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ABSTRACT. We call a bounded linear operator acting between Banach spaces
weakly compactly generated (WCG for short) if its range is contained in a weakly
compactly generated subspace of its target space. This notion simultaneously
generalises being weakly compact and having separable range. In a compre-
hensive study of the class of WCG operators, we prove that it forms a closed
surjective operator ideal and investigate its relations to other classical operator
ideals. By considering the pth long James space Jp(ω1), we show how prop-
erties of the ideal of WCG operators (such as being the unique maximal ideal)
may be used to derive results outside ideal theory. For instance, we identify
the K0-group of B(Jp(ω1)) as the additive group of integers and prove auto-
matic continuity of homomorphisms from this Banach algebra.
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1. INTRODUCTION

Amir and Lindenstrauss [2] initiated the study of weakly compactly gener-
ated (WCG for short) Banach spaces, that is, Banach spaces containing a weakly
compact fundamental subset. Any reflexive and any separable Banach space is
weakly compactly generated. Other notable examples include L1(µ)-spaces with
a σ-finite positive measure µ, and c0(Γ)-spaces for an arbitrary index set Γ. The
latter play a special role, as for every WCG space X there is a bounded linear op-
erator which maps X injectively into c0(Γ) for some Γ. On the other hand, there
are plenty of Banach spaces which are not WCG such as `∞ and `1(Γ) for any
uncountable index set Γ.

According to Lindenstrauss [25], the class of WCG Banach spaces is stable
under quotients, c0-sums, `p-sums for p ∈ (1, ∞), and countable `1-sums. Sur-
prisingly, a closed subspace of a WCG Banach space need not be WCG. The first
counterexample was given by Rosenthal [31] who exhibited a non-WCG subspace
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of L1(µ) for some probability measure µ. Note that the aforementioned spaces `∞
and `1(Γ) (with Γ uncountable) are not subspaces of any WCG space. We refer to
[3] for further examples concerning that subspace problem, and to [15] for a list
of necessary and sufficient conditions for being a (subspace of a) WCG Banach
space.

Let T : X → Y be a bounded linear operator acting between Banach spaces
X and Y. We call the operator T weakly compactly generated (or WCG) if there is a
WCG subspace Z of Y such that T(X) ⊆ Z. We shall prove in Section 2 (Theo-
rem 2.1) that the class WCG of all weakly compactly generated operators forms
a closed operator ideal. Moreover, this operator ideal is surjective, but is neither
injective nor symmetric (Propositions 2.3 and 2.4). We then compare WCG to
other classical operator ideals, including the operator ideals of weakly compact,
completely continuous, strictly singular and strictly cosingular operators.

Section 3 is devoted to weakly compactly generated operators acting on the
pth long James space Jp(ω1) (p ∈ (1, ∞)). The main result of this section (The-
orem 3.7) asserts that the ideal of weakly compactly generated operators is the
unique maximal ideal of the algebra B(Jp(ω1)) of operators on Jp(ω1). Build-
ing on the techniques from [17], some further descriptions of this ideal are given,
and these lead to additional results concerning commutators, automatic continu-
ity of homomorphisms and the K0-group of B(Jp(ω1)).

Next we turn our attention to operators acting on C(K)-spaces. In terms of
the representing measure of a given operator T : C(K) → X, we give a sufficient
condition for T being WCG (Theorem 4.2). This is an application of the character-
isation of subspaces of WCG Banach spaces, obtained by Fabian, Montesinos and
Zizler [13].

Finally, in Section 5 we discuss some examples of non-Eberlein compacta K
for which the ideal of WCG operators on C(K) is maximal. In particular we show
that this is the case for a certain Mrówka space K constructed by Koszmider [20],
and we give a complete description of the lattice of closed ideals in B(C(K))
(Theorem 5.5).

Throughout this paper, Banach spaces are assumed to be either over the
field K of real or complex numbers. By an operator we understand a bounded
linear operator acting between Banach spaces. An operator T : E → F is bounded
below if there exists a constant γ > 0 such that ‖Tx‖ > γ‖x‖ for every x ∈ E,
which means that T is one-to-one and has closed range. The space B(E, F) of
all operators T : E → F is a Banach space, when endowed with the operator
norm and B(E, E) = B(E) is a unital Banach algebra with multiplication being
composition of operators.

Let B be the class of all operators acting between arbitrary Banach spaces.
By an operator ideal we understand a subclass J of B, containing the identity
operator on the one-dimensional Banach space and which assigns to each pair
(E, F) of Banach spaces a (not necessarily closed) linear subspace J (E, F) =
B(E, F) ∩J such that for any Banach spaces X, Y, E, F and for any operators
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T ∈ B(X, E), S ∈ J (E, F) and R ∈ B(F, Y) we have RST ∈ J (X, Y). An op-
erator ideal J is closed, if the subspace J (E, F) is closed in B(E, F) for any pair
(E, F) of Banach spaces. We refer to [30] for the general theory of operator ideals.

The classes K , W and X of compact operators, weakly compact operators
and operators with separable range, respectively, are standard examples of closed
operator ideals.

For any Banach space X the class GX ⊆ B which assigns to each pair (E, F)
of Banach spaces the subspace

GX(E, F) = span{ST : T ∈ B(E, X), S ∈ B(X, F)} ⊆ B(E, F)

is the ideal of operators factoring through X. In the case where X contains a com-
plemented copy of its Cartesian square X ⊕ X, the set {ST : T ∈ B(E, X), S ∈
B(X, F)} is itself a linear subspace of B(E, F), whence the symbol “span” above
can be suppressed.

2. THE OPERATOR IDEAL OF WEAKLY COMPACTLY GENERATED OPERATORS AND
ITS RELATIONS TO OTHER OPERATOR IDEALS

Recall that WCG (E, F) denotes the set of all operators T : E → F with T(E)
contained in a weakly compactly generated subspace of F.

THEOREM 2.1. The class WCG is a closed operator ideal.

Proof. Let E, F be Banach spaces. Fix two operators T and S in WCG (E, F).
We deduce that T + S belongs to WCG (E, F). Indeed, let KT and KS be two weakly
compact subsets of E such that T(E) ⊆ span KT and S(E) ⊆ span KS. The union
KT ∪ KS is weakly compact and (T + S)(E) ⊆ span (KT ∪ KS), hence T + S ∈
WCG (E, F).

Let X, Y, E, F be Banach spaces and let T ∈ B(X, E), S ∈ WCG (E, Y) and
R ∈ B(Y, F). We note that both ST and RS are in the class WCG . Indeed, since
S(T(X)) ⊆ S(E) and S(E) is a subspace of a WCG subspace of Y we have ST ∈
WCG (X, Y). Now, let K be a weakly compact subset of Y such that S(E) ⊆ span K.
Every operator is weak-to-weak continuous, thus the image R(K) is weakly com-
pact and RS(E) ⊆ R(span K) ⊆ span R(K). Consequently, RS ∈ WCG (X, Y).

Finally, we shall prove that WCG is closed. Let (Tn)∞
n=1 ⊆ WCG (E, F) be

a norm-convergent sequence of operators with limit T, say. Let Fn be a WCG
subspace of F such that Tn(E) ⊆ Fn (n ∈ N). Define W to be the `1-sum of
(Fn)∞

n=1, which is again a WCG Banach space ([25], Proposition 2.4). Furthermore,

let J : W → F be the operator defined by J(xn)∞
n=1 =

∞
∑

n=1
xn. Since W is WCG, the

space J(W) is WCG as well, and we have T(E) ⊆ span
⋃

n∈N
Fn ⊆ J(W).
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PROPOSITION 2.2. The ideal WCG (E) is a proper ideal of B(E) if and only if E
is not weakly compactly generated.

