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ABSTRACT. We compute the multipliers (two-cocycles) of the free nilpotent
groups of class 2 and rank n and give conditions for simplicity of the corre-
sponding twisted group C∗-algebras. These groups are representation groups
for Zn and can be considered as a family of generalized Heisenberg groups
with higher-dimensional center. Their group C∗-algebras are in a natural way
isomorphic to continuous fields over T 1

2 n(n−1) with the noncommutative n-
tori as fibers. In this way, the twisted group C∗-algebras associated with the
free nilpotent groups of class 2 and rank n may be thought of as “second or-
der” noncommutative n-tori.
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INTRODUCTION

The discrete Heisenberg group may be described as the group generated by
three elements u1, u2, and v12 satisfying the commutation relations

[u1, v12] = [u2, v12] = 1 and [u1, u2] = v12.

The group has received much attention in the literature, partly because it is one
of the easiest examples of a nonabelian torsion-free group. Moreover, the contin-
uous Heisenberg group (see below) is a connected nilpotent Lie group that arises
in certain quantum mechanical systems.

As a natural consequence of this attention, several classes of generalized
Heisenberg groups have been investigated. For example, in [12], [13] Milnes
and Walters describe the four and five-dimensional nilpotent groups, and in [9],
[10] Lee and Packer study the finitely generated torsion-free two-step nilpotent
groups with one-dimensional center.
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In this paper, on the other hand, we will consider a family of generalized
Heisenberg groups, denoted by G(n) for n > 2, with larger center. The groups
G(n) are the so-called free nilpotent groups of class 2 and rank n and will be
defined properly in Section 1. Here we also provide further motivation for our
investigation of these groups. Inspired by the work of Packer [17] we compute
the second cohomology group H2(G(n),T) of G(n) and study the structure of the
twisted group C∗-algebras C∗(G(n), σ) associated with multipliers σ of G(n).

Section 2 is devoted to multiplier calculations, where we decompose G(n)
into a semidirect product and apply techniques introduced by Mackey [11]. In
particular, we will see that

H2(G(n),T) ∼= T
1
3 (n+1)n(n−1),

and in Theorem 2.6 we give explicit formulas for the multipliers of G(n) up to
similarity.

Next, in Section 3 we describe C∗(G(n), σ) as a universal C∗-algebra of a
set of generators and relations. Then we construct the algebra that in a natu-
ral way appear as a continuous field over the compact space H2(G(n),T) with
C∗(G(n), σ) as fibers. We also explain that for n = 2, this algebra is the group
C∗-algebra of the free nilpotent group of class 3 and rank 2.

In Section 4 we investigate the center of C∗(G(n), σ) and give conditions for
simplicity of these twisted group C∗-algebras in Theorem 4.4 and Corollary 4.6.

Finally, in Section 5 we study the automorphism group of G(n) and discuss
isomorphism invariants of C∗(G(n), σ) coming from Aut G(n).

1. THE FREE NILPOTENT GROUPS G(n) OF CLASS 2 AND RANK n

For each natural number n > 2, let G(n) be the group generated by elements
{ui}16i6n and {vjk}16j<k6n subject to the relations

(1.1) [vjk, vlm] = [ui, vjk] = 1 and [uj, uk] = vjk

for 1 6 i 6 n, 1 6 j < k 6 n, and 1 6 l < m 6 n. Clearly, G(2) is the usual discrete
Heisenberg group. For some purposes, it can be useful to set G(1) = 〈u1〉 ∼= Z.
Note that G(n) is generated by n + 1

2 n(n− 1) = 1
2 n(n + 1) elements.

The group G(n) is called the free nilpotent group of class 2 and rank n.
Indeed, G(n) is a free object on n generators in the category of nilpotent groups
of step at most two. To see this, note first that G(n) is the group generated by
{ui}n

i=1 subject to the relations that all commutators of order greater than two
involving the generators are trivial. Let G′(n) be any other nilpotent group of
step at most two and let {u′i}n

i=1 be any set of n elements in G′(n). Then there is
a unique homomorphism from G(n) to G′(n) that maps ui to u′i for 1 6 i 6 n. Of
course, every free object on n generators in this category is isomorphic to G(n).
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For a more extensive treatment of free nilpotent groups, see the article on Terence
Tao’s website [23] (see also (II) in the list below).

Furthermore, we will need the following concrete realization, say G̃(n), of
G(n). For n > 2, we denote the elements of G̃(n) by

r = (r1, . . . , rn, r12, r13, . . . , rn−1,n),

where all entries are integers, and define multiplication by

r · s=(r1+s1, . . . , rn+sn, r12+s12+r1s2, r13+s13+r1s3, . . . , rn−1,n+sn−1,n+rn−1sn).

To be absolutely precise, the entries with double index are colexicographically
ordered, that is, (i, j) < (k, l) if j < l or if j = l and i < k. By letting ui have 1
in the i’th spot and 0 else and vjk have 1 in the jk’th spot and 0 else, the relations
(1.1) are satisfied for these elements. Next, we define the map

G̃(n) −→ G(n), r 7−→ vr12
12 · · · v

rn−1,n
n−1,n · u

rn
n · · · u

r1
1 ,

and then it is not difficult to see that G̃(n) is isomorphic to G(n). Henceforth, we
will not distinguish between G(n) and the realization G̃(n) just described, but
this should cause no confusion.

Denote by V(n) the subgroup of G(n) generated by the vjk’s. Then V(n)
coincides with the center Z(G(n)) of G(n) and

V(n) = Z(G(n)) ∼= Z
1
2 n(n−1).

Indeed, both this and the next observations follow after noticing that

r · s · r−1 = (s1, . . . , sn, s12 + r1s2 − s1r2, . . . , sn−1,n + rn−1sn − sn−1rn).

Moreover, consider the subgroups G(n− 1) and H(n) of G(n) defined by

G(n− 1) = 〈ui, vjk : 1 6 i 6 n− 1, 1 6 j < k 6 n− 1〉,
H(n) = 〈un, vjn : 1 6 j < n〉.

Note that G(n− 1) sits inside G(n) as a subgroup and that H(n) ∼= Zn is a normal
subgroup of G(n). Clearly, we have G(n)/V(n) ∼= Zn and G(n)/H(n) ∼= G(n−
1). Therefore, there are short exact sequences

1 - V(n) - G(n) - Zn - 1

and

1 - H(n) - G(n) - G(n− 1) - 1

where the second one splits and the first does not. In particular, G(n) is a central
extension of Zn by Z

1
2 n(n−1) and consequently, G(n) is a two-step nilpotent group.

To motivate our investigation of G(n), we present a few aspects about these
groups and some appearances in the literature.

(I) Consider in the first place the continuous Heisenberg group. We will rep-
resent this group in two different ways, Gmatrix and Gwedge, both with elements
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(x, x′) = (x1, x2, x′) ∈ R3, i.e. x = (x1, x2) ∈ R2, and with multiplication as
follows. For Gmatrix we define

(x1, x2, x′)(y1, y2, y′) = (x1 + y1, x2 + y2, x′ + y′ + x1y2),

and for Gwedge we set

(x1, x2, x′)(y1, y2, y′) = (x1 + y1, x2 + y2, x′ + y′ + 1
2 (x1y2 − x2y1)).

