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BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON
WEIGHTED PRODUCT HARDY SPACES
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ABSTRACT. Let T be a singular integral operator in Journé’s class with regu-
larity exponente, w € Ag, 1 < g < 1+¢ and g/(1+¢) < p < 1. We ob-

tain the HY, (R x R)-L,(R?) boundedness of T by using R. Fefferman’s “trivial
lemma” and Journé’s covering lemma. Also, using the vector-valued version

of the “trivial lemma” and Littlewood-Paley theory, we prove the H}, (R x R)-
boundedness of T provided T; (1) = T; (1) = 0; that is, the reduced T1 theo-
rem on H}, (R x R). In order to show these two results, we demonstrate a new
atomic decomposition of H, (R x R) N L2 (R?), for which the series converges

in L2. Moreover, a fundamental principle that the boundedness of operators
on the weighted product Hardy space can be obtained simply by the actions
of such operators on all atoms is given.

KEYWORDS: Calderén—Zygmund operator, Littlewood—Paley theory, weighted pro-
duct Hardy space.
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1. INTRODUCTION

The product Hardy space was first introduced by Malliavin-Malliavin [13]
and Gundy-Stein [9]. Chang-Fefferman [1]] provided the atomic decomposition
of HP(R% x R?) and showed the duality H! with BMO on the bidisc. R. Fef-
ferman [5] used the rectangle atomic decomposition of H? (R" x R™) and a geo-
metric covering lemma due to Journé [12] to prove the remarkable HP (R" x R™)-
LP(R™ x R™) boundedness of product singular integrals introduced by Journé
[12]. Recently, Han et al. [11] show a reduced T1 type theroem on HP (R" x R™).
More precisely, these Journé’s product singular integrals T are also bounded on
the product HP (R" x R™) for max{n/(n+¢),m/(m+e¢)} < p < 1if and only
if T{ (1) = T; (1) = 0, where ¢ is the regularity exponent of the kernel of T. For
the weighted norm inequality, R. Fefferman [6] proved that if w € A,(R" x R™),
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1 < p < oo, then these singular integrals are bounded on L}, (R"*™). A natu-
ral and interesting problem is whether these singular integrals are bounded from
HE(R" x R™) to L, (R"*™) or bounded on H (R" x R™). The purpose of the
current article is to answer this question. Recently, Ding et al. [3] obtained the
boundedness of singular integral operators on weighted product Hardy spaces
for w € Aw. However, these operators are convolution operators with smooth
kernels on each variable and with cancellation conditions. Here, we consider
non-convolution operators and their kernels require less regularity.

We start with recalling the definition of a Calderén-Zygmund kernel. A
continuous complex-valued function K(x, y) defined on R” x R"\{(x,y) : x = y}
is called a Calderén—Zygmund kernel if there exist constant C > 0 and a regularity
exponent ¢ € (0,1] such that

(@) [K(x,y)| < Clx—y|™

(i) [K(x,y) = K(x',y)| < Clx = x[*|x —y| "€ if [x = 2| < [x = y[/2;
(i) [K(xy) = K(x,y)| < Cly —y'[lx =yl “if ly —y'| < [x —yl/2.
The smallest such constant C is denoted by |K|cz.

We say that an operator T is a Calderén—Zygmund operator if the operator
T is a continuous linear operator from C{°(R") into its dual associated with a
Calder6n-Zygmund kernel K(x,y) given by

(Tf,8) = [[ 8Ky (y)dlyelx

for all test functions f and ¢ with disjoint supports and T being bounded on
L*(R™). If T is a Calderén—Zygmund operator associated with a kernel K, its
Calder6n-Zygmund operator norm is defined by ||T|lcz = ||T|l;212 + |K|cz.
Of course, in general, one cannot conclude that a singular integral operator T is
bounded on L?(R") because Plancherel’s theorem does not work for non-
convolution operators. However, if one assumes that T is bounded on L?(R"),
then the L”,1 < p < oo, boundedness follows from Caldernén—-Zygmund'’s real
variable method. The L?(R") boundedness of non-convolution singular integral
operators was finally proved by the remarkable T1 theorem by David and Journé
[2], in which they gave a general criterion for the L?-boundedness of singular
integral operators.
Let T be a singular integral operator defined for functions on R" x R" by

