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1. PREMIMINARIES

Recall that a C∗-algebra is residually finite-dimensional (RFD) if it separable
and admits an embedding in a direct product of finite-dimensional C∗-algebras.
In other terms, a C∗-algebra A is RFD if ‖a‖ = sup ‖ϕ(a)‖ for any a ∈ A, where
the supremum is taken over all finite-dimensional representations ϕ of A. In this
paper we prove the RFD property for amalgamated products of commutative
C∗-algebra.

At the end of the article we demonstrate an application of this theorem to
one interesting example.

Recall that if φA : C → A, φB : C → B are unital ∗-homomorphisms of unital
C∗-algebras then their amalgamated free product (or simply amalgam) A ?

C
B is a

C∗-algebra with the following properties:

(i) There exist ∗-homomorphisms ϕA : A → A ?
C

B and ϕB : B → A ?
C

B such

that the square

C A

B A ?
C

B

-
φA

?

φB

?

ϕA

-
ϕB

commutes;
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(ii) For any C∗-algebra D and for any commutative square

C A

B D

-
φA

?
φB

?
ϕ̃A

-
ϕ̃B

there is a unique ∗-homomorphism Φ : A ?
C

B → D such that Φ ◦ ϕA = ϕ̃A and

Φ ◦ ϕB = ϕ̃B.

Such C∗-algebra exists and is unique up to isomorphism (for information
see Section 2.3 of [7]).

We give some examples:

(i) C(T) ?
C

C(T) ∼= C∗(F2), where C(T) is the algebra of continuous functions

over the circle T and C∗(F2) is the full group C∗-algebra of a free group on two
generators.

(ii) C2 ?
C
C2 ∼= C∗(p, q) is the universal C∗-algebra generated by two selfadjoint

projections without any additional relations ([7], Remark 5.6).
(iii) A ?

A
A ∼= A.

(iv) A ?
C
C ∼= A.

(v) C∗(G) ?
C∗(H)

C∗(T) ∼= C∗(G ?
H

T), where G ?
H

T is the amalgamated free

product of groups ([2], Theorem 4).

Unlike the above examples, most of the amalgams have no explicit descrip-
tion and can be described only by their universality property.

If a separable C∗-algebra can be embedded in a direct product (one can
make it countable) of matrix algebras,

A ↪→∏
k

Mnk (C)

then we say that A has the RFD property or simply that A is an RFD algebra.
Recall that every RFD algebra has a trace, e.g. in the countable case it can

be defined by the formula τ = ∑
k

τk/2k, where τk is the normalized matrix trace

on Mnk (C). Non-existence of a trace often is a way to disprove the RFD property,
but we do not deal with traces in this paper.

Here are some basic examples:

(i) Finite-dimensional C∗-algebras are all RFD.
(ii) If A and B are RFD algebras then A ?

C
B is an RFD algebra [3].

(iii) If A and B are RFD algebras then A⊕ B is RFD.
(iv) For any compact Hausdorff space X, the algebra C(X) of continuous func-

tions over X is RFD.
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(v) The C∗-algebra K(H) of all compact operators over a separable Hilbert
space H is not an RFD algebra as it has no trace.

(vi) M2(C) ?
C2

M3(C), where the amalgamation is constructed from the em-

beddings C2 ↪→ M2(C) : (x, y) 7→ diag(x, y) and C2 ↪→ M3(C) : (x, y) 7→
diag(x, y, 0), is not an RFD algebra because it has no trace ([5], Example 2.1).

Here is the main result of the paper:

THEOREM 1.1. Let A, B ⊇ C be separable commutative unital C∗-algebras. Then
A ?

C
B is an RFD algebra.

2. MAIN SECTION

The proof of the theorem will be obtained as a consequence of the following
lemmas:

LEMMA 2.1 (Abundance of invariant subspaces). Let

ϕ :M = C(X) ?
C(Z)

C(Y)→ B(H)

be a unital representation on some Hilbert space H. Then, for every Borel set µ ⊆ Z we
can construct an invariant subspace Hµ ⊆ H with the properties:

(i) Hµ⊥Hν, whenever µ ∩ ν = ∅;

(ii) if Z =
N
ä

k=1
µk then H =

N⊕
k=1

Hµk ;

(iii) Hµ ⊆ Hν, whenever µ ⊆ ν.