One can deduce that Gmatrix ∼= Gwedge. To motivate the notation, note that Gmatrix
can be represented as matrix multiplication in M3(R) if one identifies

(x1, x2, x′)←→

1 x1 x′

0 1 x2
0 0 1

 ,

and that the multiplication in Gwedge may be written as

(x, x′)(y, y′) = (x + y, x′ + y′ + 1
2 (x ∧ y)).

In general, the wedge product on Rn is defined as a certain bilinear map
(see e.g. p. 79 of [21])

Rn ×Rn → ∧2(Rn),
where

∧2(Rn) is a 1
2 n(n − 1)-dimensional real vector space. The elements of∧2(Rn) are called bivectors and if {ei}n

i=1 is a basis for Rn, then {ei ∧ ej}i<j is
a basis for

∧2(Rn). For every n > 2, define the group Ĝ(n,R) with elements

(x, x′) ∈ Rn ⊕∧2(Rn), where x = (x1, . . . , xn), x′ = (x′12, x′13, . . . , x′n−1,n),

and where multiplication is given by

(x, x′)(y, y′) = (x + y, x′ + y′ + 1
2 (x ∧ y)).

This group is of dimension n + 1
2 n(n− 1) = 1

2 n(n + 1). Remark especially that if
n = 3, the wedge product can be identified with the vector cross product on R3.
That is, the product in Ĝ(3,R) is given by

(x, x′)(y, y′) = (x + y, x′ + y′ + 1
2 (x× y)).

It is not hard to see that Ĝ(n,R) is isomorphic to the group consisting of the same
elements, but with multiplication given by

(1.2) (x, x′)(y, y′) = (x + y, x′ + y′ + (x1y2, x1y3, . . . , xn−1yn)).

Let G(n,R) denote the group defined by (1.2). Then G(n) is the integer version
of G(n,R).

We also mention that Nielsen [15] has classified all the six-dimensional con-
nected, simply connected, nilpotent Lie groups. In this setting, G(3,R) is the
group denoted by G6,15.

(II) One may define the free nilpotent group G(m, n) of class m and rank n for
every m > 1. Indeed, G(m, n) is the group generated by {ui}n

i=1 subject to the
relations that all commutators of order greater than m involving the generators
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are trivial. More precisely, for m = 1, 2, 3 and n > 2, we have that G(m, n) can be
described as the groups with presentations

G(1, n) = 〈{ui}n
i=1 : [ui, uj] = 1〉 ∼= Zn,

G(2, n) = 〈{ui}n
i=1 : [[ui, uj], uk] = 1〉 = G(n),

G(3, n) = 〈{ui}n
i=1 : [[[ui, uj], uk], ul ] = 1〉,

(1.3)

and it should now be clear how to define G(m, n) for all m > 1 and n > 2. Finally,
we set G(m, 1) = 〈u1〉 ∼= Z for each m > 1. Moreover, for all m, n > 1, the group
G(m, n) is the free object on n generators in the category of nilpotent groups of
step at most m. In particular, notice that G(m, n) is m-step nilpotent and that

(1.4) G(m, n) ∼= G(m + 1, n)/Z(G(m + 1, n)).

Again, we refer to [23] for additional details.
In Section 4 of [13] Milnes and Walters describe the simple quotients of the

C∗-algebra associated with a five-dimensional group denoted by H5,4. One can
check that H5,4 is isomorphic to the group G(3, 2). See Remark 3.2 for more about
this group.

(III) The group G(3) is briefly discussed by Baggett and Packer ([4], Exam-
ple 4.3). The purpose of that paper is to describe the primitive ideal space of
group C∗-algebras of some two-step nilpotent groups. However, G(3) only serves
as an example of a group the authors could not handle.

(IV) Let n > 2. It is well-known that the group C∗-algebra A = C∗(G(n)) may
be described as the universal C∗-algebra generated by unitaries {Ui}16i6n and
{Vjk}16j<k6n satisfying the relations

[Vjk, Vlm] = [Ui, Vjk] = I and [Uj, Uk] = Vjk

for all 1 6 i 6 n, 1 6 j < k 6 n, and 1 6 l < m 6 n.

For λ = (λ12, λ13, . . . , λn−1,n) ∈ T
1
2 n(n−1), let Aλ be the noncommutative n-

torus. It is the universal C∗-algebra generated by unitaries {Wi}n
i=1 and relations

[Wi, Wj] = λij I for 1 6 i < j 6 n. The universal property of A gives that for each

λ in T
1
2 n(n−1) there is a surjective ∗-homomorphism

πλ : A→ Aλ

satisfying πλ(Ui) = Wi for 1 6 i 6 n and πλ(Vjk) = λjk I for 1 6 j < k 6 n.
Furthermore, A has center Z(A) = C∗({Vjk}16j<k6n) ∼= C∗(V(n)). Indeed,

this is the case since G(n) is amenable and its finite conjugacy classes are precisely
the one-point sets of central elements (see Lemma 4.1 below). Therefore, we set

T = Prim Z(A) ∼= Ẑ(A) = T
1
2 n(n−1).

Let λ be a primitive ideal of Z(A) identified with an element of T
1
2 n(n−1). Let Iλ

be the ideal of A generated by λ, that is, the ideal generated by {Vjk − λjk I : 1 6
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j < k 6 n}. It is clear that Iλ ⊂ ker πλ. By the universal property of Aλ, there is
a ∗-homomorphism

ρ : Aλ → A/Iλ

such that ρ(Wi) = Ui +Iλ for 1 6 i 6 n. Hence, ρ ◦πλ coincides with the quotient
map A → A/Iλ and consequently, ker πλ ⊂ Iλ. Therefore, Aλ

∼= A/Iλ and πλ

may be regarded as the quotient map A→ A/Iλ.
For an element a of A, let ã be the section T → ⊔

T Aλ given by ã(λ) = πλ(a)
and let Ã = {ã | a ∈ A} be the set of all such sections. Then the following can be
deduced from the Dauns-Hofmann Theorem [5].

THEOREM 1.1. The triple (T, {Aλ}, Ã) consisting of the base space T, C∗-algebras
Aλ for each λ in T, and the set of sections Ã, is a full continuous field of C∗-algebras.
Moreover, the C∗-algebra associated with this continuous field is naturally isomorphic
to A.

This result may be obtained as a corollary to Theorem 1.2 of [20] which
employs tools of Williams [25] related to Fell bundle theory, by taking G = G(n)
and σ = 1 in that theorem. It is also a special case of Corollary 2.3 in [3]. Our
proof is more direct and partly inspired by Theorem 1.1 of [1] which covers the
case where n = 2.

From the above discussion it now follows that G(n) is a representation group
for Zn in the sense of Moore [14]. In this case, that means G(n) is (up to isomor-

phism) the unique central extension of Zn by ̂H2(Zn,T) such that the ordinary ir-
reducible representation theory of G(n) coincides with the projective irreducible
representation theory of Zn.

