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ABSTRACT. We consider the weighted Bergman projection P, : L*®(B) — B
where « > —1 and B is the Bloch space of the unit ball B of the complex space
C". We obtain the exact norm of the operator P, where the Bloch space is
viewed as a space with norm (and semi-norm) induced from the Besov space
By, 0 < p < o, (Boo = B). As a special case of our main result we obtain
the main results from D. Kalaj, M. Markovi¢, Norm of the Bergman projec-
tion, Math Scand., to appear, and A. Perdld, On the optimal constant for the
Bergman projection onto the Bloch space, Ann. Acad. Sci. Fenn. Math. 37(2012),
245-249.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper we denote by C" the complex n-dimensional space.
Here 7 is an integer greater than or equal to 1. As usually (-, -) represents the
inner product in C",

<ZI w> = lel + e + anﬂ/ Z/w S (Cn/
where z = (z1,...,2z,) and w = (wy, ..., w,) are coordinate representations in the
standard base {ey, ..., e, } of C". The Euclidean norm in C" is given by

2| = (z,2)!/2.

Let us denote by B the unit ballin C",B = {z : |z| < 1} and let S be its boundary.
The volume measure dv in C" is normalized, i.e., v(B) = 1. Also, we are
going to treat a class of weighted measures dv, on B, which are defined by

dog(z) = ca(1 — |2)?)*do(z), z€B
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where &« > —1, and ¢, is a constant such that v,(B) = 1. A direct calculation
gives:
I'n+a+1)
nr(e+1) "
We let 0 be a unitary-invariant positive Borel measure on S for which o(S) =
1. The term “unitary-invariant” refers to the unitary transformations of C". More
precisely, if U is a unitary transformation of C", then for any f € L!(S,do),

[ fugye@) = [ £@)de(@).
S S

Cy =

The automorphism group of B, denoted by Aut(BB), consists of all bi-holomorphic
mappings of B (see [7]). A special class of automorphism group are involutive
automorphisms which are, for any point a € B defined as

a— 0 T o w - )

Pa(w) = 1= (za) , w€EB.

When a = 0, we define ¢, = —Idg. We should observe that, ¢,(0) = a and
®a© @q = Idp.
In the case when we treat C" as the real 2n-dimensional space R?", the real
Jacobian of ¢, is given by
1— a2 \nt1
)

(Jrga) (w) = (m
We are going to use the following identities (a2 € B):
(1—]a)(1 - |z]%)
1= (wa)f>
N _ (A ={aa)(1 - (zw)
A2 el = A (e w))
Traditionally, H(B) denotes the space of all holomorphic functions on B and the

space of all bounded holomorphic functions is denoted by H® (BB).
The complex gradient of holomorphic function f € H(B) is defined as
_ (9 9
Vf(z) = (E(z),...,ﬁ(z)), z € B.

The Bloch space B consists of all holomorphic functions in B with finite semi-
norm defined as

(1.1) 1— |ga(w)* = zeB and

z,w € B.

Iflp = sup (1 = [z*)|Vf(2)].
zeB
We can obtain the related proper norm by adding | f(0), i.e.
1£lls = 1F O+ fllp-

The Bloch space is the Banach space with respect to the norm || f|| 3. More infor-
mation about the Bloch space the reader can find in [9].
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The Bergman projection operator P, (« > —1) plays a central role in the
study of analytic function spaces and it is defined as follows:

Py f(z) /IC,X z,w)f(w)dvy(w), f € LP(B,dv,),

where L? (B, dv,) is the Lebesgue space of all measurable functions on B whose
modulus with exponent p (1 < p < o0) is integrable on B with respect to the
measure dv,. The case p = oo corresponds to the space of essentially bounded
functions in the unit ball. Here

1
Ka(z,w) = 0= mw))i z,w e B

is the weighted Bergman kernel. Concerning the Bergman projection, the follow-
ing two problems are of the main interest for research: establishing the bounded-
ness and determining the exact norm.

