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ABSTRACT. Let G be an abelian semigroup of matrices on Rn (n > 1). We
show that G is multi-hypercyclic if and only if it has a somewhere dense or-
bit. We also give a necessary and sufficient condition for a multi-hypercyclic
semigroup G to be hypercyclic, in terms of the index of G corresponding to
negative eigenvalues of elements of G. On the other hand, we prove that the
closure G(u) of a somewhere dense orbit G(u), u ∈ Rn, is invariant under
multiplication by positive scalars; this answer a question raised by Feldman.
We also prove that Gk is multi-hypercyclic for every k ∈ Np, (p ∈ N) whenever
G is multi-hypercyclic.

KEYWORDS: Hypercyclic, matrices, multi-hypercyclic, dense orbit, semigroup,
abelian.

MSC (2010): 47A16.

1. INTRODUCTION

Let Mn(R) be the set of all square matrices over R of order n > 1 and
GL(n,R) the group of invertible matrices of Mn(R). Let G be an abelian sub-
semigroup of Mn(R). For a vector v ∈ Rn, we consider the orbit of v through G:
G(v) = {Av : A ∈ G} ⊂ Rn. A subset E ⊂ Rn is called G-invariant if A(E) ⊂ E
for any A ∈ G. The orbit G(v) ⊂ Rn is dense (respectively somewhere dense) in

Rn if G(v) = Rn (respectively ˚G(v) 6= ∅), where E (respectively E̊) denotes the
closure of a subset E ⊂ Rn (respectively the interior of a subset E). The semi-
group G is called hypercyclic if there exists a vector v ∈ Rn such that G(v) is dense
in Rn. We say that G is multi-hypercyclic if there exist vectors v1, . . . , vp ∈ Rn

such that the union G(v1) ∪ · · · ∪ G(vp) is dense in Rn. We refer the reader to the
recent papers ([1], [3], [4], [8], [9], [12], [14]), [7], [11], [13] and books ([6], [10])
for a thorough account on hypercyclicity and multi-hypercyclicity. Herrero [11]
conjectured that every multi-hypercyclic operator on a Hilbert space is in fact hy-
percyclic. This conjecture was verified by Costakis [7] and later independently
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by Peris [13]. The same conjecture is extended to finitely generated abelian sub-
semigroups of Mn(K) (K = R or C) (n > 1) by Feldman [9] and Javaheri [12]. In
this direction, Feldman ([9], Corollary 5.8) proved that every multi-hypercyclic
finitely generated abelian sub-semigroup of Mn(C) n > 1 is hypercyclic.

In the real case, the situation is different. In this article we settle this conjec-
ture for abelian sub-semigroups of Mn(R). We give a complete characterization
of such questions for the abelian case. On the other hand we give further results
on hypercyclicity, in particular, we answer a question of Feldman in [9], ques-
tion (7).

To state our main results, we need to introduce the following notations and
definitions for the sequel. Write N0 = N\{0}. Let n ∈ N0 be fixed. For each
m = 1, 2, . . . , n, denote by:

(i) Tm(R) the set of matrices over R of the form

(1.1)


µ 0

a2,1
. . .

...
. . . . . .

am,1 . . . am,m−1 µ

 ;

T+
n (R) the group of matrices over R of the form (1.1) with µ > 0.

(ii) S the set of matrices of M2(R) of the form[
a −b
b a

]
: a, b ∈ R.

For each 1 6 m 6 n/2, denote by

(iii) Bm(R) the set of matrices of M2m(R) of the form

(1.2)


C 0

C2,1 C
...

. . . . . .
Cm,1 . . . Cm,m−1 C

 : C, Ci,j ∈ S, 2 6 i 6 m, 1 6 j 6 m− 1.

(iv) B∗m(R) := Bm(R) ∩ GL(2m,R) the group of matrices over R of the form
(1.2) with C invertible.

Let r, s ∈ N and

η =


(n1, . . . , nr; m1, . . . , ms) if rs 6= 0,
(m1, . . . , ms) if r = 0,
(n1, . . . , nr) if s = 0,

be a sequence of positive integers such that

(1.3) (n1 + · · ·+ nr) + 2(m1 + · · ·+ ms) = n.

In particular, we have r + 2s 6 n. Denote by
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(v) Kη,r,s(R) := Tn1(R)⊕ · · · ⊕Tnr (R)⊕Bm1(R)⊕ · · · ⊕Bms(R).