This fact plays an important role in [6], where the noncommutative prin-
cipal torus bundles over locally compact spaces are classified up to equivariant
Morita equivalence. As explained in Section 2 of [6], the group C∗-algebra of G(n)
serves as a “universal” bundle in this classification.

We refer to Section 4 of [7] for more information on representation groups,
where the groups G(n,R) and G(n) are treated particularly in Example 4.7 of [7].

2. THE MULTIPLIERS OF THE FREE NILPOTENT GROUPS G(n)

Let G be any discrete group with identity e. A function σ : G × G → T
satisfying

σ(r, s)σ(rs, t) = σ(r, st)σ(s, t), σ(r, e) = σ(e, r) = 1,

for all elements r, s, t ∈ G is called a multiplier of G or a two-cocycle on G with values
in T. Moreover, two multipliers σ and τ are said to be similar, written σ ∼ τ, if

τ(r, s) = β(r)β(s)β(rs)σ(r, s)
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for all r, s ∈ G and some function β : G → T. The set of similarity classes of
multipliers of G is an abelian group under pointwise multiplication. This group
is the second cohomology group H2(G,T).

Fix n > 2. To compute the multipliers of G(n) up to similarity, we will
proceed in the following way. Consider G(n) as the split extension of G(n− 1)
by H(n) as described in Section 1. We will identify the elements

a = (0, . . . , 0, an, 0, . . . , 0, a1n, . . . , an−1,n),

b = (b1, . . . , bn−1, 0, b12, . . . , bn−2,n−1, 0, . . . , 0),

of H(n) and G(n− 1), respectively, with ones of the form

a←→ (an, a1n, . . . , an−1,n),

b←→ (b1, . . . , bn−1, b12, . . . , bn−2,n−1).

By properties of the semidirect product, the elements of G(n) can be uniquely
written as a product ab, where a belongs to H(n) and b belongs to G(n − 1).
Define the action α of G(n− 1) on H(n) by

αb(a) = bab−1 = (an, a1n + b1an, . . . , an−1,n + bn−1an).

One often writes G(n) = H(n) oα G(n − 1), but to simplify the notation, we
will still denote the elements of G(n) by ab instead (a, b) and write the group
product in G(n) as (ab)(a′b′) = aαb(a′)bb′ for a, a′ ∈ H(n) and b, b′ ∈ G(n− 1).
Hopefully, the reader is familiar with semidirect products so that this does not
cause any confusion.

Next, we apply Mackey’s theorem ([11], Theorem 9.4) and obtain the fol-
lowing result.

THEOREM 2.1. Every multiplier of G(n) is similar to a multiplier σn of G(n) of
the form

(2.1) σn(a′b, ab′) = σH(n)(a′, αb(a))gn(a, b)σn−1(b, b′),

where σH(n) and σn−1 are multipliers of H(n) and G(n− 1), respectively,

gn : H(n)× G(n− 1)→ T

is a function such that gn(a, e) = gn(e, b) = 1 for all a ∈ H(n), b ∈ G(n− 1), and
σH(n) and gn satisfy

gn(a + a′, b) = σH(n)(αb(a), αb(a′))σH(n)(a, a′) · gn(a, b)gn(a′, b),

gn(a, bb′) = gn(αb′(a), b)gn(a, b′).
(2.2)

Moreover, for every choice of σH(n), gn, and σn−1 satisfying the conditions above, σn is a
multiplier of G(n).

PROPOSITION 2.2. Let (σH(n), gn, σn−1) and (σ′H(n), g′n, σ′n−1) be triples satisfy-
ing the conditions of Theorem 2.1 and let σn and σ′n be the corresponding multipliers of
G(n). Then σn ∼ σ′n if and only if the following conditions hold:
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(i) σn−1 ∼ σ′n−1.
(ii) There exists a function β : H(n)→ T such that

σ′H(n)(a, a′) = β(a)β(a′)β(a + a′)σH(n)(a, a′),

g′n(a, b) = β(αb(a))β(a)gn(a, b).

REMARK 2.3. If (ii) holds, then σH(n) ∼ σ′H(n). If σH(n) ∼ σ′H(n) and β and
β′ are two functions implementing the similarity, then β′ = f · β for some homo-
morphism f : H(n)→ T.

Proof of Proposition 2.2. Suppose σn ∼ σ′n. Then there exists some γ : G(n)→
T such that

(2.3) σn(a′b, ab′) = γ(a′b)γ(ab′)γ(a′bab′)σ′n(a′b, ab′)

for all a, a′ ∈ H(n) and b, b′ ∈ G(n− 1). In particular, if a = a′ = 0, then

σn−1(b, b′) = γ(b)γ(b′)γ(bb′)σ′n−1(b, b′)

for all b, b′ ∈ G(n− 1), so σn−1 ∼ σ′n−1. Moreover, the formula (2.1) from Theo-
rem 2.1 with a = 0 and b = e gives that

σn(a′, b′) = 1 = σ′n(a′, b′)

for all a′ ∈ H(n) and b′ ∈ G(n − 1). Applying this fact to (2.3) shows that
γ(a′b′) = γ(a′)γ(b′) for all a′ ∈ H(n) and b′ ∈ G(n − 1). Define β on H(n)
by β(a) = γ(a). Then, by letting b = b′ = e in (2.1) and (2.3), we get

σ′H(n)(a′, a) = β(a′)β(a)β(a′ + a)σH(n)(a′, a)

for all a′, a ∈ H(n). Furthermore, by letting a′ = 0 and b′ = e in (2.1) and (2.3),
we compute

gn(a, b) = β(a)β(αb(a))g′n(a, b)

for all a ∈ H(n) and b ∈ G(n− 1).
Assume next that β is such that (ii) holds, and that (i) holds through δ,

that is,
σn−1(b, b′) = δ(b)δ(b′)δ(bb′)σ′n−1(b, b′).

Define γ on G(n) by γ(ab) = β(a)δ(b). Then calculations show that

σn(a′b, ab′) = γ(a′b)γ(ab′)γ(a′bab′)σ′n(a′b, ab′).

REMARK 2.4. Clearly, a similar result may be shown to hold for any semidi-
rect product.

The result can be deduced from Appendix 2 of [20], but in any case it may
be useful to give a proof by a direct computation.

Let τn be a multiplier of G(n) coming from a pair (σH(n), gn), that is,

(2.4) τn(a′b, ab′) = σH(n)(a′, αb(a))gn(a, b),



C∗ -ALGEBRAS GENERATED BY PROJECTIVE REPRESENTATIONS OF FREE NILPOTENT GROUPS 11

where (σH(n), gn) satisfies (2.2). By Theorem 2.1 and Proposition 2.2, every mul-
tiplier of G(n) that is trivial on G(n− 1) is similar to one of this form. Denote the
abelian group of similarity classes of multipliers of this type by H̃2(G(n),T).

