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ABSTRACT. We study an increasing family of spaces {Bp
k }16p6∞ by adapting

the techniques used in the study of Beurling algebras by Coifman and Meyer
(Au delà des opérateurs pseudo-différentiels, Asterisque 57(1978)). Also we
study the Schatten–von Neumann properties of pseudo-differential operators
with symbols in the spaces Bp

k .
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INTRODUCTION

Sobolev–Kato spaces Hs
ul were introduced in [19] by Tosio Kato and are

known as uniformly local Sobolev spaces. These spaces are special cases of Wiener
amalgam spaces and play an important role in many areas of analysis. In addi-
tion to the original use, they were also used in the analysis of pseudo-differential
operators as more general classes of symbols (see [2], [5]–[7]). The uniformly lo-
cal Sobolev spaces can be seen as a convenient class of functions with the local
Sobolev property and certain boundedness at infinity. The same philosophy can
explain the notion of Wiener amalgam spaces: that is the local behavior is given
by the local component, while the global component (determines) sets out how
the local pieces behave together. Wiener amalgam spaces were introduced by
Hans Georg Feichtinger in 1980. In this paper we study a class of spaces which
generalizes the Sobolev–Kato spaces. As we noted in [2], Sobolev–Kato spaces are
particular cases of Wiener amalgam spaces with local component Hs and global
component Lp. Allowing more general weight functions, in this paper we con-
sider as local component the spaces Bk = B2,k similar to those introduced by Lars
Hörmander (see [18], vol. 2) and we preserve the global component Lp. Concern-
ing the weight function k we shall make a hypothesis which ensures that Bk is
a module over BC∞ (see the notations). Most of the results proved in the case



160 GRUIA ARSU

of Sobolev–Kato spaces are preserved. In this paper we study some multiplica-
tion properties of Hörmander–Kato spaces and we prove Schatten–von Neumann
class properties for pseudo-differential operators with symbols in the spaces Bp

k .
Besides the properties of the spaces Bp,k, the main techniques we use in the study
of these spaces are inspired by those used in the study of Beurling algebras by
Coifman and Meyer [9]. In Section 1 we recall some properties of the spaces Bp,k
and we establish the main technical result used in this paper by adapting the
techniques of Coifman and Meyer. In Section 2 we introduce and we study an in-
creasing family of spaces {Bp

k }16p6∞. Here the Hörmander–Kato spaces Bp
k are

defined as Wiener amalgam spaces with local component Bk and global compo-
nent Lp, i.e. Bp

k = W(Bk, Lp). The Schatten–von Neumann class properties for
pseudo-differential operators with symbols in the spaces Bp

k are presented in the
last section.

As we mentioned above, Sobolev–Kato spaces Hs
ul were used in the analy-

sis of pseudo-differential operators as more general classes of symbols. We try
to do the same thing with Hörmander–Kato spaces that we have introduced.
A problem widely investigated was to determine conditions on the symbol of
a pseudo-differential operator which guarantees that this operator belongs to a
Schatten–von Neumann class. There are different sets of assumptions which give
an answer to this problem, see e.g. Arsu [1]–[3], Grochenig and Heil [16], Heil,
Ramanathan and Topiwala [17], Toft [22]–[25], etc. The Hörmander–Kato spaces
Bp

k provide a new set of assumptions which gives a positive answer to this prob-
lem. Among others, we prove that a(X, D) ∈ Bp(L2(Rn)) if a ∈ Bp

k (R
n ×Rn) for

weight function k satisfying the condition 1
k ∈ L1(Rn × Rn). Here for a Hilbert

space H and 1 6 p < ∞, we denoted by Bp(H) the Schatten ideal of compact
operators onH whose singular values lie in lp.

Note that in the papers of Bourdaud and Meyer [8] and of Boulkhemair
[4] it is proved that, for some particular weights k, pseudo-differential operators
with symbols in B∞

k (Rn × Rn) are L2 bounded. This is the case when the local
component is L∞(Rn). Therefore it is natural to study the case when the local
component is Lp(Rn), 1 6 p < ∞ and this is done in the spirit of Coifman and
Meyer [9].

