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ABSTRACT. In this paper, a sufficient condition for the existence of hyper-
invariant subspace of compact perturbations of multiplication operators on
some Banach spaces is presented. An interpretation of this result for com-
pact perturbations of normal and diagonal operators on Hilbert space is also
discussed. An improvement of a result of Fang and Xia (Invariant subspaces
for certain finite-rank perturbations of diagonal operators, J. Funct. Anal. 263
(2012), 1356–1377) for compact perturbations of diagonal operators is also ob-
tained.
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1. INTRODUCTION

Let X be a separable complex Banach space. The invariant subspace prob-
lem is the question whether every bounded linear operator T ∈ B(X) has a non-
trivial invariant subspace; in other words does there exist a closed subspace M
of X such that M 6= {0}, M 6= X and T(M) ⊂ M? The hyperinvariant subspace
problem is the question whether every bounded linear operator T ∈ B(X) such
that T 6= λI has a nontrivial hyperinvariant subspace, i.e. whether there exists a
closed subspace M of X such that M 6= {0}, M 6= X and for every bounded op-
erator S ∈ B(X) such that ST = TS, we have S(M) ⊂ M? Enflo [4] and Read [11]
proved that the invariant subspace problem has a negative answer on some Ba-
nach spaces. On the other hand, Argyros and Haydon [1] constructed a Banach
space where every bounded linear is a compact perturbation of a scalar opera-
tor, hence by Lomonosov’s celebrated result [9], every nonscalar operator has a
nontrivial hyperinvariant subspace. However the invariant and hyperinvariant
subspace problem are still open in reflexive Banach spaces, and in particular in
Hilbert spaces. For normal operators in Hilbert spaces, the spectral theorem en-
sures the existence of an hyperinvariant subspace. Lomonosov (see Theorem 6.1.2
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of [3] or [9] for the original reference) proved that every nonzero compact oper-
ator on a Banach space has a nontrivial hyperinvariant subspace. But if N is a
normal operator on a Hilbert space H, and K is a compact operator on H, we do
not know in general if N + K has a nontrivial hyperinvariant subspace or not. We
refer the reader to the book [3] for more information about the invariant subspace
problem.

In 2007 Foias, Jung, Ko and Pearcy [6] proved the following theorem.

THEOREM 1.1 ([6]). Let (en)n∈N be an orthonormal basis in a separable complex
Hilbert space H. Let D = ∑

n∈N
λnen ⊗ en be a bounded diagonal operator on H. Let

u, v ∈ H be two vectors. If

∑
n∈N
|〈u, en〉|2/3 < ∞, ∑

n∈N
|〈v, en〉|2/3 < ∞,

and if D+ u⊗ v 6= λI, then the rank one perturbation D+ u⊗ v of the diagonal operator
D has a nontrivial hyperinvariant subspace.

In 2012 Fang and Xia [5] improved this result. Their approach allowed to
consider finite rank perturbations of a diagonal operator. They also improved the
summability condition of Foias, Jung, Ko and Pearcy. Here is their result.

THEOREM 1.2 ([5]). Let (en)n∈N be an orthonormal basis in a separable complex
Hilbert space H. Let D = ∑

n∈N
λnen ⊗ en be a bounded diagonal operator on H. Let

u1, . . . , ur, v1, . . . , vr ∈ H be vectors. If
r

∑
k=1

∑
n∈N
|〈uk, en〉| < ∞,

r

∑
k=1

∑
n∈N
|〈vk, en〉| < ∞,

and if D +
r
∑

i=1
ui ⊗ vi 6= λI, then the finite rank perturbation D +

r
∑

i=1
ui ⊗ vi of the

diagonal operator D has a nontrivial hyperinvariant subspace.

The goal of this paper is to improve Fang and Xia’s approach in order to
deal with some compact perturbations of multiplication operators on separable
Lp-spaces. The well-known spectral theorem for normal operator tells us that
every normal operator is a multiplication operator on some L2-space. As a di-
agonal operator is a particular case of a normal operator, this can be seen as a
generalization of the previous result.

1.1. NOTATIONS. In this paper, we will denote by H a separable complex Hilbert
space, and by X a separable complex Banach space. We will denote by m the
Lebesgue measure on the complex plane. We will denote the set of all bounded
operators (respectively the set of all compact operators) acting on X by B(X)
(respectively K(X)). Let T ∈ B(X) be a bounded operator. We will denote the
commutant of T by

{T}′ = {S ∈ B(X), ST = TS}.
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We will also denote respectively the spectrum, the point spectrum and the es-
sential spectrum of an operator T by σ(T), σp(T) and σe(T). Let (Ω, µ) be a
borelian σ-finite measure space. Let p, q ∈]1, ∞[ be two positive numbers such
that 1/p + 1/q = 1. If f ∈ L∞(Ω, µ) is a bounded complex valued function,
we will denote by M f : Lp(Ω, µ) → Lp(Ω, µ) the linear operator defined by
M f (g)(ξ) = f (ξ)g(ξ).