COROLLARY 2.5. The second cohomology group of G(n) may be decomposed as

H2(G(n),T) = H̃2(G(n),T)⊕ H2(G(n− 1),T) =
n⊕

k=2

H̃2(G(k),T).

Proof. It follows from Theorem 2.1 and Proposition 2.2 (see our comment
above) that

H2(G(n),T) = H̃2(G(n),T)⊕ H2(G(n− 1),T).

Thus, the second inequality is proven by induction after noticing that

{1} = H2(Z,T) = H2(G(1),T) = H̃2(G(1),T).

THEOREM 2.6. We have

H2(G(n),T) ∼= T
1
3 (n+1)n(n−1),

and for each set of 1
3 (n + 1)n(n− 1) parameters

{λi,jk : 1 6 i 6 k, 1 6 j < k 6 n} ⊂ T,

the associated [σ] in H2(G(n),T) may be represented by

σ(r, s) = ∏
i<j<k

λ
sjkri+skrij
i,jk λ

sikrj+sk(rirj−rij)

j,ik

·∏
j<k

λ
sjkrj+

1
2 skrj(rj−1)

j,jk λ
rk(sjk+rjsk)+

1
2 rjsk(sk−1)

k,jk .
(2.5)

The proof of this theorem will be given in Section 2.1.

EXAMPLE 2.7. For G(1) ∼= Z there are no nontrivial multipliers. The mul-
tipliers of the usual Heisenberg group G(2) are, up to similarity, given by two
parameters (as computed in Proposition 1.1 of [17]):

(2.6) σ(r, s) = λ
s12r1+

1
2 s2r1(r1−1)

1,12 λ
r2(s12+r1s2)+

1
2 r1s2(s2−1)

2,12

The multipliers of G(3) are, up to similarity, given by eight parameters:

σ(r, s) = λs23r1+s3r12
1,23 λ

s13r2+s3(r1r2−r12)
2,13

· λs12r1+
1
2 s2r1(r1−1)

1,12 λ
r2(s12+r1s2)+

1
2 r1s2(s2−1)

2,12

· λs13r1+
1
2 s3r1(r1−1)

1,13 λ
r3(s13+r1s3)+

1
2 r1s3(s3−1)

3,13

· λs23r2+
1
2 s3r2(r2−1)

2,23 λ
r3(s23+r2s3)+

1
2 r2s3(s3−1)

3,23
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REMARK 2.8. One may associate a Lyndon–Hochschild–Serre spectral se-
quence with the extension (see e.g. 6.8.2 of [24]):

1 - V(n) - G(n) - Zn - 1

By applying Theorem 4 of [8] to this sequence, one can compute the second ho-
mology group of G(n) (which is recently also done more generally for G(m, n) in
Proposition 2.1 of [22]), and deduce that

H2(G(n),Z) ∼= Z
1
3 (n+1)n(n−1),

which gives that H2(G(n),T) ∼= T
1
3 (n+1)n(n−1) after dualizing, using the univer-

sal coefficient theorem for cohomology. However, this does not give an explicit
description of H2(G(n),T).

2.1. PROOF OF THEOREM 2.6. We will in this proof first compute H̃2(G(n),T)
through several lemmas and then use Corollary 2.5 to conclude the argument.

LEMMA 2.1.1. Every element of H̃2(G(n),T) may be represented by a pair (σH(n),
gn), where σH(n) is a multiplier of H(n) given by

(2.7) σH(n)(a′, a) =
n−1

∏
i=1

λ
a′nain
i

for some λ1, . . . , λn−1 ∈ T, and gn satisfies

(2.8) gn(a + a′, b) =
( n−1

∏
i=1

λ
biana′n
i

)
gn(a, b)gn(a′, b)

for all a, a′ ∈ H(n) and b ∈ G(n− 1).

Proof. Every element of H̃2(G(n),T) may be represented by a multiplier of
the form (2.4), that is, by a pair (σH(n), gn) satisfying (2.2).

Moreover, it is well-known (see e.g. [2]) that every multiplier of H(n) ∼= Zn

is similar to one of the form

σH(n)(a′, a) = ∏
16i6n−1

λ
a′nain
i · ∏

16j<k6n−1
µ

a′jnakn

jk

for some sets of scalars {λi}16i6n−1, {µjk}16j<k6n−1 ⊂ T. Since H(n) is abelian,
(2.2) gives that

σH(n)(αb(a), αb(a′))σH(n)(a, a′) = gn(a + a′, b)gn(a, b)gn(a′, b)

= gn(a′ + a, b)gn(a′, b)gn(a, b)

= σH(n)(αb(a′), αb(a))σH(n)(a′, a)
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for all a, a′ ∈ H(n) and b ∈ G(n− 1). Furthermore, we have

σH(αb(a), αb(a′))σH(a, a′)

= ∏
16i6n−1

λ
an(a′in+bia′n)−ana′in
i · ∏

16j<k6n−1
µ
(ajn+bjan)(a′kn+bka′n)−ajna′kn
jk

= ∏
16i6n−1

λ
biana′n
i · ∏

16j<k6n−1
µ

bja′knan+bkajna′n+bjbkana′n
jk .

This is equal to σH(αb(a′), αb(a))σH(a′, a) for all a, a′ ∈ H(n) and b ∈ G(n− 1) if
and only if the expression remains unchanged under the substitution a ←→ a′,
that is, if and only if all the µjk’s are 1.

LEMMA 2.1.2. For every element of H̃2(G(n),T) there is a unique associated pair
(σH(n), gn) satisfying the conditions of Lemma 2.1.1 such that

(2.9) gn(un, ui) = 1 for all 1 6 i 6 n− 1.

Proof. Suppose that (σH(n), gn) satisfies (2.7) and (2.8). Let f : H(n) → T be
the homomorphism determined by f (un) = 1 and f (vin) = gn(un, ui) for all 1 6
i 6 n− 1 and define g′n by g′n(a, b) = f (αb(a)) f (a)gn(a, b). Then, g′n(un, ui) = 1
for all 1 6 i 6 n− 1 and by Proposition 2.2, (σH(n), g′n) determines a multiplier
on H(n) in the same similarity class as the one coming from (σH(n), gn).

Suppose now that there are two pairs (σH(n), gn) and (σ′H(n), g′n) both satis-
fying the conditions of Lemma 2.1.1. Then σ′H(n) = σH(n), so by Proposition 2.2
and the succeeding remark, there is a homomorphism f : H(n)→ T such that

g′n(a, b) = f (αb(a)) f (a)gn(a, b) =
( n−1

∏
i=1

f (vin)
anbi
)

gn(a, b)

for all a ∈ H(n) and b ∈ G(n− 1). In particular,

g′n(un, ui) = f (vin)gn(un, ui) for all 1 6 i 6 n− 1,

so that g′n = gn if g′n(un, ui) = gn(un, ui) for all 1 6 i 6 n− 1.