SOME NOTATIONS. Throughout the paper we are going to use the same notations
as in [18] for the usual spaces of functions and distributions.

û = F (u) is the Fourier transform of u.
“Cst” will always stand for some positive constant which may change from

one inequality to the other.
u ≈ v means that u

v and u
v are bounded.

If m is an integer > 0 or m = ∞, then BCm(Rn) is the space of bounded
functions in Rn with bounded derivatives up to the order m with the (semi)norms
‖ f ‖BC l = max

|α|6l
sup
x∈Rn

|∂α f (x)| < ∞, l < m + 1.
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C∞(Rn) is the space of continuous functions vanishing at infinity.
C∞

pol(R
n) is the space of smooth functions with derivatives of polynomial

growth.
[x] denotes the integral part of the real number x.
〈·〉 is the function 〈·〉 : Rn → R, 〈ξ〉 = (1 + |ξ|2) 1

2 , ξ ∈ Rn.

1. THE SPACES Bk ≡ B2,k

The spaces Bp,k(Rn) are defined essentially as inverse Fourier transforms of
Lp spaces with respect to appropriate densities.

DEFINITION 1.1. (i) A positive measurable function k defined in Rn will be
called a weight function of polynomial growth if there are positive constants C and
N such that

(1.1) k(ξ + η) 6 C〈ξ〉Nk(η), ξ, η ∈ Rn.

The set of all such functions k will be denoted by Kpol(Rn).
(ii) For a weight function of polynomial growth k, we shall write Mk(ξ) =

C〈ξ〉N , where C, N are the positive constants that define k.

REMARK 1.2. (i) An immediate consequence of Peetre’s inequality is that
Mk is weakly submultiplicative, i.e.

Mk(ξ + η) 6 Ck Mk(ξ)Mk(η), ξ, η ∈ Rn,

where Ck = 2
N
2 C−1 and that k is moderate with respect to the function Mk or

simply Mk-moderate, i.e.

k(ξ + η) 6 Mk(ξ)k(η), ξ, η ∈ Rn.

(ii) Let k ∈ Kpol(Rn). From definition we deduce that

1
Mk(ξ)

= C−1〈ξ〉−N 6
k(ξ + η)

k(η)
6 C〈ξ〉N = Mk(ξ), ξ, η ∈ Rn.

In fact, the left-hand inequality is obtained if ξ is replaced by−ξ and η is replaced
by ξ + η in (1.1). If we take η = 0 we obtain the useful estimates

(1.2) C−1k(0)〈ξ〉−N 6 k(ξ) 6 Ck(0)〈ξ〉N , ξ ∈ Rn.

The following lemma is an easy consequence of the definition and the above
estimates.

LEMMA 1.3. Let k, k1, k2 ∈ Kpol(Rn). Then:
(i) k1 + k2, k1 · k2, sup(k1, k2), inf(k1, k2) ∈ Kpol(Rn).

(ii) ks ∈ Kpol(Rn) for every real s.
(iii) If ǩ(ξ) = k(−ξ), ξ ∈ Rn, then ǩ is Mk-moderate hence ǩ ∈ Kpol(Rn).
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(iv) 0 < inf
ξ∈K

k(ξ) 6 sup
ξ∈K

k(ξ) < ∞ for every compact subset K ⊂ Rn.

DEFINITION 1.4. If k ∈ Kpol(Rn) and 1 6 p 6 ∞, we denote by Bp,k(Rn)

the set of all distributions u ∈ S ′ such that û is a function and kû ∈ Lp. For
u ∈ Bp,k(Rn) we define

‖u‖p,k = ‖kû‖p < ∞.

In the next lemma we collect some properties of the the spaces Bp,k(Rn).

LEMMA 1.5. (i) Bp,k(Rn) is a Banach space with the norm ‖ · ‖p,k. We have

S(Rn) ⊂ Bp,k(Rn) ⊂ S ′(Rn)

continuously. S(Rn) is dense in Bp,k(Rn) if p < ∞.
(ii) If k1, k2 ∈ Kpol(Rn) and k2(ξ) 6 Ck1(ξ), ξ ∈ Rn, it follows that

Bp,k1(R
n) ⊂ Bp,k2(R

n).

