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ABSTRACT. We show in this paper that the module structure and the orthogo-
nality structure of a Hilbert C∗-module determine its inner product structure.

Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ : E→
F is an A-module map satisfying 〈Φ(x), Φ(y)〉A = 0 whenever 〈x, y〉A = 0.
Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F.

More precisely, let JE be the closed two-sided ideal of A generated by the
set {〈x, y〉A : x, y ∈ E}. We show that there exists a unique central positive
multiplier u ∈ M(JE)+ such that 〈Φ(x), Φ(y)〉A = u〈x, y〉A (x, y ∈ E). As a
consequence, the induced map Φ0 : E → Φ(E) is adjointable, and Eu1/2 is
isomorphic to Φ(E) as Hilbert A-modules.

KEYWORDS: Orthogonality preservers, Hilbert C∗-modules, Uhlhorn theorem, auto
continuity.
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1. INTRODUCTION

It is well known that the norm and the inner product of a (complex) Hilbert
space H determine each other, through a polarization formula. By the Uhlhorn
theorem (which generalized the famous Wigner theorem; see, e.g., [18]), the or-
thogonality structure of the projective space of H also determines its Hilbert space
structure up to unitary or anti-unitary if dim H > 3 (see, e.g., Corollary 2.2.2 in
[17]). In the case when the (complex) linear structure of the Hilbert space is also
considered, one can relax the two-way orthogonality preserving assumption in
the Uhlhorn theorem and obtain the following result:

If θ is a bijective C-linear map between Hilbert spaces satisfying

〈θ(x), θ(x)〉 = 0 whenever 〈x, y〉 = 0,

then θ is a scalar multiple of a unitary.
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It is interesting to ask whether it is possible to generalize the above to the
case of Hilbert C∗-modules. Recall that a (right) Hilbert A-module E (where A
is a complex C∗-algebra) is a right A-module equipped with an “A-valued in-
ner product” 〈·, ·〉A such that E is complete under the norm defined by ‖x‖ =√
‖〈x, x〉A‖ (see e.g. [11] for the precise definition). It is well-known that every

surjective A-linear isometry T : E → F between Hilbert A-modules is a unitary
(see e.g. [11]), i.e.,

〈T(x), T(y)〉A = 〈x, y〉A (x, y ∈ E).

In this paper, we will verify that every bijective A-linear orthogonality pre-
server is an “A-scalar” multiple of a unitary. More precisely, let E and F be Hilbert
A-modules. Suppose that JE is the closed two-sided ideal of A generated by
{〈x, y〉A : x, y ∈ E} and M(JE) is its multiplier algebra. Our main results in
Section 3 can be formulated as follows:

Suppose that Φ : E→ F is an A-module map, which is not assumed to
be bounded. The following are all equivalent:

(i) Φ is orthogonality preserving, in the sense that

〈Φ(x), Φ(y)〉A = 0 whenever 〈x, y〉A = 0 (x, y ∈ E).(1.1)

(ii) There exists a (unique) positive central element u ∈ M(JE) such
that

〈Φ(x), Φ(y)〉A = u〈x, y〉A (x, y ∈ E).(1.2)

(iii) There exist a (unique) positive central element w ∈ M(JE) and
a Hilbert A-module isomorphism Θ : Ew→ Φ(E) such that

Φ(x) = Θ(xw) (x ∈ E).

In particular, every orthogonality preserving module map Φ be-
tween Hilbert A-modules is automatically continuous. In the case
when Φ is bijective, w = u1/2 is invertible and x 7→ Φ(x)w−1 is
a Hilbert A-module isomorphism from E onto F.

The last statement implies that the A-module structure and the orthogonality
structure of E determine the Hilbert A-module E up to a Hilbert A-module auto-
morphism.

The above can be considered as a generalization of the Uhlhorn theorem to
Hilbert A-modules, where only one-way orthogonality preserving property is as-
sumed but the A-linear structure is also considered. We would like to emphasize
that, to line up with Uhlhorn and Wigner theorems, it is better not to assume any
boundedness condition on the map Φ (but expect the boundedness in the conclu-
sion). On the other hand, we are almost forced to take into account the A-module
structure. Indeed, Example 1.1 below tells us that the above results will not be
true if Φ is only a C-linear map instead of an A-linear map.
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EXAMPLE 1.1. The conjugate Hilbert space H of a complex Hilbert space H
can be regarded as a Hilbert K(H)-module (where K(H) is the C∗-algebra of all
compact operators on H), and for any x, y ∈ H, one has 〈x, y〉K(H) = 0 if and
only if either x = 0 or y = 0 (recall that 〈x, y〉K(H)(z) = y〈x, z〉 for any z ∈ H).

