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BOUNDEDNESS OF CALDERÓN–ZYGMUND OPERATORS ON
WEIGHTED PRODUCT HARDY SPACES
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ABSTRACT. Let T be a singular integral operator in Journé’s class with regu-
larity exponent ε, w ∈ Aq, 1 6 q < 1 + ε, and q/(1 + ε) < p 6 1. We ob-
tain the Hp

w(R×R)-Lp
w(R2) boundedness of T by using R. Fefferman’s “trivial

lemma” and Journé’s covering lemma. Also, using the vector-valued version
of the “trivial lemma” and Littlewood–Paley theory, we prove the Hp

w(R×R)-
boundedness of T provided T∗1 (1) = T∗2 (1) = 0; that is, the reduced T1 theo-
rem on Hp

w(R×R). In order to show these two results, we demonstrate a new
atomic decomposition of Hp

w(R×R)∩ L2
w(R2), for which the series converges

in L2
w. Moreover, a fundamental principle that the boundedness of operators

on the weighted product Hardy space can be obtained simply by the actions
of such operators on all atoms is given.
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1. INTRODUCTION

The product Hardy space was first introduced by Malliavin–Malliavin [13]
and Gundy–Stein [9]. Chang–Fefferman [1] provided the atomic decomposition
of Hp(R2

+ × R2
+) and showed the duality H1 with BMO on the bidisc. R. Fef-

ferman [5] used the rectangle atomic decomposition of Hp(Rn ×Rm) and a geo-
metric covering lemma due to Journé [12] to prove the remarkable Hp(Rn×Rm)-
Lp(Rn × Rm) boundedness of product singular integrals introduced by Journé
[12]. Recently, Han et al. [11] show a reduced T1 type theroem on Hp(Rn ×Rm).
More precisely, these Journé’s product singular integrals T are also bounded on
the product Hp(Rn × Rm) for max{n/(n + ε), m/(m + ε)} < p 6 1 if and only
if T∗1 (1) = T∗2 (1) = 0, where ε is the regularity exponent of the kernel of T. For
the weighted norm inequality, R. Fefferman [6] proved that if w ∈ Ap(Rn ×Rm),
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1 < p < ∞, then these singular integrals are bounded on Lp
w(Rn+m). A natu-

ral and interesting problem is whether these singular integrals are bounded from
Hp

w(Rn × Rm) to Lp
w(Rn+m) or bounded on Hp

w(Rn × Rm). The purpose of the
current article is to answer this question. Recently, Ding et al. [3] obtained the
boundedness of singular integral operators on weighted product Hardy spaces
for w ∈ A∞. However, these operators are convolution operators with smooth
kernels on each variable and with cancellation conditions. Here, we consider
non-convolution operators and their kernels require less regularity.

We start with recalling the definition of a Calderón–Zygmund kernel. A
continuous complex-valued function K(x, y) defined on Rn×Rn\{(x, y) : x = y}
is called a Calderón–Zygmund kernel if there exist constant C > 0 and a regularity
exponent ε ∈ (0, 1] such that

(i) |K(x, y)| 6 C|x− y|−n;
(ii) |K(x, y)− K(x′, y)| 6 C|x− x′|ε|x− y|−n−ε if |x− x′| 6 |x− y|/2;

(iii) |K(x, y)− K(x, y′)| 6 C|y− y′|ε|x− y|−n−ε if |y− y′| 6 |x− y|/2.

The smallest such constant C is denoted by |K|CZ.
We say that an operator T is a Calderón–Zygmund operator if the operator

T is a continuous linear operator from C∞
0 (Rn) into its dual associated with a

Calderón–Zygmund kernel K(x, y) given by

〈T f , g〉 =
∫∫

g(x)K(x, y) f (y)dydx

for all test functions f and g with disjoint supports and T being bounded on
L2(Rn). If T is a Calderón–Zygmund operator associated with a kernel K, its
Calderón–Zygmund operator norm is defined by ‖T‖CZ = ‖T‖L2 7→L2 + |K|CZ.
Of course, in general, one cannot conclude that a singular integral operator T is
bounded on L2(Rn) because Plancherel’s theorem does not work for non-
convolution operators. However, if one assumes that T is bounded on L2(Rn),
then the Lp, 1 < p < ∞, boundedness follows from Caldernón–Zygmund’s real
variable method. The L2(Rn) boundedness of non-convolution singular integral
operators was finally proved by the remarkable T1 theorem by David and Journé
[2], in which they gave a general criterion for the L2-boundedness of singular
integral operators.

Let T be a singular integral operator defined for functions on Rn ×Rm by

T f (x1, x2) =
∫∫

Rn×Rm

K(x1, x2, y1, y2) f (y1, y2)dy1 dy2.

For each x1, y1 ∈ Rn, set K̃1(x1, y1) to be the singular integral operator acting
on functions on Rm with the kernel K̃1(x1, y1)(x2, y2) = K(x1, x2, y1, y2), and
similarly, K̃2(x2, y2)(x1, y1) = K(x1, x2, y1, y2). Fefferman [6] proved that singu-
lar integral operators are bounded on Lp

w(Rn+m) provided w ∈ Ap(Rn × Rm),
1 < p < ∞.
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THEOREM 1.1 ([6], Theorem A). Suppose that T is bounded on L2(Rn+m) and
that for some 0 < ε 6 1 and some finite C > 0 we have

(i) ‖K̃1(x1, y1)− K̃1(x′1, y1)‖CZ 6 C|x1 − x′1|ε/|x1 − y1|n+ε if |x1 − x′1| < |x1 −
y1|/2,

(i) ‖K̃1(x1, y1)− K̃1(x1, y′1)‖CZ 6 C|y1 − y′1|ε/|x1 − y1|n+ε if |y1 − y′1| < |x1 −
y1|/2,
and similarly for K̃2. If w ∈ Ap(Rn ×Rn), 1 < p < ∞, then

‖T( f )‖Lp
w
6 C‖ f ‖Lp

w
.