(iii) The restriction of the isomorphism S ′(Rn) 3 u → ǔ ∈ S ′(Rn) to the space
Bp,k(Rn) induce an isometric isomorphism Bp,k(Rn) 3 u→ ǔ ∈ Bp,ǩ(R

n). Here ǔ is of
course the composition of u and x → −x.

(iv) If L is a continuous linear form on Bp,k(Rn), p < ∞, we have for some v ∈
Bp′ , 1

ǩ
(Rn), 1

p + 1
p′ = 1, L(u) = (2π)n〈v, u〉, u ∈ S(Rn). The norm of this linear form

is ‖v‖p′ , 1
ǩ
. Hence Bp′ , 1

ǩ
(Rn) is the dual space of Bp,k(Rn) and the canonical bilinear form

in Bp,k(Rn)× Bp′ , 1
ǩ
(Rn) is the continuous extension of the bilinear form (2π)n〈v, u〉,

v ∈ Bp′ , 1
ǩ
(Rn), u ∈ S(Rn).

(v) If u ∈ Bp,k(Rn) and φ ∈ S(Rn), it follows that φu ∈ Bp,k(Rn) and that

‖φu‖p,k 6 (2π)−n‖Mkφ̂‖1‖u‖p,k.

(vi) If 1
k ∈ Lp′(Rn), 1

p + 1
p′ = 1, then Bp,k(Rn) ⊂ F−1L1(Rn) ⊂ C∞(Rn).

Proof. (i) The Fourier transformation reduces this part to the fact that

S(Rn) ⊂ Lp
k (R

n) ⊂ S ′(Rn)

continuously and densely, where Lp
k = FBp,k is the Banach space of all measur-

able functions v such that the norm ‖kv‖p < ∞. That S(Rn) ⊂ Lp
k (R

n) follows
from the second inequality in (1.2). To prove that Lp

k (R
n) ⊂ S ′(Rn) we note that

Hölder’s inequality gives ∫
|φv|dξ 6 ‖kv‖p

∥∥∥φ

k

∥∥∥
p′

where 1
p + 1

p′ = 1. This proves our assertion since ‖ φ
k ‖p′ is a continuous semi-

norm in S in view of the first inequality in (1.2). To prove that S is dense in Lp
k

we use first Lebesgue’s dominated convergence theorem to show that Lp
k ∩ E

′ is
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dense in Lp
k , where E ′ is the space of distributions with compact support in Rn.

Suppose now that v ∈ E ′ ∩ Lp
k . Let ϕ ∈ C∞

0 (Rn) be such that supp ϕ ⊂ B(0; 1),∫
ϕ(x)dx = 1. For ε ∈ (0, 1], we set ϕε = ε−n ϕ( ·ε ). Let K =supp v + B(0; 1). Then

using the inequality (1.2) we obtain

‖k(ϕε ∗ v− v)‖p 6 Ck(0) sup
K
〈·〉N‖ϕε ∗ v− v‖p → 0, as ε→ 0.

(ii) and (iii) are easy consequences of the definition.
(iv) If F is the Fourier transformation in S ′(Rn) then

L(u) = (2π)n〈v, u〉 = (2π)n〈FF−1v, u〉 = (2π)n〈F−1v,Fu〉 = 〈F v̌,Fu〉.

Hence the Fourier transformation reduces the theorem to the fact that a contin-
uous linear form on S(Rn) with respect to the norm ‖kU‖p, p < ∞, is a scalar
product with a function V such that V

k ∈ Lp′ and that the norm of the linear form
is ‖V

k ‖p′ .
(v) The proof is identical to the proof of the Theorem 10.1.15 in Hörmander

[18] vol. 2.
(vi) Let u ∈ Bp,k(Rn). If 1

k ∈ Lp′(Rn), then û ∈ L1(Rn) since kû ∈ Lp(Rn)

and 1
p + 1

p′ = 1. Now the Riemann–Lebesgue lemma implies the result. For
x ∈ Rn we have

|u(x)| 6 (2π)−n‖û‖L1 6 (2π)−n‖k−1‖Lp′ ‖kû‖Lp = (2π)−n‖k−1‖Lp′ ‖u‖p,k.