Orthogonality preservers of C∗-modules have been studied by many au-
thors, e.g., [1], [3], [6], [10], [22]. In the case when A is a standard C∗-algebra, the
equivalence of (1.1) and (1.2) was established by D. Ilišević and A. Turnšek [8].
When A is commutative and E is full (i.e. JE = A), this equivalence was estab-
lished by the authors of this paper in [12]. In [13], we proved this result in the
case when A has real rank zero and E is full. Moreover, with the extra assump-
tion on the boundedness of Φ, this was obtained by M. Frank, A.S. Mishchenko
and A.A. Pavlov in [7]. Note that the first version of this paper (namely, [14])
was finished and circulated at almost the same time as [7] and the two works
are independent. Note also that this version is merely the same as in [14] except
that the materials concerning the linking algebras in Section 4 there is removed
(see Remark 3.6). It happens that the ideas of the proofs in these papers are very
different, and none of them seem to be suitable for the general case.

We also note that J. Schweizer also studied bounded orthogonality preserv-
ing map in Theorem 9.6 of [20]. However, there seems to be no overlap between
his work and the current paper. For instance, even in the very simple case when
X = H as in Example 1.1, the result in Theorem 9.6 in [20] gives us merely the triv-
ial conclusion that a bounded orthogonality preserving C-linear map T : X → X
is C-linear. Our main theorem, however, implies that any orthogonality preserv-
ing K(H)-module map T : X → X is a scalar multiple of an isometry. Therefore,
Schweizer’s result does not seem to shed too much light on the proof of the main
theorems in this paper.

2. NOTATIONS AND PRELIMINARIES

Let us first set some notations. Throughout this article, A is a C∗-algebra
and A∗∗ is the bidual of A (which is a von Neumann algebra). Write Asa and A+

for the self-adjoint and positive parts of A, and Z(A) and M(A) for the center and
the space of multipliers of A, respectively. Moreover, Proj1(A) is the collection of
all non-zero projections in A.

If a ∈ A+, we consider C∗(a) to be the C∗-subalgebra generated by a, and
let c(a) be the central cover of a in A∗∗ (see e.g. Section 2.6.2 in [19]). If α, β ∈ R+,
we set ea(α, β) and ea(α, β] to be the spectral projections (in A∗∗) of a correspond-
ing respectively, to the sets (α, β) ∩ σ(a) and (α, β] ∩ σ(a). When (aλ)λ∈Λ is an
increasing net (respectively, a decreasing net) in A∗∗sa , the notation aλ ↑ a (respec-
tively, aγ ↓ a) means that aλ → a in the weak*-topology. Note that p ∈ Proj1(A∗∗)
is an open projection exactly when there is an increasing net (aλ)λ∈Λ from A+
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such that aλ ↑ p. In this case, the C∗-subalgebra A ∩ pA∗∗p is weak*-dense in
pA∗∗p (see e.g. [2] or Proposition 3.11.9 in [19]).

On the other hand, throughout this article, E and F are non-zero Hilbert
A-modules. It is well-known that E is an essential right A-module. Thus, E is
unital whenever A is. If A is not unital and A1 denotes the C∗-algebra obtained
by adjoining an identity 1 to A then E becomes a unital Hilbert A1-module if
(and only if) we define x1 = x (cf. page 5 in [11]). On the other hand, for any C∗-
subalgebra B ⊆ A, we put EB := {xb : x ∈ E; b ∈ B}. By the Cohen factorisation
theorem, EB coincides with its norm closed linear span.

For simplicity, we write 〈x, y〉 instead of 〈x, y〉A when both x and y are in E
(or F). Recall that E is said to be full if JE = A, where JE is the closed two-sided
ideal of A generated by all the A-valued inner products of elements in E.

Unless specified otherwise, Φ : E → F is an orthogonality preserving A-
module map (i.e. satisfying (1.1)), but Φ is not assumed to be bounded. When A is
unital, Φ is an orthogonality preserving A-module map between unital essential
Hilbert A-modules, otherwise Φ can be regarded as an orthogonality preserving
A1-module map between unital essential Hilbert A1-modules.

We now recall the following elementary result (see e.g. [13]).

LEMMA 2.1. Suppose that p ∈ Proj1(A∗∗). If b ∈ Z(pA∗∗p)+, then ‖c(b)‖ =
‖b‖, c(b)p = b and c(b)c(p) = c(b).