Tf(x1,x2) = // K(x1,x2,¥1,Y2) f (y1,y2) dy1 dyz.
RrXRM

For each x1,y; € R”, set K'(x1,y1) to be the singular integral operator acting
on functions on R" with the kernel Ikvl(xl,yl)(xz,yz) = K(x1,x2,y1,12), and
similarly, fz(xz,yz)(xl,yl) = K(x1,x2,Y1,Y2). Fefferman [6] proved that singu-
lar integral operators are bounded on LI, (R"*") provided w € Ap(R" x R™),
1<p<oo.
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THEOREM 1.1 ([6], Theorem A). Suppose that T is bounded on L*>(R"*™) and
that for some 0 < e < 1 and some finite C > 0 we have
@) [IK* (x1, 1) = KM (2, 1) llez < Clag = ¥/ |xy — "€ if 1 — x| < [a1 —
vil/2,
M K (x1,1) = K (21,90 llez < Clyr = yil</ v = ™€ if [ya = 4| < [x1 =
y11/2, N
and similarly for K. If w € Ap(R" x R"),1 < p < oo, then

ITCHI s < ClIA -

Here, a weight w(x1, x7) defined on R" x R™ is said to belong to (product)
A, if and only if there exists a constant C so that for all rectangles R = I x J (I is
a cube in R” and | a cube in R™) we have

-1
(|1R| /w(x1,x2) dxq de) <|11{| /w(xl, X2)_l/(p_l) d)quZ)p < C.
R R

DEFINITION 1.2 ([6], Definition). A singular integral operator T is said to
be in Journé’s class if the associated kernel K(x1, x2,¥1,Y2) satisfies the following
conditions. There exist constants C > 0 and ¢ € (0, 1] such that:

(B1) T is bounded on L?(R"*+™);
(B2) We have

‘771
7

K (x1,11)llcz < Clxg —

—(n+e X1 —
IR (et 1) — K (o1, )l ez < Clyn — v a0 for g~y < 1221,

_ X1—
IR (et 1) — K3 )z < Claa — g — | =09 for 1y~ < 411,

(B3) We have

1K (x2,92)llcz < Clxa —y2| ™,
_ X2 —
IR2(x2,v2) — R3(a2, 36 ez < Claa = 5z —wal ") for s — wpl < 222,
|x2—y2|
5
In this article, we shall be concerned only with the case n = m = 1. The first
main result of this paper is to extend Theorem A of [6] to the HP-LF boundedness.

K2 (x2,y2) — K2(xh, y2) lcz < Claa — x5 |F|xa—ya| "9 for |xp—x| <

THEOREM 1.3. Let T be a singular integral operator satisfying the assumption in
Theorem A of [6ll, with regularity exponent e. If w € Ay, q < 1+ ¢, then

||T(f)HLfU(R2) < CHfHHfj,(RXR)/ — <rslL
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To state the second result, we need some notations and definitions as fol-
lows. Given 0 < p < 1, let

Coo(R") = {IIJ € C*(R") : ¥ has a compact support

and /tp(y)y“ dy =0for0 < |a| < Np,n},
R

where N, , is a large integer depending on p and n. We say that T} (1) = 0 if

K(x1,%2,91,92)9" (1) 9* (y2) dy1 dy> dxy = 0
R?’l RH XRW}

for all ¢! € C53(R"), 9* € C§(R™), and x, € R™. Similarly, T5 (1) = 0if

K(x1,x2,91,92) 9" (y1)9*(y2) dy1 dy2 dxy = 0
R™ R" xR™

for all ¢! € Coo(R™), ¢ € Coo(R™),and x1 € R".
The H}-boundedness of the sigular integral operators in Journé’s class is
presented as follows.

THEOREM 1.4. Let T be a singular integral operator in Journé’s class with regu-
larity exponent e. Ifw € Ag,q < 1+¢,and Ty*(1) = To*(1) = 0, then

1T gy < Clflignry Tog <P <1.

Throughout the article, the letter C will denote a positive constant that may
vary from line to line but remains independent of the main variables. We also
use a ~ b to denote the equivalence of a and b; that is, there exist two positive
constants Cq, C; independent of 4, b such that C1a < b < Caa.