LEMMA 1.6. Let k ∈ Kpol(Rn) and C, N the positive constants that define k and
set mk = [N + n

2 ] + 1 and lk = [N] + n + 1. Let 1 6 p 6 ∞ and δ > 0.
(i) If χ ∈ HN+ n

2 +δ(Rn), then for every u ∈ Bp,k(Rn) we have χu ∈ Bp,k(Rn) and

‖χu‖p,k 6 C(k, n, χ)‖u‖p,k,

where

C(k, n, χ) = (2π)−n‖Mkχ̂‖1 6 C(C, n, δ)‖χ‖
HN+ n

2 +δ ,

Here Hm(Rn) is the usual Sobolev space, m ∈ R. If χ ∈ Hmk (Rn), then

‖χu‖p,k 6 C(C, N, n)
(

∑
|α|6mk

‖∂αχ‖L2

)
‖u‖p,k.

(ii) If χ ∈ C lk (Rn) is Zn-periodic, then for every u ∈ Bp,k(Rn) we have χu ∈
Bp,k(Rn) and

‖χu‖p,k 6 Cst(C, N, n)‖χ‖BC lk (Rn)
‖u‖p,k.

Proof. (i) Since S(Rn) is dense in HN+ n
2 +δ(Rn), we can assume that χ ∈

S(Rn). We know that

‖χu‖p,k 6 (2π)−n‖Mkχ̂‖1‖u‖p,k.



164 GRUIA ARSU

Since Mk(ξ) = C〈ξ〉N , Schwarz inequality gives the estimate of C(k, n, χ)

C(k, n, χ) = (2π)−n‖Mkχ̂‖1 = (2π)−nC
( ∫
〈η〉N |χ̂(η)|dη

)
6 (2π)−nC‖〈·〉−n−2δ‖L1‖χ‖

HN+ n
2 +δ = C(C, n, δ)‖χ‖

HN+ n
2 +δ .

If we take δ = mk − N − n
2 > 0, then HN+ n

2 +δ = Hmk and ‖χ‖
HN+ n

2 +δ ≈
∑

|α|6mk

‖∂αχ‖L2 .

(ii) We shall use some results from [18] vol. 1, pp. 177–179, concerning peri-
odic distributions. If χ ∈ C lk (Rn) is Zn-periodic, then

χ = ∑
γ∈Zn

e2πi〈·,γ〉cγ,

with Fourier coefficients

cγ =
∫
I

χ(x)e−2πi〈x,γ〉dx, I = [0, 1)n, γ ∈ Zn,

satisfying

|cγ| 6 Cst‖χ‖BC lk (Rn)
〈2πγ〉−lk , γ ∈ Zn.

Since êi〈·,η〉u = û(· − η), multiplying by k(ξ) and noting the inequality k(ξ) 6

C〈η〉Nk(ξ − η), we obtain |k(ξ)êi〈·,η〉u(ξ)| 6 C〈η〉N |k(ξ − η)û(ξ − η)| and
‖ei〈·,η〉u‖p,k 6 C〈η〉N‖u‖p,k. It follows that

‖χu‖p,k 6 Cst · C‖χ‖BC lk (Rn)

(
∑

γ∈Zn
〈2πγ〉−lk 〈2πγ〉N

)
‖u‖p,k

6 Cst(C, N, n)‖χ‖BC lk (Rn)
‖u‖p,k.

since lk − N = [N] + n + 1− N > n.

For any x ∈ Rn and for any distribution u on Rn, by τxu we shall denote the
translation by x of u, i.e. τxu = u(· − x) = δx ∗ u.

LEMMA 1.7. Let ϕ ∈ S(Rn) and θ ∈ [0, 2π]n. If

ϕθ = ∑
γ∈Zn

ei〈γ,θ〉τγ ϕ = ∑
γ∈Zn

ei〈γ,θ〉ϕ(· − γ) = ∑
γ∈Zn

ei〈γ,θ〉δγ ∗ ϕ,

then

ϕ̂θ = νθ = (2π)n ∑
γ∈Zn

ϕ̂(2πγ + θ)δ2πγ+θ .
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Proof. We have ϕθ = ϕ ∗ (ei〈·,θ〉S), where S = ∑
γ∈Zn

δγ. We apply Poisson’s

summation formula, F
(

∑
γ∈Zn

δγ

)
= (2π)n ∑

γ∈Zn
δ2πγ, to obtain

ϕ̂θ = ϕ̂ · ̂(ei〈·,θ〉S) = ϕ̂ · τθ Ŝ = (2π)n ϕ̂ · ∑
γ∈Zn

δ2πγ+θ

= (2π)n ∑
γ∈Zn

ϕ̂(2πγ + θ)δ2πγ+θ .