Here we want to point out that the Bergman projection P, : L*(B) — B is
bounded and onto (see [9]).

In the case when n = 1 for the semi-norm ||f|| = sup (1 — |z|?)|f'(z)|, Perala

|z|<1

(see [4]) determined the norm of the Bergman projection. He obtained that ||P|| =
sup ||Pf|| = 8/m. A generalization of this result in the unit ball B C C" was
IflI<1

done by Kalaj and Markovi¢ in [3], where it is shown that || P|| = [(nta+2)

1"2 n+a+2
Perild (see [5]), completed his earlier result from [4] and its genizrahz.')atlon in
[3] by finding the norm of the Bergman projection with respect to the proper
norm of the Bloch space. We remark that calculating the exact norm of Bergman
projection P on LP-spaces with 1 < p < oo is a long-standing problem and only
partial results are known, see [2], [10]. For an approach to a related problem for
the Bergman projection onto Besov spaces see the paper [8]].

There are several ways to define norm on the Bloch space, that transform
it into a Banach space. To this end, let us recall a definition of the Besov space
By (0 < p < o0) in the unit ball B C C" (for a reference see [9]).

The Besov space By, contains all holomorphic functions f in B such that the
norm

Later,

sy Il - T Lol + P / 1= 1=PN L )| )

[m|<N—-1

is finite, where N is a positive integer such that pN > n. The measure drt is
given by
do(z)

= TR

zeB
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and m runs throughout n-tuples of non-negative integers m = (mj, ..., my), with
m| = E ;.
The semi-norm || - ||, in the Besov space By, (0 < p < o) is defined by

11, = ¥ /] VL o) (e

When p = oo the Besov space B, becomes the Bloch space B = B. We want to
define a norm (a semi-norm) on the Bloch space B induced from the Besov space
By as p — oo.

Before we find the explicit formula for the norm in the mentioned case, let
us state a short version of Theorem 3.5 of [9].

PROPOSITION 1.1. Suppose that N is a positive integer, and f is holomorphic in
B, then the following conditions are equivalent:

(i) f e B.
(ii) The functions

_pNS _
(1—|z|%) Zm(z), such that |m| = N

are bounded in BB.
Now we prove the following lemma:

LEMMA 12. Let By, 1 < p < oo, be the Besov space and | - ||, be the Besov
norm defined by . Then

Ifllg, = Ifllgr p— o0 givesf €BNB forsomer € (1,00),

where

2| Vf
(14) Ilg = max sup(1 — 2N |55 2)|

Proof. We will prove the lemma in more general setting. Namely, if { fk}{g]:1
is a sequence of measurable functions on the measure space (2, ) such that

fre L'(Q,u)NL>®(Q,u), k=1,...,N, forsomer € (1,00),

then

1<k<N

N N
(L IAelly) ™ = max | felle.
k=1
The last relation is an easy consequence of the relation

im | fillp = [l felleo

p—o0
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(see e.g., p. 73, Example 4 of [6]) and of the following obvious inequalities:

1/p

N N
(k; I£dlp) " < NV max{lfill),  and (k; Ifellp) ™ = maxlfll -

It follows that if f € B, N B for some r > 1, then

N f()‘ 1

Il = Jim, £, = max sup |(1~ [z 52

p—o0

Let us notice that in the same way

(T |2 0f)" 5 max (20

, asp — oo

|m|<N-1 m|<N-1
Accordingly, we define the proper norm || - ||z on the Bloch space as follows
(1.5) |fllp= max ‘f( )‘—i—max sup‘ Na f(z), feB, NeN.
jmj<N-11 92" m=N zcB oz
Furthermore, the semi-norm || - || 5 is defined as
(1.6) |fllz = max sup ‘(1 — |z|2)Nal\]—7{:(z) , feB NeN
=N B 0z

Although in definition (1.3) of the norm || - ||, for the Besov space B, we have the
condition pN > n, by the formula (1.5) we can define || - || 3 on B for any N. This
is not surprising because o - N > n.