In the forthcoming lemmas we fix an element of H̃2(G(n),T), and let (σH(n), g)
be the unique associated pair satisfying (2.7), (2.8), and (2.9) for some set of scalars
{λi}n−1

i=1 ⊂ T.
For computational reasons, we introduce the following notation. For a =

(an, a1n, . . . , an−1,n) in H(n), we write a = w(a)+ z(a), where w(a) = (an, 0, . . . , 0),
and z(a) is the “central part”, i.e. z(a) = (0, a1n, . . . , an−1,n). Similarly, for b =
(b1, . . . , bn−1, b12, . . . , bn−2,n−1) in G(n− 1), we write b = w(b)z(b), where w(b) =
(b1, . . . , bn−1, 0, . . . , 0) and z(b) = (0, . . . , 0, b12, . . . , bn−2,n−1). Note that αb(a) = a
if either w(a) or w(b) is trivial, i.e. if either a or b is central.
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LEMMA 2.1.3. For all a ∈ H(n) and b ∈ G(n− 1) we have

g(a, b) = g(w(a), w(b))g(w(a), z(b))g(z(a), w(b)).

The proof of this is a straightforward computation that we leave to the
reader.

LEMMA 2.1.4. For all a ∈ H(n) and b, b′ ∈ G(n− 1) we have

g(z(a), w(b)) =
n−1

∏
i,j=1

g(vin, uj)
ainbj ,

g(w(a), z(b)) = ∏
16i<j6n

g(un, vij)
anbij = ∏

16i<j6n

(
g(vin, uj)g(vjn, ui)

)anbij
,

and

(2.10) g(a, bb′) =
( n−1

∏
i,j=1

g(vin, uj)
b′i bjan

)
g(a, b)g(a, b′).

Proof. Let z(H(n)) = {z(a) | a ∈ H(n)} and z(G(n − 1)) = {z(b) | b ∈
G(n − 1)}. Then g is a bihomomorphism when restricted to z(H(n)) × G(n −
1) or H(n) × z(G(n − 1)). Therefore, the first two identities hold. Indeed, this
follows directly from (2.2) after noticing that since z(a) and z(b) are central,

αw(b)(z(a)) = z(a) and αz(b)(w(a)) = w(a).

Moreover, for i < j we have uiuj = vijujui. By (2.2) and the previous lemma, one
calculates g(un, uiuj) = g(un, ui)g(vjn, ui)g(un, uj) and g(un, vijujui) = g(un, vij)
g(un, uj)g(vin, uj)g(un, ui), so that

(2.11) g(vjn, ui) = g(un, vij)g(vin, uj),

which gives the last identity in the second line of the statement. Finally, we com-
pute

g(a, bb′) =
( n−1

∏
i=1

( n−1

∏
j=1

g(vin, uj)
bj
)b′i an)

g(a, b)g(a, b′).

LEMMA 2.1.5. For all a ∈ H(n) and b ∈ G(n− 1) we have

g(w(a), w(b)) =
( n−1

∏
i=1

λ
1
2 bian(an−1)
i g(vin, ui)

1
2 anbi(bi−1)

)
· ∏

16i<j6n−1
g(vin, uj)

bibjan .

Proof. First we see from (2.10) that if bj > 1, then

g(un, u
bj
j ) = g(un, u

bj−1
j uj) = g(vjn, uj)

bj−1g(un, u
bj−1
j )g(un, uj)

= · · · = g(vjn, uj)
1
2 bj(bj−1)g(un, uj)

bj

and then it is not hard to see that

g(un, u
bj
j ) = g(vjn, uj)

1
2 bj(bj−1)g(un, uj)

bj
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for negative bj as well, for example by applying (2.10) again.

Moreover, note that w(b) = ubn−1
n−1 · · · u

b1
1 , so that by a concatenation of the

above, one obtains

g(un, w(b)) =
(

∏
16i<j6n−1

g(vin, uj)
bibj
)( n−1

∏
j=1

g(un, u
bj
j )
)

.

Similarly, using (2.8) for an > 1, one computes

g(w(a), w(b)) =
( n−1

∏
i=1

λ
1
2 bian(an−1)
i

)
·
(

∏
16i<j6n−1

g(vin, uj)
bibjan

)
·
( n−1

∏
j=1

g(vjn, uj)
1
2 anbj(bj−1)g(un, uj)

anbj
)

.

Again, it is not hard to see that a similar argument also works for negative an.
Finally, recall that we have chosen g so that g(un, uj) = 1 by (2.9).

LEMMA 2.1.6. We have

H̃2(G(n),T) ∼= Tn(n−1),

and for each set of n(n− 1) parameters

{λi,jn : 1 6 i 6 n, 1 6 j 6 n− 1} ⊂ T,

the associated [τ] in H̃2(G(n),T) may be represented by

τ(a′b, ab′) = ∏
16i<j6n−1

λ
ajnbi+anbij
i,jn λ

ainbj+an(bibj−bij)

j,in

n−1

∏
j=1

λ
ajnbj+

1
2 anbj(bj−1)

j,jn

·
n−1

∏
j=1

λ
a′n(ajn+bjan)+

1
2 bjan(an−1)

n,jn .

Proof. If one puts λi,jn = g(vjn, ui) for i, j < n and λn,jn = λj for j < n, then
this is a consequence of the preceding lemmas. Indeed, by (2.4) we can represent
τ as a pair (σH(n), g). Here σH(n) is of the form (2.7) and g can decomposed as in
Lemma 2.1.3 with factors computed in Lemma 2.1.4 and Lemma 2.1.5.

To complete the proof of Theorem 2.6, we set r = a′b and s = ab′ and recall

that by Corollary 2.5 we can compute σn inductively as [σn] =
n
∏

k=2
[τn].

Finally, we can also check that
n
∑

k=2
k(k− 1) = 1

3 (n + 1)n(n− 1).
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3. THE TWISTED GROUP C∗-ALGEBRAS C∗(G(n), σ) OF G(n)

Again, let G be any discrete group, σ a multiplier of G and H a nontrivial
Hilbert space. A map U from G into the unitary group ofH satisfying

U(r)U(s) = σ(r, s)U(rs)

for all r, s ∈ G is called a σ-projective unitary representation of G onH.
We recall the following facts about twisted group C∗-algebras and refer to

Zeller–Meier [26] for further details of the construction.
To each pair (G, σ), we may associate the full twisted group C∗-algebra

C∗(G, σ). Denote the canonical injection of G into C∗(G, σ) by iσ. Then C∗(G, σ)
satisfies the following universal property. Every σ-projective unitary represen-
tation of G on some Hilbert space H (or in some unital C∗-algebra A) factors
uniquely through iσ.

The reduced twisted group C∗-algebra C∗r (G, σ) is generated by the left reg-
ular σ-projective unitary representation λσ of G on B(`2(G)). Consequently, λσ

extends to a ∗-homomorphism of C∗(G, σ) onto C∗r (G, σ). If G is amenable, then
λσ is faithful. Note especially that every nilpotent group is amenable, so that
C∗(G(n), σ) ∼= C∗r (G(n), σ) through λσ for every n > 1 and all multipliers σ of
G(n).