NOTATION 1.8. For k in Kpol(Rn) we denote by Bk(Rn) the Hilbert space
B2,k(Rn). We shall use ‖ · ‖Bk for the norm ‖ · ‖2,k.

As we already said the techniques of Coifman and Meyer, used in the study
of Beurling algebras Aω and Bω (see pp. 7–10 of [9]), can be adapted to the case
spaces Bk(Rn) = B2,k(Rn). An example is the following result.

LEMMA 1.9. Let k ∈ Kpol(Rn). Let {uγ}γ∈Zn be a a family of elements from
Bk(Rn) ∩ D′K(Rn), where K ⊂ Rn is a compact subset such that (K − K) ∩ Zn =
{0}. Put

u = ∑
γ∈Zn

τγuγ = ∑
γ∈Zn

uγ(· − γ) = ∑
γ∈Zn

δγ ∗ uγ ∈ D′(Rn).

Then the following statements are equivalent:
(i) u ∈ Bk(Rn).

(ii) ∑
γ∈Zn

‖uγ‖2
Bk

< ∞.

Moreover, there is C > 1, which does not depend on the family {uγ}γ∈Zn , such
that

(1.3) C−1‖u‖Bk 6
(

∑
γ∈Zn

‖uγ‖2
Bk

) 1
2
6 C‖u‖Bk .

Proof. Let us choose ϕ ∈ C∞
0 (Rn) such that ϕ = 1 on K and supp ϕ = K′

satisfies the condition (K′ − K′) ∩Zn = {0}. For θ ∈ [0, 2π]n we set

ϕθ = ∑
γ∈Zn

ei〈γ,θ〉τγ ϕ = ∑
γ∈Zn

ei〈γ,θ〉δγ ∗ ϕ,

uθ = ∑
γ∈Zn

ei〈γ,θ〉τγuγ = ∑
γ∈Zn

ei〈γ,θ〉δγ ∗ uγ.

Since (K′ − K′) ∩Zn = {0} we have

uθ = ϕθu, u = ϕθu−θ .

Step 1. Suppose first that the family {uγ}γ∈Zn has only a finite number
of non-zero terms and we shall prove in this case the estimate (1.3). Since uθ ,
u ∈ E ′(Rn) ⊂ S ′(Rn) it follows that

ûθ = (2π)−nνθ ∗ û, û = (2π)−nνθ ∗ û−θ ,
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where νθ = ϕ̂θ = (2π)n ∑
γ∈Zn

ϕ̂(2πγ + θ)δ2πγ+θ is a measure of rapid decay at ∞.

Since ûθ , û ∈ C∞
pol(R

n) we get the pointwise equalities

ûθ(ξ) = ∑
γ∈Zn

ϕ̂(2πγ + θ)û(ξ − 2πγ− θ),

û(ξ) = ∑
γ∈Zn

ϕ̂(2πγ + θ)û−θ(ξ − 2πγ− θ).

By using the inequality k(ξ) 6 C〈2πγ + θ〉Nk(ξ − 2πγ− θ) one obtains that

k(ξ)|ûθ(ξ)| 6 C ∑
γ∈Zn
〈2πγ + θ〉N |ϕ̂(2πγ + θ)|k(ξ − 2πγ− θ)|û(ξ − 2πγ− θ)|

and

k(ξ)|û(ξ)| 6 C ∑
γ∈Zn
〈2πγ + θ〉N |ϕ̂(2πγ + θ)|k(ξ − 2πγ− θ)|û−θ(ξ − 2πγ− θ)|.