2. PRELIMINARIES

Analogous to the clasical product Hardy spaces, the weighted product Hardy
spaces H)(R x R), p > 0, can be defined in terms of Lusin area integrals. A point
of RZ x R? will be denoted (y,t) where y = (y1,2) € R?and t = (1, t2),t; >
0,i = 1,2. We shall often use the following notations: ¢ € C®(R) supported

1
on [—1,1] with ¢ even and [ ¢(y)dy = 0; for t > 0,y(y) = (1/t)yp(y/t); for
-1

t = (t,t2) and y = (y1,¥2) € R%, ¥e(y) = ¥, (y1)Pr, (y2). Furthermore, for
x = (x1,x7) € R?, we use I'(x) to denote the product cone I'(x) = I'(x;) x I'(x2),
where fori = 1,2, I'(x;) = {(yi,t;) € R : |x; — y;| < t;}. Given a function f on
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R?, we define its double S-function by
dydt

=[] 1w P
) 12

Then f € H,(R x R) if and only if S(f) € L}, (R?) and || f||,» = |IS(f)||,», where
w is weight function. ! !

Let1/2 < p < 1and w € A;. A weighted p atom is a function a(x1,x,)
defined on R? whose support is contained in some open set 2 of finite measure
such that:

@) flall 5, < w(Q)V217;
(ii) a can be further decomposed into weighted p elementary particles ag as fol-
lows:

(@a= Y ag, where M(Q2) denotes the class of all maximal dyadic
ReM(O)
subrectangles of (2 and ap is supported in the triple of a distinct dyadic rectangle
RCcQ@ayR=1x]);
(b) fﬂR(xl,J?z)dxl = f&lR(J?l,Xz)dXZ =0foreachx; € I,Xx; € J;
I

J
© X larl?, <w(Q)7r.
ReM(O) w

We first establish a new atomic decomposition for H, N L2, namely the fol-
lowing atomic decomposition theorem.

THEOREM 2.1. Let 1/2 < p < land w € Ay. If f € HL(R x R) N L2,(R?),
then f can be written as f = Y. Ayay in L2, where ay. are weighted p atoms and Ay > 0

satisfy £ A4l? < CI |1,
Proof. For k € Z, let
Q= {x eR?:5(f)(x) > 2"} and
Ry = {dyadic rectangle R : w(RN ) > %w(R) and w(RN Q) < %w(R)}
For each dyadic rectangle R = I x |, we denote its tent by
R={(y1) e RL xRL 1y = (yyy2) € R JI| < 1 <21 []] < 2 <2[]]}-

By Calderén reproducing formula, we claim
dt

// Pr(x —y)pr = f(y dytt =) ) //¢tx— e+ f(y )dytltz'

R2 xR2 k€Z RERy R

Assume the claim for the moment. Let a;(x) and Ay be defined by

ar(x) = C" V27 () "VP Y er(x)
RERk
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and A, = CY/22k1((3)1/P, where the constant C is the same as the one in (2.2)
below and

x) = [/ Pe(x —y)¢r *f(y)dyt%-
R

We first verify that a; is a weighted p-atom. To do this, we define the weighted
strong maximal operator M, by

MMM%MZSWH&MWmMWMM&
R

(Xl,XQ)GR

where the supremum is taken over all rectangles R which contain (x1,x). Let
Q= {x € R?: Mgy (x,) > 1/2}. Then for each R € Ry there exists a maximal
dyadic subrectangle R, i.e. R € M((2) such that R C R. For each S € M((2),
setag = C V22 k()P ¥ eg. Thenar(x) = ¥ ag. Itis easy to see
R=S SeM ()
that a; is supported on (2 and as is supported on 5S. The vanishing moment
conditions of a; follow from the assumption of . To verify the size conditions of
atom, by duality between L2, and qu,l ,

| Eoe,= sw [ ¥ gt

RER; 0 glj2 <17 RER

- <1ReR ///¢t X =y)pex fly )dy%g(x)dx

HgH 2
_ Y [ e stves fnar s
ng 2 <1 RER 12
dt
<C sup /wmwnm SWldy s,

HgHLz 1<1 RERy "3

where the last inequality is due to the definition of R. Hence, if (_1/, t) c ﬁ, then
IR| = t2. Tt is clear that

IRl = [ () 2(x) 1 2dx < w(R) 2w (R)?,

R
SO
dt \1/2
2
| Toexf, < s ﬁ R) 1 % f(v) Py 57 )
RER, o lgll; 2 1<1 RER; 1t2

di \1/2
24y —
L [[w®ipsPavis)

ReRk 5



BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON WEIGHTED PRODUCT HARDY SPACES 121