In the following lemma, we collect some simple useful facts concerning
Hilbert C∗-modules (which are probably known). Recall that E∗∗ is a Hilbert
A∗∗-module with the module action and the inner product extending the ones
in E.

LEMMA 2.2. Let p ∈ Proj1(A∗∗), δ ∈ [0, 1) and x ∈ E \ {0}. Set a :=
〈x, x〉/‖x‖2, qδ := ea(δ, 1], qx := ea(0, 1] and FΦ := Φ(E).

(i) If p is open and y ∈ E satisfying 〈x, y〉p = 0, then 〈Φ(x), Φ(y)〉p = 0.
(ii) If v ∈ A∗∗ such that 〈x, x〉v ∈ A, then xv ∈ E.

(iii) If u, v ∈ A∗∗ with au = av, then qδu = qδv. Thus, ap = a will imply that
qx 6 p.

(iv) xp = x if and only if a ∈ pAp, which is also equivalent to x ∈ E · (A ∩ pA∗∗p).
(v) xqx = x and Φ(x)qx = Φ(x).

(vi) FΦ · JE = FΦ and JFΦ
⊆ JE.

Proof. In the following, let (en)n∈N be an approximate unit in C∗(a). Notice
that ‖xen − x‖ → 0 since ‖x− xen‖2 = ‖x‖2‖a− ena− aen + enaen‖.

(i) Pick any increasing net (aλ)λ∈Λ in A+ ∩ pA∗∗p with aλ ↑ p (note that p
is open). As aλ = paλ, one has 〈x, yaλ〉 = 0 (for any λ). Thus, 〈Φ(x), Φ(y)〉aλ = 0
(for any λ), and hence 〈Φ(x), Φ(y)〉p = 0.

(ii) As env ∈ A (by the hypothesis) and ‖xv − xenv‖2
E∗∗ = ‖x‖2‖v∗(1 −

en)a(1− en)v‖, we see that xv ∈ E.
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(iii) Let (bn)n∈N be a sequence in C∗(a)+ such that bn ↑ qδ. As bn(u− v) = 0
(n ∈ N), we see that qδu = qδv. By taking δ = 0, we obtain also the second
statement.

(iv) If xp = x, then a = pap. If a ∈ pAp, then en ∈ pAp and x ∈ E · (A ∩
pA∗∗p) (as ‖xen − x‖ → 0). Finally, if x ∈ E · (A ∩ pA∗∗p), then clearly xp = x.

(v) As xen = xenqx → xqx in norm, one has x = xqx. Now, part (iv) implies
that x = zb for some z ∈ E and b ∈ A ∩ qx A∗∗qx. Thus, Φ(x) = Φ(z)b ∈
F · (A ∩ qx A∗∗qx), which gives Φ(x)qx = Φ(x).

(vi) As E is a Hilbert JE-module, any z ∈ E is of the form z = yb for some
y ∈ E and b ∈ JE. Thus, Φ(E) ⊆ FΦ · JE. The second statement follows from the
first one (as JE is a closed two-sided ideal of A).

3. THE MAIN RESULTS

We may now start proving our main theorem. We use open projections in
our proof. Notice that this proof is not a translation of the one for the real rank
zero case in [13] (because most of the techniques used there cannot be carried
over to the general case) and it is much more difficult and technical. On the other
hand, none of the approaches in [7], [8], [12] seems to work in the general case
neither.

LEMMA 3.1. Suppose that x ∈ E \ {0}. If a := 〈x, x〉/‖x‖2 and qx := ea(0, 1],
there is ux ∈ Z(qx A∗∗qx)+ such that

〈Φ(y), Φ(x)〉 = 〈y, x〉ux (y ∈ E).

Proof. Without loss of generality we assume that ‖x‖ = 1 and A is unital. If
ε ∈ (0, 1) and qε := ea(ε, 1], pick any b ∈ C∗(a)+ satisfying qε 6 ab 6 1 and set
xε := xb1/2 ∈ E. Then we have 〈xεqε, xε〉A∗∗ = 〈xε, xεqε〉A∗∗ = 〈xεqε, xεqε〉A∗∗ = qε.
Moreover,

(3.1) b1/2qε

(
b1/2 +

qε

n

)−1
↑ qε when n→ ∞.