It follows that

‖uθ‖Bk = ‖kûθ‖L2 6 C
(

∑
γ∈Zn
〈2πγ + θ〉N |ϕ̂(2πγ + θ)|

)
‖kû‖L2 6 Ck,ϕ‖u‖Bk

and
‖u‖Bk 6 Ck,ϕ‖u−θ‖Bk ,

where Ck,ϕ = C sup
θ∈[0,2π]n

∑
γ∈Zn
〈2πγ + θ〉N |ϕ̂(2πγ + θ)| < ∞. Here we can use

Peetre’s inequality in order to estimate the sum uniformly with respect to θ ∈
[0, 2π]n. If C(n) = 2

n+1
2 (1 + 4π2n)

n+1
2 , then from

〈2πγ〉n+1 6 2
n+1

2 〈θ〉n+1〈2πγ + θ〉n+1 6 C(n)〈2πγ + θ〉n+1

one obtains that

∑
γ∈Zn
〈2πγ + θ〉N |ϕ̂(2πγ + θ)| 6 C(n)

(
∑

γ∈Zn
〈2πγ〉−n−1

)
sup〈·〉N+n+1|ϕ̂|.

Now the above estimates can be rewritten as∫
|k(ξ)ûθ(ξ)|2dξ 6 C2

k,ϕ‖u‖
2
Bk

, ‖u‖2
Bk

6 C2
k,ϕ

∫
|k(ξ)û−θ(ξ)|2dξ.

On the other hand, the equality uθ = ∑
γ∈Zn

ei〈γ,θ〉τγuγ implies

ûθ(ξ) = ∑
γ∈Zn

ei〈γ,θ−ξ〉ûγ(ξ)

with finite sum. The functions θ → û±θ(ξ) are in L2([0, 2π]n) and

(2π)−n
∫

[0,2π]n

|û±θ(ξ)|2dθ = ∑
γ∈Zn

|ûγ(ξ)|2.
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Integrating with respect to θ the above inequalities we get that

∑
γ∈Zn

‖uγ‖2
Bk

6 C2
k,ϕ‖u‖

2
Bk

, ‖u‖2
Bk

6 C2
k,ϕ ∑

γ∈Zn
‖uγ‖2

Bk
.

Step 2. The general case is obtained by approximation.
Suppose that u ∈ Bk(Rn). Let ψ ∈ C∞

0 (Rn) be such that ψ = 1 on B(0, 1).
Then ψεu→ u in Bk(Rn) where ψε(x) = ψ(εx), 0 < ε 6 1, x ∈ Rn. Also we have

‖ψεu‖Bk 6 C(k, ψ)‖u‖Bk , 0 < ε 6 1,

where

C(k, ψ) = (2π)−nC sup
0<ε61

( ∫
〈η〉Nε−n|ψ̂( η

ε )|dη
)

= (2π)−nC sup
0<ε61

( ∫
〈εη〉N |ψ̂(η)|dη

)
= (2π)−nC

( ∫
〈η〉N |ψ̂(η)|dη

)
.

Let m ∈ N, m > 1. Then there is εm such that for any ε ∈ (0, εm] we have

ψεu = ∑
|γ|6m

τγuγ + ∑
f inite

τγ((τ−γψε)uγ).

By the first part we get that

∑
|γ|6m

‖uγ‖2
Bk

6 C2
k,ϕ‖ψ

εu‖2
Bk

6 C2
k,ϕC(k, ψ)2‖u‖2

Bk
.

Since m is arbitrary, it follows that ∑
γ∈Zn

‖uγ‖2
Bk

< ∞. Further from

∑
|γ|6m

‖uγ‖2
Bk

6 C2
k,ϕ‖ψ

εu‖2
Bk

, 0 < ε 6 εm,

we obtain that
∑
|γ|6m

‖uγ‖2
Bk

6 C2
k,ϕ‖u‖

2
Bk

, m ∈ N.

Hence
∑

γ∈Zn
‖uγ‖2

Bk
6 C2

k,ϕ‖u‖
2
Bk

.

Now suppose that ∑
γ∈Zn

‖uγ‖2
Bk

< ∞. For m ∈ N, m > 1 we put u(m) =

∑
|γ|6m

τγuγ. Then

‖u(m + p)− u(m)‖2
Bk

6 C2
k,ϕ ∑

m6|γ|6m+p
‖uγ‖2

Bk
.