Proof. In Sections 7.3–7.4 of [8] for every Hausdorff compact Z and repre-
sentation ϕ the commutative triangle is constructed:

C(Z) B(H)

B(Z)

-
ϕ

?

p

�
�
�
��

ϕ̂

where B(Z) is the algebra of all bounded complex-valued Borel functions, ϕ̂ is
continuous with respect to ω0-WOT-topology, where WOT- is the weak topology
on B(H) and ω0 is the weak-measure topology, which is defined by the collection

of semi-norms ‖ f ‖α =
∣∣∣ ∫

Z
f dα

∣∣∣ parametrized by regular Borel measure α with

bounded variation.
It is also known that for bounded sequences ω0-topology is equivalent to

the point-wise convergence topology.
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By definition, put
Hµ = Imϕ̂(χµ),

where χµ is a characteristic function of µ ⊆ Z. Properties (i)–(iii) easily follow
from similar properties of characteristic functions. To prove that Hµ is invariant
subspace, we first consider a sequence of continuous functions { fk} such that

fk
point-wise−−−−−→ χµ.

The convergence

ϕ( fk)
WOT−−−→ ϕ̂(χµ)

easy follows from the ω0-WOT continuity of the operator ϕ̂. Recall that commu-
tativity of the triangle, which defines the operator ϕ̂, allows us to identify ϕ and
the restriction of ϕ̂ to C(Z). Using universal property of the amalgam, we obtain
that fk ∈ C(Z) lies in the center of the amalgamM, then ϕ( fk) commute with all
ϕ(M). Thus, for arbitrary ω ∈ ϕ(M) we have

ωϕ̂(χµ) = ω lim -WOTϕ( fk) = lim -WOTϕ( fk)ω = ϕ̂(χµ)ω,

which proves the invariance of Hµ.

LEMMA 2.2 (Topological). Let K be a metric compact space and let νk ⊆ K,
k ∈ N be compact subsets with the property that for every n ∈ N one has

νn+1 ⊆ νn.

Set Γ =
⋂

n∈N
νn. Then for every ε > 0, there is N ∈ N such that for every n > N

νn ⊆ Oε(Γ),

i.e. the ε- neighbourhood of Γ contains every νn with n > N.

The proof is an easy exercise.
Recall thatM = C(X) ?

C(Z)
C(Y). By Gelfand theory for commutative alge-

bras there are natural continuous maps pX : X → Z and pY : Y → Z.
For arbitrary ν ⊆ Z introduce the notation ν̂ = p−1

X (ν) and ν̌ = p−1
Y (ν).

Let Z ⊇ ν1 ⊇ ν2 ⊇ · · · be compact sets with diam(νn) → 0. We have⋂
n

νn = •, where • denotes a point. Set

Mn = C(ν̂n) ?
C(νn)

C(ν̌n), M∞ = C(•̂) ?
C(•)

C(•̌).

Then, for nested compact sets, we can construct the chains

C(Z)→ C(ν1)→ C(ν2)→ · · · → C(•),
C(X)→ C(ν̂1)→ C(ν̂2)→ · · · → C(•̂),
C(Y)→ C(ν̌1)→ C(ν̌2)→ · · · → C(•̌).
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Gelfand theory can describe subalgebras of commutative algebras

C(Z) = { f ∈ C(X) : f |p−1
X (z) = const ∀z ∈ Z}.

Due to this characterization, we can lift these homomorphisms to amalgams (ho-
momorphisms are admissible on common subalgebras C(νn), i.e. form necessary
commutative squares):

M α0−→M1
α1−→M2

α2−→ · · · → M∞.

LEMMA 2.3 (Main). One has

lim−→Mn =M∞.

Proof. One can check (using nice commutation properties of our chains) that
αn induce a well-defined homomorphism

lim−→Mn
α∞−→M∞.

Let us construct a homomorphism γ∞ : M∞ → lim−→Mn. Since C(•̂) and C(•̌)
generateM∞ [4], it suffices to define γ∞ only on the elements of these subalgebra.
For ω ∈ C(•̂) (similarly for C(•̌)) set

γ∞(ω) = {Ω|ν1 , Ω|ν2 , . . .}
where Ω is an arbitrary extension of ω from •̂ to X by Titze–Urysohn theorem.

The map γ∞ is well-defined, as for another extension Σ of ω, we have

(Ω− Σ)|•̂ = 0.

Since Ω− Σ is uniformly continuous on the compact Z, then by Lemma 2.2 for
any ε > 0 there is n ∈ N such that

‖(Ω− Σ)|ν̂n‖ 6 ε.