The proof of the next lemma is straightforward and we omit it.

LEMMA 1.3. The Bloch space B is a Banach space with respect to the norm (L.5]).

In the sequel, B-norm and B-norm of the Bergman projection P, : L® —
B are, respectively:

(1.7) |Pullz = sup [Pugllz and
lIgllo<1

(1.8) 1Pellp = sup [[Pugl5-
lIgllo<1

Now we state the main results of this paper.

THEOREM 1.4. Let P, be the Bergman projection Py : L*(B) — B, where B is
the Bloch space with the semi-norm (L.6). Then
1Pl = I'(n+N+a+1)I'(N)
allg = N 1 :
Fz(7 + n+02c+ )

THEOREM 1.5. Let P be the Bergman projection Py : L®(B) — B, where B is
the Bloch space in norm (1.5). Then

IFn+N+a)[(5Y)  Tr(n+N+a+1)I(N)
r(5N +a+n) r2(§ 4 meetly 7

1P| 5 = NeN
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In Remark 2.3l we will show that Theorem [1.4] and Theorem [L.5] are exten-
sions of the corresponding results from [3], [4], [5].
2. PROOF OF THEOREM [[4 AND THEOREM[LH

Before we start to prove Theorem|[1.4} let us state.

LEMMA 2.1 ([3], Lemma 3.3). For n-tuple m = (my, ..., my) € Nj we have

1) / Moy = PV TS
5 T(n+ )
m I'l+a+n) n m;
2.2 doy(2) = (1M
22 !p doy (2) O+a+n+WUII< + 1)

n
-
Here w™ := [T w;", and |m| = Z m;.
i=1 i=1

Proof of Theorem[1.4} Let P be the Bergman projection, P : L*(B) — B. Since
Pis onto, for any f € B thereis g € L®(B) such that f = Pg, i.e.

_ g(w)
23) f(z) = B[ T dadw), z€B.
Differentiating under the integral sign in (2.3) we obtain
Nf(z)
P _ 2\N|9 J\z)
IPagll = max sup (1= |21 =55
I'n+N+a+1) / (1 — z2)N|hy (@)|
< 12l :
Ny ey N eeE | Tz ) |n+1+N+adv «(w)
Thus we have
[(n+N+atl) 2 N/ [ (@),
24) ||Pyllag — 2T ,
G Wells <oy MR D g e el

where hy, (W) = @™ = (W)™ - - - (Wy)™, Y my, = N
For a fixed z € B let us make the change of variable w = ¢,(w). By using
the following formula for the real Jacobian

1— |z n+1
(Jrgpz)(w) = (m) ,
and the identity we obtain
dog (w) = ca(1 — |w|?)*do(w)
. 2 n _ 2\« _ 2\«
5 (B O BRI el

1= (z,w)l? 1= (z,w)>
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By plugging in we obtain

T'(n+N+a+1) [ (w)]

P,z < max s 1—|z do, (w
IPalls < —Fp o) mgsup (- 2f \1—(2 oy [Nt 40 (@)
I'n+N+a+1) [ (9z(w))]
2.6 = d .
(2.6) '(n+a+1) \fnﬂ‘aﬁigﬁf/u (z,w |” Nt 40 ()
Furthermore,
I'n+N+a+1) / |h w))|
Pulla< d
1Ple< = rorar . AR T w TN e
I'(n+N+a+1)
2.7 <————max (suplhy su/ do, (w).
@7 < ararn e (sl =i (@

Further, let us note that for every polynomial 1, |h,; (w)| < 1. The maximal value
is attained (for example) when hy o) (w) = hi(w) = wN and w = 1. So we
conclude

28)  [IPlg <

F(n+N+a+l) /
ZGB |1_

Tnta+1) |n Nt A0 (@)-

Our next goal is to determine a maximum of the function m(z), where

F(n+N—|—o¢—|—1 dog (w

29 =
@9) m(z) F'n+a+1) \1— z,w) | N*““'

z € B.