Finally, we remark that if τ ∼ σ through some function β : G → T, then the
assignment iτ(r) 7→ β(r)iσ(r) induces an isomorphism C∗(G, τ)→ C∗(G, σ).

REMARK 3.1. Fix n > 2, let σ be a multiplier of G(n) of the form (2.5),
and set

(3.1) λk,ij = λi,jkλj,ik.

Just as the irrational rotation algebra Aλ can be viewed as the universal C∗-
algebra generated by unitaries U, V satisfying UV = λVU, the twisted group
C∗-algebra C∗(G(n), σ) is seen to be the universal C∗-algebra generated by uni-
taries {Ui}16i6n and {Vjk}16j<k6n satisfying the relations

(3.2) [Vjk, Vlm] = I, [Ui, Vjk] = λi,jk I, and [Uj, Uk] = Vjk

for 1 6 i 6 n, 1 6 j < k 6 n, and 1 6 l < m 6 n.
The above relation (3.1) is a consequence of (2.11) in the proof of Theo-

rem 2.6 and is the reason why λi,jk for i > k is not involved in the expression
(2.5).

REMARK 3.2. For n > 2, let ω be the dual two-cocycle of G(n), that is,

ω : G(n)× G(n)→ ̂H2(G(n),T) ∼= Z
1
3 (n+1)n(n−1)

is determined by ω(r, s)(σ) = σ(r, s) for a multiplier σ of G(n). Let the group
R(G(n)) be defined as the set Z

1
3 (n+1)n(n−1) × G(n) with product

(j, r)(k, s) = (j + k + ω(r, s), rs).
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It is not entirely obvious that ω and R(G(n)) are well-defined and we refer to
p. 689–690 of [20] and Section 4 of [7] for details on this and the fact that R(G(n))
is a representation group for G(n). Moreover, according to Corollary 1.3 of [20]
we may construct a continuous field A over H2(G(n),T) with fibers Aλ

∼=
C∗(G(n), σλ) for each λ ∈ H2(G(n),T). Then the C∗-algebra associated with
this continuous field will be naturally isomorphic to the group C∗-algebra of the
group R(G(n)).

Next, we briefly consider the group G(3, 2) generated by u1, u2, v12, w1, w2
satisfying

[u1, u2] = v12, [u1, v12] = w1, [u2, v12] = w2, w1, w2 central.

Then we have Z(G(3, 2)) ∼= Z2 and Z(C∗(G(3, 2))) ∼= C(T2).
The following statement can also be deduced from Theorem 1.2 and Exam-

ples 1.4 (3) of [20], but we include the analysis that follows, because it is similar
to that used in Theorem 1.1.

Let i denote the canonical injection of G(3, 2) into C∗(G(3, 2)). For each
λ = (λ1, λ2) ∈ T2, let C∗(G(2), σλ) be generated by unitaries satisfying (3.2). By
a similar argument as in Theorem 1.1, there is a surjective ∗-homomorphism

πλ : C∗(G(3, 2))→ C∗(G(2), σλ)

such that i(ui) = Ui, i(v12) = V12, and i(wi) = λi I for i = 1, 2. Moreover, the
kernel of πλ coincides with the ideal of C∗(G(3, 2)) generated by

λ ∈ Prim Z(C∗(G(3, 2))) ∼= ̂Z(C∗(G(3, 2))) = T2 ∼= H2(G(2),T).

Again, similarly as in Theorem 1.1, we define a set of sections and apply the
Dauns-Hofmann Theorem. In this way, the triple

(H2(G(2),T), {C∗(G(2), σλ)}λ, ˜C∗(G(3, 2)))

is a full continuous field of C∗-algebras, and the C∗-algebra associated with this
continuous field is naturally isomorphic to C∗(G(3, 2)).

It is not difficult to see that R(G(2)) is isomorphic to G(3, 2). We conjecture
that R(G(n)) ∼= G(3, n) also for n > 3, where G(3, n) is the free nilpotent group of
class 3 and rank n as described in (1.3), so that A is isomorphic to C∗(G(3, n)). For
n > 3, the complicated part is to construct a homomorphism R(G(n))→ G(3, n),
find an isomorphism Z

1
3 (n+1)n(n−1) ∼= Z(G(3, n)), and then use (1.4) to produce a

commuting diagram:

1 - Z
1
3 (n+1)n(n−1) - R(G(n)) - G(n) - 1

1 - Z(G(3, n))

∼=
?

- G(3, n)
?

- G(n)

=
?

- 1
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In fact, Proposition 2.2 and Remark 2.3 of [22] indicate that the representation
group R(G(m, n)) for G(m, n) defined similarly as above may be isomorphic to
G(m + 1, n) for all m, n > 1.

4. SIMPLICITY OF THE TWISTED GROUP C∗-ALGEBRAS C∗(G(n), σ)

Let σ be a multiplier of any group G. An element r of G is called σ-regular
if σ(r, s) = σ(s, r) whenever s in G commutes with r. If r is σ-regular, then every
conjugate of r is also σ-regular. Therefore, we say that a conjugacy class of G is
σ-regular if it contains a σ-regular element.

Let n > 2. The conjugacy class Cr of r ∈ G(n) is infinite if r /∈ V(n) =
Z(G(n)). Indeed, for any s ∈ G(n) we have

(srs−1)i = ri and (srs−1)jk = rjk + sjrk − rjsk.

Hence, |Cr| = ∞ if ri 6= 0 for some i. Of course, Cr = {r} if r ∈ V(n).
Now, we fix a multiplier σ of G(n) of the form (2.5).

LEMMA 4.1. Let S(G(n)) be the set of σ-regular central elements of G(n), that is,

S(G(n)) = {r ∈ V(n) | σ(r, s) = σ(s, r) for all s ∈ G(n)}.

Then S(G(n)) is a subgroup of G(n) and Z(C∗(G(n)), σ) ∼= C( ̂S(G(n))).

Proof. It is not hard to check that S(G(n)) is a subgroup of V(n).
We identify C∗(G(n), σ) with C∗r (G(n), σ) ⊂ B(`2(G)). Let δe in `2(G) be

the characteristic function on {e} and for an operator T in B(`2(G)), set fT =
Tδe ∈ `2(G). If T belongs to the center of C∗(G(n), σ), then fT can be nonzero
only on the finite σ-regular conjugacy classes of G(n), that is, on S(G(n)) (see e.g.
Lemmas 2.3 and 2.4 of [16]). Then, it is not difficult to deduce that

Z(C∗(G(n)), σ) = C∗{λσ(s) | s ∈ S(G(n))} = C∗(S(G(n)), σ) ∼= C∗(S(G(n)))

∼= C( ̂S(G(n))).

REMARK 4.2. If S(G(n)) is nontrivial, we can describe C∗(G(n), σ) as a con-
tinuous field of C∗-algebras over the base space ̂S(G(n)). The fibers will be iso-
morphic to C∗(G(n)/S(G(n)), ω) for some multiplier ω of G(n)/S(G(n)) (see
Theorem 1.1 of [9] and Theorem 1.2 of [20] for further details).