This means that in lim−→Mn one has the equality

{Ω|ν1 , Ω|ν2 , . . .} = {Σ|ν1 , Σ|ν2 , . . .}.
It easy to check that γ∞ is a homomorphism (à la product of admissible

sequences is admissible for product...). Since γ∞ is unital on C(•̂) (and on its
twin C(•̌)) and C(•) = C, then we can extend this homomorphism toM∞. It is
easy to check that γ∞ ◦ α∞ = id. If we combine this with surjectivity of the α∞,
we obtain that α∞ is an isomorphism.

We remark that the reader can find this lemma in more general terms in
Proposition 4.12 of [7].

Let {µ1, . . . , µN} be a finite covering of Z by compact sets. By definition, put

PµnM = C(µ̂n) ?
C(µn)

C(µ̌n).

Using Gelfand duality, for an arbitrary compact subspace µn ⊆ Z we can
construct two homomorphisms: γ̂n : x 7→ x|µ̂n from C(X) to C(µ̂n) and γ̌n : x 7→
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x|µ̌n from C(Y) to C(µ̌n). By the universal property they have a unique extension
to amalgam

γn :M→ PµnM.

LEMMA 2.4 (Decomposition of an amalgam). The following map is injective:

γ =
N

∏
m=1

γm :M→
N

∏
m=1

PµmM.

Proof. To prove injectivity it suffices to check, for arbitrary ω ∈ M, the
equality ‖ω‖ = max

m
‖γm(ω)‖. By elementary properties of ∗-homomorphisms

we have
max

m
‖γm(ω)‖ 6 ‖ω‖.

By Gelfand–Naimark theorem we can construct a faithful representation

ϕ :M ↪→ B(H).

By Lemma 2.1 we can restrict representation on Hµm . Let ϕm = PHµm
ϕ be this

restriction
M ϕm−→ B(Hµm).

As Z =
N⋃

m=1
µm we obtain by Lemma 2.1 that

H ⊆ Hµ1 + · · ·+HµN , ‖ω‖ 6 max
m
‖ϕm(ω)‖.

We can easily find disjoint Borel (also Fσ-type is possible) sets µ̃m ⊆ µn with

the property Z =
N
ä

m=1
µ̃m, which makes Hµ̃m be orthogonal by Lemma 2.1. Then

by properties of block-diagonal operators one has ‖ϕ(ω)‖ = max
m
‖PHµ̃m

ϕ(ω)‖.
Using the embedding µ̃m ⊆ µm, we can easily obtain

‖ω‖ = max
m
‖PHµ̃m

ϕ(ω)‖ 6 max
m
‖ϕm(ω)‖.

Using the equality PHµm
ϕ(x̂) = ϕ̂(x̂χµm), we can construct well-defined

homomorphism δ̂ : C(µ̂m) → ϕm(M), which is defined by formula δ̂ : x 7→
PHµm

ϕ(x̂), where x̂ is an arbitrary extension of x to X by Titze–Urysohn theorem.
This homomorphism with its twin δ̌ together determine the homomorphism

δ : PµmM = C(µ̂m) ?
C(µm)

C(µ̌m)→ ϕm(M).

Since ϕ is injective, then ϕm(x) = 0 implies x|µ̂m = 0. It makes possible
to construct the homomorphism ∆̂ : ϕm(x) 7→ x|µ̂m from ϕm(C(X)) to C(µ̂m) ⊆
C(µ̂m) ?

C(µm)
C(µ̌m). It is easy to check that ∆̂ together with its twin ∆̌ determine

the homomorphism ∆ : ϕm(M) → PHµm
M. We obviously have ∆ ◦ δ = id. If we

combine this with surjectivity of δ, we obtain that ∆ is an isomorphism between
PHµm

M and ϕM(M).
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Finally, equality ∆ ◦ ϕm(ω) = γm(ω) implies ‖γm(ω)‖ = ‖ϕm(ω)‖ and
‖ω‖ 6 max

m
‖γm(ω)‖.

LEMMA 2.5 (RFD norms). Let A, B be C∗-algebras, a ∈ A. Set

‖a‖RFD = sup
θ finite

dimemsional
representation

‖θ(a)‖.

If σ : A→ B is a ∗-homomorphism then ‖σ(a)‖RFD 6 ‖a‖RFD.

The proof is obvious.
By Gelfand–Naimark theorem we have that A = C(X), B = C(Y), C =

C(Z), where X, Y and Z are some metric compact spaces. Suppose thatM is not
an RFD algebra. Then for some ε > 0 and some 0 6= ω ∈ M we have

‖ω‖ > (1 + ε)‖ω‖RFD.