Put uε := 〈Φ(xε), Φ(xε)〉qε ∈ Aqε. Consider c ∈ qε A∗∗qε ∩ A+ to be a
norm one element, and set p := ec(α, β) ∈ qε A∗∗qε for some α < β in R+. Let
bn ∈ C∗(c) ⊆ A ∩ qε A∗∗qε such that 0 6 bn ↑ p and bnbn+1 = bn (n ∈ N). Set
cn := 1 − bn, and observe that 1 > cn ↓ (1 − p), bncn+k = 0, bn p = bn, and
cn+k(1− p) = 1− p (n, k ∈ N). Since

〈xεbn, xεcn+k〉 = bnqε〈xε, xε〉cn+k = bnqεcn+k = bncn+k = 0,

we have bnuεcn+k = 〈Φ(xεbn), Φ(xεcn+k)〉qε = 0 (by Lemma 2.2(i)). By letting
k → ∞ and then n → ∞, we see that puε(1 − p) = 0, i.e., puε = puε p. Sim-
ilarly, we have puε p = uε p and so, puε = uε p. As c can be approximated in
norm by linear combinations of projections of the form ec(α, β), one concludes
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that uε commutes with an arbitrary element in A ∩ qε A∗∗qε. Thus, uε commutes
with elements in qε A∗∗qε (as qε is open). In particular, uε = uεqε = qεuεqε =
qε〈Φ(xε), Φ(xε)〉qε ∈ qε Aqε, which means that uε ∈ Z(qε A∗∗qε)+.

For any y ∈ E, the element y− xε〈xε, y〉 ∈ E is orthogonal to xεqε ∈ E∗∗. By
Lemma 2.2(i), we have

〈Φ(y), Φ(xε)〉qε = 〈y, xε〉〈Φ(xε), Φ(xε)〉qε = 〈y, xε〉uε,

which implies that

〈Φ(y), Φ(x)〉b1/2qε = 〈y, x〉uεb1/2qε

(because b1/2qε = qεb1/2qε ∈ qε A∗∗qε). Now relation (3.1) tells us that

〈Φ(y), Φ(x)〉qε = 〈y, x〉uε (y ∈ E).(3.2)

If 0 < δ 6 ε < 1, we have qε 6 qδ and qε A∗∗qε ⊆ qδ A∗∗qδ. Hence,

auδqε = 〈x, x〉uδqε = 〈Φ(x), Φ(x)〉qδqε = 〈Φ(x), Φ(x)〉qε = auε,

and Lemma 2.2(iii) tells us that uδqε = qδuδqε = qδuε = qδqεuε = uε. By taking
adjoint, we see that uδ commutes with qε, which gives

(3.3) 0 6 uε = u1/2
δ qεu1/2

δ 6 uδ (0 < δ 6 ε < 1).

Next, we show that (uε)ε∈(0,1) is a bounded set. Suppose on the contrary
that there is a strictly decreasing sequence (εn)n∈N with ‖uεn‖ > ‖uεn−1‖+ n5 for
every n ∈ N (see relation (3.3)). Let bn, dn ∈ C∗(a)+ such that ea(ε4n−1, ε4n−2] 6
bn 6 ea(ε4n, ε4n−3] (6 qε4n ) and qε4n 6 adn 6 1. As bn, qε4n−1 , qε4n−2 ∈ qε4n A∗∗qε4n

and uε4n ∈ Z(qε4n A∗∗qε4n)+, we see that

‖uε4n bn‖ > ‖uε4n(qε4n−1 − qε4n−2)‖ = ‖uε4n−1 − uε4n−2‖ > (4n− 1)5.

If xn := xb1/2
n d1/2

n , then 〈xn, xn〉 = bnqε4n adn = bn. Moreover, if m 6= n, then

〈xn, xm〉 = d1/2
n b1/2

n ea(ε4n, ε4n−3]aea(ε4m, ε4m−3]b1/2
m d1/2

m = 0

(as (ε4n, ε4n−3] ∩ (ε4m, ε4m−3] = ∅). Let y :=
∞
∑

n=1
xn/n2 ∈ E (note that ‖xn‖2 =

‖bn‖ 6 1). For any m ∈ N, we have 〈Φ(y), Φ(y)〉 > 〈Φ(xm), Φ(xm)〉/m4 (as Φ
preserves orthogonality), and by relation (3.2),

m4〈Φ(y), Φ(y)〉 > 〈Φ(xm), Φ(xm)〉 = 〈Φ(xm), Φ(x)〉qε4m b1/2
m d1/2

m(3.4)