Here, a weight w(x1, x2) defined on Rn ×Rm is said to belong to (product)
Ap if and only if there exists a constant C so that for all rectangles R = I × J (I is
a cube in Rn and J a cube in Rm) we have( 1

|R|

∫
R

w(x1, x2)dx1 dx2

)( 1
|R|

∫
R

w(x1, x2)
−1/(p−1) dx1dx2

)p−1
6 C.

DEFINITION 1.2 ([6], Definition). A singular integral operator T is said to
be in Journé’s class if the associated kernel K(x1, x2, y1, y2) satisfies the following
conditions. There exist constants C > 0 and ε ∈ (0, 1] such that:

(B1) T is bounded on L2(Rn+m);
(B2) We have

‖K̃1(x1, y1)‖CZ 6 C|x1 − y1|−n,

‖K̃1(x1, y1)− K̃1(x1, y′1)‖CZ 6 C|y1 − y′1|ε|x1 − y1|−(n+ε) for |y1 − y′1|6
|x1 − y1|

2
,

‖K̃1(x1, y1)− K̃1(x′1, y1)‖CZ 6 C|x1 − x′1|ε|x1 − y1|−(n+ε) for |x1−x′1|6
|x1−y1|

2
;

(B3) We have

‖K̃2(x2, y2)‖CZ 6 C|x2 − y2|−m,

‖K̃2(x2, y2)− K̃2(x2, y′2)‖CZ 6 C|y2 − y′2|ε|x2 − y2|−(m+ε) for |y2 − y′2|6
|x2−y2|

2
,

‖K̃2(x2, y2)−K̃2(x′2, y2)‖CZ 6C|x2 − x′2|ε|x2−y2|−(m+ε) for |x2−x′2|6
|x2−y2|

2
.

In this article, we shall be concerned only with the case n = m = 1. The first
main result of this paper is to extend Theorem A of [6] to the Hp

w-Lp
w boundedness.

THEOREM 1.3. Let T be a singular integral operator satisfying the assumption in
Theorem A of [6], with regularity exponent ε. If w ∈ Aq, q < 1 + ε, then

‖T( f )‖Lp
w(R2) 6 C‖ f ‖Hp

w(R×R),
q

1 + ε
< p 6 1.



118 MING-YI LEE

To state the second result, we need some notations and definitions as fol-
lows. Given 0 < p 6 1, let

C∞
0,0(Rn) =

{
ψ ∈ C∞(Rn) : ψ has a compact support

and
∫
Rn

ψ(y)yα dy = 0 for 0 6 |α| 6 Np,n

}
,

where Np,n is a large integer depending on p and n. We say that T∗1 (1) = 0 if∫
Rn

∫
Rn×Rm

K(x1, x2, y1, y2)ϕ1(y1)ϕ2(y2)dy1 dy2 dx1 = 0

for all ϕ1 ∈ C∞
0,0(Rn), ϕ2 ∈ C∞

0,0(Rm), and x2 ∈ Rm. Similarly, T∗2 (1) = 0 if∫
Rm

∫
Rn×Rm

K(x1, x2, y1, y2)ϕ1(y1)ϕ2(y2)dy1 dy2 dx2 = 0

for all ϕ1 ∈ C∞
0,0(Rn), ϕ2 ∈ C∞

0,0(Rm), and x1 ∈ Rn.
The Hp

w-boundedness of the sigular integral operators in Journé’s class is
presented as follows.

THEOREM 1.4. Let T be a singular integral operator in Journé’s class with regu-
larity exponent ε. If w ∈ Aq, q < 1 + ε, and T1

∗(1) = T2
∗(1) = 0, then

‖T( f )‖Hp
w(R×R) 6 C‖ f ‖Hp

w(R×R),
q

1 + ε
< p 6 1.

Throughout the article, the letter C will denote a positive constant that may
vary from line to line but remains independent of the main variables. We also
use a ≈ b to denote the equivalence of a and b; that is, there exist two positive
constants C1, C2 independent of a, b such that C1a 6 b 6 C2a.

2. PRELIMINARIES

Analogous to the clasical product Hardy spaces, the weighted product Hardy
spaces Hp

w(R×R), p > 0, can be defined in terms of Lusin area integrals. A point
of R2

+ ×R2
+ will be denoted (y, t) where y = (y1, y2) ∈ R2 and t = (t1, t2), ti >

0, i = 1, 2. We shall often use the following notations: ψ ∈ C∞(R) supported

on [−1, 1] with ψ even and
1∫
−1

ψ(y)dy = 0; for t > 0, ψt(y) = (1/t)ψ(y/t); for

t = (t1, t2) and y = (y1, y2) ∈ R2, ψt(y) = ψt1(y1)ψt2(y2). Furthermore, for
x = (x1, x2) ∈ R2, we use Γ(x) to denote the product cone Γ(x) = Γ(x1)× Γ(x2),
where for i = 1, 2, Γ(xi) = {(yi, ti) ∈ R2

+ : |xi − yi| < ti}. Given a function f on
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R2, we define its double S-function by

S2( f ) =
∫∫

Γ(x)

| f ∗ ψt(y)|2
dydt
t2
1t2

2
.

Then f ∈ Hp
w(R×R) if and only if S( f ) ∈ Lp

w(R2) and ‖ f ‖Hp
w
= ‖S( f )‖Lp

w
, where

w is weight function.
Let 1/2 < p 6 1 and w ∈ A2. A weighted p atom is a function a(x1, x2)

defined on R2 whose support is contained in some open set Ω of finite measure
such that:

(i) ‖a‖L2
w
6 w(Ω)1/2−1/p;

(ii) a can be further decomposed into weighted p elementary particles aR as fol-
lows:

(a) a = ∑
R∈M(Ω)

aR, whereM(Ω) denotes the class of all maximal dyadic

subrectangles of Ω and aR is supported in the triple of a distinct dyadic rectangle
R ⊂ Ω (say R = I × J);

(b)
∫
I

aR(x1, x̃2)dx1 =
∫
J

aR(x̃1, x2)dx2 = 0 for each x̃1 ∈ I, x̃2 ∈ J;

(c) ∑
R∈M(Ω)

‖aR‖2
L2

w
6 w(Ω)1−2/p.