In particular:

(a) If r = 1, s = 0, then Kη,1,0(R) = Tn(R) and η = (n).
(b) If r = 0, s = 1, then Kη,0,1(R) = Bm(R) and η = (m), n = 2m.
(c) If r = 0, s > 1, then Kη,0,s(R) = Bm1(R) ⊕ · · · ⊕ Bms(R) and η =

(m1, . . . , ms).

(vi) K∗η,r,s(R) := Kη,r,s(R) ∩GL(n, R).
(vii) K+

η,r,s(R) := T+
n1
(R)⊕ · · · ⊕T+

nr (R)⊕B∗m1
(R)⊕ · · · ⊕B∗ms(R).

PROPOSITION 1.1 ([5]). Let G be an abelian sub-semigroup of Mn(R). Then there
exists a P ∈ GL(n,R) such that P−1GP is an abelian sub-semigroup ofKη,r,s(R), where
η = (n1, . . . , nr; m1, . . . , ms) ∈ Nr+s

0 and r, s ∈ N.

Let G be an abelian sub-semigroup of Mn(R) and denote by G∗ = G ∩
GL(n,R), it is a sub-semigroup of GL(n,R). We call P−1GP the normal form of G.
For such a choice of matrix P, we let:

For every M∈G∗, one can write M̃ :=P−1MP=diag(A1, . . . , Ar; B1, . . . , Bs)

∈ K∗η,r,s(R). Set G̃∗ = P−1G∗P. Let µk be the eigenvalue of Ak, k = 1, . . . , r, and
define the index of G̃∗ to be

ind(G̃∗) :=


0 if r = 0,{

1 if exists M̃ ∈ G̃∗ with µ1 < 0,
0 otherwise,

if r = 1,

card{k∈{1, . . . , r} : ∃M̃∈ G̃∗ with µk <0, µi >0, ∀i 6= k} if r /∈{0, 1}.

where card(E) denotes the number of elements of a subset E of N. In particular,

(i) if G̃∗ ⊂ K+
η,r,s(R) with r 6= 0 then ind(G̃) = 0;

(ii) if G̃∗ ⊂ B∗m(R), then ind(G̃) = 0 (since r = 0).

We define the index of G to be ind(G) := ind(G̃∗). It is plain that this defini-
tion does not depend on P.

Our principal results can now be stated as follows:

THEOREM 1.2. Let G be an abelian sub-semigroup of Mn(R), n ∈ N0. Then G is
multi-hypercyclic if and only if it has a somewhere dense orbit.

COROLLARY 1.3. Let G be an abelian sub-semigroup of Mn(R), n ∈ N0 and
P ∈ GL(n,R) such that P−1GP ⊂ Kη,r,s(R). Assume that G is multi-hypercyclic.
Then G is hypercyclic if and only if ind(G) = r.

COROLLARY 1.4. Let G be an abelian sub-semigroup of Bn(R) (n ∈ N0). Then
G is multi-hypercyclic if and only if it is hypercyclic.
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THEOREM 1.5. For every r, s ∈ N0 and 1 6 q 6 r, there exists an abelian sub-
semigroup of K+

η,r,s(R) generated by (n− s + 1) matrices, which is 2q-hypercyclic but
not hypercyclic.

COROLLARY 1.6. For every n ∈ N0, there exists an abelian sub-semigroup of
GL(n,R) generated by (n + 1) diagonal matrices, which is 2n-hypercyclic but not hy-
percyclic.

Note that Feldman [9] showed that there exists a semigroup generated by
2n matrices of Rn which is 2n-hypercyclic but not hypercyclic.

COROLLARY 1.7. K+
η,r,s(R), r > 1, is 2r-hypercyclic but not hypercyclic.

On the other hand, in [2], Ansari proved that if a linear operator T on a
locally convex space is hypercyclic then Tk is also hypercyclic for every k > 1. It
is there natural to ask if a similar result holds for a semigroup G. Recall that for
k = (k1, . . . , kp) ∈ Np

0 , we denote by Gk the semigroup defined by

Gk = {Ak1
1 . . . . A

kp
p : A1, . . . , Ap ∈ G}.