By using the uniform convergence, the fact that (z, w)*1 and (z, w)*2 (ky, k, €
N, k1 # k) are orthogonal in L?(B, dv,(w)), and polar coordinates, we obtain

F(n+N+1x+1

dog (w
m(Z)— n—i—tx-i-l /|1— gw |n N+tx+1dv“(a})
 T(n+N+a+1) (k+A) )
T Tnta+l) Z’k ‘/'dev“ w)

1

_ 2nl’ n+N+a+1) (k+A) 2

R z\w A [rrata-rpa e o
0 S

where A = =N and w = r¢, |¢] = 1.
By making use of the change of variables U = (&' = (&,,...,¢), & =
)

{ ZZ‘ ), where U is the unitary matrix constructed in p. 15 of [9] on the last surface

integral we obtain

I'(n+N+a+1) (k+A) 12nl (n+k)I oc+1/ ok ok
2.11 =
T () Z‘k' ‘ Ttk tar1)) el 9o@
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Finally, by Lemma 2.1 we have
In+N+a+1) & r*(k+A
m(z) _ ( > ) Z ' ( ) | |2k
I'2(A) — k'II'(n+k+a+1)

_I'(n+N+a+1) . 2
(2.12) R CETES)) (M 4 a+1,z7),

where 5 F; (A; A;n + a + 1, |z|?) is the hypergeometric function, i.e., in general,

2Fi(a;b;¢,x) = Z (@ )’ZS?ZW n

where (a), = a(a+1)---(a+n—1) is the Pochhammer symbol (see [1]). By

using the formula

%zFl(a, b;c;x) = ac—bzPl(a +1,b+1c+1;x),

we conclude that the maximum of yFj (A A;n 4+ a + 1, |z[?) is 2 F (A A m + o +
1,1).So

I'n+N+a+1)
supm(z) = FMAan+a+1,1
Zeg ( ) F(n+0{+1) 2 1( )
I'n+N+a+1)T'(n+a+1)I'(N)
(2-13) F(n—i—oc—i—l) T2 N n+a+1 4
(7 +555)
ie.,
I'(n+N+a+1)I'(N)
(2.14) ”P“HE\ Fz(%—k”*g*l) , NeN.

In the relation (2.13) we used the Gauss identity for hypergeometric functions.
Namely, for Re(c —a — b) > 0, we have

I'(c)l'(c—a—b)

I'(c—a)l(c—0b)

2Fi(a;b;c,1) =

Let us prove the opposite inequality. Since the function |k, (w)| is subharmonic
in B, there exists {y € S such that

‘raax\hm( O = [hm(Zo)|-

As we already pointed out if I (w) = w and {o = ¢, (hx(w) = ho,.N,..0@)),
th . . . . . (1—<Zr,w>)"+N+“+1
en |hi(go)| = 1. We fix z, = r{p, and the function g, (w) = TG It
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is clear that ||gz, ||cc = 1. Then

_ I'(N+n+a+1) N gz, (w )dog (w)
IPogzlls = —ppoasry maxsup- 2I?) ‘/ n+N+a+1’
I'(N+n+a+1) max (1— [z,[2) ‘/ dv,x( ) ‘
T I'(n4+a+1) |m=N ’ |1— zy, w) [N+t

By using the change of variable, w — ¢, (w), as in the previous case we have

F(N—i—n—i—oc—i—l qu dva( )
2.1 P, 5= -
@15)  |Pugllg max | / T |

Since

B ( goz ))dvg (w dovg (w
’/| ) |n N+rx+1‘\/|1_ (zy, w |n Ntar1 <

we can apply the Lebesgue dominated convergence theorem to obtain

[Pe]lz = lim

I'(N+n+a+1) ‘/ m(@z, (w))dvg (w) ’
r—1- TI'(n+a+1) |m\ N 11— (z

|n N-+a+1

(2.16)