Let (sn)n∈N be a sequence of positive real numbers such that lim
n→∞

sn = 0.

Let (un)n∈N be a sequence in Lp(Ω, µ) and (vn)n∈N be a sequence in Lq(Ω, µ).
For all u, x ∈ Lp(Ω, µ) and v ∈ Lq(Ω, µ), we define

u⊗ v(x) =
( ∫

Ω

x(ξ)v(ξ)dµ(ξ)
)

u.

This will avoid a change of notation in Hilbert spaces. Indeed, in the case p = q =
2, we have that u⊗ v(x) = 〈x, v〉u. We will denote by K : Lp(Ω, µ) → Lp(Ω, µ)
the operator defined by K = ∑

n∈N
snun ⊗ vn. In general this operator need not be

compact (it may also be unbounded).

1.2. MAIN RESULTS. Here are the main results of the paper. The first result is a
generalization of Fang and Xia’s approach in [5]. The generalization allows us
to consider some compact perturbations of multiplication operators in Lp-spaces.
Remember that a diagonal operator is a particular case of a multiplication opera-
tor on a L2(Ω, µ)-space with µ being a purely atomic measure.

THEOREM 1.3. Let (Ω, µ) be a borelian σ-finite measure space. Let f ∈ L∞(Ω, µ)
be a bounded complex valued function. Let (un)n∈N be a sequence in Lp(Ω, µ) and
(vn)n∈N be a sequence in Lq(Ω, µ). Denote by K the operator defined by K = ∑

n∈N
snun⊗

vn. Suppose that K is compact and that there exists a rectifiable piecewise smooth Jordan
curve Γ in C such that:

(i) There exist a, b ∈ σe(M f ) such that a is in the interior of Γ and b is in the exterior
of Γ.

(ii) µ( f−1(Γ)) = 0.
(iii) For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(M f − z) and vn ∈ Ran(M f − z)∗.
(iv) Denote by A(z) the (possibly unbounded) operator A(z)= ∑

n∈N
sn((M f − z)−1un)

⊗((M f − z)−1vn). For all z ∈ Γ, we suppose that A(z) is a compact operator, and
A : Γ → K(Lp(Ω, µ)) is a continuous application.

Then the bounded operator T = M f + K acting on Lp(Ω, µ) has a nontrivial
hyperinvariant subspace.

Note that if T satisfies the assumptions of Theorem 1.3, then σe(T) = σe(M f
+K) = σe(M f ). As M f has two distinct values in its essential spectrum, T also
has. Hence T can not be a scalar operator. The second result is a generalization
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of Fang and Xia’s result (cf. Theorem 1.2) in the particular case of compact per-
turbation of a diagonal operator on Hilbert spaces. This is a consequence of the
previous theorem.

THEOREM 1.4. Let (ek)k∈N be an orthonormal basis of H. Let D = ∑
k∈N

λkek ⊗ ek

be a bounded diagonal operator on a Hilbert space. Let K = ∑
n∈N

snun ⊗ vn be a compact

operator. If there exist two sequences (an)n∈N, (bn)n∈N such that for all n ∈ N, anbn =
sn and

∑
n∈N

∑
k∈N
|an〈un, ek〉| < ∞,(1.1)

∑
n∈N

∑
j∈N
|bn〈ej, vn〉| < ∞,(1.2)

and if D + K 6= λI, then T = D + K has a non-trivial hyperinvariant subspace.

Of course, Theorem 1.2 is contained in this one.

1.3. PRELIMINARIES. Before we start the proof of the main theorem, we will need
some material. Our first statement is a folklore result. A proof of it in the Hilbert
space case using Lomonosov’s theorem can be found in Proposition 4.1 of [5].

PROPOSITION 1.5. Let P ∈ B(X) be an idempotent such that dim(P(X)) =
dim((I − P)(X)) = ∞. Then for any compact operator L, the operator P + L has a
non-trivial hyperinvariant subspace.

Proof. First, note that if σp(P + L) 6= ∅, then P + L has a nontrivial hy-
perinvariant subspace. Suppose that σp(P + L) = ∅. By Weyl’s theorem (see for
instance Chapter 0, Theorem 0.10 of [10]), we have that σ(P+ L) ⊂ σ(P)∪ σp(P+
L) = σ(P) = {0, 1}. As {0, 1} = σe(P) ⊂ σ(P+ L), we get that σ(P+ L) = {0, 1}.
So by the Riesz–Dunford functional calculus, we infer that P + L has a nontrivial
hyperinvariant subspace.

The next statement is a well known fact. The reader can find a proof in [8].

PROPOSITION 1.6. Let Γ be a rectifiable piecewise smooth Jordan curve. If F :
Γ → K(X) is a continuous application then

L =
∫
Ω

F(z)dz

exists and is a compact operator.