Feldman showed ([9], Corollary 5.8) that if an abelian finitely generated semi-
group G of matrices over C is hypercyclic then for any k = (k1, . . . , kp) ∈ Np

0 , Gk

is also hypercyclic. It is not always the case in the real case. Here for an abelian
semigroup G of matrices over R, we prove the following results:

THEOREM 1.8. Let G be an abelian sub-semigroup of Mn(R), n ∈ N0.
(i) If G is multi-hypercyclic, then Gk is also multi-hypercyclic for any k=(k1, . . . , kp)

∈ Np
0 .

(ii) If for some k = (k1, . . . , kp) ∈ Np
0 , Gk is multi-hypercyclic, then G is also multi-

hypercyclic.

COROLLARY 1.9. If G has a somewhere dense orbit then Gk has also a somewhere
dense orbit for any k = (k1, . . . , kp) ∈ Np

0 .

COROLLARY 1.10. Let k = (k1, . . . , kp) ∈ Np
0 . Assume that G is hypercyclic.

Then Gk is hypercyclic if and only if ind(Gk) = ind(G).

COROLLARY 1.11. If G is hypercyclic, then Gk is hypercyclic for any p-tuple of
odd integers k = (k1, . . . , kp) ∈ Np

0 .

This paper is organized as follows: In Section 2 we recall some results on
hypercyclicity. Section 3 is devoted to the proof of Theorem 1.2, Corollaries 1.3
and 1.4. In Section 4 we prove Theorem 1.5, Corollaries 1.6 and 1.7. In Section 5,
we prove Theorem 1.8, Corollaries 1.9, 1.10 and 1.11. In Section 6 we give some
others results of independent interest, in particular we answer the question (7) of
Feldman [9] for the space Rn.
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2. SOME RESULTS

Throughout the paper, we denote by B0 = (e1, . . . , en) the canonical basis of
Rn. Denote by:

(i) vT the transpose of a vector v ∈ Rn.
(ii) In the identity matrix on Rn.

(iii) u0 = [e1,1, . . . , er,1; f1,1, . . . , fs,1]
T ∈ Rn where ek,1 = [1, 0, . . . , 0]T ∈ Rnk ,

fl,1 = [1, 0, . . . , 0]T ∈ R2ml , k = 1, . . . , r; l = 1, . . . , s.

Let G be an abelian sub-semigroup of Mn(R) and P ∈ GL(n,R) such that
P−1GP ⊂ Kη,r,s(R). Denote by:

(iv) v0 = Pu0.
(v) g := exp−1(G) ∩ [PKη,r,s(R)P−1].

(vi) gu := {Bu : B ∈ g}, u ∈ Rn.

In particular when G ⊂ Kη,r,s(R), g = exp−1(G) ∩Kη,r,s(R).
Recall the following results that have been proved.

THEOREM 2.1 ([5]). Let G be an abelian sub-semigroup of Mn(R). The following
properties are equivalent:

(i) G has a somewhere dense orbit.
(ii) G(v0) is somewhere dense in Rn.

(iii) gv0 is an additive sub-semigroup, dense in Rn.

THEOREM 2.2 ([5], Corollary 1.2). Let G be an abelian sub-semigroup of Mn(R)
and P ∈ GL(n,R) such that P−1GP ⊂ Kη,r,s(R) for some 0 6 r, s 6 n. The following
properties are equivalent:

(i) G is hypercyclic.
(ii) G(v0) is dense in Rn.

(iii) gv0 is an additive sub-semigroup dense in Rn and ind(G) = r.

3. PROOF OF THEOREM 1.2, COROLLARIES 1.3 AND 1.4

We let

U :=
r

∏
k=1

(R∗ ×Rnk−1)×
s

∏
l=1

((R2\{(0, 0)})×R2ml−2),

Cu0 =
r

∏
k=1

(R∗+ ×Rnk−1)×
s

∏
l=1

((R2\{(0, 0)})×R2ml−2),

where u0 is defined in (iii) in the beging of the section.
It is plain that U is open and dense in Rn and that Cu0 is the connected

component of U through u0.
Denote by:
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(i) Γ the subgroup of K∗η,r,s(R) generated by (Sk)16k6r given by

Sk := diag(ε1,k In1 , . . . , εr,k Inr ; I2m1 , . . . , I2ms) ∈ K∗η,r,s(R)

where

εi,k :=

{
−1 if i = k,
1 if i 6= k, 1 6 i, k 6 r.