The proof follows by considering the range of the identity operator on E.
Let E, E0 and F be arbitrary Banach spaces. Recall that an operator ideal

J is surjective if for any surjective operator Q ∈ B(E, E0) and each operator
T ∈ B(E0, F), we have T ∈J (E0, F) provided TQ ∈J (E, F). An operator ideal
J is injective if for each closed subspace F0 of F and every operator T ∈ B(E, F0)
with ιT ∈ J (E, F) we have T ∈ J (E, F0) (here ι : F0 → F denotes the inclusion
operator).

PROPOSITION 2.3. The operator ideal WCG is a surjective, but not an injective,
operator ideal.

Proof. For the surjectivity of WCG , suppose that T ∈ B(E, F) satisfies TQ ∈
WCG (E0, E) for some Banach space E0 and some surjection Q ∈ B(E0, E). Since
Q is a surjection, the ranges of TQ and T are the same, hence T ∈ WCG (E, F).

We observe that WCG is not injective. Indeed, it follows from the existence
of a non-WCG subspace of a WCG space.

PROPOSITION 2.4. The operator ideal WCG is not symmetric, that is, the adjoint
of a weakly compactly generated operator need not be weakly compactly generated.

Conversely, if the adjoint of an operator T is weakly compactly generated, then
again, T need not be.

Proof. The lack of symmetry is clear — the identity operator on `1 is WCG,
while its adjoint I∗`1

= I`∞ is not.
Now, let JL be the Johnson–Lindenstrauss space (consult [16] for its defini-

tion and properties), which is known not to be a WCG space but its dual JL∗ =
`1 ⊕ `2(c) clearly is. Then, T = IJL is not WCG, whereas T∗ = IJL∗ is.

Let us observe that each operator which factors through a WCG space is
weakly compactly generated. In particular, one can deduce from this that weakly
compact operators are weakly compactly generated. The Davis–Figiel–Johnson–
Pełczyński theorem ([10], Theorem 6.2.15) characterises weakly compact oper-
ators as precisely those which admit a factorisation through a reflexive space,
hence each weakly compact operator is WCG; of course such a heavy machin-
ery is superfluous in this case as it can be seen directly. Trivially, operators with
separable range are WCG as well.

In the remaining part of this section we shall study order relations between
WCG and some classical operator ideals. Recall that an operator T ∈ B(E, F) is:

(a) completely continuous (or Dunford–Pettis) if it maps weakly convergent se-
quences in E to norm convergent sequences in F;

(b) strictly singular (or Kato) if it is not bounded below when restricted to any
closed, infinite-dimensional subspace of its domain;



THE IDEAL OF WEAKLY COMPACTLY GENERATED OPERATORS ACTING ON A BANACH SPACE 459

(c) strictly cosingular (or Pełczyński) if for each infinite-codimensional, closed
subspace M of F, the operator πT is not surjective, where π : F → F/M is the
quotient operator.

PROPOSITION 2.5. (i) The operator ideal W is a proper subclass of WCG .
(ii) The operator ideals V , S and CS are incomparable to WCG .

Proof. (i) This is clear as explained above.
(ii) To see that V 6⊆ WCG , recall that any operator on `1(ω1) is completely

continuous, so that the identity on `1(ω1) belongs to V (`1(ω1)) \WCG (`1(ω1)).
Conversely, by the Rosenthal–Dor `1-theorem ([9], Chapter XI) any com-

pletely continuous operator on a space without a copy of `1 is compact. Thus,
the identity operator on any infinite-dimensional WCG Banach space without a
subspace isomorphic to `1 belongs to WCG \ V .

The relations WCG 6⊆ S , WCG 6⊆ CS are clear, simply consider the iden-
tity operator on an infinite-dimensional WCG Banach space.

Let T : C[0, ω1] → `∞([0, ω1]) be the inclusion operator. Since C[0, ω1]
is not WCG, the operator T is not in WCG . To prove that WCG 6⊇ CS , it is
enough to show that T is strictly cosingular. In the light of a result by Bour-
gain and Diestel [5], it suffices to ensure that T∗ maps weak*-null sequences into
norm-null sequences. This is, however, automatic since weak*-null sequences in
`∞([0, ω1])

∗ converge weakly (this is the counterpart of Theorem VII.15 in [9] for
uncountable index sets), T∗ is weak-to-weak continuous like every operator and
`1([0, ω1]) ∼= C[0, ω1]

∗ has the Schur property, which means that weakly conver-
gent sequences in C[0, ω1]

∗ converge in norm.
For the relation WCG 6⊇ S , take a set Γ such that there is a surjective op-

erator T : `1(Γ) → C[0, ω1]. We have T /∈ WCG , because C[0, ω1] is not weakly
compactly generated. To see that T is strictly singular, observe that if T|X was
bounded below on some infinite-dimensional subspace X of `1(Γ), one could
find an isomorphic copy Y of c0 in T(X) (as C[0, ω1] is c0-saturated, that is, each
infinite-dimensional, closed subspace of C[0, ω1] contains a subspace isomorphic
to c0; cf. also [27]). Consequently, (T|X)−1(Y) would be an isomorphic copy of c0
in `1(Γ), which is impossible.

3. WEAKLY COMPACTLY GENERATED OPERATORS ON THE LONG JAMES SPACE

In this section we prove that the ideal of weakly compactly generated op-
erators is the unique maximal ideal of the algebra of operators on the pth long
James space Jp(ω1). Then we derive from this fact several characterisations of
this ideal. The long James space (originally for p = 2) serves as a counterexam-
ple to numerous questions in Banach space theory (consult Edgar’s paper [12] for
details).
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Let p ∈ (1, ∞). For any non-zero ordinal η and any function x : [0, η) → K
define

‖x‖p,0=sup
{( n

∑
j=1
|x(αj)−x(αj−1)|p

)1/p
: n∈N and 06α0<α1< · · · <αn <η

}
.

Edgar [12] defined the long James space to be

J (0)
p (η) = {x : [0, η)→ K | x is continuous, x(0) = 0 and ‖x‖p,0 < ∞}.

In fact, for our purposes we require a slight modification of Edgar’s construction.
Let η be a non-zero limit ordinal. We set

J̃p(η) =
{

x : [0, η)→ K | lim
α→η

x(α) = 0 and ‖x‖p,0 < ∞
}

and define Jp(η) = {x ∈ J̃p(η) : x is continuous}. It turns out that all these three
spaces are pairwise isomorphic. Indeed, the unique order preserving bijection
ϕ, from η onto the set D(η) of all successors less than η induces an isometry
U : J̃p(η)→ Jp(η) via the formula

U(x)(α) =

x(ϕ−1(α)) if α ∈ D(η),
lim
β→α

x(β) if α ∈ η \ D(η),

whereas the map V : Jp(η)→ J (0)
p (η), given by

V(x)(α) =


0 if α = 0,
x(0) + x(α) if 0 < α < η,
x(0) if α = η,

yields an isomorphism between Jp(η) and J (0)
p (η).

All these spaces may also be equipped with the norm

‖x‖Jp = 2−1/p sup
{(
|x(αn)− x(α0)|p +

n

∑
j=1
|x(αj)− x(αj−1)|p

)1/p
: n ∈ N and

0 6 α0 < α1 < · · · < αn < η
}

,

which is more natural than ‖ · ‖p,0 in the sense that ‖eα‖Jp = 1 for every α < η,

where eα = 1{α}. Moreover, for any x ∈ J̃p(η) we have

2−1/p‖x‖p,0 6 ‖x‖Jp 6 21/p‖x‖p,0.