= 〈xm, x〉uε4m b1/2
m d1/2

m = bmuε4m

(since b1/2
m d1/2

m ∈ qε4m A∗∗qε4m and uε4m ∈ Z(qε4m A∗∗qε4m)+). Consequently,

‖Φ(y)‖2 >
(4m− 1)5

m4 , for all m ∈ N,

which is a contradiction.
Now, the bounded sequence (u1/n)n∈N in (qx A∗∗qx)+ has a subnet having

a weak*-limit ux ∈ (qx A∗∗qx)+. As q1/n ↑ qx, we have
⋃

n∈N
q1/n A∗∗q1/n being
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weak*-dense in
⋃

n∈N
q1/n A∗∗qx and hence also weak*-dense in qx A∗∗qx. Thus,

ux ∈ Z(qx A∗∗qx)+ (as q1/mux = uxq1/m = u1/m ∈ Z(q1/m A∗∗q1/m) for any
m ∈ N). By relation (3.2) and Lemma 2.2(v), we have

〈Φ(y), Φ(x)〉 = 〈Φ(y), Φ(x)〉qx = 〈y, x〉ux (y ∈ E).

Recall that JE ⊆ A is the closed two-sided ideal generated by the inner
products of elements in E.

THEOREM 3.2. Suppose that Φ : E → F is a C-linear map (not assumed to be
bounded). Then Φ : E → F is an orthogonality preserving A-module map if and only if
there exists u ∈ Z(M(JE))+ such that

〈Φ(x), Φ(y)〉 = u〈x, y〉 (x, y ∈ E).

In this case, u is unique and Φ is automatically bounded.

Proof. As E is a full Hilbert JE-module, it is easy to see that u is unique if it
exists, and in this case, ‖Φ‖2 6 ‖u‖.

The sufficiency is obvious, and we will establish the necessity in the follow-
ing. Since JFΦ

⊆ JE (see Lemma 2.2(vi)), by replacing Φ with the induced map
Φ0 : E→ FΦ := Φ(E), we may assume that JE = A.

Let M be a maximal family of orthogonal norm-one elements in E (whose
existence is ensured by applying Zorn’s lemma), and F be the collection of all
non-empty finite subsets of M. If {y, z} ∈ F, then by Lemma 3.1,

〈y, y〉uy = 〈Φ(y), Φ(y)〉 = 〈Φ(y), Φ(y + z)〉 = 〈y, y〉uy+z,

which implies that ‖y(uy+z − uy)‖2
E∗∗ 6 ‖uy+z − uy‖‖〈y, y〉(uy+z − uy)‖ = 0,

and so,

(3.5) yuy = yuy+z.

On the other hand, 〈y, y〉qy+z = 〈y, y + z〉qy+z = 〈y, y〉 (by Lemma 2.2(v))
and thus qy 6 qy+z (by Lemma 2.2(iii)). If p ∈ Proj1(A∗∗) such that qy 6 p and
qz 6 p, then 〈y + z, y + z〉p = 〈y, y〉qy p + 〈z, z〉qz p = 〈y + z, y + z〉, which tells
us that qy+z 6 p (again by Lemma 2.2(iii)). Thus, qy+z = qy ∨ qz in Proj1(A∗∗).
Inductively, if S ∈ F and

xS := ∑
x∈S

x,

then by Lemma 3.1 and relation (3.5) we have

〈Φ(y), Φ(x)〉 = 〈y, x〉ux = 〈y, x〉uxS (y ∈ E; x ∈ S),(3.6)

qxS =
∨
x∈S

qx (as elements in Proj1(A∗∗)).(3.7)

If S′ ∈ F with S ⊆ S′, then

〈xS, xS〉uxS′ = 〈Φ(xS), Φ(xS)〉 = 〈xS, xS〉uxS
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(by relation (3.6)). Thus, Lemma 2.2(iii) tells us that

(3.8) uxS = qxS uxS = qxS uxS′ .

By taking adjoint, we see that qxS commutes with uxS′ , and relation (3.8) implies
that (uxS)S∈F is an increasing net in A∗∗+ .

We now show that (uxS)S∈F is a bounded net. Suppose on the contrary that
there is an increasing sequence ∅ ( S(0) ( S(1) ( · · · in F with

‖uxS(n)‖ > ‖uxS(n−1)‖+ n5 (n ∈ N)

(notice that ‖uxS‖ 6 ‖uxS′ ‖ if S ⊆ S′). Denote by

yn := ∑
x∈S(n)\S(n−1)

x = xS(n) − xS(n−1) (n ∈ N).