It is plain that card(Γ) = 2r. The following lemma is easy to check.

LEMMA 3.1. Under the notation above, we have:
(i) Sk M = MSk, for every M ∈ Kη,r,s(R), k = 1, . . . , r.

(ii) U =
⋃

S∈Γ
S(Cu0) and the S(Cu0), S ∈ Γ are pairwise disjoint.

(iii) S(Cu0), S ∈ Γ are the connected components of U.

LEMMA 3.2. Let G be an abelian sub-semigroup of Kη,r,s(R), n ∈ N0. Then
ind(G) = r if and only if G(u0) meets all connected components of U.

Proof. If ind(G) = r then for every k = 1, . . . , r there exists M(k) ∈ G∗

such that µk,k < 0 and µk,j > 0 if j 6= k, where µk,j is the eigenvalue of the
jth bloc of M(k). It follows that Sk M(k) ∈ K+

η,r,s(R). Let S ∈ Γ. As S−1
k = Sk,

k = 1, . . . , r, one can write S = (S1)
p1 · · · (Sr)pr ∈ Γ with p1, . . . , pr ∈ N. Set M =

(M(1))p1 · · · (M(r))pr , then M ∈ G∗ and by Lemma 3.1(i), SM = (S1M(1))p1 · · ·
(Sr M(r))pr ∈ K+

η,r,s(R), so SMu0 ∈ Cu0 . As S−1 = S, thus Mu0 ∈ S(Cu0). By
Lemma 3.1(iii), it follows that every connected component of U meets G(u0).
Conversely, assume that for every k = 1, . . . , r, the orbit G(u0) meets Sk(Cu0),
so there is M(k) ∈ G such that M(k)u0 ∈ Sk(Cu0). Then Sk M(k)u0 ∈ Cu0 , so
Sk M(k) ∈ K+

η,r,s(R). It follows that for every k = 1, . . . , r, M(k) ∈ G∗ with µk,k < 0
and µk,j > 0 if j 6= k, where µk,j is the eigenvalue of the jth bloc of M(k). Therefore
ind(G) = r.

LEMMA 3.3 ([5], Lemma 3.8). Let G be an abelian sub-semigroup of Kη,r,s(R),
n ∈ N0. If ˚G(u0) 6= ∅ then G(u0) ∩ Cu0 = Cu0 .

Proof of Theorem 1.2. If G is multi-hypercyclic so there exist vectors v1, . . . , vp
∈ Rn such that the union

⋃
16i6p

G(vi) is dense in Rn. Hence there is some vi such

that ˚G(vi) 6= ∅, that is G(vi) is somewhere dense. Conversely, suppose that
G has a somewhere dense orbit G(u) for some u ∈ Rn. One can assume by
Proposition 1.1 that G ⊂ Kη,r,s(R). By Theorem 2.1, G(u0) is somewhere dense.
By Lemmas 3.1 and 3.3, it follows that:

U =
⋃

S∈Γ

S(Cu0) ⊂
⋃

S∈Γ

S(G(u0)) ⊂
⋃

S∈Γ

G(Su0).
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Since U = Rn and Γ is finite,
⋃

S∈Γ
G(Su0) = Rn and so G is multi-hypercyclic. In

fact, G is 2r-hypercyclic since card(Γ) = 2r.

Proof of Corollary 1.3. If G is multi-hypercyclic and ind(G) = r then by The-
orem 1.2, G has a somewhere dense orbit and so G is hypercyclic by Theorems 2.1
and 2.2. Conversely, if G is hypercyclic then ind(G) = r by Theorem 2.2.

Proof of Corollary 1.4. This follows from Corollary 1.3 since in this case r = 0
and ind(G) = 0.

4. ABELIAN SEMIGROUPS THAT ARE MULTI-HYPERCYCLIC BUT NOT HYPERCYCLIC

We need the following lemma:

LEMMA 4.1 ([5], Lemma 5.3). Let G be an abelian sub-semigroup of K∗η,r,s(R).