According to Propositions 1, 3 of [12], we know that

(i) (1(α,η])06α<η is a basis for J (0)
p (η);

(ii) (e∗α)0<α6η is a basis for J (0)
p (η)∗,

where e∗α( f ) = f (α) (α < η, f ∈ J (0)
p (η)). By applying the isomorphism V and

the dual isomorphism V∗, we infer that



THE IDEAL OF WEAKLY COMPACTLY GENERATED OPERATORS ACTING ON A BANACH SPACE 461

(i) (1[0,α])06α<η is a basis for Jp(η);
(ii) (e∗α)06α<η is a basis for Jp(η)∗.

From now, we specialise to η = ω1, the smallest uncountable ordinal. Let
us recall that Jp(ω1) is isomorphic to its bidual and has the Radon–Nikodým
property, yet it is not isomorphic to a subspace of a WCG Banach space.

In the case of the classical James space Jp it was shown by Laustsen that
W (Jp) is the unique maximal ideal of B(Jp) and, moreover, that an operator
on Jp is weakly compact if and only if it factors through the reflexive space
(
⊕∞

n=1 Jp(n))`p , where Jp(n) = span{ej}j6n (see Theorem 4.16 of [23] and The-
orem 4.3 of [22], respectively). According to Willis (cf. Proposition 6 of [32]), the
ideal W (Jp) may be also characterised as the ideal of compressible operators.
Let us recall that for any Banach space X an operator T ∈ B(X) is said to be
compressible if there is n ∈ N, and a sequence (Qk)

∞
k=1 of projections on Xn, such

that QkQ` = 0 whenever k 6= ` and T factors through Qk for each k ∈ N. Equiv-
alently (cf. Proposition 1 of [32]), T ∈ B(X) is compressible if and only if there
exist n ∈ N and sequences (Dk)

∞
k=1 and (Ek)

∞
k=1 of closed subspaces of Xn such

that

(c1) Xn = D1 ⊕ E1 and Ek = Dk+1 ⊕ Ek+1 for every k ∈ N;
(c2) T factors through Dk for every k ∈ N.

We denote by C (X) the ideal of compressible operators on X.
The methods used by Laustsen and Willis to obtain characterisations of the

ideal W (Jp) are based on Lemma 2.1 from the paper [28] by Loy and Willis.
It asserts that every operator T ∈ W (Jp) admits a decomposition T = K + R,
where K is compact and R has only finitely many non-zero entries in each line
of its matrix representation, and also satisfies R∗∗(1N) = 0. This approach is
rather useless for characterising the ideal WCG (Jp(ω1)), since weakly compactly
generated operators are not characterised by properties of their second adjoints,
unlike weakly compact operators.

Our approach is based on Lemma 1.2 from [17] by the first-named author,
Koszmider and Laustsen, which refines certain results of Alspach and Benyamini
from [1] and concerns operators on the space C[0, ω1]. We shall prove a counter-
part of that lemma for Jp(ω1). Before proceeding to the proof let us note that, in
view of the theorem of Hagler and Johnson ([14], Corollary 2), and the fact that
Jp(ω1)

∗ has the Radon–Nikodým property, the unit ball of Jp(ω1)
∗ is weak∗ se-

quentially compact. Though the general idea of the proof remains the same, some
modification is needed, as the original argument heavily relies on the identifica-
tion C[0, α]∗ ∼= `1([0, α]) for any ordinal α.

THEOREM 3.1. For every p ∈ (1, ∞) and every T ∈ B(Jp(ω1)) there exists
a λ ∈ K such that for some club (closed and unbounded) set D ⊆ ω1 we have

(3.1) e∗αT(x) = λe∗αx for x ∈ Jp(ω1) and α ∈ D.
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Proof. For each α < ω1 define ϕα = T∗e∗α. We shall prove that for some
λ ∈ K there is a club subset D ⊂ ω1 with ϕα = λe∗α, since then 〈Tx, e∗α〉 =
〈x, T∗e∗α〉 = λe∗αx for x ∈ X, α ∈ D, and the assertion would follow.

Let Q be any countable, dense subset of K. For every α < ω1 and k ∈ N we
may find a finite set Fα,k ⊂ ω1 and scalars qα,k,β ∈ Q (for β ∈ Fα,k) such that

(3.2) ‖ϕα,k − ϕα‖ <
1
k

, where ϕα,k = ∑
β∈Fα,k

qα,k,βe∗β.

CLAIM 1. If (αk)
∞
k=1 ⊂ ω1 and αk → α ∈ ω1, then ϕαk ,k

w∗−→ ϕα.

Proof of Claim 1. For any x ∈ Jp(ω1) we have

|(ϕαk ,k − ϕα)(x)| 6 ‖ϕαk ,k − ϕαk‖ · ‖x‖Jp + |(ϕαk − ϕα)(x)|.

The first term tends to zero by (3.2). By the continuity of each x ∈ Jp(ω1), we
have e∗αk

w∗−→ e∗α, thus the weak∗-continuity of T∗ gives ϕαk = T∗e∗αk

w∗−→ T∗e∗α =
ϕα, which means that the second term tends to zero as well.

For each k ∈ N the ∆-system lemma produces an uncountable set Ak ⊂ ω1
and a root ∆k = {βk,1, . . . , βk,|∆k |} ⊂ ω1 such that

(3.3) Fα,k ∩ Fα′ ,k = ∆k for α, α′ ∈ Ak, α 6= α′.

By deleting at most countably many elements from each of Ak’s we may also
assume that:

(a) for every k ∈ N there is an mk ∈ N with |Fα,k| = mk for each α ∈ Ak;
(b) sup

⋃
i∈N

∆ i < min(Fα,k \∆k) for every k ∈ N and α ∈ Ak;

(c) for every k ∈ N and α ∈ Ak there is an order preserving bijection σα,k :
{1, . . . , mk} → Fα,k such that σα,k(i) = βk,i for each 1 6 i 6 |∆k|;

(d) for every k ∈ N there are scalars qk,i ∈ Q (for 1 6 i 6 mk) such that
qα,k,σα,k(i) = qk,i for α ∈ Ak and 1 6 i 6 mk.

Case 1. mk = |∆k| for infinitely many k’s.
Without loss of generality, we may suppose that mk = |∆k| for every k ∈ N.

Then for every k ∈ N and α ∈ Ak we have Fα,k = ∆k and

ϕα,k = ρk := ∑
16i6|∆k |

qk,ie∗βk,i
.

We define the club D ⊂ ω1 as the set of all limits of sequences (αk)
∞
k=1 with

αk ∈ Ak for k ∈ N. Now, if α ∈ D is the limit of such a sequence, then Claim 1
implies ρk = ϕαk ,k

w∗−→ ϕα. Consequently, for all α ∈ D the functional ϕα is the
same, and is equal to the weak∗ limit of (ρk)k∈N. Moreover, since each x ∈ Jp(ω1)

satisfies lim
α→ω1

x(α) = 0, we have ϕα = T∗e∗α
w∗−−−→

α→ω1
T∗(0) = 0, thus ϕα = 0 for

α ∈ D and our assertion is valid with λ = 0.
Case 2. mk > |∆k| for infinitely many k’s.
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With no loss of generality we may suppose that mk > |∆k| for every k ∈ N.
For each k ∈ N and α ∈ Ak define

ψα,k = ∑
|∆k |<j6mk

qk,je∗σα,k(j),

that is, ϕα,k = ρk + ψα,k. For every k ∈ N and α < ω1 we have ‖ϕα,k‖ 6
1/k + ‖T∗e∗α‖ 6 1+ ‖T‖. Since the unit dual ball of Jp(ω1) is weak∗ sequentially
compact, we may find a strictly increasing sequence (ki)

∞
i=1 of natural numbers,

and a strictly increasing sequence (βi)
∞
i=1 ⊂ ω1 such that βi ∈ Aki

for each i ∈ N
and ϕβi ,ki

w∗−→ ϕ0 for some ϕ0 ∈ Jp(ω1)
∗.