 I(N+n+a+1) ‘/ Co dle( ) ‘
- F(n+oc+1 ‘ml N |1_ |n N+a+1

We used in (2.16) that ¢, (w) = {o when [{o| = 1. Finally, from (2.16) we obtain

I'(N+n+a+1) dog (w
= >
I1Pell5 = I'(n+a+1) ""§°|‘/\1 (& w) | N+a+1’
I'(n+N+a+1)I'(N)

(2.17)

P23+ 55

Proof of Theorem We use the same notation as in the proof of Theorem|T.4}
Let f(z) = Pa(g)(z),z € B, where ¢ € L®(B), f € B. Then

o f | 2f
IPglls = max |55 (0 )]+|mm‘a>l<vi1€1£(l—|2| ‘aTm(Z)‘
(2.18) S gl max /Ih w)|dve (w) + [Ig]le | Pll 5/
ie.,

Pllg < max/h w)|doy (w) + || P]| 7.
1Pl <, o))+ 1Pl
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By using Lemma[2.1]and the polar coordinates, we obtain

1)

IPls < max TUmlEntatl) HF(1+ D+ 1Pl
Iml<N-1 (5 + o +n+1)
_T(n+N+a)[(HY)  I(n+N+a+1)I(N)

2.19
( ) T(#—i—a—i—n} 1—’2(%+"+g+1)

In order to prove the opposite inequality we make use of the functions

(1 _ <Zr/ w> )n+N+zx+1

gz, (w) = 11— (z,, w) |+ N+atT’ weB

which we used in the proof of Theorem to maximize || Py f|| z. We define new
test functions g with || ||e < 1 as follows:

P O EL
” ‘TZ]‘T |w| < 6%

and define g0 on {6% < |w| < 6} so that g¢ is continuous on B.
We claim that

(1— |V max ’alszg (z)| = [Pllg asr—1-.
Namely, it is clear by the definition of the semi-norm || - || 3 that
. 2\N Npgs,
timsup(1 ~ [z [")" max | ()| < IIPllg-
Also, we have shown in the proof of Theorem that
lim (1~ 22| P8 ()| = e

Since |gz, (w) — &2 (w)| < 2 on B and |gz, (w) — & (w)| = 0 when |w| > J, we
have

N aNp S
il (g, - S )

1, 2\N
(1=lz1) |m|:N‘ oz oz

aNPa(gzr —gﬁ,)
max | @)
Tn+N+a+1) / 2(1 — |z|*)Ndou (w)
F(n+0c+1) |1_ <Z”w>|n+N+zx+1'

= (1= lz)N

(2.20)
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The right hand side in (2.20) tends to 0 as r — 1~. Thus

NP, gl
Jlim (1 2N max | <5 (2)
oNP,
1 2\N 8z, .
(2.21) = lim (1 —[z[%) |mm‘a:>l<vﬂ o (2r) 5
Furthermore, for every r € (0,1) we have
aNflp(ng ) .
TJ(O)‘ > / || N dog (w / do,
1 |w| <62 |w|>62
_ I'(n+N+a)(HY)
2.22 —>/ w1 [N dog (w) = -
( ) | 1| a( ) F(lJEN—i-tX—I—Yl)

as 6 — 17. It is clear that in we might observe any partial derivative
N-1 )
%(0), where k =1,...,n. For given € > 0, we may pick 6 > 0 such that
k

oN-1pgd (0)‘ - I'(n+N+a)[[(LN) ¢
ozN—1 r(4N +a+n) 2

for every r € (0,1). We fix such J. According to the relation (2.21), one can pick
€ (0,1) such that