Forany R € Ryand (y,t) € R, wehave R C {x € R?: |x; —y;| < t;,i = 1,2} and

hence
dydt
L[] w ®iyswF G

ReRy A
i . dydt
/ J ot (e B i i <fi/1=1,2}>|¢t*g<y>|2;2’7
0 0 R 12

_ d dt

/ /|1/Jt*g )20 y /5 )dx<C||g||L271
R2T(x)

Therefore,

dydty1/2
@D <c([[w®lpsfPr)
HReR L% ( 212 )

R
Since M, is bounded on L2, for w € Ay, it yields w(() < Cw((2). Hence

P20(0) > [ 180 Polx)dx

QN1
— i dydt
T ——
0 0 R2R2
dydt
Z ///hl)t*f | X{xenk\ok-H | — .‘/z|<tl 12} ( ) t2t2 .
RERkRZ R\ 1t

Forany R € Ry and (y,t) € R,wehave R C (Qyand R C {x € R?: |x —y| < t}.
That implies

~ w(R
/X{xef)k\ﬂk+1:|x7y\<t}w(x)dx > w(RN(Q\ Q1)) =w(R)—w (RN 4q) = 7(2 ),
RZ

and hence

dydt ~
22 L [ w®ly il < c2ui).

ReRy B
Both (2.1) and (2.2) give the size condition of ar as follows

< w(ék)l/Z—l/p'

L%

lallg = €727 (@) 77| E e
ReRy
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To estimate the size condition of weight elementary particle, we have

L lasly =12 ()| T e,
SEM(Qk)
< C a2y Z/PH Z ex|, < w( (C3y) 1277
Therefore,
Y. IMlP =) CPP2Pw(Oy) < C Y 2P w(Qx) < CIIS(H)IF, = CIAIIL,
keZ keZ keZ b b

We return to the proof of the claim, which is equivalent to show

dyd
/w—w OEl I

—0 asM — oo.

|k\>M ReRk

By the same proof in (2.1) and (2.2), we obtain

dydt zdydt 1/2
L[] (X 8 fa®)pes )
\k|>MReR titz L%, \k\>MReR tzt%)
1/2
< (T 2Pwn)
|k|>M

The last term tends to zero as M goes to infinity because
Y 2%w(0)) < CJf[1%, < oo,
ReZ
This ends the proof of Theorem[2.1} &
It is important and convenient to emphasize that to prove the boundedness

of operators defined on H}, spaces, it suffices to verify the boundedness of these
operators acting on all atoms.

LEMMA 2.2. Let 1/2 < p < 1and w € Aj. For a linear operator T bounded on
L2 (R?), T can be extended to a bounded operator from HL,(R x R) to Lk, (R?) if and
only if there exists an absolute constant C such that

|Tal| p < C  for any weighted p atom a.
Proof. We only show the sufficiency. Theorem shows that, for f € H}, N

o

L3, we have f = ¥ Aja; in L, where a;’s are weighted p-atoms and Y | <
i=1

Clf ng Since T is linear and bounded on L2,

—0 asM — oo.

HTf_li)‘iT”i 2= HT(f—ii)\iﬂi> B S CHf—ii/\iai 2
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Hence, there exists a subsequence (we still write the same indices) such that Tf =

Y AiTa; almost everywhere. Fatou’s lemma yields
i=1

M P 0
/|Tf|pw(x)dx<1%njnf/’ Y AT | w(x)dx < Z\/\A”/|Tai|”w(x)dx<C||fHZp.
R Cgn =1 =1 g “

Since HY N LZZU is dense in HY,, T can be extended to a bounded operator from HE
to Lz,. ]

3. PROOF OF THEOREM L3

In this section, we will show Theorem We first get a weighted version
of the “trivial lemma” in [4].