CLAIM 2. There exist a number λ ∈ K and a functional ρ ∈ Jp(ω1)
∗ such

that

∑
|∆ki
|<j6mki

qki ,j −−→i→∞
λ and ρki

w∗−−→
i→∞

ρ.

Proof of Claim 2. Consider x0 ∈ Jp(ω1) defined by

x0(α) =

1 if sup
⋃

i∈N
∆ i < α 6 sup

⋃
i∈N

Fβi ,ki
,

0 otherwise.

Plainly, ρki
(x0) = 0 and ψβi ,ki

(x0) = ∑
|∆ki
|<j6mki

qki ,j for every i ∈ N, thus the

convergence ϕβi ,ki
(x0) → ϕ0(x0) implies the first part of the claim with λ =

ϕ0(x0). To complete the argument let

X = span
{

1[0,α] : 0 6 α 6 sup
⋃
i∈N

∆ i

}
and observe that for each x ∈ X we have ρki

(x) = ϕβi ,ki
(x) → ϕ0(x). Obviously,

Jp(ω1) = X⊕Y, where Y consists of all sequences x ∈ Jp(ω1) with x(α) = 0 for
each α 6 sup

⋃
i∈N

∆ i. For y ∈ Y and every i ∈ N we have ρki
(y) = 0, hence our

assertion holds true with ρ defined by ρ(x + y) = ϕ0(x) for x ∈ X and y ∈ Y.

Now, define D ⊂ ω1 to be the set of all ordinals α ∈ ω1 for which there
exists a sequence (αi)

∞
i=1 ⊂ ω1 satisfying:

(1) (αi)
∞
i=1 is strictly increasing;

(2) αi ∈ Aki
for each i ∈ N;

(3) lim
i→∞

αi = lim
i→∞

min(Fαi ,ki
\∆ki

) = α;

(4) max(Fαi ,ki
) < αi+1 < α for each i ∈ N.

It is clear that D is then a club subset of ω1.
CLAIM 3. If (αi)

∞
i=1 ⊂ ω1 satisfies conditions (1)–(4) and converges to an α ∈

D, then ϕαi ,ki

w∗−−→
i→∞

ρ + λe∗α.
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Proof of Claim 3. For every x ∈ Jp(ω1) we have

|ϕαi ,ki
(x)− (ρ + λe∗α)(x)|

6 |(ρki
− ρ)(x)|+ |ψαi ,ki

(x)− λe∗α(x)|

6 |(ρki
−ρ)(x)|+

∣∣∣ ∑
|∆ki
|<j6mki

qki ,je
∗
α(x)−λe∗α(x)

∣∣∣+∣∣∣ ∑
|∆ki
|<j6mki

qki ,j(e
∗
σαi ,ki

(j)(x)−e∗α(x))
∣∣∣.

By Claim 2, the first two terms tend to zero as i→ ∞.
Let Xα be the set of all sequences x ∈ Jp(ω1) which are constant on some

neighbourhood of α. If x ∈ Xα then conditions (3) and (4) guarantee that for
sufficiently large i’s every summand in the last term equals zero. Consequently,

ϕαi ,ki
(x)→ (ρ + λe∗α)(x)

for every x ∈ Xα, hence also for every x from the closure of Xα, since ϕαi ,ki
are

equicontinuous. Finally, note that Xα is dense, as it contains all finite linear com-
binations of elements of the Schauder basis (1[0,γ])γ<ω1 .

To complete the proof let again α ∈ D be the limit of a sequence (αi)
∞
i=1 ⊂ ω1

satisfying (1)–(4). By Claim 1, we have ϕαi ,ki

w∗−→ ϕα, whence Claim 3 yields
ϕα = ρ + λe∗α.

Since this is true for every α ∈ D, we may pass to the limit with α → ω1

(α ∈ D) to get ϕα
w∗−→ ρ and, on the other hand, ϕα = T∗e∗α

w∗−→ 0. Therefore,
ρ = 0, thus ϕα = λe∗α for each α ∈ D.

Now, as in [17], we define a map Λp : B(Jp(ω1)) → K by Λp(T) = λ,
where λ ∈ K is chosen so that (3.1) holds (the uniqueness of such a λ, for a fixed
T, follows from the fact that the intersection of two club subsets of ω1 is again
a club subset). Obviously, Λp is a non-zero linear and multiplicative functional,
hence ker Λp is a (maximal) ideal in B(Jp(ω1)) of codimension one.

Let L(ω1) be the set of all non-zero limit ordinals less than ω1. For every
ordinal α ∈ (0, ω1) we define a subspace of Jp(ω1) by

Jp(α) = span{1[0,β] : 0 6 β < α}

and we let
Gp =

(⊕
α∈L(ω1)

Jp(α)
)
`p

.

Being an `p-sum of WCG (even separable) Banach spaces, with p ∈ (1, ∞), the
space Gp is a WCG Banach space (cf. Proposition 2.4 of [25]). It turns out that
weakly compactly generated operators on the long James space factor through
this concrete WCG space, just like weakly compact operators on the classical
James space factor through the concrete reflexive space

(⊕∞
n=1 Jp(n)

)
`p

identi-
fied by Laustsen.

The estimates given by Casazza, Lin and Lohman in Lemma 2 of [6] for the
classical James space and p = 2 can be easily generalised in the following manner.
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LEMMA 3.2. Let p ∈ (1, ∞) and k, n1, . . . , nk ∈ N. For any ordinal numbers

γ1,1 < · · · < γ1,n1 < · · · < γk,1 < · · · < γk,nk
< ω1,

satisfying γi,ni + 1 < γi+1,1 for each 1 6 i < k, and for any scalars ti,j, we have

k

∑
i=1

∥∥∥ ni

∑
j=1

ti,jeγi,j

∥∥∥p

p,0
6
∥∥∥ k

∑
i=1

ni

∑
j=1

ti,jeγi,j

∥∥∥p

p,0
6 2p−1

k

∑
i=1

∥∥∥ ni

∑
j=1

ti,jeγi,j

∥∥∥p

p,0
.

Proof. The first inequality is obvious, since for each 1 6 i 6 k the ith sum-
mand on the left-hand side may be calculated using only indices from the interval
(γi−1,ni−1 , γi+1,1), where we put γ0,n0 = −1 and γk+1,1 = ω1.

For the second estimate notice that convexity of the function x → |x|p gives
|t + u|p 6 2p−1(|t|p + |u|p) for t, u ∈ C. Consequently, for t, u ∈ C we have

|t− u|p 6 2p−1(|t− 0|p + |0− u|p),

thus we can change every estimate under the supremum sign defining the middle
term into a sum which does not exceed the right-hand side.

PROPOSITION 3.3. For each p ∈ (1, ∞) the space Jp(ω1) contains a comple-
mented copy of Gp with Jp(ω1) ' Gp ⊕Jp(ω1).

Proof. For α < ω1 let us define a subspace of J̃p by J̃p(α) = span{eβ :
0 6 β < α}. The order preserving bijection ϕ : ω1 → D(ω1) ∪ {0} induces a
surjective isometry between J̃p(α) and Jp(α) for each α ∈ L(ω1). Hence, Gp is
isometric to G̃p, where

(3.4) G̃p =
(⊕

α∈L(ω1)
J̃p(α)

)
`p

.

It is enough to prove that the space J̃p(ω1) contains a complemented copy of G̃p.