By Proposition V.1.6 in [21], one has a partial isometry w ∈ A∗∗ such that

qxS(n) − qxS(n−1) = qxS(n−1) ∨ qyn − qxS(n−1) = w(qyn − qxS(n−1) ∧ qyn)w
∗,

which implies

uxS(n) = u1/2
xS(n)

qxS(n)u
1/2
xS(n)

6 u1/2
xS(n)

(qxS(n−1) + wqyn w∗)u1/2
xS(n)

= uxS(n−1) + u1/2
xS(n)

wqyn w∗u1/2
xS(n)

(see also (3.8)). On the other hand, by (3.7) and Lemma 2.1,

u1/2
xS(n)

wqyn w∗u1/2
xS(n)

= c(u1/2
xS(n)

)qxS(n)wqyn w∗qxS(n)c(u
1/2
xS(n)

) = qxS(n)wqyn c(u1/2
xS(n)

)c(u1/2
xS(n)

)w∗qxS(n)

= qxS(n)wqyn qxS(n)c(u
1/2
xS(n)

)c(u1/2
xS(n)

)w∗qxS(n) = qxS(n)wqyn uxS(n)w
∗qxS(n) .

Consequently,
uxS(n) − uxS(n−1) 6 qxS(n)wqyn uxS(n)w

∗qxS(n) ,

which gives
‖qyn uxS(n)‖ > n5.

Let an := 〈yn, yn〉/‖yn‖2. Since {anb : b ∈ C∗(an)} is a norm-dense ideal of
C∗(an), there is bn ∈ C∗(an)+ such that

‖anbn‖ 6 1 and ‖anbnuxS(n)‖ > n5.

Define xn := ynb1/2
n /‖yn‖. Then clearly (xn)n∈N is an orthogonal sequence with

〈xn, xn〉 = anbn. Let z :=
∞
∑

n=1
xn/n2 ∈ E (notice that ‖xn‖ 6 1). As in (3.4), since

Φ preserves orthogonality, for any m ∈ Nwe have

〈Φ(z), Φ(z)〉 >
b1/2

m 〈ym, ym〉uxS(m)
b1/2

m

m4‖ym‖2 =
ambmuxS(m)

m4
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(because of relation (3.6) as well as the facts that b1/2
m ∈ qxS(m)

A∗∗qxS(m)
and uxS(m)

∈ Z(qxS(n) A∗∗qxS(n))+). This gives the contradiction that ‖Φ(z)‖2 > m for all
m ∈ N.

For any x ∈ E, we set vx := c(ux). By Lemmas 3.1, 2.1 and 2.2(v), we have

〈Φ(y), Φ(x)〉 = 〈y, x〉qxvx = 〈y, x〉vx (y ∈ E).(3.9)

Moreover, by Lemma 2.1, the net (vxS)S∈F is also bounded. Let v ∈ Z(A∗∗)+ be
the weak*-limit of a subnet of (vxS)S∈F. Note that if S ∈ F and x ∈ S, then by
Lemmas 2.2(v) and 2.1 as well as relations (3.7) and (3.8), we have

〈y, x〉vxS = 〈y, x〉qxqxS vxS = 〈y, x〉ux = 〈Φ(y), Φ(x)〉 (y ∈ E).

Therefore,

〈Φ(y), Φ(x)〉 = 〈y, x〉v (y ∈ E, x ∈ M).(3.10)

If I is the closed two-sided ideal of A generated by {〈y, x〉 : y ∈ E, x ∈ M}, then
Iv ⊆ A. For any z ∈ E · I \ {0}, one has zv ∈ E. On the other hand, as 〈z, z〉vz ∈ A
(see (3.9)), we know that zvz ∈ E (by Lemma 2.2(ii)). Furthermore, one has

〈x, z〉vz = 〈Φ(x), Φ(z)〉 = v〈x, z〉 = 〈x, z〉v (x ∈ M).

This shows that the element z(v− vz) in E is orthogonal to any x ∈ M. This forces
zv = zvz (by the maximality of M). As a consequence,

〈Φ(x), Φ(y)〉a = 〈x, ya〉vya = 〈x, y〉av (x, y ∈ E, a ∈ I).