LEMMA 3.1. Let a(x1,x2) be supported in a rectangle R = I x | and satisfy

/zx(xl,xz)dxl =0, foreachxy €], and
I

/oc(xl,xz)dxz =0, foreachx; €I

J

Assume that w € Ag(R x R) whereq < 1+eand q/(1+¢) < p < 1. Write E, =

{(x1,x2) € R?: xy & I,,}, where v > 2 and I, is the concentric « fold enlargement of
L. Then

/ |T(a)|Pwdx < C'y_’7||oc||ig w(R)'P/2 " for some 1y > 0.
E, L
Proof. We shall assume that R is centered at 0. By dilation invariance of the
class of singular integrals that we are considering, we may assume R to be the unit
square. Let Rij = {(x1,x2) : 2 < |x1| <2 and 2/ < [xp| < 2771} Ifk,j > 1,
then on Ry ; we get [T(a)(x1,x2)| < C27kA+)2=7048) ||| ;1. Butw € Ay C Ay
shows that
el < Cllael (w07 (R)) 2 < Clla]| o w(R) /2

and |T(a)(xq,x2)| < C2’k(1+£)2’7(1+€)HocHLZzUw(R)’l/z. Since Ms(xg) ~ 2~ (k+))
on Ry j, we have w(Rk,]-) < C2q(k+j)w(R). Therefore,

IT(a)[Pwdx <C ) |T(a)|Pwdx
EyN{(v1,32): |22} 22r>IR,

<C Z 2(k+j)[qu(l+e)]Haszzuw(R)kp/z
2k>q,i>1
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< Gl w(R)P2,

where 7 = p(1+¢) —q > 0. Now we estimate [ |T(«)|Pwdx, where R; =

Ry

{(x1,%2) : 2 < |x1| < 2F1, |x2] < 2). We see that

(3.1) /IT(oc)|pwdx < w(Rj)l_p/z(/IT(oc)Izwdx>p/2.

R; R;

Since w € Ag, w(R;) < C2%w(R). We use #, to denote the sharp operator in the

X variable. Then

(3.2) T () Pwdx < [ T(a)* Pwdx.
o)

A same argument in Lemma 1 of [6] yields

/ T ()" (x1, x2)[Podxyday < Clla?, 209-%049),

R;

Combining this with gives

/|T(04)|F’wdx < Coo(R)' P72 ||ae||F, 27 Ip(148),

Ry

We sum up these estimates over j to finish the proof of Lemma 1

To prove Theorem we need a weighted version of Journé’s covering
lemma. Suppose (2 is an open set in R?, and M®?)(Q) denotes the collection
of dyadic subrectangles in (2 which are maximal with respect to the x; side. If
R=1x] € M?(Q)and I denotes the largest dyadic interval containging I so
that I x J € {Ms(xa) > 1/2}. Let 11(R) = [I]/]1].

LEMMA 3.2 ([6]). Ifw € Ax(R x R), then

Z w(R)(11(R))" T < Cyw(Q) forany n > 0.
ReM@ ()
We are ready to prove Theorem|1.3]

Proof of Theorem[1.3] By Lemma 3.1} it suffices to show [|Tal|,» < C for any
weighted p atom a with constant C independent of the choice of 4. Given a
weight-ed p atom a with supp (a) C Q, let O = {Ms(xq) > 1/2} and O =
{Ms(xs) > 1/2}. Then

/IT(a)I”wdx < || T(a) |17, w(2)'=P72.

0
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Now, since w € A,, it fgllows from Theorem A of [6] that T is bounded on L%U.
Also, since w € A, w(Q2) < Cw (), so that

[ 1T(@)Pwdx < Cllall, w(e) 72 < C.

0
For a rectangle R € M(Q), R = I x ], we denote R the rectaglel x ] obtained by
first con51der1r1g I O I maximal so that [ x | C O and then take | O | maximal

sothat I x J C Q. Also let
E’Yl( ) = {(xl,xz) c Rz X1 ¢ I} Eyz(R) = {(xl,xz) S Rz L X ¢ T}, and

71(R) = Iﬂ 72(R) = HI
Then
/ (@) ds = /‘ 2)Pwdx
() D(R)e
/ a)|Pwdx + Z / |T(a)|Pwdx:=T+1L
21 (R) REM(D)g, (g)
By Lemma[3.1}
/ |T(ag)|Pwdx < C('yl(R))*’iHw”izww(Rﬂfp/z'
Ey,

Summing over all R € M ((2), we get, by Holder’s inequality and Lemma

p/2 _ CoN1-p/2
<C(Lllarl ) (L w(R) (1 (R)) /D)
< Cal@) 1P ()P < .