We recall next a well known result concerning normal operators on complex
Hilbert spaces. Its states that every normal operator on an Hilbert space can be
seen as a multiplication operator on some measure space. We refer the reader to
Theorem 2.4.5 of [2], for a proof of this result.
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THEOREM 1.7. Let N ∈ B(H) be a normal operator on a complex Hilbert space H.
Then there exists a sigma-finite measure space (Ω, µ), a bounded function f ∈ L∞(Ω, µ)
and a unitary operator W : H → L2(Ω, µ) such that

M f W = WN.

Lastly we mention a well known result for compact operators on a Hilbert
space. The reader can find a proof of this result in Chapter VI, Theorem 1.1 of [7].

THEOREM 1.8. Let K ∈ K(H) be a compact operator on the Hilbert space H. Then
there exist two orthonormal families (un)n∈N, (vn)n∈N of vectors in H and a sequence
(sn)n∈N of positive real numbers such that lim

n→∞
sn = 0, and

K = ∑
n∈N

snun ⊗ vn.

2. PROOF OF THEOREM 1.3

To prove Theorem 1.3, we will use the same approach as in [5]. The idea is to
create, for all z ∈ Γ, a “nice” right inversion formula for T − z. Then, using some
unconventional Riesz–Dunford functional calculus, we will prove that the com-
mutant of T is included in the commutant of a compact perturbation of an idem-
potent. This last operator will have a nontrivial hyperinvariant subspace, and so
T will as well. We start with some technical results for building the right inver-
sion formula. In this section we will assume that the assumptions of Theorem 1.3
are always satisfied. In particular we need to assume that K = ∑

n∈N
snun ⊗ vn is a

compact operator (as it is written, K need not be a compact operator in general).

LEMMA 2.1. Denote by T = M f + K the compact perturbation of the multi-
plication operator M f on the Banach space Lp(Ω, µ). Suppose that assumptions (iii)
and (iv) of Theorem 1.3 are satisfied and σp(T) ∩ Γ = ∅. Then for every z ∈ Γ,
I + A(z)(M f − z) is invertible.

Proof. Suppose that for some z ∈ Γ, I + A(z)(M f − z) is not invertible. As
A(z) is compact and M f − z is a bounded operator, we have that A(z)(M f − z) is
compact. So −1 ∈ σp(A(z)(M f − z)). Hence there exists h ∈ Lp(Ω, µ) such that
h 6= 0 and A(z)(M f − z)h = −h. We have that

−h = A(z)(M f − z)h =
(

∑
n∈N

sn((M f − z)−1un)⊗ ((M f − z)−1vn)
)
(M f − z)h

=
(

∑
n∈N

sn((M f − z)−1un)⊗ vn

)
h.
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Applying (M f − z) on each side of the equality, we obtain

−(M f − z)h =
(

∑
n∈N

snun ⊗ vn

)
h = Kh.

So we have that zh = (M f + K)h = Th, thus z ∈ σp(T) ∩ Γ which is a contradic-
tion with the assumption that σp(T) ∩ Γ = ∅.

The following lemma is a straightforward corollary of Lemma 2.1.

LEMMA 2.2. Suppose that assumptions (iii) and (iv) of Theorem 1.3 are satisfied
and σp(T) = ∅. Then for all z ∈ Γ, B(z) = (I + A(z)(M f − z))−1 A(z) is a compact
operator. Moreover the application

B : Γ → K(Lp(Ω, µ))

z 7→ B(z)

is continuous.

Our next lemma is

LEMMA 2.3. Let Γ be a rectifiable piecewise smooth Jordan curve such that as-
sumption (ii) of Theorem 1.3 is satisfied. Let L ⊂ Lp(Ω, µ) be the linear manifold of all
finite linear combination of indicator functions of measurable sets Si such that f (Si) is at
a strictly positive distance of Γ. Let W =

⋂
z∈Γ

Ran(M f − z). Then L and W are dense

in Lp(Ω, µ).

Proof. We have that w ∈ L if and only if there exist a1, . . . , ar ∈ C and

S1, . . . , Sr measurable subsets of Ω such that w =
r
∑

i=1
ai1Si and inf

ξ∈Si ,z∈Γ
| f (ξ) −

z| > 0 for each i = 1, . . . , r.
In order to prove that the closure of L is Lp(Ω, µ), we just need to prove that

all indicator function of measurable sets are in the closure of L, because the linear
manifold of all finite linear combination of indicator function is dense in Lp(Ω, µ).
Let B be a measurable subset of Ω and denote by Bε = {ξ ∈ B, dist( f (ξ), Γ) > ε}.
We have that 1Bε goes to 1B as ε goes to 0 (because µ( f−1(Γ)) = 0) and 1Bε ∈ L.

Then the closure of L is Lp(Ω, µ). As L ⊂ W, the closure of W is Lp(Ω, µ)
as well.

Next comes the following analogue of Lemma 3.4 of [5].

LEMMA 2.4. With the notations of Lemma 2.2, for all z ∈ Γ, denote by R(z) the
(possibly unbounded) operator defined by R(z) = (M f − z)−1 − B(z). Then for every
w ∈W we have that

(T − z)R(z)w = w.