If q is the central open projection in A∗∗ with I = A ∩ qA∗∗q (see e.g. Section 3.11
of [19]), then q is the weak*-limit of a net in I, and we have

〈Φ(x), Φ(y)〉q = v〈x, y〉q (x, y ∈ E).(3.11)

We now claim that φ : a 7→ qa is an injection from A onto qA (which is
a C∗-subalgebra of A∗∗ as φ is a ∗-homomorphism). Indeed, if a ∈ ker φ, then
〈x, ya〉 = 〈x, y〉qa = 0 (for every x ∈ M and y ∈ E), and the maximality of M
as well as the fullness of E will imply that a = 0. Consequently, φ induces a
∗-isomorphism φ̃ : M(A)→ M(qA).

By equation (3.11) and the fullness of E, we see that v induces an element
m ∈ Z(M(qA))+ such that

q〈Φ(x), Φ(y)〉 = m(q〈x, y〉) (x, y ∈ E).

If u := (φ̃)−1(m), then u ∈ Z(M(A))+ and the injectivity of φ gives the required
relation

〈Φ(x), Φ(y)〉 = u〈x, y〉 (x, y ∈ E).

Suppose that v ∈ M(JE). Since E is a Hilbert JE-module, it becomes a unital
right Banach M(JE)-module in a canonical way. We denote by Rv : E → E the
right multiplication of v, i.e., Rv(x) = xv (x ∈ E).
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COROLLARY 3.3. Suppose that Φ is an orthogonality preserving A-module map.
Denote by uΦ the unique element in Z(M(JE))+ associated with Φ as in Theorem 3.2.
Set wΦ := u1/2

Φ .
(i) JFΦ

= uΦ JE and ker Φ = ker RwΦ
. Moreover, there is a Hilbert A-module

isomorphism Θ : EwΦ → FΦ such that Φ = Θ ◦ RwΦ
. Consequently, the induced map

Φ0 : E→ FΦ is adjointable with Φ∗0 being orthogonality preserving.
(ii) If Φ is injective, then Φ−1 : Φ(E)→ E is also orthogonality preserving.

(iii) If JFΦ
= JE, then EwΦ is dense in E and Φ is injective.

Proof. (i) The first equality follows directly from Theorem 3.2. As

‖Φ(x)‖ = ‖RwΦ
(x)‖ (x ∈ E),

we see that ker Φ = ker RwΦ
. Thus, we can define Θ : EwΦ → F by

Θ(RwΦ
(x)) := Φ(x).

Since Θ preserves the A-valued inner products, it extends to a Hilbert A-module
isomorphism from EwΦ onto FΦ that satisfies the required condition. Further-
more, it is easy to see that both RwΦ

: E → EwΦ and Θ are adjointable, and so is
Φ0. Finally, as Φ∗0 = RwΦ

◦Θ−1, we see that Φ∗0 also preserves orthogonality.
(ii) Suppose that a ∈ JE with auΦ = 0. Then awΦ = 0 as wΦ ∈ C∗(uΦ) and

so, xa ∈ ker Φ for any x ∈ E (by part (i)). As Φ is injective and E is a full Hilbert
JE-module, we have a = 0. Consequently, if x, y ∈ E satisfying 〈Φ(x), Φ(y)〉 = 0,
then by Theorem 3.2, 〈x, y〉 = 0.

(iii) Part (i) tells us that uΦ JE is dense in JFΦ
= JE, and so, wΦ JE ⊇ wΦ(wΦ JE)

is dense in JE. Consequently, EwΦ = (E · JE)wΦ is dense in E. By part (i) again,
we see that E is isomorphic to FΦ. Moreover, if x ∈ ker RwΦ

, then

〈x, ywΦ〉 = 〈xwΦ, y〉 = 0 for any y ∈ E,

which implies that x = 0. Consequently, part (i) tells us that ker Φ = {0}.

By Corollary 3.3(i), if Φ : E → F is an orthogonality preserving A-module
map with dense range, then F and Φ can be represented by an element wΦ ∈
Z(M(JE))+, up to an isomorphism. On the other hand, Φ might not have closed
range even if it is injective (see Example 3.5(ii) below), and Corollary 3.3(ii) does
not give us any good information about Φ−1. Furthermore, it is not true that
all orthogonality preserving A-module maps are adjointable (see Example 3.5(iii)
below), and it is only true if we restrict the range of the map.

THEOREM 3.4. Let Φ : E→ F be an orthogonality preserving A-module map (not
assumed to be bounded), FΦ := Φ(E), and JE be the closed two-sided ideal generated by
the inner products of elements in E.