EXAMPLE 4.3 ([9], Lemma 3.8 and Theorem 3.9). Fix a multiplier σ of G(2)
of the form (2.6) such that both λ1,12 and λ2,12 are torsion elements. Let p and q
be the smallest natural numbers such that λ

p
1,12 = λ

q
2,12 = 1 and set k = lcm(p, q).

Clearly, V(2) = Z and S(G(2)) = kZ. Moreover, G(2)/S(G(2)) can be identified
with the group with product

(r1, r2, r12)(s1, s2, s12) = (r1 + s1, r2 + s2, r12 + s12 + r1s2 mod kZ)
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for r1, r2, s1, s2 ∈ Z and r12, s12 ∈ {0, 1, . . . , k− 1}.
Then C∗(G(2), σ) is a continuous field of C∗-algebras over the base space

̂S(G(2)) ∼= T. The fibers will be isomorphic to C∗(G(n)/S(G(n)), ωλ), where
λ ∈ T and

ωλ(r, s) = σ(r, s)µr1s2

for some µ ∈ T with µk = λ.

Characterizations for simplicity of twisted group C∗-algebras of two-step
nilpotent groups have been given in Corollary 1.4 of [9] and Corollary 1.6 of [20].
For the groups G(n), the necessary and sufficient conditions for simplicity are
somewhat easier to provide.

THEOREM 4.4. The following are equivalent:
(i) C∗(G(n), σ) is simple.

(ii) C∗(G(n), σ) has trivial center.
(iii) There are no nontrivial central σ-regular elements in G(n).

Proof. By Theorem 1.7 of [18] C∗(G(n), σ) is simple if and only if every non-
trivial σ-regular conjugacy class of G(n) is infinite. Since every finite conjugacy
class of G(n) is a one-point set of a central element, then (i) is equivalent with (iii).

Moreover, (iii) is the same as saying that S(G(n)) is trivial, so therefore, (ii) is
equivalent with (iii) by Lemma 4.1. This also follows from Theorem 2.7 of [16].

LEMMA 4.5. A central element s = (0, . . . , 0, s12, s13, . . . , sn−1,n) of G(n) is σ-
regular if and only if

∏
16j<k6n

λ
sjk
i;jk = 1

for all 1 6 i 6 n.

Proof. Clearly, an element s = (0, . . . , 0, s12, s13, . . . , sn−1,n) ∈ V(n) is σ-
regular if and only if σ(s, r) = σ(r, s) for all r ∈ G(n). By a direct calculation
from the multiplier formula (2.5), we get that

σ(r, s)σ(s, r) =
(

∏
i<j<k

λ
sjkri
i,jk λ

sikrj
j,ik

)(
∏
j<k

λ
sjkrj
j,jk λ

rksjk
k,jk

)(
∏

i<j<k
λ
−rksij
i,jk λ

rksij
j,ik

)
=

n

∏
i=1

(
∏

16j<k6n
λ

sjk
i,jk

)ri

is equal to 1 for all r ∈ G(n) if and only if the inner parenthesis is 1 for each
1 6 i 6 n.

COROLLARY 4.6. We have that C∗(G(n), σ) is simple if and only if for each non-
trivial central element s = (0, . . . , 0, s12, s13, . . . , sn−1,n) there is some 1 6 i 6 n such
that

∏
16j<k6n

λ
sjk
i,jk 6= 1.
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EXAMPLE 4.7. In particular, C∗(G(3), σ) is simple if and only if for each
nontrivial central element s = (0, 0, 0, s12, s13, s23) at least one of the following
holds:

λs12
1,12λ

s13
1,13λs23

1,23 6= 1, λs12
2,12λ

s13
2,13λs23

2,23 6= 1, λs12
3,12λ

s13
3,13λs23

3,23 6= 1.

Next, set λi,jk = e2πiti,jk for ti,jk ∈ [0, 1) and consider the n × 1
2 n(n − 1)-

matrix T with entries ti,jk in the corresponding spots. Then T induces a linear map

R
1
2 n(n−1) → Rn.

COROLLARY 4.8. Let T be the matrix described above. Then following are equiv-
alent:

(i) C∗(G(n), σ) is simple.
(ii) T−1(Zn) ∩ Z

1
2 n(n−1) = {0}.

(iii) T(Z
1
2 n(n−1) \ {0}) ∩ Zn = ∅.

REMARK 4.9. Clearly, condition (ii) above is equivalent to that T restricts to
an injective map

Z
1
2 n(n−1) → Rn/Zn ∼= Tn.

Furthermore, for 1 6 j < k 6 n, define

Λjk = {ti,jk ∈ [0, 1), 1 6 i 6 n | e2πiti,jk = λi,jk}

and for 1 6 i 6 n, define

Λi = {ti,jk ∈ [0, 1), 1 6 j < k 6 n | e2πiti,jk = λi,jk}.

PROPOSITION 4.10. If there exists i such that all the elements of Λi are irrational
and linearly independent over Q, then C∗(G(n), σ) is simple.

Proof. It follows immediately from Lemma 4.5, that “equation i” cannot be
satisfied unless s = 0. Hence, no nontrivial σ-regular central elements exists.

PROPOSITION 4.11. If there exists j < k such that Λjk consists of only rational
elements, then C∗(G(n), σ) is not simple.

Proof. Let q be the least common multiplier of the denominators of the ele-
ments of Λjk. Then qvjk is central and σ-regular. Indeed, for all r ∈ G(n),

σ(r, qvjk)σ(qvjk, r) =
n−1

∏
i=1

λ
qri
i,jk = 1.

REMARK 4.12. In the case where C∗(G(n), σ) is not simple, some more in-
formation about the primitive ideal space can be deduced from Proposition 1.3
of [9].
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5. ON ISOMORPHISM INVARIANTS OF C∗(G(n), σ)

Fix n > 2 and let σ be a multiplier of G(n). If ϕ is an automorphism of G(n),
define the multiplier σϕ of G(n) by

(5.1) σϕ(r, s) = σ(ϕ(r), ϕ(s)).

Then it is well-known that the associated twisted group C∗-algebras C∗(G(n), σ)
and C∗(G(n), σϕ) are isomorphic. Indeed, the map

i(G,σ)(r) 7→ i(G,σϕ)(ϕ−1(r))

extends to an isomorphism C∗(G(n), σ) → C∗(G(n), σϕ). Moreover, for any au-
tomorphism ϕ of G(n), it is easily seen that two multipliers σ and τ of G(n)
are similar if and only if σϕ and τϕ are similar. Hence, there is a well-defined
group action of the automorphism group Aut G(n) on H2(G(n),T) defined by
ϕ · [σ] = [σϕ].

Therefore, we will now briefly investigate Aut G(n). Let V(n)n be the sub-
group of Aut G(n) consisting of the automorphisms G(n) → G(n) of the form
ui 7→ ziui for 1 6 i 6 n and elements zi ∈ V(n) = Z(G(n)). In particular, these
automorphisms leave all the vjk’s fixed, i.e. V(n)n is the subgroup of Aut G(n)
leaving V(n) fixed. Clearly, V(n)n contains Inn G(n). In fact, in the case n = 2,
we have V(2)2 = Inn G(2).