CLAIM 1. The canonical basis of G̃p is equivalent to a basic sequence (eα)α∈A

⊂ J̃p(ω1) with a certain set A ⊂ ω1.

Proof of Claim 1. Define

Γ = {(α, β) ∈ ω1 ×ω1 : α ∈ L(ω1) and 0 6 β < α}

and let Γ∗ = Γ ∪ω1. Consider a linear order ≺ on Γ∗ defined as follows:

(i) ≺ |Γ is the lexicographic order;
(ii) ≺ |ω1 is the natural order;

(iii) (β, γ) < α < (δ, ε) for every (β, γ), (δ, ε) ∈ Γ with β 6 α < δ.

By a standard recursive argument, we infer that (Γ∗,≺) is order-isomorphic
to ω1. Let ψ : Γ∗ → ω1 be the order-isomorphism.

Now, suppose k, n1, . . . , nk ∈ N and we are given ordinal numbers α1 <
· · · < αk ∈ L(ω1) and βi,1 < · · · < βi,ni < αi (for 1 6 i 6 k) so that (αi, βi,j) ∈ Γ.
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Let x be the element of G̃p whose αith coordinate equals
ni
∑

j=1
ti,jeβi,j for 1 6 i 6 k

(with some scalars ti,j), and whose all other coordinates are zeros. Let also γi,j =
ψ(αi, βi,j) for 1 6 i 6 k and 1 6 j 6 ni.

Define y ∈ J̃p(ω1) by the formula y =
k
∑

i=1

ni
∑

j=1
ti,jeγi,j . Since

γi,ni = ψ(αi, βi,ni ) < ψ(αi) < ψ(αi+1, β1) = γi+1,1 for 1 6 i < k,

an application of Lemma 3.2 yields

‖x‖p
G̃p

6 ‖y‖p
p,0 6 2p−1‖x‖p

G̃p
.

Thus there is an isomorphism witnessing that the canonical basis of G̃p is equiv-
alent to (eα)α∈A with A = ψ(Γ) ⊂ ω1.

The next claim will complete the proof.

CLAIM 2. The subspace X = span{eα : α ∈ A} is complemented in J̃p(ω1)

by a copy of J̃p(ω1).

Let B = (ω1 \ A) ∪ {−1}. Following the lines of the proof of Theorem 5 in
[6], consider two sets:

C = {1[α,β] ∈ J̃p(ω1) : α ∈ A, either α ∈ L(ω1) or α = α′ + 1 with α′ ∈ B,

whereas β = min{β′ ∈ B : β′ > α}}

and

D = {eβ ∈ J̃p(ω1) : β ∈ B, either β ∈ L(ω1) or β = β′ + 1 with β′ ∈ B},

and define Y = span(C ∪ D). Then for x ∈ X and y ∈ Y we have the inequal-
ity ‖y‖p,0 6 ‖x + y‖p,0, since every partial variation approximating ‖y‖p,0 can
be calculated using only coordinates from B, and it remains the same for x + y.
Therefore, ‖x‖p,0 6 2‖x + y‖p,0. Thus there is a projection P define on X + Y,
with range X and kernel Y, and ‖P‖ 6 2. Let us note that X + Y = J̃p(ω1) .
Indeed, by exteding P (uniquely) to a projection on X + Y (still denoted by P), it
is enough to show that X +Y is dense in J̃p(ω1) as X remains the kernel of P and
the image of P is Y. Because X is complemented in X + Y, it is enough to notice
that each element eα (α ∈ B) belongs to Y as the set {eα : α < ω1} is linearly dense
in J̃p(ω1). Let α ∈ B. Since X = span{eγ : γ ∈ A}, without lost of generality
we may assume that eα /∈ D ∪ X. In this case, α = β + 1 for some β ∈ A (hence
eβ ∈ X). Consequently, 1[β,α] ∈ C and

eα = −eβ + 1[β,α] ∈ X + Y.

The elements of C ∪ D form a block basic sequence of (eα)α<ω1 which is
plainly equivalent to (eα)α<ω1 . Thus Y ' J̃p(ω1) and the proof is completed.
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LEMMA 3.4. For each p ∈ (1, ∞) we have Gp ' `p(ω1,Gp) (the `p-sum of
ω1 copies of Gp). Consequently, by the Pełczyński decomposition method, Gp is also
isomorphic to the `p-sum of countably many copies of itself.

Proof. By using transfinite induction, with respect to the lexicographic order
on the set ω1 × L(ω1), we construct a one-to-one map θ : ω1 × L(ω1) → L(ω1)
such that θ(α, β) > β for every (α, β) ∈ ω1 × L(ω1).

For (α, β) ∈ ω1 × L(ω1) let ια,β : Jp(β) → Jp(θ(α, β)) be the embedding of
the βth summand of the αth coordinate of `p(ω1,Gp) into Jp(θ(α, β)) which just
puts the sequences from Jp(β) into the first β coordinates. Let ι : `p(ω1,Gp) →
Gp be the embedding naturally produced by all ια,β’s.

Obviously, ι is an isometric embedding, thus ι(`p(ω1,Gp)) is a closed sub-
space of Gp. Since every summand Jp(θ(α, β)) of Gp admits a natural, norm
one projection onto Jp(β), there also exists a norm one projection from Gp onto
ι(`p(ω1,Gp)). Thus, `p(ω1,Gp) is isomorphic to a complemented subspace of Gp
and, obviously, vice versa. Moreover, both spaces Gp and `p(ω1,Gp) are clearly
isomorphic to their squares. Hence, by the Pełczyński decomposition method,
we get the assertion.

The following two assertions can be proved in the same manner as Propo-
sition 2.1 and Corollary 2.3 in [17], so we omit their proofs.

LEMMA 3.5. If T ∈ B(Jp(ω1)) and Λp(T) 6= 0 then T fixes a complemented
copy of Jp(ω1) and the range of T contains a copy of Jp(ω1), complemented in Jp(ω1).

COROLLARY 3.6. If Y ⊂ Jp(ω1) and Y ' Jp(ω1) then there is a subspace
Z ⊆ Y which is complemented in Jp(ω1) and such that Z ' Jp(ω1).

Before we proceed to the main result of this section, we require another
piece of notation.

Following Dosev and Johnson [11], for each Banach space X we define

MX = {T ∈ B(X) : I 6= ATB (A, B ∈ B(X))}.

In general, the set MX need not be closed under addition but when it is, it is also
the unique maximal ideal of B(X). A recent result of the first-named author and
Laustsen ([19], Theorem 1.2) states that MC[0,ω1]

is the unique maximal ideal of
B(C[0, ω1]).

Now, we are ready to prove the following theorem.

THEOREM 3.7. For any p ∈ (1, ∞) we have

ker Λp = WCG (Jp(ω1)) = GGp(Jp(ω1)) = C (Jp(ω1)) = MJp(ω1)
,

and this is the unique maximal ideal of B(Jp(ω1)). Moreover, an operator T∈B(Jp(ω1))
belongs to this ideal if and only if it is Jp(ω1)-singular, that is, T does not fix a copy of
Jp(ω1).
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Proof. Let us start by showing that the ideal ker Λp is contained in each of
the remaining sets in the desired equality. So, suppose that T ∈ B(Jp(ω1)) and
〈e∗α, Tx〉 = 0 for every x ∈ Jp(ω1) and α ∈ D, where D is a certain club subset of
ω1. We may assume that D ⊆ L(ω1).