(i) If JFΦ
= JE, there is a Hilbert A-module isomorphism Θ : E → FΦ such that

Φ(x) = Θ(xwΦ) (x ∈ E).
(ii) If Φ is bijective, then JF = JE and there is a unique invertible w ∈ Z(M(JE))+

such that x 7→ Φ(x)w−1 is a Hilbert A-module isomorphism from E onto F.
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Proof. (i) This follows directly from Corollary 3.3.
(ii) By Lemma 2.2(vi), we have JF ⊆ JE and we might assume that E is full.

Notice that Φ−1 : F → E is an orthogonality preserving A-module map because
of Corollary 3.3(ii). Thus, Theorem 3.2 gives uΦ−1 ∈ Z(M(JF))+ such that

〈x, y〉 = 〈Φ−1(Φ(x)), Φ−1(Φ(y))〉 = uΦ−1 uΦ〈x, y〉 (x, y ∈ E).

As E is full, the above implies that for any a ∈ A, one has a = uΦ−1 uΦa ∈
uΦ−1 JF ⊆ JF (by Corollary 3.3(i)). This shows that JF = A and uΦ is invertible
(and so is wΦ). Now, part (ii) follows directly from part (i) (note that the unique-
ness of w follows from the uniqueness of uΦ).

We remark that in the case of complex Hilbert spaces (i.e., A = C), the
condition that J

Φ(E) = JE is the same as Φ being nonzero. However, in the general
case, one cannot even replace the requirement J

Φ(E) = JE in Theorem 3.4(i) with
Φ being either injective or surjective (see Example 3.5(i) and (iv) below; note that
a Hilbert A-module isomorphism is isometric). We remark also that even in the
situation of Theorem 3.4(i), the submodule Φ(E) needs not be closed in F and wΦ

needs not be invertible (see Example 3.5(ii) below).

EXAMPLE 3.5. (i) Let

A := C[0, 1], E := C[0, 1], and F := C0(0, 1].

If a ∈ A+ is given by a(t) := t (t ∈ [0, 1]) and Φ : E→ F is defined by Φ(x) := xa,
then Φ is an injective orthogonality preserving A-module map. However, there
is no isometric A-module map from E into F. Suppose on the contrary that Θ :
E → F is such a map. Then Θ(b) = Θ(1)b (b ∈ A). Since f := Θ(1) is in C0(0, 1],
one can find t0 ∈ (0, 1) such that | f (t)| < 1/2 for t 6 t0. Now, if b ∈ A such that
‖b‖ = 1 and b vanishes on [t0, 1], then

‖Θ(b)‖ 6 1
2
< 1 = ‖b‖

which is a contradiction.
(ii) Let A := C0(0, 1] and a ∈ A+ be the function defined by

a(t) := t (t ∈ (0, 1]).

If we set E := A and F := A, and define Φ : E → F by Φ(x) := xa, then Φ is
an orthogonality preserving A-module map with dense range and JFΦ

= A = JE,
but Φ is not surjective, and a = wΦ is not invertible in M(A).

(iii) Let

A := C0(0, 1), E := { f ∈ A : f (1/2) = 0}, F := A and Φ : E→ F

be the canonical injection. Then Φ is an orthogonality preserving A-module map
with closed range and JFΦ

= JE, but Φ is not an adjointable map from E into F.
Indeed, suppose that Φ is adjointable, and g ∈ F with g(1/2) 6= 0. Then

〈Φ∗(g), f 〉E − 〈g, f 〉F = 0 for any f ∈ E ⊆ F,
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which implies that Φ∗(g)− g = 0 (because 0 is the only element in F being or-
thogonal to E). Thus, we have a contradiction g = Φ∗(g) ∈ E.

(iv) Let

A = C⊕C, E = A and F = C⊕ {0} ⊆ E.

Define

Φ(x) := x(1, 0) (for any x ∈ E).

Then Φ is a surjective orthogonality preserving A-module map, but E � F.

REMARK 3.6. Since E and F can be embedded into their respective linking
algebras, some readers may consider the possibility of extending the orthogo-
nality preserving map Φ to a disjointness preserver between the linking algebras,
and then use the corresponding results for disjointness preservers in the literature
(e.g., [3], [4], [5], [9], [15], [16], [23], [24]) to obtain Theorem 3.2. However, in order
to extend Φ to a disjointness preserver on the linking algebra, one needs a canon-
ical map from K(E) into K(F) which is compatible with Φ. It seems difficult to
obtain such a map because Φ is not even assumed to be bounded. Nevertheless,
after obtaining Theorem 3.2, we can use it to show that such an extension is pos-
sible, but we do not see any easy way to obtain it without our main theorems.
Readers are referred to Section 4 in [14] for the details.
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