We first establish a new atomic decomposition for Hp
w ∩ L2

w, namely the fol-
lowing atomic decomposition theorem.

THEOREM 2.1. Let 1/2 < p 6 1 and w ∈ A2. If f ∈ Hp
w(R×R) ∩ L2

w(R2),
then f can be written as f = ∑ λkak in L2

w, where ak are weighted p atoms and λk > 0
satisfy ∑ |λk|p 6 C‖ f ‖p

Hp
w

.

Proof. For k ∈ Z, let

Ωk = {x ∈ R2 : S( f )(x) > 2k} and

Rk =
{

dyadic rectangle R : w(R ∩Ωk) >
1
2

w(R) and w(R ∩Ωk+1) <
1
2

w(R)
}

.

For each dyadic rectangle R = I × J, we denote its tent by

R̂ = {(y, t) ∈ R2
+ ×R2

+ : y = (y1, y2) ∈ R2, |I| < t1 6 2|I|, |J| < t2 6 2|J|}.

By Calderón reproducing formula, we claim

f (x) =
∫∫

R2
+×R2

+

ψt(x− y)ψt ∗ f (y)dy
dt

t1t2
= ∑

k∈Z
∑

R∈Rk

∫∫
R̂

ψt(x− y)ψt ∗ f (y)dy
dt

t1t2
.

Assume the claim for the moment. Let ak(x) and λk be defined by

ak(x) = C−1/22−kw(Ω̃k)
−1/p ∑

R∈Rk

eR(x)
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and λk = C1/22kw(Ω̃k)
1/p, where the constant C is the same as the one in (2.2)

below and

eR(x) =
∫∫
R̂

ψt(x− y)ψt ∗ f (y)dy
dt

t1t2
.

We first verify that ak is a weighted p-atom. To do this, we define the weighted
strong maximal operator Ms,w by

Ms,w( f )(x1, x2) = sup
(x1,x2)∈R

1
w(R)

∫
R

| f (x1, x2)|w(x)dx1dx2,

where the supremum is taken over all rectangles R which contain (x1, x2). Let
Ω̃k = {x ∈ R2 : Ms,w(χΩk ) > 1/2}. Then for each R ∈ Rk there exists a maximal
dyadic subrectangle R̃, i.e. R̃ ∈ M(Ω̃k) such that R ⊂ R̃. For each S ∈ M(Ω̃k),
set aS = C−1/22−kw(Ω̃k)

−1/p ∑
R̃=S

eR. Then ak(x) = ∑
S∈M(Ω̃k)

aS. It is easy to see

that ak is supported on Ω̃ and aS is supported on 5S. The vanishing moment
conditions of ak follow from the assumption of ψ. To verify the size conditions of
atom, by duality between L2

w and L2
w−1 ,∥∥∥ ∑

R∈Rk

eR

∥∥∥
L2

w
= sup
‖g‖L2

w−1
61

∫
∑

R∈Rk

eR(x)g(x)dx

= sup
‖g‖L2

w−1
61

∑
R∈Rk

∫∫∫
R̂

ψt(x− y)ψt ∗ f (y)dy
dt

t1t2
g(x)dx

= sup
‖g‖L2

w−1
61

∑
R∈Rk

∫∫
R̂

ψt ∗ g(y)ψt ∗ f (y)dy
dt

t1t2

6 C sup
‖g‖L2

w−1
61

∑
R∈Rk

∫∫
R̂

|R||ψt ∗ f (y)||ψt ∗ g(y)|dy
dt

t2
1t2

2
,

where the last inequality is due to the definition of R̂. Hence, if (y, t) ∈ R̂, then
|R| ≈ t2. It is clear that

|R| =
∫
R

w(x)1/2w(x)−1/2dx 6 w(R)1/2(w−1(R))1/2,

so ∥∥∥ ∑
R∈Rk

eR

∥∥∥
L2

w
6 sup
‖g‖L2

w−1
61

(
∑

R∈Rk

∫∫
R̂

w(R)|ψt ∗ f (y)|2dy
dt

t2
1t2

2

)1/2

(
∑

R∈Rk

∫∫
R̂

w(R)|ψt ∗ g(y)|2dy
dt

t2
1t2

2

)1/2
.
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For any R ∈ Rk and (y, t) ∈ R̂, we have R ⊂ {x ∈ R2 : |xi − yi| < ti, i = 1, 2} and
hence

∑
R∈Rk

∫∫
R̂

w−1(R)|ψt ∗ g(y)|2 dydt
t2
1t2

2

6

∞∫
0

∞∫
0

∫
R2

w−1({x ∈ R2 : |xi − yi| < ti, i = 1, 2})|ψt ∗ g(y)|2 dydt
t2
1t2

2

=
∫
R2

∫∫
Γ(x)

|ψt ∗ g(y)|2w−1(x)
dydt
t2
1t2

2
dx =

∫
R2

S(g)2(x)w−1(x)dx 6 C‖g‖L2
w−1

.

Therefore,

(2.1)
∥∥∥ ∑

R∈Rk

eR

∥∥∥
L2

w
6 C

( ∫∫
R̂

w(R)|ψt ∗ f (y)|2 dydt
t2
1t2

2

)1/2
.