It follows that {u(m)}m>1 is a Cauchy sequence in Bk(Rn). Let v ∈ Bk(Rn) be
such that u(m) → v in Bk(Rn). Since u(m) → u in D′(Rn), it follows that u = v.
Hence u(m)→ u in Bk(Rn). Since we have

‖u(m)‖2
Bk

6 C2
k,ϕ ∑
|γ|6m

‖uγ‖2
Bk

6 C2
k,ϕ ∑

γ∈Zn
‖uγ‖2

Bk
, m ∈ N,
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we obtain that

‖u‖2
Bk

6 C2
k,ϕ ∑

γ∈Zn
‖uγ‖2

Bk
.

To use the previous result we need a convenient partition of unity. Let m ∈
N and {x1, . . . , xm} ⊂ Rn be such that

[0, 1]n ⊂ (x1 + [ 1
3 , 2

3 ]
n) ∪ · · · ∪ (xm + [ 1

3 , 2
3 ]

n).

Let h̃ ∈ C∞
0 (Rn), h̃ > 0, be such that h̃ = 1 on [ 1

3 , 2
3 ]

n and supp h̃ ⊂ [ 1
4 , 3

4 ]
n. Then

(a) H̃ =
m
∑

i=1
∑

γ∈Zn
τγ+xi h̃ ∈ BC

∞(Rn) is Zn-periodic and H̃ > 1.

(b) hi =
τxi h̃

H̃
∈ C∞

0 (Rn), hi > 0, supp hi ⊂ xi + [ 1
4 , 3

4 ]
n = Ki, (Ki − Ki) ∩ Zn =

{0}, i = 1, . . . , m.

(c) χi = ∑
γ∈Zn

τγhi ∈ BC∞(Rn) is Zn-periodic, i = 1, . . . , m and
m
∑

i=1
χi = 1.

(d) h =
m
∑

i=1
hi ∈ C∞

0 (Rn), h > 0, ∑
γ∈Zn

τγh = 1.

A first consequence of previous results is the next proposition.

PROPOSITION 1.10. Let k ∈ Kpol(Rn) and C, N the positive constants that de-
fine k. Let mk = [N + n

2 ] + 1. Then BCmk (Rn) · Bk(Rn) ⊂ Bk(Rn). In particular
BC∞(Rn) · Bk(Rn) ⊂ Bk(Rn).

Proof. Let u ∈ Bk(Rn). We use the partition of unity constructed above to
obtain a decomposition of u satisfying the conditions of Lemma 1.9. We have

u =
m
∑

i=1
χiu with χiu ∈ Bk(Rn) by Lemma 1.6(ii) and

χiu = ∑
γ∈Zn

τγ(hiτ−γu), hiτ−γu ∈ Bk(Rn) ∩D′Ki
(Rn),

(Ki − Ki) ∩Zn = {0}, i = 1, . . . , m.

So we can assume that u ∈ Bk(Rn) is of the form described in Lemma 1.9.
Let ψ ∈ BCmk (Rn). Then ψu = ∑

γ∈Zn
ψτγuγ = ∑

γ∈Zn
τγ(ψγuγ) with ψγ =

ϕ(τ−γψ), where ϕ ∈ C∞
0 (Rn) is the function considered in the proof of Lemma 1.9.

We apply Lemma 1.9 and Lemma 1.6(i) to obtain

‖ψu‖2
Bk

6 C2
k,ϕ ∑

γ∈Zn
‖ψγuγ‖2

Bk
,

‖ψγuγ‖Bk 6 Cst
(

∑
|α|6mk

‖∂α(ϕ(τ−γψ))‖L2

)
‖uγ‖Bk

6 Cst‖ϕ‖Hmk ‖ψ‖BCmk ‖uγ‖Bk , γ ∈ Zn.
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Hence another application of Lemma 1.9 gives

‖ψu‖2
Bk

6 Cst‖ϕ‖2
Hmk ‖ψ‖2

BCmk ∑
γ∈Zn

‖uγ‖2
Bk

6 Cst‖ϕ‖2
Hmk ‖ψ‖2

BCmk ‖u‖2
Bk

.