€

Nszgi, (Z ) €
r >

> || Pull g =

1—22Nmax‘
(1= 2)" max

Then we can end up with a function g¢_such that

aN 1P(g(5) aNPgJS
> ) > Zr _ 2\N XSzy
1Palls > 1Pg2, s > | PR O] + (1 = farP)N ma [=5 255 20)

I'(n+ N+a)l (HN)
)

(2.23) + || Py

HB_S

I (n+N+a)I (5N
I(HN +atn)
tion (ZT9) we conclude the proof of the theorem. &

Therefore, Pl = + || Px|| g, and combining this with the rela-

REMARK 2.2. If P, is the Bergman projection, P, : L®(B) — B, where B is
the Bloch space in the semi-norm (1.6), then it is easy to find the lower estimate
for the B-norm of P,, i.e.,

I'(N+n+a+1)

Iz >
I'n+a+1)

[P

(1_ <20/w>)N Ttis

Namely, we fix zy € B and we make use of the function g;,(w) = (RCELE

clear that g, € L* and ||, || = 1.
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Hence
F(N‘l'n—l-lk—l-l) N gz @)
Paga |l g= o LTET) ‘/ 0 d ‘
IPsgaolls =5 a gy max sup( —lzl*) n+N+H1 va(w)
I(N 1) e
+n+a+ N’/ wzo ’
d .
I'n+a+1) |mm‘a_x = |zof? 1_ (zo, w))TotT va(w)

On the other hand, it holds % € H*(B), and this implies

I'(N+n+a+1) max sup|h )| I'(N+n+a+1)

2.24 Pl = =
( ) || IXHB F(n+l¥+1) ‘m‘ 2cB F(]’l‘i‘lx—f—l)

REMARK 2.3. We want to emphasize that on the Bloch space B we may
observe the norm

@) Ifle = T |2t o]+ (T |2Le])”,

m
m|<N—1 z€B m=N | 9

and the semi-norm

(2.26) Ifllg, = S‘;};“ - |z|2)N( > ’aNf (Z)‘P)l/l’

m
N 0z

where f e BLNEN, 1< p < co.

Let us notice that when N = 1 for the B-norm of the Bergman projection

we have ||[P[|z = 1{5?%”;3% and this is one of the main results in [3]. For the

special case n = 1, we obtain || Pz = 8 which coincides with the main result of
Peréld in [4]. In order to deduce the main result in [3], from Theorem we do
as follows. First of all it is clear by the definition that

(227) gl g < llgllg,
and therefore by putting ¢ = P, [f] in (2.27) we have,

(2.28) |Pufllg < [IPafllp, and
(2.29) HszHB S HPlXHﬁz'
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In order to obtain the equality in (2.29) we choose f € L*(B). By using the same
argument as in the beginning of the proof of Theorem [1.4] we obtain

1 Pufllg, = sup (1— |z (Z ‘azz ‘ )1/2

< (n4a+1)|f]leosup(l — |z| )(i( |1lw<llfi;§|(ﬁ)a+2>2)l/2
B

zeB i
<(n+ati) ||f||oosup(2n;(/ i (Pz(zx;)zlgiﬁi(:u))z)l/z
i= B ,
= ; |hi(@z(w))|dvg (w) 2\ 1/2
_(HH”W”“?QE(;( B/l/ﬂ i alpe) )
where e

¥(z) = 11— (z, @)1+
B
By using the Jensen’s inequality we obtain

1/2 /Ez 1|h q’z ))|2dva(w)>l/2

||P,XfH/52 < (7’l+0(+1 Hf”oosup |1 _ Z w>|n+zx

z€B

< (ﬂ+0¢+1)||f||oosupll?( )= ||f||oosupm( ) = I flleol Pl g

where m(z) is defined in (2.9). Hence in ( we have the equality.
For a vector a = (al,.. ,dy) We have || oo < |lallp < |la]|2 for p > 2. This
inequality and the previous argument imply that for N = 1 and p > 2 we have

1Pellg, = I1Pallg, = lIPull 5
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