Since Ms,w is bounded on L2
w for w ∈ A2, it yields w(Ω̃k) 6 Cw(Ωk). Hence

22k+2w(Ω̃k) >
∫

Ω̃k\Ωk+1

|S f (x)|2w(x)dx

=

∞∫
0

∞∫
0

∫
R2

∫
R2

|ψt ∗ f (y)|2χ{x∈Ω̃k\Ωk+1 :|xi−yi |<ti ,i=1,2}w(x)
dydt
t2
1t2

2

> ∑
R∈Rk

∫
R2

∫∫
R̂

|ψt ∗ f (y)|2χ{x∈Ω̃k\Ωk+1 :|xi−yi |<ti ,i=1,2}w(x)
dydt
t2
1t2

2
.

For any R ∈ Rk and (y, t) ∈ R̂, we have R ⊂ Ω̃k and R ⊂ {x ∈ R2 : |x− y| < t}.
That implies∫
R2

χ{x∈Ω̃k\Ωk+1 :|x−y|<t}w(x)dx>w(R∩(Ω̃k \Ωk+1))=w(R)−w(R∩Ωk+1)>
w(R)

2
,

and hence

(2.2) ∑
R∈Rk

∫∫
R̂

w(R)|ψt ∗ f (y)|2 dydt
t2
1t2

2
6 C22kw(Ω̃k).

Both (2.1) and (2.2) give the size condition of aR as follows

‖ak‖L2
w
= C−1/22−kw(Ω̃k)

−1/p
∥∥∥ ∑

R∈Rk

eR

∥∥∥
L2

w
6 w(Ω̃k)

1/2−1/p.
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To estimate the size condition of weight elementary particle, we have

∑
S∈M(Ω̃k)

‖aS‖2
L2

w
= C−12−2kw(Ω̃k)

−2/p
∥∥∥ ∑

R=S
eR

∥∥∥
L2

w

6 C−12−2kw(Ω̃k)
−2/p

∥∥∥ ∑
R̃∈Rk

eR

∥∥∥
L2

w
6 w(Ω̃k)

1−2/p.

Therefore,

∑
k∈Z
|λk|p = ∑

k∈Z
Cp/22pkw(Ω̃k) 6 C ∑

k∈Z
2pkw(Ωk) 6 C‖S( f )‖p

Lp
w
= C‖ f ‖p

Hp
w

.

We return to the proof of the claim, which is equivalent to show∥∥∥ ∑
|k|>M

∑
R∈Rk

∫
R̂

ψt(· − y)ψt ∗ f (y)
dydt
t1t2

∥∥∥
L2

w
→ 0 as M→ ∞.

By the same proof in (2.1) and (2.2), we obtain∥∥∥ ∑
|k|>M

∑
R∈Rk

∫
R̂

ψt(· −y)ψt ∗ f (y)
dydt
t1t2

∥∥∥
L2

w
6C
(

∑
|k|>M

∑
R∈Rk

∫
R̂

w(R)|ψt∗ f (y)|2 dydt
t2
1t2

2

)1/2

6
(

∑
|k|>M

22kw(Ωk)
)1/2

.

The last term tends to zero as M goes to infinity because

∑
R∈Z

22kw(Ωk) 6 C‖ f ‖2
L2

w
< ∞.

This ends the proof of Theorem 2.1.

It is important and convenient to emphasize that to prove the boundedness
of operators defined on Hp

w spaces, it suffices to verify the boundedness of these
operators acting on all atoms.

LEMMA 2.2. Let 1/2 < p 6 1 and w ∈ A2. For a linear operator T bounded on
L2

w(R2), T can be extended to a bounded operator from Hp
w(R× R) to Lp

w(R2) if and
only if there exists an absolute constant C such that

‖Ta‖Lp
w
6 C for any weighted p atom a.

Proof. We only show the sufficiency. Theorem 2.1 shows that, for f ∈ Hp
w ∩

L2
w, we have f =

∞
∑

i=1
λiai in L2

w, where ai’s are weighted p-atoms and ∑ |λi|p 6

C‖ f ‖p
Hp

w
. Since T is linear and bounded on L2

w,

∥∥∥T f −
M

∑
i=1

λiTai

∥∥∥
L2

w
=
∥∥∥T
(

f −
M

∑
i=1

λiai

)∥∥∥
L2

w
6 C

∥∥∥ f −
M

∑
i=1

λiai

∥∥∥
L2

w
→ 0 as M→ ∞.
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Hence, there exists a subsequence (we still write the same indices) such that T f =
∞
∑

i=1
λiTai almost everywhere. Fatou’s lemma yields

∫
Rn

|T f |pw(x)dx6 lim inf
M→∞

∫
Rn

∣∣∣ M

∑
i=1

λiTai

∣∣∣pw(x)dx6
∞

∑
i=1
|λi|p

∫
Rn

|Tai|pw(x)dx6C‖ f ‖p
Hp

w
.

Since Hp
w ∩ L2

w is dense in Hp
w, T can be extended to a bounded operator from Hp

w
to Lp

w.

3. PROOF OF THEOREM 1.3

In this section, we will show Theorem 1.3. We first get a weighted version
of the “trivial lemma” in [4].

LEMMA 3.1. Let α(x1, x2) be supported in a rectangle R = I × J and satisfy∫
I

α(x1, x2)dx1 = 0, for each x2 ∈ J, and

∫
J

α(x1, x2)dx2 = 0, for each x1 ∈ I.

Assume that w ∈ Aq(R×R) where q < 1 + ε and q/(1 + ε) < p 6 1. Write Eγ =

{(x1, x2) ∈ R2 : x1 /∈ Ĩγ}, where γ > 2 and Ĩγ is the concentric γ fold enlargement of
I. Then ∫

Eγ

|T(α)|pwdx 6 Cγ−η‖α‖p
L2

w
w(R)1−p/2 for some η > 0.