In this lemma, R(z) can be an unbounded operator because (M f − z)−1 can
be unbounded if z ∈ σ(M f ) ∩ Γ. According to Lemma 2.2, B(z) is a compact
operator for each z ∈ Γ.



HYPERINVARIANT SUBSPACES FOR SOME COMPACT PERTURBATIONS 133

Proof. Let w ∈W and z ∈ Γ. Observe that

(M f − z)A(z)(M f − z)

= (M f − z)
(

∑
n∈N

sn((M f − z)−1un)⊗ ((M f − z)−1vn)
)
(M f − z)

= ∑
n∈N

snun ⊗ vn = K.

For all w ∈ W ⊂ Ran(M f − z) it makes senses to write R(z)w. Replacing K by
this expression, we have that

(T − z)R(z)w

= (M f − z + K)((M f − z)−1 − (I + A(z)(M f − z))−1 A(z))w

= (M f − z)(I + A(z)(M f − z))((M f − z)−1 − (I + A(z)(M f − z))−1 A(z))w

= (M f − z)((M f − z)−1 + A(z)− A(z))w = w,

which proves Lemma 2.4.

LEMMA 2.5. Let S ∈ {T}′ and w ∈W. Then Sw ∈W.

Proof. Let S ∈ {T}′, z ∈ Γ and w ∈ W. Using in the fourth equality the fact
that K = (M f − z)A(z)(M f − z), we have that

Sw = S(T − z)R(z)w = (T − z)SR(z)w = (M f − z)SR(z)w + KSR(z)w

= (M f − z)SR(z)w + (M f − z)A(z)(M f − z)SR(z)w

= (M f − z)(SR(z)w + A(z)(M f − z)SR(z)w).

So Sw ∈ Ran(M f − z).

PROPOSITION 2.6. Let Γ satisfy assumptions (i) and (ii) of Theorem 1.3. Denote
by Θ the interior of Γ. Then for all w ∈ L we have

M1 f−1(Θ)
w =

−1
2iπ

∫
Γ

(M f − z)−1w dz,

with Γ oriented in the counter clockwise direction. Moreover, if there exist a, b ∈ σe(M f )
such that a ∈ Θ and b /∈ Θ∪ Γ, then dim(Ran(M1 f−1(Θ)

))=dim(Ran(I−M1 f−1(Θ)
))

= ∞.

Note that M1 f−1(Θ)
is an idempotent (i.e. (M1 f−1(Θ)

)2 = M1 f−1(Θ)
).

Proof. Let w ∈ L. So there exist a1, . . . , ar ∈ C and S1, . . . , Sr measurable

subsets of Ω such that w =
r
∑

i=1
ai1Si and inf

ξ∈Si ,z∈Γ
| f (ξ) − z| > 0 for each i =
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1, . . . , r. As µ( f−1(Γ)) = 0, we have for µ-almost every ξ ∈ Ω that f (ξ) /∈ Γ and

1
2iπ

∫
Γ

(M f − z)−1w(ξ)dz =
r

∑
i=1

1
2iπ

∫
Γ

ai1Si (ξ)

f (ξ)− z
dz=

r

∑
i=1

ai1Si (ξ)
1

2iπ

∫
Γ

1
f (ξ)−z

dz

= −
r

∑
i=1

ai1Si (ξ)1Θ( f (ξ)) = −M1 f−1(Θ)
w(ξ).

Now we will prove that a ∈ σe(M f )∩Θ implies that dim(Ran(M1 f−1(Θ)
)) =

∞. A similar argument works for the other assertion. First note that for every
compact operator L ∈ K(Lp(Ω, µ)), we have a ∈ σ(M f + L). In other words,
M f + L− aI does not have a bounded inverse. Fix ε > 0 and denote by B the disk
B = {w ∈ C, |a−w| < ε}. Denote by f̃ = f − ( f − a− ε)1 f−1(B). If | f (ξ)− a| > ε,

then f̃ (ξ)− a = f (ξ)− a. Otherwise f̃ (ξ)− a = ε. Now f̃ is a bounded function
and f̃ − a is bounded away from zero (i.e. there exists a constant c > 0 such that
for almost every ξ ∈ Ω, | f̃ (ξ)− a| > c > 0). So 1/( f̃ − a) is a bounded function
and

M1/( f̃−a) = (M f̃ − a)−1 = (M f −M f−a−ε M1 f−1(B)
− a)−1

is a bounded operator. If M1 f−1(B)
were a compact operator then M f̃ − a would

not be invertible. So M1f−1(B)
is not a compact idempotent and dim(Ran(M1f−1(B)

))

= ∞. If we choose ε small enough we have that Ran(M1 f−1(B)
) ⊂ Ran(M1 f−1(Θ)

),

so dim(Ran(M1 f−1(Θ)
)) = ∞.