Expression II is handled similarly. The proof of Theorem 1.3|is completed. 1

4. PROOF OF THEOREM L4

To prove Theorem 1.4} we need the product Littlewood-Paley square func-
tion as follows. Let n; = n, ny = m, ' € C 0 (R") supported in the unit ball of
R", and ' satisfy

/l/l)\ )| Zdt—l forall & £ 0,i = 1,2.
0
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Fort; > 0 and (x1,x) € R" x R™, set 1p§i (x;) = t; "ip(x;/t;) and P, (x1,%2) =
¥} (x1)97 (x2). The product Littlewood-Paley square function of f € .#'(R" x R™)
is defined by

[oelee)
dty dtp y1/2
g(f)(x1,x2) //|¢t1tz*f x1,Xz)|2**} -
f1 b
00

It is well known that w € A,(R x R) if and only if w(-,xp) € A, with
bounded A, constant independently of x; and w(xy,-) € A, with bounded A,
constant independently of x; (cf. p. 453, Theorem 6.2 of [8]). It is known that
ifw € A, then ”S(f)”LZ is equivalent to ||g(f)||LfU for 0 < p < oo. Hence if
w e Ap(]R” X R’”), 1 < p < oo, then the LZ,—norms of double S-function and
product Littlewood—Paley square function are equivalent for 0 < g < 1. Here we
have the following product Littlewood-Paley characterization of Hf, (R" x R™)

@) ISl ~ lg(Ally, 0<q<landwe A,1<p <o,
We define the Hilbert space ‘H by

oo 00

H = {{ht,s}t,s>0 R Iz = (/

00

dt ds\1/2
2——5 <oo}.

Let T be a singular integral operator in Journé’s class with regularity exponent e.
Set Tis(f) = 15 * T(f). For f € L2 (R"™™) N HE(R" x R™) and w € Ay, by the
Calderén reproducing formula in Lemma 3.1 of [10],

@2 Tos(H)x1, %) = s x T //wtuwtu*ﬂ =

By (4.2), the kernel T} (x1, x2,y1,y2) of Ty is given by

Tis(x1,%2,y1,Y2) = // / / Prs(x1 — un, X2 — uz)K(u1, up,v1,02)
Ril Rm Rﬂ XR"I
dt’ ds

(4.3) X Py o * P g (01 —y1,00 — yz)dulduzdmdvz

By (&), the H},(R" x R™) boundedness of T is equivalent to the H}-L" L, H(]R”
R™) boundedness of the H-valued operator £ which maps f into {T;s(f) }+s>0-
Note that the L2(R"*™) boundedness of T and the product Littlewood-Paley es-
timate [Z] imply that £ is bounded from L2, (R"*™) to L2 , (R"™). Moreover,

THEOREM 4.1 ([11]], Theorem B). Let ¢ be the regularity exponent satisfying
(Bp) and (B3). Then the kernel of Ty s, {Tis(x1,X2,Y1,Y2) }ts>0, satisfies the following
estimates:

(D) I{Tes(x1, 22,1, ¥2) Him < Clag —ya| " ae —ya| ™™
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(Dy) for e < e

v = yil° -
[{Tes(x1, %2, y1,92) — Tis(x1, %2, 41, ¥2) i < lexz =y
if Iy =l < lez;znl
/€
2 — -
I{Tts (x1, %2, y1,y2) — Tes(x1, %2, y1,¥2) Hlu < CMM —nl™

(D3) for e’ <e,
K[ Tes (x1, 22, y1, ¥2) — Tes (x1, %2, 1, y2 ) — [ Te.s (x1, X2, 1, ¥5) — Tes (X1, %2, v1, v5) ) Hlm

|x1 [x2—y2|
2

co Vil Iy -l

y1|
|x1—y1|”+£/ ‘Xz—y2|m+£/ fly - |\ |y —¥ |\

The regularity of the operator T; s mapping from L? into L3, is demonstrated
as follows.

THEOREM 4.2 ([11], Theorem C). Let the kernel of T be defined in and e
be the regularity exponent of T. For €’ < ¢,
@) if ly1 — x1| < |x1 — x1|/2, then

ly1 xl‘
C
L%{(Rm)\ |x1 — xp|nte 711l

H { /[Tt,s(xl, Sy Y2) = Ths(x1, x],]/z)]f(]/z)dyz}

Rm
(i) if [y2 — yj| < |x2 —yj|/2, then

ly2 —yjl¢
C 211 f -

LR |xg — yy|nte

H { /[Tt,s(‘/ X2,]/1/]/2) - Tt,S(./ x2/y1/y])]f(yl)dyl}
Rn
Similar to Lemma we prove the weighted vector-valued version of the
“trivial lemma” in [4].