Proof. We shall assume that R is centered at 0. By dilation invariance of the
class of singular integrals that we are considering, we may assume R to be the unit
square. Let Rk,j = {(x1, x2) : 2k < |x1| 6 2k+1 and 2j < |x2| 6 2j+1}. If k, j > 1,
then on Rk,j we get |T(α)(x1, x2)| 6 C2−k(1+ε)2−j(1+ε)‖α‖L1 . But w ∈ Aq ⊆ A2
shows that

‖α‖L1 6 C‖α‖L2
w
(w−1(R))1/2 6 C‖α‖L2

w
w(R)−1/2

and |T(α)(x1, x2)| 6 C2−k(1+ε)2−j(1+ε)‖α‖L2
w

w(R)−1/2. Since Ms(χR) ≈ 2−(k+j)

on Rk,j, we have w(Rk,j) 6 C2q(k+j)w(R). Therefore,∫
Eγ∩{(x1,x2):|x2|>2}

|T(α)|pwdx 6 C ∑
2k>γ,j>1

∫
Rk,j

|T(α)|pwdx

6 C ∑
2k>γ,j>1

2(k+j)[q−p(1+ε)]‖α‖p
L2

w
w(R)1−p/2
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6 C−η
γ ‖α‖

p
L2

w
w(R)1−p/2,

where η = p(1 + ε) − q > 0. Now we estimate
∫
Rj

|T(α)|pwdx, where Rj =

{(x1, x2) : 2j < |x1| 6 2j+1, |x2| 6 2}. We see that

(3.1)
∫
Rj

|T(α)|pwdx 6 w(Rj)
1−p/2

( ∫
Rj

|T(α)|2wdx
)p/2

.

Since w ∈ Aq, w(Rj) 6 C2qjw(R). We use #2 to denote the sharp operator in the
x2 variable. Then

(3.2)
∫
Rj

|T(α)|2wdx 6
∫
Rj

|T(α)#2 |2wdx.

A same argument in Lemma 1 of [6] yields∫
Rj

|T(α)#2(x1, x2)|2wdx1dx2 6 C‖α‖2
L2

w
2jq−2j(1+ε).

Combining this with (3.1) gives∫
Rj

|T(α)|pwdx 6 Cw(R)1−p/2‖α‖p
L2

w
2jq−jp(1+ε).

We sum up these estimates over j to finish the proof of Lemma 3.1.

To prove Theorem 1.3, we need a weighted version of Journé’s covering
lemma. Suppose Ω is an open set in R2, and M(2)(Ω) denotes the collection
of dyadic subrectangles in Ω which are maximal with respect to the x2 side. If
R = I × J ∈ M(2)(Ω) and Ĩ denotes the largest dyadic interval containging I so
that Ĩ × J ⊆ {Ms(χΩ) > 1/2}. Let γ1(R) = | Ĩ|/|I|.

LEMMA 3.2 ([6]). If w ∈ A∞(R×R), then

∑
R∈M(2)(Ω)

w(R)(γ1(R))−η 6 Cηw(Ω) for any η > 0.

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.1, it suffices to show ‖Ta‖Lp
w
6 C for any

weighted p atom a with constant C independent of the choice of a. Given a

weight-ed p atom a with supp (a) ⊆ Ω, let Ω̃ = {Ms(χΩ) > 1/2} and ˜̃Ω =
{Ms(χΩ̃) > 1/2}. Then∫

˜̃Ω
|T(a)|pwdx 6 ‖T(a)‖p

L2
w

w( ˜̃Ω)1−p/2.



BOUNDEDNESS OF CALDERÓN–ZYGMUND OPERATORS ON WEIGHTED PRODUCT HARDY SPACES 125

Now, since w ∈ A2, it follows from Theorem A of [6] that T is bounded on L2
w.

Also, since w ∈ A∞, w( ˜̃Ω) 6 Cw(Ω), so that∫
˜̃Ω
|T(a)|pwdx 6 C‖a‖p

L2
w

w(Ω)1−p/2 6 C.

For a rectangle R ∈ M(Ω), R = I × J, we denote R̃ the rectagle Ĩ × J̃ obtained by
first considering Ĩ ⊇ I maximal so that Ĩ × J ⊆ Ω̃ and then take J̃ ⊇ J maximal

so that Ĩ × J̃ ⊆ ˜̃Ω. Also let

Eγ1(R) = {(x1, x2) ∈ R2 : x1 /∈ Ĩ}, Eγ2(R) = {(x1, x2) ∈ R2 : x2 /∈ J̃}, and

γ1(R) =
| Ĩ|
|I| , γ2(R) =

| J̃|
|J| .

Then∫
( ˜̃Ω)c

|T(a)|pwdx = ∑
R∈M(Ω)

∫
(R̂)c

|T(a)|pwdx

6 ∑
R∈M(Ω)

∫
Eγ1 (R)

|T(a)|pwdx + ∑
R∈M(Ω)

∫
Eγ2 (R)

|T(a)|pwdx := I+II.

By Lemma 3.1, ∫
Eγ1

|T(αR)|pwdx 6 C(γ1(R))−η‖α‖p
L2

w
w(R)1−p/2.

Summing over all R ∈ M(Ω), we get, by Hölder’s inequality and Lemma 3.2,

I 6 C
(

∑ ‖αR‖2
L2

w

)p/2(
∑ w(R)(γ1(R))−2η/(2−p)

)1−p/2

6 Cw(Ω)(1−2/p)p/2w(Ω)1−p/2 6 C.

Expression II is handled similarly. The proof of Theorem 1.3 is completed.

4. PROOF OF THEOREM 1.4

To prove Theorem 1.4, we need the product Littlewood–Paley square func-
tion as follows. Let n1 = n, n2 = m, ψi ∈ C∞

0,0(Rni ) supported in the unit ball of
Rni , and ψi satisfy

∞∫
0

|ψ̂i(tξ)|2 dt
t

= 1 for all ξ 6= 0, i = 1, 2.
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For ti > 0 and (x1, x2) ∈ Rn ×Rm, set ψi
ti
(xi) = t−ni

i ψ(xi/ti) and ψt1t2(x1, x2) =

ψ1
t1
(x1)ψ

2
t2
(x2). The product Littlewood–Paley square function of f ∈ S ′(Rn ×Rm)

is defined by

g( f )(x1, x2) =
{ ∞∫

0

∞∫
0

|ψt1t2 ∗ f (x1, x2)|2
dt1

t1

dt2

t2

}1/2
.