Proof of Theorem 1.3. Suppose that σp(T) = ∅. Recall that for all z ∈ Γ,
B(z) = (I + A(z)(M f − z))−1 A(z) and R(z) = (M f − z)−1 − B(z). Then by
Lemma 2.2, B(z) is a compact operator and the application B : Γ → K(X) is
continuous. So ‖B(z)‖ is bounded on the compact set Γ and we have∫

Γ

‖B(z)‖dz < ∞.

Moreover, by Lemma 2.4, we have for all w ∈ W that (T − z)R(z)w = w. From
Proposition 1.6, we have that

L =
1

2iπ

∫
Γ

B(z)dz

is a compact operator. From Proposition 2.6, we know that there exists an idem-
potent P (P = M1 f−1(Θ)

) such that for all w ∈ L,

Pw =
−1
2iπ

∫
Γ

(M f − z)−1wdz,

and such that dim(P(X)) = dim((I − P)(X)) = ∞.
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Let S ∈ {T}′. Then for all w ∈ W we have that (T − z)SR(z)w = S(T −
z)R(z)w = Sw = (T − z)R(z)Sw (because Sw ∈ W by Lemma 2.5). As σp(T) =
∅, T − z is injective so SR(z)w = R(z)Sw. Then for all w ∈ L (remember that
L ⊂W) we have

S(P + L)w =
−1
2iπ

∫
Γ

SR(z)w dz =
−1
2iπ

∫
Γ

R(z)Sw dz = (P + L)Sw.

As the closure of L is Lp(Ω, µ), we get that S ∈ {P + L}′. So {T}′ ⊂ {P + L}′.
As P + L has a nontrivial hyperinvariant subspace by Proposition 1.5, T also has
one.

Let N ∈ B(H) be a normal operator on a Hilbert space. Let (Ω, µ) be a mea-
sure space, f ∈ L∞(Ω, µ) and W : L2(Ω, µ)→ H be a unitary operator satisfying
the consequences of Theorem 1.7. Let K ∈ K(H) be a compact operator. Then
WKW∗ is a compact operator on L2(Ω, µ), so by Theorem 1.8 there exist a se-
quence (sn)n∈N of positive real numbers such that lim

n→∞
sn = 0 and two orthonor-

mal families (un)n∈N, (vn)n∈N of vectors in H such that WKW∗ = ∑
n∈N

snun ⊗ vn.

With these notations, one can state a direct corollary of Theorem 1.3 for compact
perturbations of normal operators on Hilbert spaces.

COROLLARY 2.7. Let N ∈ B(H) be a bounded normal operator and K ∈ K(H)
be a compact operator. With the notations as above, suppose that there exists a rectifiable
piecewise smooth Jordan curve Γ such that:

(i) There exist a, b ∈ σe(N) such that a is in the interior of Γ and b is in the exterior
of Γ.

(ii) µ( f−1(Γ)) = 0.
(iii) For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(M f − z) and vn ∈ Ran(M f − z)∗.
(iv) Denote by A(z) the (possibly unbounded) operator A(z)= ∑

n∈N
sn((M f − z)−1un)

⊗((M f − z)−1vn). For all z ∈ Γ, we suppose that A(z) is a compact operator, and
A : Γ → K(H) is a continuous application.

Then the operator T = N + K has a nontrivial hyperinvariant subspace.

We next give some simple applications of this corollary.

EXAMPLE 2.8. Let (Ω, µ) be a borelian σ-finite measure space. More pre-
cisely, we set Ω = {ξ ∈ C, |ξ| 6 1} and we set µ = m be the Lebesgue measure on
the complex plane. Denote by A = {ξ ∈ C, 1/3 6 |ξ| 6 2/3}. Let f ∈ L∞(Ω, µ)
be the bounded function defined by f (ξ) = ξ. Let g, h ∈ L2(Ω, µ), and denote
by u = (1 − 1A)g and v = (1 − 1A)h. Let Γ = {z ∈ C, |z| = 1/2}. Then
σe(M f ) = Ω, µ( f−1(Γ)) = 0 and for all z ∈ Γ, u/( f − z), v/( f − z) ∈ L2(Ω, µ).
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Moreover the application

A :Γ → K(H)

z 7→ u
f − z

⊗ v
f − z

is continuous. By Corollary 2.7, M f + u⊗ v has a nontrivial hyperinvariant sub-
space.

EXAMPLE 2.9. Let (Ω, µ) be a borelian σ-finite measure space. More pre-
cisely, we set Ω = {ξ ∈ C, |ξ| 6 2} and we set µ = m be the Lebesgue measure
on the complex plane. Let f ∈ L∞(Ω, µ) be the bounded function defined by
f (ξ) = ξ. Let gn, hn ∈ L2(Ω, µ) such that ‖gn‖ 6 1 and ‖hn‖ 6 1, and denote by
un(ξ) = (1− |ξ|)gn(ξ) and vn(ξ) = (1− |ξ|)hn(ξ). Let (sn)n∈N be a sequence of
positive real numbers such that ∑

n∈N
sn < ∞. Let Γ = {z ∈ C, |z| = 1}. Then for

all z ∈ Γ we have∫
Ω

|un(ξ)|2
|ξ − z|2 dµ(ξ) 6

∫
Ω

|1− |ξ||2|gn(ξ)|2
||ξ| − |z||2 dµ(ξ) =

∫
Ω

|1− |ξ||2|gn(ξ)|2
||ξ| − 1|2 dµ(ξ)

=
∫
Ω

|gn(ξ)|2dµ(ξ) < ∞.