Then
◦

G(u0) 6= ∅ if and only if
◦

G2(u0) 6= ∅ where G2 = {A2 : A ∈ G}.
Proof of Theorem 1.5. In Theorem 1.7 of [5] we constructed for every n ∈ N0

and 1 6 r, s 6 n, a hypercyclic abelian sub-semigroup G0 of K∗η,r,s(R) gener-

ated by p = n − s + 1 matrices. Hence by Theorem 2.1, G0(u0) = Rn and by

Lemma 4.1,
◦

G2
0(u0) 6= ∅. Set G = G2

0 . Then G is a sub-semigroup of K+
η,r,s(R)

having a somewhere dense orbit G(u0). Let A1, . . . , Ap generate G. Write Ak =

diag(Ak,1, . . . , Ak,r, Ãk,1, . . . , Ãk,s) (1 6 k 6 p) where Ak,i ∈ T+
ni
(R) and Ãk,j ∈

B∗mj
(R). For 1 6 q 6 r, denote by

Bk =

{
Ak if k ∈ {1, . . . , q} ∪ {r + 1, . . . , p},
Sk Ak if q + 1 6 k 6 r,

and consider Gq the abelian semigroup generated by B1, . . . , Bp. Since S2
k = In,

one has G2
q = G2. By Lemma 4.1,

◦
G2

q(u0) 6= ∅ and so
◦

Gq(u0) 6= ∅. It follows by
Lemma 3.3 that

(4.1) Gq(u0) ∩ Cu0 = Cu0 .

For 1 6 k 6 p, write

Bk = diag(Bk,1, . . . , Bk,r, B̃k,1, . . . , B̃k,s) and

B(1)
k = diag(Bk,q+1, . . . , Bk,r, B̃k,1, . . . , B̃k,s).

Denote by G(1)
q the semigroup generated by

B(1)
k = diag(εk,q+1 Ak,q+1, . . . , εk,r Ak,r, Ãk,1, . . . , Ãk,s), 1 6 k 6 p.
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Then G(1)
q is an abelian sub-semigroup of K∗η′ ,r−q,s(R) where η′ = (nq+1, . . . , nr;

m1, . . . , ms). Set m = 2m1 + · · ·+ 2ms and n′ = m+ nq+1 + · · ·+ nr. Denote by π2

the projection on the second factor π2 : Rn−n′ ×Rn′ −→ Rn′ ; x = (x1, x2) 7−→ x2.
Set u(1)

0 = π2(u0). One has G(1)
q (u(1)

0 ) = π2(Gq(u0)). Since π2 is an open map and
◦

Gq(u0) 6= ∅, it follows that
˚

G(1)
q (u(1)

0 ) 6= ∅. Moreover ind(G(1)
q ) = r − q, so by

Corollary 1.3, G(1)
q is hypercyclic and by Theorems 2.1 and 2.2, G(1)

q (u(1)
0 ) = Rn′ .

Therefore by (4.1) one has:

(4.2) Gq(u0) ∩ C ′u0
= C ′u0

where C ′u0
=

q
∏

k=1
(R∗+ × Rnk−1) × Rn′ . Denote by Γq be the group generated by

S1 . . . , Sq, so card(Γq) = 2q. By Lemma 3.1, Gq(S(u0)) = S(Gq(u0)) and we have

U =
⋃

S∈Γ

S(Cu0) ⊂
⋃

S∈Γq

S(C ′u0
).

Then by (4.2) one has:

U ⊂
⋃

S∈Γq

S(C ′u0
) =

⋃
S∈Γq

S(Gq(u0) ∩ C ′u0
) ⊂

⋃
S∈Γq

Gq(S(u0)).

Since U = Rn,
⋃

S∈Γq

Gq(S(u0)) = Rn. Hence Gq is 2q-hypercyclic. As Ak,j ∈ T+
nj
(R)

for every 1 6 j 6 q then Gq(u0) ⊂ C ′u0
and therefore Gq is not hypercyclic. This

completes the proof.

Proof of Corollary 1.6. By taking q = r = n in Theorem 1.5, so s = 0 and the
corollary follows.

Proof of Corollary 1.7. It is plain that the group K+
η,r,s(R) is not hypercyclic

since any connected component of U is invariant byK+
η,r,s(R). On the other hand,

by Theorem 1.5 there exists an abelian sub-semigroup of K+
η,r,s(R) which is 2r-

hypercyclic, therefore K+
η,r,s(R) is also 2r-hypercyclic.