It is well known that w ∈ Ap(R × R) if and only if w(·, x2) ∈ Ap with
bounded Ap constant independently of x2 and w(x1, ·) ∈ Ap with bounded Ap
constant independently of x1 (cf. p. 453, Theorem 6.2 of [8]). It is known that
if w ∈ A∞, then ‖S( f )‖Lp

w
is equivalent to ‖g( f )‖Lp

w
for 0 < p < ∞. Hence if

w ∈ Ap(Rn × Rm), 1 < p < ∞, then the Lq
w-norms of double S-function and

product Littlewood–Paley square function are equivalent for 0 < q 6 1. Here we
have the following product Littlewood–Paley characterization of Hp

w(Rn ×Rm)

(4.1) ‖S( f )‖Lq
w
≈ ‖g( f )‖Lq

w
, 0 < q 6 1 and w ∈ Ap, 1 < p < ∞,

We define the Hilbert spaceH by

H =
{
{ht,s}t,s>0 : ‖{ht,s}‖H =

( ∞∫
0

∞∫
0

|ht,s|2
dt
t

ds
s

)1/2
< ∞

}
.

Let T be a singular integral operator in Journé’s class with regularity exponent ε.
Set Tt,s( f ) = ψt,s ∗ T( f ). For f ∈ L2

w(Rn+m) ∩ Hp
w(Rn ×Rm) and w ∈ A2, by the

Calderón reproducing formula in Lemma 3.1 of [10],

(4.2) Tt,s( f )(x1, x2) = ψt,s ∗ T
( ∞∫

0

∞∫
0

ψt′ ,s′ ∗ ψt′ ,s′ ∗ f (·, ·)dt′

t′
ds′

s′
)
(x1, x2).

By (4.2), the kernel Tt,s(x1, x2, y1, y2) of Tt,s is given by

Tt,s(x1, x2, y1, y2) =

∞∫
0

∞∫
0

∫
Rn×Rm

∫
Rn×Rm

ψt,s(x1 − u1, x2 − u2)K(u1, u2, v1, v2)

× ψt′ ,s′ ∗ ψt′ ,s′(v1 − y1, v2 − y2)du1du2dv1dv2
dt′

t′
ds′

s′
.(4.3)

By (4.1), the Hp
w(Rn ×Rm) boundedness of T is equivalent to the Hp

w-Lp
w,H(R

n ×
Rm) boundedness of the H-valued operator L which maps f into {Tt,s( f )}t,s>0.
Note that the L2(Rn+m) boundedness of T and the product Littlewood–Paley es-
timate [7] imply that L is bounded from L2

w(Rn+m) to L2
w,H(R

n+m). Moreover,

THEOREM 4.1 ([11], Theorem B). Let ε be the regularity exponent satisfying
(B2) and (B3). Then the kernel of Tt,s, {Tt,s(x1, x2, y1, y2)}t,s>0, satisfies the following
estimates:

(D1) ‖{Tt,s(x1, x2, y1, y2)}‖H 6 C|x1 − y1|−n|x2 − y2|−m;
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(D2) for ε′ < ε

‖{Tt,s(x1, x2, y1, y2)− Tts(x1, x2, y′1, y2)}‖H 6 C
|y1 − y′1|ε

′

|x1 − y1|n+ε′
|x2 − y2|−m

if |y1 − y′1| 6
|x1 − y1|

2
,

‖{Tt,s(x1, x2, y1, y2)− Tt,s(x1, x2, y1, y′2)}‖H 6 C
|y2 − y′2|ε

′

|x2 − y2|m+ε′
|x1 − y1|−n

if |y2 − y′2| 6
|x2 − y2|

2
;

(D3) for ε′ < ε,

‖{[Tt,s(x1, x2, y1, y2)−Tt,s(x1, x2, y′1, y2)]−[Tt,s(x1, x2, y1, y′2)−Tt,s(x1, x2, y′1, y′2)]}‖H

6 C
|y1 − y′1|ε

′

|x1 − y1|n+ε′
|y2 − y′2|ε

′

|x2 − y2|m+ε′
if |y1−y′1|6

|x1−y1|
2

, |y2−y′2|6
|x2−y2|

2
.

The regularity of the operator Tt,s mapping from L2 into L2
H is demonstrated

as follows.

THEOREM 4.2 ([11], Theorem C). Let the kernel of Tt,s be defined in (4.3) and ε
be the regularity exponent of T. For ε′ < ε,

(i) if |y1 − xI | 6 |x1 − xI |/2, then∥∥∥{ ∫
Rm

[Tt,s(x1, ·, y1, y2)−Tt,s(x1, ·, xI , y2)] f (y2)dy2

}∥∥∥
L2
H(Rm)

6C
|y1 − xI |ε

′

|x1 − xI |n+ε′
‖ f ‖2;

(ii) if |y2 − yJ | 6 |x2 − yJ |/2, then∥∥∥{ ∫
Rn

[Tt,s(·, x2, y1, y2)− Tt,s(·, x2, y1, yJ)] f (y1)dy1

}∥∥∥
L2
H(Rn)

6 C
|y2 − yJ |ε

′

|x2 − yJ |n+ε′
‖ f ‖2.

Similar to Lemma 3.1, we prove the weighted vector-valued version of the
“trivial lemma” in [4].

LEMMA 4.3. Let Tt,s be defined in (4.2) and ε be the regularity exponent of T.
Suppose that α(x1, x2) is supported in a rectangle R = I × J and satisfies∫
I

α(x1, x2)dx1 = 0 for each x2 ∈ J, and
∫
J

α(x1, x2)dx2 = 0 for each x1 ∈ I.