So un ∈ Ran(M f − z). In the same way, we can prove that vn ∈ Ran(M f − z)∗.
For all z ∈ Γ, we have that

‖A(z)‖ =
∥∥∥ ∑

n∈N
sn((M f − z)−1un)⊗ ((M f − z)−1vn)

∥∥∥
6 ∑

n∈N
sn‖gn‖‖hn‖ 6 ∑

n∈N
sn < ∞.

So A(z) is a bounded operator. Denote by AN(z) =
N
∑

n=1
sn((M f − z)−1un) ⊗

((M f − z)−1vn). Then we have that

‖A(z)− AN(z)‖ =
∥∥∥ ∞

∑
n=N+1

sn((M f − z)−1un)⊗ ((M f − z)−1vn)
∥∥∥ 6 ∞

∑
n=N+1

sn.

The last term is the tail of a convergent series, so it goes to 0 as N goes to infinity.
So A(z) is a limit of finite rank operators, hence it is a compact operator.

Let z1, z2 ∈ Γ. Then

‖A(z1)−A(z2)‖6‖A(z1)−AN(z1)‖+‖AN(z1)−AN(z2)‖+‖AN(z2)−A(z2)‖.

The quantities on the right hand side are small if N is big enough and z1 is
close enough of z2. So A : Γ → K(H) is a continuous application. Hence
M f + ∑

n∈N
snun ⊗ vn has a nontrivial hyperinvariant subspace.
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Now we give a version of Corollary 2.7 for compact perturbations of diago-
nal operators.

COROLLARY 2.10. Let (en)n∈N be an orthonormal basis of the Hilbert space H.
Let D = ∑

n∈N
λnen ⊗ en be a bounded diagonal operator on H. Let (sn)n∈N be a sequence

of positive real numbers such that lim
n→∞

sn = 0. Let (un)n∈N, (vn)n∈N be two orthonor-
mal families of vectors in H. We denote K = ∑

n∈N
snun ⊗ vn. Suppose that there exists a

rectifiable piecewise smooth Jordan curve Γ such that:
(i) There exist two accumulation points a, b of eigenvalues of D such that a is in the

interior of Γ and b is in the exterior of Γ.
(ii) Γ ∩ σp(D) = ∅.

(iii) For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(D− z) and vn ∈ Ran(D− z)∗.
(iv) Denote by A(z) the (possibly unbounded) operator A(z) = ∑

n∈N
sn((D− z)−1un)

⊗((D∗ − z)−1vn). For all z ∈ Γ, we suppose that A(z) is a compact operator, and
A : Γ → K(H) is a continuous application.

Then the operator T = D + K has a nontrivial hyperinvariant subspace.

Proof. Let Ω = N. Let µ = ∑
n∈N

(1/2n)δ{n}, with δ{n} being the Dirac mea-

sure at the point {n}. Let f : N → C be defined by f (n) = λn. Then D is
unitarily equivalent to M f , the multiplication by f on L2(Ω, µ). As a and b are
accumulation points of eigenvalues of D, we have that a, b ∈ σe(D) = σe(M f ).
As Γ ∩ σp(D) = ∅, we have that f−1(Γ) = ∅ so µ( f−1(Γ)) = 0. By Corollary 2.7,
D + K has a nontrivial hyperinvariant subspace.

3. CONSEQUENCES FOR COMPACT PERTURBATIONS OF DIAGONAL OPERATORS ON A
HILBERT SPACE: PROOF OF THEOREM 1.4

The goal of this section is to prove Theorem 1.4. We will need some material
before proving Theorem 1.4. First we will need a modified version of Lemma 2.1
of [5].

LEMMA 3.1. Let (λk)k∈N be a bounded sequence of complex numbers, and let
(αn,k)n,k∈N be a sequence of complex numbers such that

∑
n∈N

∑
k∈N
|αn,k| < ∞.

Then for almost every x ∈ R we have that

∑
n∈N

∑
k∈N

|αn,k|2
|Re(λk)− x|2 < ∞.
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Proof. Suppose that ∑
n∈N

∑
k∈N
|αn,k| < ∞. Then for every ε > 0 there exists

δ > 0 such that 2δ ∑
n∈N

∑
k∈N
|αn,k| < ε. We denote by In,k the interval [Re(λk) −

δαn,k,Re(λk) + δαn,k], and we define the functions fn,k on R by

fn,k(x) =
|αn,k|2

|Re(λk)− x|21R\In,k
(x).