5. PROOF OF THEOREM 1.8, COROLLARIES 1.9, 1.10 AND 1.11

Proof of Theorem 1.8. Let k = (k1, . . . , kp) ∈ Np
0 . One can assume that G is an

abelian sub-semigroup of Kη,r,s(R).
(i) By Theorem 1.2, G has a somewhere dense orbit, then by Theorem 2.1,

◦
G(u0) 6= ∅ and by Lemma 3.3 G(u0) ∩ Cu0 = Cu0 . For any multi-index ` =
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(`1, . . . , `p) ∈ Np there exists (by applying the division algorithm) qi ∈ N and
0 6 ri < ki such that `i = qiki + ri, i = 1, . . . , p. As G is abelian, thus

A`1
1 · · · A

`p
p u0 = (Ak1

1 )q1 · · · (A
kp
p )qp Ar1

1 · · · A
rp
p u0.

Hence
G(u0) =

⋃
06ri<ki

Gk(Ar1
1 · · · A

rp
p u0).

Therefore ⋃
06ri<ki

Gk(Ar1
1 · · · A

rp
p u0) ∩ Cu0 = Cu0 .

Since Cu0 is open, we see that
◦

Gk(Ar1
1 · · · A

rp
p u0) 6= ∅ for some 0 6 ri < ki where

the interior is taken in Cu0 , hence in Rn since Cu0 is open. We conclude that Gk has
a somewhere dense orbit.

(ii) If Gk is multi-hypercyclic for some k = (k1, . . . , kp) ∈ Np
0 then Gk has a

somewhere dense orbit Gk(u), u ∈ Rn. As Gk(u) ⊂ G(u) then G(u) is somewhere
dense. This proves the theorem.

Proof of Corollary 1.9. The proof results from Theorems 1.2 and 1.8.

Proof of Corollary 1.10. One can assume by Proposition 1.1 that G is an
abelian sub-semigroup of Kη,r,s(R). Then Gk ⊂ Kη,r,s(R). If G is hypercyclic
then ind(G) = r (Theorem 2.2) and Gk is multi-hypercyclic by Theorem 1.8. Thus
by Corollary 1.3, Gk is hypercyclic if and only if ind(Gk) = r.

Proof of Corollary 1.11. Since k1, . . . , kp are odd, ind(Gk) = ind(G) and so the
fact that Gk is hypercyclic follows from Corollary 1.10.

6. FURTHER RESULTS ON HYPERCYCLICITY AND A QUESTION OF FELDMAN

THEOREM 6.1. Let G be an abelian sub-semigroup of Mn(R) and u ∈ Rn, then

G(u) = Rn if and only if 0 ∈ ˚G(u).

We need the following lemmas.

LEMMA 6.2. Let G be an abelian sub-semigroup of Kη,r,s(R). Then Rn\U is a
union of r + s, G-invariant vector subspaces of Rn.

Proof. One has Rn\U =
r⋃

k=1
Hk ∪

s⋃
l=1

H̃l where

Hk = {u = (x1, . . . , xr, y1, . . . , ys), xk ∈ {0} ×Rnk−1} and

H̃l = {u = (x1, . . . , xr, y1, . . . , ys), yl ∈ {(0, 0)} ×R2ml−2}.
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Each vector space Hk (respectively H̃l) is G-invariant: indeed, if u =

(x1, . . . , xr, y1, . . . , ys) ∈ Hk (respectively u ∈ H̃l), so xk ∈ {0} × Rnk−1 (respec-
tively yl ∈ {(0, 0)} × R2ml−2) and hence since G ⊂ Kη,r,s(R), it is plain that
G(u) ⊂ Hk (respectively G(u) ⊂ H̃l).

LEMMA 6.3 ([5], Proposition 4.1). Let G be an abelian sub-semigroup of Mn(R)
and u ∈ Rn. Then G(u) is a somewhere dense orbit if and only if so is G∗(u).

Denote by vect(G) the vector subspace of Mn(R) generated by G.

LEMMA 6.4 ([5], Proposition 3.7). If G is an abelian sub-semigroup of K∗η,r,s(R)
having a somewhere dense orbit G(u) then for every v ∈ U, there exists B ∈ vect(G) ∩
GL(n,R) such that Bu = v.

Proof of Theorem 6.1. One can suppose that G ⊂ Kη,r,s(R) by Proposition 1.1.