For q < 1 + ε and q/(1 + ε) < p 6 1, if w ∈ Aq(R×R), then∫∫
Eγ

‖Tt,s(α)‖p
Hwdx 6 Cγ−η‖α‖p

L2
w

w(R)1−p/2 for some η > 0,

where Eγ is defined as in Lemma 3.1.
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Proof. By dilation invariance of the class of singular integrals which we are
considering, we may assume R be the unit square. Let Rk,j = {(x1, x2) : 2k <

|x1| 6 2k+1 and 2j < |x2| 6 2j+1}. If k, j > 1, then on Rk,j Minkowski’s integral
inequality and Theorem B of [11] imply

‖T(α)(x1, x2)‖H =
∥∥∥ ∫∫

R

{[Tt,s(x1, x2, y1, y2)− Tt,s(x1, x2, 0, y2)]

− [Tt,s(x1, x2, y1, 0)− Tt,s(x1, x2, 0, 0)]}α(y1, y2)dy1dy2

∥∥∥
H

6
∫∫
R

‖[Tt,s(x1, x2, y1, y2)− Tt,s(x1, x2, 0, y2)]

− [Tt,s(x1, x2, y1, 0)− Tt,s(x1, x2, 0, 0)]‖H|α(y1, y2)|dy1dy2

6 C2−k(1+ε)2−j(1+ε)‖α‖L1 6 C2−k(1+ε)2−j(1+ε)‖α‖L2
w

w(R)−1/2.

Now, w ∈ Aq and Ms(χR) ≈ 2−(k+j) on Rk,j, we have

w(Rk,j) 6 C2q(k+j)w(R).

Therefore,∫∫
Eγ∩{(x1,x2):|x2|>2}

‖Tt,s(α)‖p
Hwdx 6 C ∑

2k>γ,j>1

∫∫
Rk,j

‖Tt,s(α)‖p
Hwdx

6 C ∑
2k>γ,j>1

2(k+j)[q−p(1+ε)]‖α‖p
L2

w
w(R)1−p/2

6 C−η
γ ‖α‖

p
L2

w
w(R)1−p/2,

where η = p(1 + ε)− q > 0. Now we estimate
∫∫
Rj

‖Tt,s(α)‖p
Hwdx, where Rj =

{(x1, x2) : 2j < |x1| 6 2j+1, |x2| 6 2}. We see that

(4.4)
∫∫
Rj

‖Tt,s(α)‖p
Hwdx 6 w(Rj)

1−p/2
( ∫∫

Rj

‖Tt,s(α)‖2
Hwdx

)p/2
,

since w ∈ Aq, w(Rj) 6 C2qjw(R). By (3.2)

∫∫
Rj

‖Tt,s(α)‖2
Hwdx =

∫∫
Rj

∞∫
0

∞∫
0

|Tt,s(α)|2
dt
t

ds
s

wdx

6

∞∫
0

∞∫
0

∫∫
Rj

|Tt,s(α)
#2 |2wdx

dt
t

ds
s

=
∫∫
Rj

‖Tt,s(α)
#2‖2
Hwdx.
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We claim

‖T(α)#2(x1, x2)‖H 6 C
1

|x1|1+ε

1/2∫
−1/2

M(2)
2 (α)(x1, x2)dx1,

where M(2)
2 f (x1, x2) = [M(2)( f 2)]1/2 and M(2) is the Hardy–Littlewood maximal

operator for variable x2. Assume the claim for the moment. By a same argument
in Lemma 1 of [6], we have∫∫

Rj

‖T(α)#2(x1, x2)‖2
Hwdx1dx2 6 C‖α‖2

L2
w

2jq−2j(1+ε).

Combining this with (4.4) gives∫
Rj

|T(α)|pwdx 6 Cw(R)1−p/2‖α‖p
L2

w
2jq−jp(1+ε).

We sum up these estimates over j to finish the proof of Lemma 4.3. We now show
the claim. By translation invariance, we only prove the pointwise estimate at
x2 = 0. Let α1(x1, x2) = α(x1, x2)χ|x2|<r and

Ir
t,s(x1) =

∫∫
|y2|>r

Tt,s(x1, x2, y2, y2)α(y1, y2)dy1dy2.

Then

r−1
∫

|x2|<r/2

|Tt,s(α)(x1, x2)− Ir
t,s(x1)|dx2

6 r−1
∫

|x2|<1/2

|Tt,s(α1)(x1, x2)|dx2

+

1/2∫
−1/2

∫∫
2|x2|<r<|y2|

|Tt,s(x1, x2, y1, y2)− Tt,s(x1, 0, 0, y2)||α(y1, y2)|dy2dx2dy1,

and hence

‖T(α)#2(x1, x2)‖H

=
∥∥∥ sup

r>0
r−1

∫
|x2|<r/2

|Tt,s(α)(x1, x2)− Ir
t,s(x1)|dx2

∥∥∥
H

=sup
r>0

∥∥∥r−1
∫

|x2|<r/2

|Tt,s(α)(x1, x2)− Ir
t,s(x1)|dx2

∥∥∥
H
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6sup
r>0

∥∥∥r−1
∫

|x2|<r/2

|Tt,s(α1)(x1, x2)|dx2

∥∥∥
H

+sup
r>0

∥∥∥ 1/2∫
−1/2

∫∫
2|x2|<r<|y2|

|Tt,s(x1, x2, y1, y2)−Tt,s(x1, 0, 0, y2)||α(y1, y2)|dy2dx2dy1

∥∥∥
H

:= III + IV.