Define Y to be the set of all sequences x ∈ Jp(ω1) such that x(α) = 0 for ev-
ery α ∈ D. Obviously, the range of T lies in Y. By Lemma 3.2, the space Y is in turn
isomorphic to (

⊕
α<ω1

J̃p(ord Oα))`p , where {Oα : α < ω1} is the family of con-
secutive order-components of ω1 \ D (this family is uncountable as D ⊂ L(ω1))
and ord Oα denotes the order type of Oα (α < ω1). That space is isomorphic to
a complemented subspace of G̃p given by (3.4). Hence, by Proposition 3.3, it is
isomorphic to a subspace of Jp(ω1) and is, of course, weakly compactly gener-
ated. Thus, the inclusion ker Λp ⊂ WCG (Jp(ω1)) has been proved. Furthermore,
Λp(T) = 0 implies T ∈ GGp(Jp(ω1)), as in this case the range of T is contained
in a subspace of Gp.

Now, observe that Proposition 3.3 yields

Jp(ω1) ∼= Gp ⊕Jp(ω1) ∼= Gp ⊕Gp ⊕Jp(ω1) ∼= · · · ,

thus every operator factoring through Gp is compressible. Consequently, ker Λp
is contained in C (Jp(ω1)).

To show the last of the announced inclusions recall that ker Λp is contained
in WCG (Jp(ω1)) and observe that the identity of Jp(ω1) cannot factor through
a weakly compactly generated operator ([12], Proposition 10), hence the inclusion
ker Λp ⊆MJp(ω1)

.
Since ker Λp is a maximal ideal, and both of the ideals WCG (Jp(ω1)) and

GGp(Jp(ω1)) are clearly proper, we get the first two of the claimed equalities.
To show the equality ker Λp = C (Jp(ω1)) we shall prove that the identity

operator IJp(ω1)
is not compressible.

By Proposition 2 of [32], that would be the case if and only if for a certain
n ∈ N we had a decomposition

(3.5) Jp(ω1)
n ∼= Z⊕Jp(ω1)

n+1

with some Banach space Z. However, as the ideal WCG (Jp(ω1)) has codimen-
sion one in the algebra B(Jp(ω1)), we have

dim B(Jp(ω1)
n)/WCG (Jp(ω1)

n) = n2 for each n ∈ N.

This follows from the fact that there is a linear surjection from B(Jp(ω1)
n) onto

the algebra Mn(K) of n × n matrices, with the kernel WCG (Jp(ω1)
n). Conse-

quently, relation (3.5) would lead to the absurdity: n2 > (n + 1)2.
For the equality ker Λp = MJp(ω1)

it remains to prove the inclusion “⊃”,
but this will follow from the fact that any operator T with Λp(T) 6= 0 must fix
a copy of Jp(ω1) and, consequently, the identity factors through T. These two
statements are contained in the remaining part of the proof.
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Now, notice that since Λp(T) = 0 implies T ∈ WCG (Jp(ω1)), it implies
also that T does not fix a copy of Jp(ω1). The converse follows from Lemma 3.5.
Hence, each of the ideals listed in our assertion is just the set of operators not
fixing a copy of Jp(ω1). We conclude here that ker Λp = MJp(ω1)

is the unique
maximal ideal of B(Jp(ω1)).

COROLLARY 3.8. The range of a weakly compactly generated operator on Jp(ω1)
is contained in a complemented, WCG subspace of Jp(ω1).

Let us say that a sequence (Aξ)ξ<ω1 of subsets of ω1 is skipped if for each pair
ξ1 < ξ2 < ω1 we have sup Aξ1 + 1 < min Aξ2 . A sequence ( fξ)ξ<ω1 of functions
defined on ω1 is skipped provided the sequence (supp fξ)ξ<ω1 is skipped.

The next lemma is an easy consequence of Lemma 3.2.

LEMMA 3.9. For each p ∈ (1, ∞) any normalised skipped sequence ( fξ)ξ<ω1 in
Jp(ω1) is equivalent to the canonical basis of `p(ω1).

For each σ < ω1 let us define Pσ f = f · 1[0,σ], f ∈ Jp(ω1). We note that Pσ

is a well-defined contractive projection on Jp(ω1). The proof of the next theorem
is based on ideas from the proofs of Theorem 1.3, Lemma 4.3 in [19].

THEOREM 3.10. Let p ∈ (1, ∞). The following assertions are equivalent for an
operator T on Jp(ω1):

(i) T = TPσ for some countable ordinal σ;
(ii) T ∈ GJp(σ)(Jp(ω1)) for some countable ordinal σ;

(iii) T ∈ G Jp(σ)(Jp(ω1)) for some countable ordinal σ;
(iv) T ∈ X (Jp(ω1));
(v) T does not fix a copy of `p(ω1).

Proof. The implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) are clear.
Assume contrapositively that (i) fails. We claim that there is δ > 0 such that

for each ξ < ω1, there is fξ ∈ Jp(ω1) with supp fξ ⊆ (ξ, ω1), ‖T f ‖ > δ and
‖ f ‖ 6 1. Suppose this is not the case. Then, for δn = 1/n we obtain a sequence
(ξn)n∈N of countable ordinals such that ‖T f ‖ < 1/n for each f ∈ Jp(ω1) with
supp f ⊆ (ξn, ω1). Let ξ = sup{ξn : n ∈ N}. Certainly, ξ < ω1. Take g ∈ Jp(ω1)
with ‖(I − Pξ)g‖ 6 1. Letting f = (I − Pξ)g we infer that supp f ⊆ (ξ, ω1) =⋂
n∈N

(ξn, ω1) as Pξ(I − Pξ) = 0. Thus, ‖T f ‖ < 1/n for each n ∈ N, so 0 = T f =

T(I − Pξ)g, which proves T = TPξ , against the assumption.
Similarly, as in the proof of Theorem 1.3 in [19], we choose inductively a

normalised skipped sequence ( fξ)ξ<ω1 with ‖T fξ‖ > δ, where δ is as above. By
Lemma 3.9, the subspace X = span{ fξ : ξ < ω1} is isomorphic to `p(ω1). We
note that T|X is bounded below, hence the proof of the implication (v) ⇒ (i) is
complete.
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Recall than an element x of an algebra A is a commutator if there exist some
a, b ∈ A such that x = ab− ba. It is well-known that if A is a unital Banach alge-
bra, then its unit cannot be a commutator. The following result is the counterpart
for Jp(ω1) of Theorem 4.6 of [22] and Theorem 5.1 of [17] for C[0, ω1].

THEOREM 3.11. Each operator in WCG (Jp(ω1)) is a sum of three commutators.

Proof. We have that WCG (Jp(ω1)) = GGp(Jp(ω1)) and, by Lemma 3.4,
the space Gp is isomorphic to its `p-sum, so Proposition 3.7 of [22] yields that
each operator on Gp is a sum of two commutators. Consequently, it follows from
Lemma 4.5 of [22] that each operator which factors through Gp is a sum of three
commutators.

Let ϑ : A → C be a homomorphism between Banach algebras. We call

I := {a ∈ A : the maps b 7→ ϑ(ab), b 7→ ϑ(ba) are continuous}
the continuity ideal of ϑ. Certainly, I is a two-sided ideal of A . Suppose A is an
ideal of B(E), where E is some Banach space. Willis ([32], Proposition 7) proved
that A · C (E) ·A ⊆ I (recall that C (E) stands for the ideal of compressible op-
erators). Furthermore, he used this fact to prove that each homomorphism from
B(J2) is continuous (in fact, his argument extends to arbitrary p ∈ (1, ∞)). A
key-ingredient in Willis’ proof is existence of a bounded right approximate iden-
tity in the ideal of weakly compact operators on the James space; we shall prove
that every homomorphism from B(Jp(ω1)) is continuous without appealing to
those type of results.

THEOREM 3.12. Every homomorphism from B(Jp(ω1)) is automatically contin-
uous.