Assume that 0 ∈
◦

G(u). By Lemma 6.3,
◦

G∗(u) 6= ∅. By Lemma 6.4, there exists
B ∈ vect(G∗) ∩ GL(n,R) such that Bu0 = u. Therefore G(u) = B

(
G(u0)

)
and

hence 0 ∈
◦

G(u0). So there is an open ball B(0,ε) of radius ε > 0 centered at 0 such

that B(0,ε) ⊂
◦

G(u0). Hence G(u0) meets all connected components of U. So by
Lemma 3.2, ind(G) = r and hence by Theorem 2.2, G(u0) = Rn. It follows that
G(u) = Rn, this completes the proof.

In [9], Feldman raised open questions, most of them answered (see Shkarin
[14]). We are interested here in the seventh problem.

Question (7). If an orbit of a tuple T is somewhere dense, but not dense
in a real locally convex space X, then is the closure of the orbit invariant under
multiplication by positive scalars?

We answer positively this question that can be dealt with semigroups on Rn.

PROPOSITION 6.5. Let G be an abelian sub-semigroup of Mn(R) having a some-
where dense orbit G(u), u ∈ Rn. Then for any real λ > 0, we have λG(u) ⊂ G(u), this
means that G(u) is invariant under multiplication by positive scalars.

We need the following lemma.

LEMMA 6.6. If G is an abelian sub-semigroup of Kη,r,s(R) having a somewhere
dense orbit G(u) (u ∈ Rn), then G(u) is dense in every connected component of U
meeting it.

Proof. By Lemma 6.3, G∗(u) is somewhere dense and by Theorem 2.1, G(u0)
is somewhere dense. So by Lemma 3.3, G(u0) is dense in Cu0 . Let V be a con-
nected component of U meeting G(u), so there is v ∈ V ∩ G(u). By Lemma 6.4,
there exists B ∈ vect(G∗) ∩GL(n,R) such that Bv = u0. So G(v) = B−1(G(u0)).
This implies that G(v) is dense in B−1(Cu0) = V.
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Proof of Proposition 6.5. The proof is done by induction on n > 1. For n = 1,
G is a multiplicative semigroup of R. Let u ∈ R so that G(u) is somewhere
dense in R. Here U = R∗. By Lemma 6.6, G(u) is dense in each connected
component of R∗ meeting it; that is G(u) ∩ C = C where C = R∗+ or C = R∗−.
Therefore G(u) ∩R∗ = R∗. Let λ > 0 be real. Since λC ⊂ C we see that λ(G(u) ∩
R∗) ⊂ G(u) ∩ R∗. Hence if 0 ∈ G(u) then λG(u) = λ(G(u) ∩ R∗) ∪ {0} ⊂
G(u) ∪ {0} = G(u). If 0 /∈ G(u) then λG(u) = λ(G(u) ∩R∗) ⊂ G(u). In either
case, λ(G(u)) ⊂ G(u). Suppose the proposition is true until n − 1, (n > 2)
and let G be an abelian sub-semigroup of Mn(R). By Proposition 1.1, one can
assume that G ⊂ Kη,r,s(R). By Lemma 6.6, G(u) is dense in each connected

component of U meeting it. Hence G(u) ∩U =
p⋃

j=1
Cj where Cj, j = 1, . . . , p are

the connected components of U meeting G(u). Let λ > 0 be real. Since λCj ⊂ Cj

for 1 6 j 6 p, we see that λ(G(u)∩U) ⊂
p⋃

j=1
Cj = G(u)∩U. By Lemma 6.2, Rn\U

is a union of r + s G-invariant vector subspaces Hk and H̃l of Rn. By applying the
induction hypothesis to the restriction of G on each vector space Hk (respectively
H̃l) of dimension n − 1 (respectively n − 2), we get λ(G(u) ∩ Hk) ⊂ G(u) ∩ Hk
and λ(G(u) ∩ H̃l) ⊂ G(u) ∩ H̃l : indeed, if x ∈ G(u) ∩ Hk then G(x) ⊂ Hk and
λG(x) ⊂ G(x), in particular, λx ∈ G(x) ⊂ G(u)∩ Hk. We conclude that λG(u) ⊂
G(u). The proof is complete.

REMARK 6.7. The Proposition 6.5 fails if G has nowhere dense orbit, as can
be shown by taking any semigroup of S composed of rotations.
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