the procedure explained below.

For every j ∈ Z+ and every n ∈ [ j(j+1)
2 , (j+1)(j+2)

2 [, we define:

Qn = Sn−(j(j+1))/2
(j(j+3))/2−n and Q0 = S0

0.

We set also for every k > 2 and every n ∈ Z+, Pk
n := Qn(k− 2). The construction

of (Qn)n∈Z+
is made with two purposes in mind: on the one hand every element

from Q[X] must appear once as the k-th component of some Qn where the other
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FIGURE 1. Construction of the sequence (Qn)n∈Z+
.

components are all zero and this has to be satisfied for any k. This property allows
T to be cyclic. On the other hand, to turn cyclicity into supercyclicity, for every
element P from Q[X], we need to be able to find infinitely many Qn containing
repetitions of λP on their firsts components and zeros elsewhere where λ and the
number of repetitions grow with n.

Coming back to the previously defined sequences Pk, we state that such
sequences are admissible and controlled by (uk

n)n∈Z+
for every k > 2. Indeed,

for every n ∈ Z+ and k > 2, Pk
n = Qn(k − 2) hence there exists q, r 6 n such

that Pk
n = Sq

r (k − 2). Then, deg(Sq
r (k − 2)) 6 uk

r by definition and therefore
deg(Sq

r (k− 2)) 6 uk
n because (uk

n)n∈Z+
is increasing. The same argument shows

that |Pk
n|1 6 uk

n.
For the admissibility, we first notice that S0

0(i) = 0 for all i ∈ Z+. Moreover
for every k > 2, Pk is an enumeration of Q[X] because Q[X] = {Sk−2

n (k− 2), n ∈
Z+} ⊆ {Pk

n, n ∈ Z+}.

CLAIM. These sequences have the additional property that Pk
j = 0 for every

k > 2 and 0 6 j 6 2k.
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Proof. Let k > 2 and 0 6 j 6 2k, Pk
j = Qj(k − 2) = Sq

r (k − 2) for some
q, r ∈ Z+ with q + r 6 j by definition of Q. By definition, if 0 6 r 6 bq+1,
Sq

r (k− 2) = 0.

Then, if bq+1 < r, we have bq+1 + q < r + q 6 j 6 2k, giving 5q+1+q−4
2 6 k−

2. In addition, if q > 1, an easy computation yields to q + 1 < 5q+1+q−4
2 . Hence,

we get q + 1 < k− 2 and thus Sq
r (k− 2) = 0 because Sq

r ∈ (Q[X])q+1 × {0}Z+ .
It remains to study the case with q = 0 and 5 = b1 < r but Sq

r (k − 2) = 0
if k − 2 > 1 ⇔ k 6= 2. Furthermore, if k = 2, then q 6= 0 because otherwise we
would have the inequality 5 = b1 < r 6 j 6 2k = 4 which is obviously false.

Assume that X is a Banach space with an unconditional normalised basis
(ei)i∈Z+

for which the associated forward shift is continuous. For every p > 2, set
Xp := X, (ep

i )i∈Z+
:= (ei)i∈Z+

the unconditional basis of Xp and define an oper-
ator Tp on Xp in the same way we did it in the last section but with parameters
p, (bn)n∈Z+

and with admissible sequence Pp constructed above. The changes on
some parameters do not interfere with conditions (4.6a), (4.6b) and (4.6c) which
are still satisfied, thus Tp is well-defined and continuous on Xp. In addition, it
appears from the proof of Lemma 4.9 that ‖Tp‖ 6 sup(4Cp

u‖Fp‖, 2Cp
u) where Cp

u

is the unconditional constant of (ep
i )i∈Z+

and Fp is the forward shift on Xp.
The delicate part is the construction of the linear forms because we use the

condition b1 > 2p to construct the functionals Φδ and check (4.6e). Here we have
chosen to take bn = 5n for every n ∈ N, then we have changed the admissible se-
quence Pp to be able to construct the functionals Φδ. Indeed, the first components
of Pp contains only zeros to compensate for the fact that b1 < 2p. Let m ∈ N be
such that bm−1 < 2p < bm. Then, we define for every δ ∈ {0, . . . , 2p− 1}:

Φδ(Tie0) =


1 if i = δ,
0 if i ∈ {0, bm − 1} \ {δ},
Φδ(Pn(T)Ti−bn e0) if i ∈ [bn, 3

2 bn[∪[2bn, 5
2 bn[ for n > m,

0 otherwise.

Then, Φδ is well-defined thanks to the claim and (4.6e) and (4.6d) are also
satisfied. As a consequence, despite some changes on the parameters Tp is super-
cyclic and not strongly h-supercyclic for 2 6 h 6 p on Xp for a suitable choice of
increasing control sequences.