Proof. Let C be a Banach algebra and let ϑ : B(Jp(ω1)) → C be a ho-
momorphism. As WCG (Jp(ω1)) is equal to the ideal of compressible operators
on Jp(ω1), the aforementioned result of Willis yields that WCG (Jp(ω1)) is con-
tained in the continuity ideal I of ϑ.

Since the ideal of weakly compactly generated operators on Jp(ω1) is of
codimension one in B(Jp(ω1)), it is sufficient to prove that ϑ restricted to
WCG (Jp(ω1)) is continuous.

Let (Tn)n=1 be a sequence of WCG operators on Jp(ω1). We shall exhibit a
weakly compactly generated operator P such that Tn = PTn (n ∈ N), which by
the definition of the continuity ideal, would complete the proof.

For each n ∈ N there is a weakly compactly generated subspace Xn of
Jp(ω1), containing the image of Tn and which is, by Corollary 3.8, isomorphic
to Gp. Let X = (

⊕
n∈N Xn)`p

. By Lemma 3.4, X is isomorphic to Gp, so it is also

WCG. Define J : X → Jp(ω1) by J(xn)∞
n=1 =

∞
∑

n=1
xn/np. Let U : Y → X be

an isomorphism, where Y is a complemented subspace of Jp(ω1), isomorphic
to Gp. Let V = JU, V : Y → Jp(ω1). Because Y is complemented in Jp(ω1),
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we may extend V to Jp(ω1); let V still stand for any such extension. Plainly,
V ∈ WCG (Jp(ω1)), so Λp(V) = 0. Thus, there is a complemented copy Z of Gp
containing the range of V. Let P be a projection onto Z. It remains to notice that⋃

n∈N
im Tn ⊆

⋃
n∈N

Xn ⊆ im T = im V ⊆ Z.

In particular, Tk = PTk for each k ∈ N.

A linear (not necessarily bounded) functional τ on an algebra A is a trace
if τ(ab) = τ(ba) (a, b ∈ A ). It follows from Theorem 3.11 that a linear functional
τ on B(Jp(ω1)) is a trace if and only if it satisfies the equation τ = τ(I)Λp.
Thus, Λp is the only normalised trace on B(Jp(ω1)). Laustsen proved that the
K0-group of B(Jp) is isomorphic to the additive group of integers ([21], Theo-
rem 4.6); for the definition of the K0-group consult e.g. [4]. His proof relies on
the fact that B(Jp) has a unique normalised trace with kernel being an ideal of
operators factoring through a Banach space isomorphic to its `p-sum. Recently,
the first-named author together with Koszmider and Laustsen ([18]), building on
these ideas, identified a class of Banach spaces X for which the K0-group of B(X)
is also the additive group of integers. In particular, Theorem 1.1 of [18] applies
and we obtain the following consequence.

PROPOSITION 3.13. K0(B(Jp(ω1))) ∼= Z.

4. WEAKLY COMPACTLY GENERATED OPERATORS ON C(K)-SPACES

The aim of this section is to give some natural conditions which would guar-
antee that a given operator on a C(K) space is weakly compactly generated. It is
well-known that every such operator T : C(K) → X has a Riesz-type represen-
tation (cf. Chapter 6 of [10]). Namely, there exists a weak∗-countably additive
vector measure µ : Σ→ X∗∗ (called the representing measure for T), defined on the
σ-algebra Σ of all Borel subsets of K, such that:

(i) for each x∗ ∈ X∗ the map Σ 3 A→ µ(A)x∗ is a regular countably additive
scalar measure (and will be denoted by x∗ ◦ µ);

(ii) x∗T( f ) =
∫
K

f d(x∗ ◦ µ) for each x∗ ∈ X∗ and f ∈ C(K);

(iii) ‖T‖ = ‖µ‖(K).
Recall that the representing measure µ may be defined by

µ = T∗∗ϕA,

where ϕA ∈ C(K)∗ acts as ϕA(ν) = ν(A). Equivalently, it may be defined by
µ(A)x∗ = µx∗(A), where µx∗ is a scalar measure produced by the Riesz theorem
applied for the functional x∗T.
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Suppose K is an Eberlein compact space, that is, K is homeomorphic to a
weakly compact subset of some Banach space (we refer to [25] for an exposi-
tion concerning the class of Eberlein compact spaces), and consider the identity
operator IC(K), which is then weakly compactly generated. For every A ∈ Σ we
have µ(A) = ϕA and a straightforward calculation gives ‖µ‖(A) = 1, provided
that A 6= ∅. So, for a WCG operator on C(K) it may happen that there are no non-
empty sets of small semivariation, nonetheless in our example the whole domain
is Eberlein. In this spirit we will prove the following result.

THEOREM 4.1. Let K be a compact Hausdorff space, X be a Banach space, and
T : C(K) → X be a bounded operator. Suppose µ : Σ → X∗∗ is the representing
measure for T and for each ε > 0 there exists a decomposition K = Kε

E ∪ Lε, where Kε
E

is an Eberlein compactum and ‖µ‖(Lε) < ε. Then the range of T lies in a WCG Banach
space.

We shall make use of the characterisation of subspaces of WCG Banach
spaces, obtained by Fabian, Montesinos and Zizler [13] (cf. also Theorem 6.13 of
[15]). A subset M of a Banach space X is called ε-weakly compact if it is bounded and

Mw∗ ⊆ X + εBX∗∗ .

THEOREM 4.2. A Banach space is a subspace of a WCG Banach space if and only
if for every ε > 0 its unit ball can be covered by countably many ε-weakly compact sets.

Proof of Theorem 4.1. Fix ε > 0 and define T̂ : C(Kε
E) → X to be the unique

operator whose representing measure is equal to the restriction of µ to Borel sub-
sets of Kε

E (see Theorem VI.1.1 of [10]). Since Kε
E is Eberlein, the range of T̂ is

weakly compactly generated. Let M ⊆ X be a convex, symmetric and weakly
compact set such that

T̂(C(Kε
E)) ⊂

∞⋃
n=1

(nM + εBX).

For every f ∈ C(K) and x∗ ∈ X∗, ‖x∗‖ 6 1, we have

|x∗(T f − T̂ f |Kε
E
)| =

∣∣∣ ∫
Lε

f d(x∗ ◦ µ)
∣∣∣ 6 |x∗ ◦ µ|(Lε)‖ f ‖ 6 ε‖ f ‖.

This implies that

T(BC(K)) ⊂
∞⋃

n=1

(nM + 2εBX)

and, since nM + 2εBX
w∗ ⊆ X + 2εBX∗∗ , each of the sets nM + 2εBX is 2ε-weakly

compact. Repeating this argument for ε/k instead of ε (for all k ∈ N) we get
a similar covering of T(kBC(K)) and, consequently, for some sequence (Mk)

∞
k=1

of weakly compact sets we have T(C(K)) ⊂
∞⋃

k=1
(Mk + 2εBX), thus T(C(K)) may
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be covered by countably many 3ε-weakly compact sets. It remains to appeal to
Theorem 4.2.

Now, we present two examples. The first one shows that the implication in
Theorem 4.1 cannot be reversed, while the second one shows that the assumption
of this theorem does not imply that there exists a decomposition K = KE ∪ L with
K being Eberlein and L being of semivariation zero.

EXAMPLE 4.3. Consider a map ϕ : [0, ω1]→ [0, ω1] given by

ϕ(α) =

{
α + 1 if α < ω1 is a successor ordinal,
α if α 6 ω1 is a limit ordinal.