LEMMA 4.3. Let T;s be defined in (4.2) and € be the regularity exponent of T.
Suppose that a(xq, x7) is supported in a rectangle R = I x | and satisfies

/a(xl,xz)dxl =0 foreachxy €], and /zx(xl,xz)dxz =0 foreachx € L.
I ]
Forg<l+4eandq/(1+¢) <p <1 ifwe Ay(R xR), then

// ||Tt,s(1x)||§_[wdx < C’y*”HaHi%’w(R)l*p/z for some 7 > 0,

where E., is defined as in Lemma
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Proof. By dilation invariance of the class of singular integrals which we are
considering, we may assume R be the unit square. Let Ry; = {(x1,x2) : 2k <

lx1] < 2¥1and 2/ < |x2| < 2771}, If k,j > 1, then on Ry ; Minkowski’s integral
inequality and Theorem B of [11] imply

IT (@) G2 e = || [ [A1Tose1, 52, 1,02) = Tis(r, 22, 0,2)]
R

— [Tts(x1,%2,¥1,0) — Tt s(x1,%2,0, 0)]}0c(y1,yz)dy1dyzHH
< // 1[Tes (x1, X2, y1,y2) — Ti,s(x1,X2,0,2)]
R

— [Tt,s(x1,%2,¥1,0) — Tt s (x1,%2,0,0)] |9 |2 (y1, y2) |[dy1dy2
< 27k~ g |, < C2 A2+ || 5 w(R) /2,

Now, w € Aj and Ms(xRr) ~ 2 (k+) on Ry,j, we have

w(Ry;) < C21KF)ap(R).

Therefore,
/| Im@liwdr<c ¥ [[iTs@)wdr
Eqn{(x1,x2):|x2|>2} 2k>7]>1Rk
<c Yy 2kl p1+€]|‘a||ﬁ w(R)17P/2
2k>q,i>1

< vn|‘“||€guw(R)17p/2,
where 7 = p(1+¢) —q > 0. Now we estimate [ ||T;s(a)|} wdx, where R; =

R:
]
{(x1,x2) : 2/ < |xq| <271, |x2| < 2}. We see that

p/2
(4.4) / ITss (@)l < w(R)'7/2( [ [ IT;s @) Bodx) ™,

R;

since w € Ay, w(R;) < C27w(R). By 3:2)

ﬂwunwmﬂfz

Rj 0

7T dt ds
<[ [ [ 1Tist@)yePudx S S = [T o
0 0 R R;

zdt dswdx

Tts

a
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We claim
1/2
1

IT(@)" (a1l < O | M (@), ),
-1/2

where Méz) f(x1,x2) = [M@(£2)]'/2 and M) is the Hardy-Littlewood maximal
operator for variable x;. Assume the claim for the moment. By a same argument
in Lemma 1 of [6], we have

/ IT ()" (21, x2) | Fwdxyday < (:||o¢||2 2/1-2j(1+¢)

Combining this with gives

/ | T(a)[Prodx < Cawo(R)'P/2|a||F, 2097 7P (<),

R;

We sum up these estimates over j to finish the proof of Lemma[4.3} We now show
the claim. By translation invariance, we only prove the pointwise estimate at
xp = 0. Let oq(x1, Xz) = oc(xl, xz))(|x2‘<, and

Iio(x1) = / Tts(x1, X2, Y2, y2)a(y1, y2)dy1dyo.

ly2|>r
Then
P @) - FGe)ldx
[xa|<r/2

<r ! / ITys(a1) (1, %2) |
xa|<1/2
1/2
+/ // | Tts (x1,%2,y1,¥2) — Tis(x1,0,0,y2) [|a(y1, y2) |[dy2dxadys,
—1/22|xz|<r<|ys|

and hence

IT (&) (x1, 22) 134

supr ! [ | Tos(w) (1, %2) — )l dlva |

r>0 |xp|<r/2
—sup |1 [ Tis(@) (1, 2) — ()l
r>0 H

|xp|<r/2
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S ) N RCOICRSTE

>0 |xp|<r/2
1/2
+supH / //ITt,s(xsz,yhyz)—Tt,s(xl,O,O,yz)lIw(y1,yz)\dyzdxzdy1HH
>0 1722001 r<ln
=1+ 1IV.
For III, Minkowski’s integral inequality and Theorem C of [11] imply
1/2
IIT < sup Hr‘l / / ’ /Tt,s(xl;xZI]/l/]/Z)
>0 %2 -2