4.3.2. CONSTRUCTION OF A SUPERCYCLIC OPERATOR BEING NOT STRONGLY h-
SUPERCYCLIC FOR h > 2. The next step is to consider the direct sum of previously
constructed operators to get rid of the strong h-supercyclicity. Hence, define T =⊕̀

2

Tp an operator on B =
⊕̀

2

Xp for p > 2. Then, considering on the first part the
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weighted forward shift part R of T and then the perturbation part K, we get:

‖T‖ 6 ‖R‖+ ‖K‖ 6 4 sup
p>2

(Cp
u‖Fp‖) + 2 sup

p>2
(Cp

u) < +∞

because for every p > 2, Xp = X. So, T is continuous on B and is not strongly
p-supercyclic for p > 2. Thus, it suffices to prove that T is supercyclic with su-

percyclic vector
⊕
`2

ep
0
p . For this purpose we are going to prove that T satisfies the

two following conditions:

{(0, . . . , 0, ep
i , 0, . . .) : i ∈ Z+, p > 2} ⊂ Span

{
Ti
(⊕

`2

ep
0
p

)
: i ∈ Z+

}
.(4.12)

Span
{

Ti
(⊕

`2

ep
0
p

)
: i ∈ Z+

}
⊆
{

λTi
(⊕

`2

ep
0
p

)
: i ∈ Z+, λ ∈ K

}
.(4.13)

The condition (4.13) is satisfied with our construction of admissible sequences.

Indeed, it suffices to prove (4.13) for SpanQ

{
Ti
(⊕ ep

0
p

)
, i ∈ Z+

}
. Let P ∈ Q[X],

then by definition of the sequence (Qk)k∈Z+
, there exist three strictly increas-

ing sequences of integers (nk)k∈Z+
,(mk)k∈Z+

and (λk)k∈Z+
such that for every

k, Qnk = (λkP, . . . , λkP︸ ︷︷ ︸
mk times

, 0, . . .).

This provide the following expression for Tbnk

( ⊕̀
2

ep
0
p

)
,

(
λkP(T)

( e2
0
2

)
+

e2
bnk

2
, . . . , λkP(T)

( emk+1
0

mk + 1

)
+

emk+1
bnk

mk + 1
,

emk+2
bnk

mk + 2
, · · ·

)
and thus∥∥∥ 1

λk
Tbnk

(⊕
`2

ep
0
p

)
− P(T)

(⊕
`2

ep
0
p

)∥∥∥
`2

=
∥∥∥( e2

bnk

2λk
, . . . ,

emk+1
bnk

(mk + 1)λk
,

emk+2
bnk

(mk + 2)λk
− P(T)

( emk+2
0

mk + 2

)
, . . .

)∥∥∥
`2
−→

k→+∞
0.

This proves (4.13).
We now focus on (4.12). Let i ∈ Z+ and q > 2. The definition of Qk and

the supercyclicity of Tp implies that there exists a strictly increasing sequence of
integers (nk)k∈Z+

such that Qnk = (0, . . . , 0, Pk, 0, . . .) for all k ∈ Z+ where Pk is a
polynomial such that Pk(T)e

q
0 = λkeq

i + εk where (λk)k∈Z+
is a strictly increasing
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sequence of positive real numbers tending to +∞ and ‖εk‖ −→
k→+∞

0. Thus,

∥∥∥ q
λk

Tbnk

(⊕
`2

ep
0
p

)
− (0, . . . , 0, eq

i , 0, . . .)
∥∥∥
`2

=
∥∥∥( qe2

bnk

2λk
, . . . ,

qeq−1
bnk

(q− 1)λk
,

eq
bnk

λk
+

1
λk

Pk(T)(e
q
0)− eq

i ,
qeq+1

bnk

(q + 1)λk
, . . .

)∥∥∥
`2

=
∥∥∥( qe2

bnk

2λk
, . . . ,

qeq−1
bnk

(q− 1)λk
,

eq
bnk

λk
+ εk,

qeq+1
bnk

(q + 1)λk
, . . .

)∥∥∥
`2
−→

k→+∞
0.

This proves (4.12). So T is supercyclic on X without being strongly h-super-
cyclic for any h > 2 proving Theorem 4.13.

QUESTION 4.14. Are strongly n-supercyclic operators also strongly (n + 1)-
supercyclic for n > 2?

QUESTION 4.15. Does T automatically satisfy the supercyclicity criterion if
it is strongly n-supercyclic for any n > 1?
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