Let {µ1, . . . , µN} be a finite covering of Z by compact sets such that diam(µn) 6
diam(Z)/2.

By Lemmas 2.4, 2.5, we have

‖ω‖ = max
n
‖γn(ω)‖, ‖ω‖RFD > max

n
‖γn(ω)‖RFD.

Then for some n0, we receive

‖ω‖ = ‖γn0(ω)‖ > (1 + ε)‖γn0(ω)‖RFD.

Let ν1 = µn0 , α0 = γn0 andM1 = C(ν̂1) ?
C(ν1)

C(ν̌1). Now, let us apply this de-

composition method to ν1 in place of Z, namely, let us find compacts µk (with cor-
responding homomorphisms) such that ν1 =

⋃
k

µk and diam(µk) 6 diam(ν1)/2.

Now we can find n1 such that

‖ω‖ = ‖(γn1 ◦ α0)(ω)‖ > (1 + ε)‖(γn1 ◦ α0)(ω)‖RFD.

Let ν2 = µn1 , α1 = γn1 and M2 = C(ν̂2) ?
C(ν2)

C(ν̌2). Then let us apply this

decomposition method to ν2, etc.
Inductively we have

M α0−→M1
α1−→M2

α2−→ · · · .

Using Lemma 2.3, we obtain that lim−→Mn ∼=M∞ = C(•̂) ?
C(•)

C(•̌) and

0 6= ‖ω‖ = ‖Φ∞(ω)‖ = lim inf
n
‖Φn(ω)‖ > (1 + ε) lim inf

n
‖Φn(ω)‖RFD

> (1 + ε)‖Φ∞(ω)‖RFD,

where Φ∞(ω) = {Φ0(ω), Φ1(ω), . . .} ∈ lim−→Mn and Φn = αn ◦ · · · ◦ α0.
The last inequality follows from the existence of the canonical ∗-homomor-

phismMn → M∞ : Φn(ω) 7→ Φ∞(ω) and from Lemma 2.5. Since C(•) is one-
dimensional, then M∞ is RFD (as a free product of RFD algebras [3]). But this
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contradicts our inequality ‖Φ∞(ω)‖ > (1 + ε)‖Φ∞(ω)‖RFD, so our supposition
was wrong.

3. CONCLUDING REMARKS

AN EXAMPLE (OF APPLICATION OF THE THEOREM). In [6] the authors consider
the universal C∗-algebras Aλ = C∗(U, V), which are generated by two unitaries
U and V with the property

‖Re(U + V)‖ 6 λ, λ ∈ [0, 2].

They show that
A0 ∼= C(T) ?

C(I)
C(T),

where C(T) is the algebra of continuous functions over the unit circle T and C(I)
is the algebra of continuous functions over the segment [−1, 1]. We consider T
and I as subsets on the complex plane. The map T → I, z 7→ Re(z), defines ∗-
homomorphisms of the algebras in the natural way. RFD property forA0 follows
from our theorem. For A2 = C∗(F2), RFD property was proved by Choi in [1].
For Aλ, where λ ∈ (0, 2), RFD property is an open question.

REMARKS. The construction of the commutative triangle

C(X) B(H)

B(X)
?

-
ϕ

�
�
�
��

ϕ̂

can be found in [8]. In [4] we can find a proof of the fact that finite sums of
finite products of elements of algebras, which define an amalgam, are dense in it.
Manuilov was the first to introduce and study the algebras Aλ. In fact the work
done in [6] was the main motivation for our result. For other interesting results
on this subject the reader is encouraged to consult [5].

We also remark that, using this method, one can prove RFD property for an
amalgamated product of many commutative algebras, i.e.

A1 ?
C

A2 ?
C
· · · ?

C
An,

where C is a common subalgebra of the commutative algebras A1, A2, . . . , An:
our considerations about projections, embedding, block-diagonal operators and
decompositions do not depend on the number of amalgamated commutative al-
gebras.
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ADDED IN PROOFS. We also remark that the construction in [3] can be modified
for our case. Representation of the common subalgebra is the main difficulty in this con-
struction, but the simple nature of representations of commutative algebras (every finite-
dimensional representation is a direct sum of one-dimensional representations) and a de-
composition of our representation space in subspaces where the common subalgebra acts
by scalar multiplication are keys for the possibility of a complete proof.
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