For III, Minkowski’s integral inequality and Theorem C of [11] imply

III 6 sup
r>0

∥∥∥r−1
∫

|x2|<r/2

1/2∫
−1/2

∣∣∣ ∫ Tt,s(x1, x2, y1, y2)

− Tt,s(x1, x2, 0, y2)(α1)(y1, y2)dy2

∣∣∣dy1dx2

∥∥∥
H

6

1/2∫
−1/2

sup
r>0

r−1
∫

|x2|<r/2

∥∥∥ ∫ Tt,s(x1, x2, y1, y2)

− Tt,s(x1, x2, 0, y2)(α1)(y1, y2)dy2

∥∥∥
H

dx2dy1

6 C
1

|x1|1+ε

1/2∫
−1/2

sup
r>0

r−1/2‖α1‖2dy1 6 C
1

|x1|1+ε

1/2∫
−1/2

M(2)
2 (α)(y1, 0)dy1.

For IV, Minkowski’s integral inequality and Theorem B of [11] imply

IV6

1/2∫
−1/2

sup
r>0

∫
|x2|<r/2

∫
2|x2|<|y2|

‖Tt,s(x1, x2, y1, y2)−Tt,s(x1, 0, 0, y2)‖H|α(y1, y2)|dy2dx2dy1

6C
1/2∫
−1/2

sup
r>0

∫
|x2|<r/2

∞

∑
j=1

∫
2j |x2|<|y2|62j+1|x2|

1
|x1|1+ε

|x2|ε
|y2|1+ε

|α(y1, y2)|dy2dx2dy1

6C
1

|x1|1+ε

1/2∫
−1/2

sup
r>0

∫
|x2|<r/2

∞

∑
j=1

2−jε(2j|x2|)−1
∫

|y2|62j+1|x2|

|α(y1, y2)|dy2dx2dy1

6C
1

|x1|1+ε

1/2∫
−1/2

M(2)(α)(y1, 0)dy1 6 C
1

|x1|1+ε

1/2∫
−1/2

M(2)
2 (α)(y1, 0)dy1,

since M f 6 Mq f , q > 1, for one variable.

Next, we show that L is bounded from Hp
w to Lp

w,H if and only if L is uni-
formly boubded in Hp

w-norm for all weighted p atoms.
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LEMMA 4.4. Let w ∈ A2 andL be a bounded operator from L2
w(Rn) to L2

w,H(R
n).

Then, for 1/2 < p 6 1, L extends to be a bounded operator from Hp
w(Rn) to Lp

w,H(R
n)

if and only if ‖L(a)‖Lp
w,H(Rn) 6 C for any weighted p atom a, where the constant C is

independent of a.

Proof. It suffices for us to check the sufficiency. Given f ∈ Hp
w ∩ L2

w, it fol-

lows from Theroem 2.1 that f =
∞
∑

i=1
λiai in L2

w. Then

ψt ∗ T f =
∞

∑
i=1

λiψt ∗ Tai in L2
w.

Hence, there exists a subsequence (we still write the same indices) such that

ψt ∗ T f =
∞

∑
i=1

λiψt ∗ Tai almost everywhere.

Fatou’s lemma and Minkowski’s inequality imply

g(T f )(x) =
( ∞∫

0

∞∫
0

lim inf
N→∞

∣∣∣ N

∑
i=1

λiψt ∗ Tai(y)
∣∣∣2 dt

t
ds
s

)1/2

6 lim inf
N→∞

( ∞∫
0

∞∫
0

∣∣∣ N

∑
i=1

λiψt ∗ Tai(y)
∣∣∣2 dt

t
ds
s

)1/2
6

∞

∑
i=1
|λi|g(Tai)(x).

Hence,

‖L( f )‖p
Lp

w,H
=
∫
Rn

[g(T f )(x)]pw(x)dx =
∫
Rn

lim inf
N→∞

( N

∑
i=1
|λi|g(Tai)(x)

)p
w(x)dx

6 lim inf
N→∞

∫
Rn

( N

∑
i=1
|λi|g(Tai)(x)

)p
w(x)dx

6
∞

∑
i=1
|λi|p

∫
Rn

[g(Tai)(x)]pw(x)dx 6 C‖ f ‖p
Hp

w
.

Since Hp
w ∩ L2

w is dense in Hp
w, L can be extened to a bounded operator from Hp

w
to Lp

w,H.

We now can to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 4.4, it suffices to show ‖La‖Lp
w,H

6 C for

any weighted p atom a with constant C independent of the choice of a. Take a

weighted p atom a with supp (a) ⊆ Ω. Let Ω̃ = {Ms(χΩ) > 1/2} and ˜̃Ω =
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{Ms(χΩ̃) > 1/2}. Then∫
˜̃Ω
‖L(a)‖p

Hwdx 6 ‖L(a)‖p
L2

w
w( ˜̃Ω)1−p/2.

Since w( ˜̃Ω) 6 Cw(Ω) for w ∈ A∞,∫
˜̃Ω
|L(a)|pwdx 6 C‖a‖p

L2
w

w(Ω)1−p/2 6 C.

As for
∫

( ˜̃Ω)c

|L(a)|pwdx, we use the same notations as the proof of Theorem 1.3. It

suffices to observe that∫
( ˜̃Ω)c

|L(a)|pwdx = ∑
R∈M(Ω)

∫
(R̂)c

|L(a)|pwdx

6 ∑
R∈M(Ω)

∫
Eγ1 (R)

|L(a)|pwdx + ∑
R∈M(Ω)

∫
Eγ2 (R)

|L(a)|pwdx :=V+VI.

By Lemma 4.3, ∫
Eγ1

|L(αR)|pwdx 6 C(γ1(R))−η‖α‖p
L2

w
w(R)1−p/2.

Summing over R ∈ M(Ω), we get, by Hölder’s inequality and Lemma 3.2,

V 6 C
(

∑ ‖αR‖2
L2

w

)p/2(
∑ w(R)(γ1(R))−2η/(2−p)

)1−p/2

6 Cw(Ω)(1−2/p)p/2w(Ω)1−p/2 6 C.

The estimate of VI is similar to V and the proof of Theorem 1.4 is completed.
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