We have that∫
R

fn,k(x)dx =
∫

R\In,k

|αn,k|2
|Re(λk)− x|2 dx = |αn,k|2

2
δ|αn,k|

=
2|αn,k|

δ
.

Let us denote by F the function F(x) = ∑
n∈N

∑
k∈N

fn,k(x). As the functions fn,k

are nonnegative functions, using Beppo–Levi theorem we have that∫
R

F(x)dx = ∑
k∈N

∑
n∈N

∫
R

fn,k(x)dx =
2
δ ∑

k∈N
∑

n∈N
|αn,k| < ∞.

So F belongs to L1, and for almost every x ∈ R, we have F(x) < ∞. Denote by Λ
the set

Λ =
{

x ∈ R, ∑
k∈N

∑
n∈N

|αn,k|2
|Re(λk)− x|2 = ∞

}
.

Obviously we have that

Λ ⊂
( ⋃

k,n∈N
In,k

)
∪ {x ∈ R, F(x) = ∞}.

Using the additivity of the Lebesgue measure we get that

m(Λ) 6 ∑
k∈N

∑
n∈N

m(In,k) + m({x ∈ R, F(x) = ∞}) = 2δ ∑
k∈N

∑
n∈N
|αn,k|+ 0 6 ε.

As ε was chosen arbitrarily, we eventually get that m(Λ) = 0.

LEMMA 3.2. Suppose that conditions (1.1) and (1.2) of Theorem 1.4 are satisfied,
then for almost every x ∈ R, we have that

∑
k∈N

∑
n∈N

|an〈un, ek〉|2
|Re(λk)− x|2 < ∞, ∑

n∈N
∑
j∈N

|bn〈ej, vn〉|2

|Re(λk)− x|2 < ∞.

The proof is a direct consequence of Lemma 3.1.
In order to use Theorem 1.3, we need to define a Jordan curve Γ that will

split the eigenvalues of D in two parts. Then we will need to check whether A(z)
has the properties required on Γ. First we write A1(z) = ∑

n∈N
an((D− z)−1un)⊗
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en and A2(z) = ∑
n∈N

bnen ⊗ ((D∗ − z)−1vn). Note that if A1 and A2 have the

properties required by Theorem 1.3, then

A1(z)A2(z) =
(

∑
n∈N

an((D− z)−1un)⊗ en

)(
∑

n∈N
bnen ⊗ ((D∗ − z)−1vn)

)
= ∑

n∈N
sn((D− z)−1un)⊗ ((D∗ − z)−1vn) = A(z),

and A(z) has the required properties. Now we will need some estimates on
‖A1(z)‖ and ‖A2(z)‖. After that we will be able to draw the Jordan curve Γ
that we need.

LEMMA 3.3. Let z ∈ C \ {λk, k ∈ N}. We denote x = Re(z). Suppose that
condition (1.1) of Theorem 1.4 is satisfied. Then for almost every x ∈ R \ {Re(λk), k ∈
N}, A1(z) is a bounded operator and we have

‖A1(z)‖2 6 ∑
k∈N

∑
n∈N

|an〈un, ek〉|2
|Re(λk)− x|2 .

Proof. Let z ∈ C \ {λk, k ∈ N}. Note that |Re(λk − z)| 6 |λk − z|. So we
have that

∑
k∈N

∑
n∈N

|an〈un, ek〉|2
|λk − z|2 6 ∑

k∈N
∑

n∈N

|an〈un, ek〉|2
|Re(λk)− x|2 .

Let h ∈ H. Using Cauchy–Schwartz inequality we get that

‖(A1(z))(h)‖2 = ∑
k∈N

∣∣∣ ∑
n∈N

an〈h, en〉〈un, ek〉
λk − z

∣∣∣2
6 ∑

k∈N

∥∥∥∑
n∈N

an〈un, ek〉
λk − z

en

∥∥∥2∥∥∥∑
n∈N
〈en, h〉en

∥∥∥2
=∑

k∈N
∑

n∈N

∣∣∣ an〈un, ek〉
λk − z

∣∣∣2‖h‖2.

Hence the inequality of Lemma 3.3 holds. We used the condition (1.1) in Cauchy–

Schwartz inequality to ensure that
( an〈un, ek〉

λk − z

)
n∈N

is a square summable se-

quence.

Similarly, one can prove the following lemma.

LEMMA 3.4. Let z ∈ C \ {λk, k ∈ N}. We denote x = Re(z). Suppose that
condition (1.2) of Theorem 1.4 is satisfied. Then for almost every x ∈ R \ {Re(λk), k ∈
N}, A2(z) is bounded and we have

‖A2(z)‖2 6 ∑
n∈N

∑
j∈N

|bn〈ej, vn〉|2

|Re(λk)− x|2 .