— Tis(x1,x2,0, y2)(041)(]/1/y2)dy2‘dy1dx2HH

1/2
< / supr! / H/Tt,s(x1,Xz,y1,yz)
~1/2 r>0 [xp|<r/2

— Tis(x1,%2,0, yz)(0‘1)(y1,y2)dyzHde2dy1
172 1/2
1 ~1/2 1 (2)
<Crire [ supr P lailladys < Crre [ MY (@)1, 00y
Pl o paltre S

For IV, Minkowski’s integral inequality and Theorem B of [11] imply
1/2

IV</sup / /HTt,s(xl/xz,yl/]/z)—Tt,s(xlfo'O'VZ)”HM(W’W)'dyzdmdyl
71/27>0\x2|<r/22\xz\<\y2\

1/2 0o 1 |x2‘£

<C / sup / Z [ [T [y [T

r>0 i=1_. .
~1/2 "7 ol <r/2 17 g <y <2 |

|l (y1, y2) |dy2dxadyy

1/2
1 N e (i [V
gcw / sup / ZZ Je(21 x| )1 / |a(y1,y2)|dy2dxady,
172 POy <2 171 2] <2/ x|
1/2 1/2

1 1 2
<Crm | MO @00 < Crrer [ MY @), 00y,
-1/2 2

since Mf < M;f, q > 1, for one variable. &

Next, we show that £ is bounded from HZ’Z, to LZ] 2 if and only if £ is uni-
formly boubded in H},-norm for all weighted p atoms.
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LEMMA 4.4. Letw € Apand L be a bounded operator from L2 (R") to L2 , (R™).
Then, for 1/2 < p < 1, L extends to be a bounded operator from Hl,(R™) to Lp 5 (R™)
if and only if | L(a)]| » LB S < C for any weighted p atom a, where the constant Cis

independent of a.
Proof. Tt suffices for us to check the sufficiency. Given f € HE N L2, it fol-
lows from Theroem [2.1|that f = }_ A;a; in LZZU. Then
i=1

P x Tf = i/\ﬂpt « Ta; in L2,
i=1
Hence, there exists a subsequence (we still write the same indices) such that
PrxTf = i Air x Ta;  almost everywhere.
i=1
Fatou’s lemma and Minkowski’s inequality imply

2g§)1/2
t s

= (/Do/oohmmf’zftl/)t*n( )
00

TN Zdtds V2 =
hmmf //‘Z)HIH*T& T?) <Z|Ai|g(Tai)(X)-
00

i=1 i=1
Hence,

I1L(f _/ (TF) (x)]P(x dx_/hmmf ZI?\ l¢(Ta:) (x ))pw(x)dx

RT!

< liminf ./' (; Al (Tan) (1) 0(x) dx

< LI [la(T) @) dx < CIAIT,

RYI
Since Hf, N L2 is dense in HY,, £ can be extened to a bounded operator from HY,
P
to Lw,H‘ ]
We now can to prove Theorem|[T.4]

Proof of Theorem([1.4] By Lemma [4.4} it suffices to show ||Lal| o < C for
any weighted p atom a with constant C 1ndependent of the choice of a. Take a
weighted p atom a with supp (2) C Q. Let Q = {Ms(xq) > 1/2} and a-=
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{Ms(xg) > 1/2}. Then
/Hﬁ Mywdx < L), w(2 Q)P

o]t

Since w(Q2) < Cw(Q) for w € A,

0)
[ 1£@)Pdx < Clallf, w(@) 72 < C.
a

Asfor [ |L(a)|Pwdx, we use the same notations as the proof of Theorem It
()
suffices to observe that

/|c(a)|Pwdx: y /|£(a)|pwdx
R)e

(5)C ReM (Q)(A

< ) / a)[Pwdx+ ) /|E(a)|”wdx::V+VI.
ReM(Q ReM(Q )sz(m

By Lemma

/ |£(ag) Prodx < C(y1(R)) " lall}, w(R)' P72,
Ey,

Summing over R € M (), we get, by Holder’s inequality and Lemma

p/2 B N\ 1-p/2
C(Lllarl? )" (L wR)(r(R)721/C1)
< Cw(Q)1=2/Pp/ 2y ()1 -P/2 L C.
The estimate of VI is similar to V and the proof of Theorem[I.4]is completed. 1
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