This is a continuous function, whence the composition operator Cϕ : C[0, ω1] →
C[0, ω1] defined by Cϕ f = f ◦ ϕ is bounded. Now, put T = IC[0,ω1]

− Cϕ.
Observe that T maps the Schauder basis (1[0,α])06α6ω1 of C[0, ω1] onto the

set {eα}α∈D ∪ {0}, where D is the set consisting of zero and all successors less
than ω1. Hence, the range of T is isometric to c0(ω1) which is a WCG Banach
space. However, as we shall see, there is no decomposition [0, ω1] = K ∪ L with
K being Eberlein and with semivariation of L less than 1.

Let x∗ = (xα)06α6ω1 ∈ `1[0, ω1] (identified with the dual space of C[0, ω1]).
For each f ∈ C[0, ω1] we have

x∗T( f ) = ∑
α∈D

xα( f (α)− f (α + 1)),

whence the representing measure for the functional x∗T is given by

µx∗({α}) =


x0 if α = 0,
xα − xα′ if α = α′ + 1 ∈ D,
0 otherwise.

Let µ stand for the representing measure for T. By the relation µ(A)x∗ = µx∗(A),
for any Borel set A ⊆ [0, ω1], and any x∗ ∈ C[0, ω1]

∗, we have

|x∗ ◦ µ|(A) = sup
π

∑
Ej∈π

|µ(Ej)x∗| = ∑
α∈A
|µx∗{α}|,

where π is the set of all finite partitions into Borel sets of A. Hence, whenever
A ∩ D 6= ∅, we have ‖µ‖(A) > 1.This shows that any decomposition [0, ω1] =
K ∪ L with ‖µ‖(L) < 1 would imply D ⊆ K, thus K would be homeomorphic to
the non-Eberlein space [0, ω1].

EXAMPLE 4.4. Define an operator

T : C(βN) ∼= `∞ → c0 by T(ξ) = ((1/n)ξn)
∞
n=1.

Then for each x∗ = (ηn)∞
n=1 ∈ `1 the representing measure µx∗ for x∗T is sup-

ported on the set N and for each n ∈ N it takes the value (1/n)ηn. Then, similarly
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as above, we get |x∗ ◦ µ|(A) = ∑
n∈A∩N

(1/n)|ηn| for every Borel set A ⊂ βN.

Therefore,

‖µ‖(A) =
1

min(A ∩N) (with the convention
1
∞

= 0).

Consequently, in order to have βN = Kε
E ∪ Lε with ‖µ‖(Lε) < ε, one should

only guarantee that min(Lε ∩N) > ε−1. However, if we wish that βN = K ∪ L,
where K is Eberlein and ‖µ‖(L) = 0, then necessarily N ⊆ K, whence K = βN
which is not Eberlein.

5. WCG (C(K)) INSIDE B(C(K))

Let K be a compact Hausdorff space. The “magnitude” of WCG (C(K)) in
B(C(K)) may be used as a naïve measure of the “similarity of the space K to
an Eberlein compactum”. The first-named author together with Koszmider and
Laustsen [17] proved that for C[0, ω1] the ideal of weakly compactly generated
operators is as big as possible, that is, it has codimension one in B(C[0, ω1]). On
the other hand, Laustsen and Loy ([24], p. 253) noticed, based on well-known
facts, that the ideal of weakly compact operators on `∞ = C(βN) is the unique
maximal ideal of B(`∞). The space `∞ is Grothendieck ([9], Theorem VII.15),
hence it follows from Corollary 5, p. 150 of [8] that W (`∞) = WCG (`∞). However,
the codimension of WCG (`∞) in B(`∞) is infinite, as can be easily seen.

We shall add to this picture a C(K)-space constructed by Koszmider [20] for
which the ideal of weakly compactly generated operators has codimesion one in
B(C(K)). This space has an interesting feature: we are able to give a complete
description of the lattice of closed ideals of B(C(K)). The first-named author was
informed by P.A.H. Brooker that he also obtained a similar result (unpublished)
independently.

THEOREM 5.1 ([20]). Assuming the continuum hypothesis CH or Martin’s axiom
with ¬CH, there exists a compact scattered Hausdorff space K such that:

(i) the ideal X (C(K)) has codimension one in B(C(K));
(ii) each separable subspace of C(K) is contained in a subspace isomorphic to c0;

(iii) if C(K) = A ⊕ B is a decomposition into two closed, infinite-dimensional sub-
spaces A and B, then either A ∼= c0 and B ∼= C(K) or vice versa.

REMARK 5.2. The above-mentioned space K is a special example of a Mrówka
space, that is, the Stone space of the Boolean subalgebra of P(N) generated by
an uncountable family of almost disjoint sets together with all finite subsets of
N. Mrówka spaces are classical examples of scattered compacta which are not
Eberlein. Consequently, the ideal WCG (C(K)) is properly contained in B(C(K)).
Since WCG (C(K)) contains the maximal ideal X (C(K)) and is proper, we have

WCG (C(K)) = X (C(K)).
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For this particular space K we can describe the lattice of all closed ideal in
B(C(K)). To do that we need to gather some well-known facts. Each Radon
measure on a compact scattered space K is countably supported, whence there is
a natural isometric identification between the dual space of C(K) and the Banach
space `1(K). In particular, the dual space C(K)∗ enjoys the Schur property. More-
over, we shall require the following theorem due to Lotz, Peck and Porta [27].

THEOREM 5.3. Let K be a compact Hausdorff space. Then, K is scattered if and
only if each closed, infinite-dimensional subspace of C(K) contains a subspace which is
isomorphic to c0 and complemented in C(K).

PROPOSITION 5.4. Let K be a compact scattered Hausdorff space. Then,
(i) K (C(K)) = W (C(K));

(ii) no closed ideal lies between {0} and K (C(K)) or K (C(K)) and Gc0(C(L)).

Proof. Part (i) is standard: the dual space C(K)∗ = `1(K) has the Schur
property, whence

K (`1(K)) = W (`1(K)).

The claim follows from Gantmacher’s theorem and Schauder’s theorem.
To prove part (ii) let us notice that the space C(K), being an L∞-space,

has the bounded approximation property, hence the ideal of compact operators
K (C(K)) is the smallest closed non-trivial ideal in B(C(K)). It remains to show
that if T ∈ B(C(K)) \W (C(K)) then the ideal generated by T contains the ideal
Gc0(C(K)). By a result of Pełczyński (cf. [29] or Theorem VI.2.15 of [10]), there is
a subspace Y of C(K) isomorphic to c0 such that T|Y is bounded below. Hence
T(Y) is closed, so by Theorem 5.3, it contains a completemented copy of c0, say
Z. Let X = T−1(Z) ∩ Y. Note that T|X : X → Z is an isomorphism which fac-
tors the identity operator on c0. Consequently, Gc0(C(K)) is contained in the ideal
generated by T.

THEOREM 5.5. Let K be the Mrówka space constructed by Koszmider in [20].
Then the the lattice of closed ideals in B(C(K)) has the form:

{0} ( K (C(K)) ( X (C(K)) = Gc0(C(K)) = WCG (C(K)) ( B(C(K)).

Proof. Since the space K is scattered, no closed ideal lies neither between {0}
and K (C(K)) nor K (C(K)) and Gc0(C(K)) (Proposition 5.4(ii)). By Remark 5.2,
we have WCG (C(K)) = X (C(K)); let T ∈ X (C(K)). By Theorem 5.1(ii), there
is a subspace Y isomorphic to c0 such that T(C(K)) ⊆ Y, so T factors through c0.
Thus, the ideals Gc0(C(K)) and X (C(K)) are equal by virtue of the maximality of
the latter one. Now, if J is any maximal ideal in B(C(K)), by Proposition 5.4(ii),
it must contain Gc0(C(K)), hence J = Gc0(C(K)). Thus, there are no other closed
ideals in B(C(K)) than those listed in the claim.
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