LEMMA 3.5. Suppose that conditions (1.1) and (1.2) of Theorem 1.4 are satisfied,
then for almost every x0 ∈ R \ {Re(λk), k ∈ N}, for every z ∈ s0 = {z = x0 +
iy, y ∈ R}, we have that A1(z) and A2(z) are compact operators. Moreover the maps
A1 : s0 → K(H) and A2 : s0 → K(H) are continuous.
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Proof. First note that conditions (1.1) and (1.2) and Lemmas 3.3 and 3.4 give
us that the operators A1(z) and A2(z) are bounded for almost every x0. Let EN
be the orthogonal projection of H onto the subspace generated by e0, e1, . . . , eN .
Then we have that

EN A1(z) = ∑
k6N

∑
n∈N

an〈un, ek〉
λk − z

ek ⊗ en.

Note that EN A1(z) has finite rank. So we get that

A1(z)− EN A1(z) = ∑
k>N

∑
n∈N

an〈un, ek〉
λk − z

ek ⊗ en.

Using Lemma 3.3, we get that

‖A1(z)− EN A1(z)‖ 6 ∑
k>N

∑
n∈N

|an〈un, ek〉|2
|Re(λk)− x|2 .

According to Lemma 3.2, the right term is the tail of a convergent series for almost
every x0 ∈ R, so it goes to zero as N goes to infinity. Therefore A1(z) is a uniform
limit of finite rank operators, so it is a compact operator.

Now take z1, z2 ∈ s0. Thanks to the triangular inequality we get that

‖A1(z1)− A1(z2)‖ 6 ‖A1(z1)− EN A1(z1)‖+ ‖EN A1(z1)− EN A1(z2)‖
+ ‖EN A1(z2)− A1(z2)‖.

We can fix N ∈ N big enough, such that the norms ‖A1(z1)− EN A1(z1)‖ and
‖EN A1(z2)− A1(z2)‖ are small. Now a simple computation gives that

EN A1(z1)− EN A1(z2) =
( N

∑
k=1

( 1
λk − z1

− 1
λk − z2

)
ek ⊗ ek

)(
∑

n∈N
anun ⊗ en

)
.

So we have that

‖EN A1(z1)− EN A1(z2)‖ 6 max
k=1,...,N

∣∣∣ 1
λk − z1

− 1
λk − z2

∣∣∣∥∥∥ ∑
n∈N

anun ⊗ en

∥∥∥.

Note that
∥∥∥ ∑

n∈N
anun ⊗ en

∥∥∥ does not depend on z1, z2. Remember that for

every k ∈ N, x0 6= Re(λk), so the function fk : R→ C defined by f (y) = 1
λk−x0−iy

is continuous. So max
k=1,...,N

∣∣∣ 1
λk−z1

− 1
λk−z2

∣∣∣ is small when z1 is close to z2. We deduce

that ‖EN A1(z1) − EN A1(z2)‖ is small when z1 is close to z2. It follows that the
map A1 : s0 → K(H) is continuous. The same proof works for the map A2 : s0 →
K(H).

Note that if A1(z) and A2(z) satisfy condition (iii) and (iv) of Theorem 1.3,
so does A(z) = A1(z)A2(z).
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Proof of Theorem 1.4. Denote ρ the spectral radius of D. If σe(D) = {λ}, then
there exists a compact operator Ke such that D = λI + Ke. So T = D + K =
λI + Ke + K is a compact perturbation of a scalar operator, and Lomonosov theo-
rem (see Theorem 6.1.2 of [3]) gives the existence of a nontrivial hyperinvasriant
subspace.

Suppose that σe(D) contains at least two points a and b. Considering if
necessary a certain rotation eiθ D of D we can assume that Re(a) < Re(b). By
Lemma 3.5, for almost every x0 ∈]Re(a),Re(b)[\{Re(λk), k ∈ N}, denote s0 =
{x0 + iy, y ∈ [−ρ− 1, ρ + 1]}, we have that A : s0 → K(H) is a well defined and
continuous application. Denote

s1 = {x + i(ρ + 1), x ∈ [x0 − ρ− 1, x0]},
s2 = {x0 − ρ− 1 + iy, y ∈ [−ρ− 1, ρ + 1]},
s3 = {x− i(ρ + 1), x ∈ [x0 − ρ− 1, x0]}.

Note that (s1 ∪ s2 ∪ s3) ∩ σ(D) = ∅. So for all z ∈ s1 ∪ s2 ∪ s3, (D − z)−1 is a
bounded operator. So we have that

A(z) = ∑
n∈N

sn((D− z)−1un)⊗ ((D∗ − z)−1vn)

= (D− z)−1
(

∑
n∈N

snun ⊗ vn

)
(D− z)−1 = (D− z)−1K(D− z)−1.

Obviously A : s1 ∪ s2 ∪ s3 → K(H) is well defined and continuous. Denote
Γ = s0 ∪ s1 ∪ s2 ∪ s3. As A : s0 → K(H) is also continuous and s0 ∩ (s1 ∪ s2 ∪ s3) =
{x0 − i(ρ + 1), x0 + i(ρ + 1)} 6= ∅, we have that A : Γ → K(H) is continuous.
Finally an application of Theorem 1.3 completes the proof.
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