PROPOSITION 5.1. There is a split short exact sequence:

1 - V(n)n - Aut G(n) - GL(n,Z) - 1

Proof. Assume that ϕ is any endomorphism G(n) → G(n). The image of
a central element under ϕ must be central, so ϕ restricts to an endomorphism
ϕ1 : V(n) → V(n). Therefore, ϕ also induces an endomorphism ϕ2 : G(n)/V(n)
→ G(n)/V(n) determined by ϕ2(q(r)) = q(ϕ(r)). Consider now the following
commutative diagram:

1 - V(n)
i - G(n)

q - Zn - 1

1 - V(n)

ϕ1
? i - G(n)

ϕ
? q - Zn

ϕ2
?

- 1

Assume that ϕ2 is an automorphism. Since ϕ2 is surjective, then for all ui there is
some si ∈ G(n) such that ϕ(si) = ziui for some zi ∈ V(n). Hence, for all j < k,
we have ϕ1(sjsks−1

j s−1
k ) = vjk and therefore, ϕ1 is surjective. Every surjective

endomorphism of Zn is also injective, so ϕ1 is an automorphism as well. Thus,
by the “short five lemma”, ϕ is an automorphism.

The converse obviously holds and hence, ϕ is an automorphism if and only
if ϕ2 is an automorphism.



22 TRON ÅNEN OMLAND

Furthermore, the construction of G(n) in terms of generators and relations
means that every endomorphism G(n) → G(n) is uniquely determined by its
values at {ui}n

i=1. In particular, we let ϕ : G(n) → G(n) be determined by the
pair of matrices given by its entries

(ϕ(ui)j), (ϕ(ui)jk) ∈ Mn(Z)×Mn, 1
2 n(n−1)(Z)

so that the induced endomorphism ϕ2 is coming from a matrix in Mn(Z).
By the above argument, the map between endomorphism groups defined by

(5.2) End G(n)→ EndZn, (ϕ(ui)j), (ϕ(ui)jk) 7→ (ϕ(ui)j)

restricts to a surjective map Aut G(n)→ AutZn = GL(n,Z).
Before concluding the argument, we need the following.

LEMMA 5.2. If ϕ and ϕ′ are two endomorphisms of G(n), then

(ϕ ◦ ϕ′)(ui)j =
n

∑
k=1

ϕ′(ui)k ϕ(uk)j.

If ϕ and ϕ′ are two endomorphisms of G(n) that both induce the trivial map on
G(n)/V(n), then

(ϕ ◦ ϕ′)(ui)jk = ϕ′(ui)jk + ϕ(ui)jk.

Proof. For the moment, set ϕ(ui)j = rij and ϕ′(ui)j = sij. Then

(ϕ ◦ ϕ′)(ui) = ϕ(usin
n · · · usi1

1 z) = (urnn
n · · · u

rn1
1 )sin · · · (ur1n

n · · · ur11
1 )si1 z′

for some elements z, z′ ∈ V(n). Moreover, we can change the order of the ui’s in
the expression just by replacing z′ by another central element z′′ and thus,

(ϕ ◦ ϕ′)(ui)j = rnjsin + rn−1,jsi,n−1 + · · ·+ r1jsi1 =
n

∑
k=1

sikrkj.

If both ϕ2 and ϕ′2 are trivial, then ϕ(ui) = ziui and ϕ′(ui) = z′iui for all 1 6 i 6 n
and some elements zi, z′i ∈ V(n). Hence, ϕ(vjk) = ϕ′(vjk) = vjk for all j < k and
thus,

(ϕ ◦ ϕ′)(ui) = ϕ(z′iui) = z′iziui.

Therefore, (5.2) restricts to a surjective homomorphism Aut G(n) → GL(n,Z)
with kernel isomorphic to the group Mn, 1

2 n(n−1)(Z) under addition, that is, to
V(n)n.

Moreover, if A is a matrix in GL(n,Z) with entries aij, then one can define an
automorphism ϕA of G(n) by ϕA(ui)j = aij. Thus, it should be clear that GL(n,Z)
sits inside Aut G(n) as a subgroup so that the sequence splits.

PROPOSITION 5.3. If ϕ belongs to V(n)n, then σϕ is similar to σ. Thus, the action
of V(n)n on H2(G(n),T) given by (5.1) is trivial.
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Proof. It is not hard to see that

σ(ui, vjk)σ(vjk, ui) = σϕ(ui, vjk)σϕ(vjk, ui),

that is,

[i(G,σ)(ui), i(G,σ)(vjk)] = [i(G,σϕ)(ui), i(G,σϕ)(vjk)]

for all 1 6 i 6 n and 1 6 j < k 6 n. It then follows from the universal property of
C∗(G(n), σ) described in Remark 3.1 that σϕ ∼ σ.

To describe the GL(n,Z)-action on H2(G(n),T) requires more work. To
any A in GL(n,Z) we may associate a square matrix Ã of dimension 1

2 n(n− 1),
with entries coming from the determinant of all 2× 2-matrices inside A. More
precisely, if A = (aij), Ã is given by entries ãij,kl for i < j, k < l such that
ãij,kl = aikajl − ailajk. Then A acts on the matrix T defined prior to Corollary 4.8
by A · T = ATÃ. Tedious computations of commutation relations and use of
the universal property of C∗(G(n), σ) from Remark 3.1 now lead to the following
result.

PROPOSITION 5.4. Let σ and σ′ be multipliers of G(n) of the form (2.5) and let T
and T′ be the associated matrices of Corollary 4.8. If there exists a matrix A in GL(n,Z)
such that A · T = T′, then C∗(G(n), σ) and C∗(G(n), σ′) are isomorphic.

For n = 2, it is shown by Packer Theorem 2.9 of [18] that C∗(G(2), σ) and
C∗(G(2), σ′), where σ and σ′ are of the form (2.5), are isomorphic if and only if
there is a GL(2,Z)-matrix A taking σ to σ′. Note in this case that Ã = det A = ±1.

For n > 3, it is at the moment not clear whether the GL(n,Z)-action on
H2(G(n),T) described above is such that the orbits represent different isomor-
phism classes of twisted group C∗-algebras. Therefore, the problem of determin-
ing the isomorphism classes of C∗(G(n), σ) remains open for future investigation.

REMARK 5.5. Every multiplier σλ of G(n) is of the form e2πiσ̃λ for some
multiplier σ̃λ on G(n,R). Moreover, any to multipliers σλ and σµ of the form
described above are homotopic in the sense of Packer and Raeburn Section 4 of
[19]. Hence, one may use Theorem 4.2 and Corollary 4.5 of [19] to deduce that

Ki(C∗(G(n)), σλ) ∼= Ki(C∗(G(n)), σµ) ∼= Ki+ 1
2 n(n−1)

top (G(n,R)/G(n)).
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