2. THE HÖRMANDER–KATO SPACES Bp
k

We begin by proving some results that will be useful later. Let ϕ, ψ ∈
C∞

0 (Rn) (or ϕ, ψ ∈ S(Rn)). Then the maps

Rn ×Rn 3 (x, y)
f−→ ϕ(x)ψ(x− y) = (ϕτyψ)(x) ∈ C,

Rn ×Rn 3 (x, y)
g−→ ϕ(y)ψ(x− y) = ϕ(y)(τyψ)(x) ∈ C,

are in C∞
0 (Rn×Rn) (respectively in S(Rn×Rn)). Let u ∈ D′(Rn) (or u ∈ S ′(Rn)).

Then using Fubini theorem for distributions we get

〈u⊗ 1, f 〉 = 〈u(x), 〈1(y), ϕ(x)ψ(x− y)〉〉 =
( ∫

ψ
)
〈u, ϕ〉,

〈u⊗ 1, f 〉 = 〈1(y), 〈u(x), ϕ(x)ψ(x− y)〉〉 =
∫
〈u, ϕτyψ〉dy.

It follows that ( ∫
ψ
)
〈u, ϕ〉 =

∫
〈u, ϕτyψ〉dy

valid for ϕ, ψ ∈ C∞
0 (Rn) and u ∈ D′(Rn) (or ϕ, ψ ∈ S(Rn) and u ∈ S ′(Rn)).

We also have

〈u⊗ 1, g〉 = 〈u(x), 〈1(y), ϕ(y)ψ(x− y)〉〉 = 〈u(x), (ϕ ∗ ψ)(x)〉 = 〈u, ϕ ∗ ψ〉,

〈u⊗ 1, g〉 = 〈1(y), 〈u(x), ϕ(y)ψ(x− y)〉〉 =
∫

ϕ(y)〈u, τyψ〉dy.

Hence
〈u, ϕ ∗ ψ〉 =

∫
ϕ(y)〈u, τyψ〉dy

true for ϕ, ψ ∈ C∞
0 (Rn) and u ∈ D′(Rn) (or ϕ, ψ ∈ S(Rn) and u ∈ S ′(Rn)).

LEMMA 2.1. Let ϕ, ψ ∈ C∞
0 (Rn) and u ∈ D′(Rn) (or ϕ, ψ ∈ S(Rn) and u ∈

S ′(Rn)). Then ( ∫
ψ
)
〈u, ϕ〉 =

∫
〈u, ϕτyψ〉dy,(2.1)

〈u, ϕ ∗ ψ〉 =
∫

ϕ(y)〈u, τyψ〉dy.(2.2)

If ε1, . . . , εn is a basis in Rn, we say that Γ =
n⊕

j=1
Zε j is a lattice.

Let Γ ⊂ Rn be a lattice. Let ψ ∈ S(Rn). Then ∑
γ∈Γ

τγψ = ∑
γ∈Γ

ψ(· − γ) is

uniformly convergent on compact subsets of Rn. Since ∂αψ ∈ S(Rn), it follows
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that there is Ψ ∈ C∞(Rn) such that Ψ = ∑
γ∈Γ

τγψ in C∞(Rn). Moreover, we have

τγΨ = Ψ(· − γ) = Ψ for any γ ∈ Γ. Consequently we have Ψ ∈ BC∞(Rn) and if
Ψ(y) 6= 0 for any y ∈ Rn, then 1

Ψ ∈ BC
∞(Rn).

Let ϕ ∈ S(Rn). Then ϕΨ = ∑
γ∈Γ

ϕ(τγψ) with the series convergent in S(Rn).

Indeed, by applying Peetre’s inequality 〈γ〉n+1 6 2
n+1

2 〈x〉n+1〈x− γ〉n+1 one ob-
tains

∑
γ∈Γ

〈x〉k|∂α ϕ(x)∂βψ(x−γ)|62
n+1

2

(
∑

γ∈Γ

〈γ〉−n−1
)
· sup〈·〉k+n+1|∂α ϕ| · sup〈·〉n+1|∂βψ|

and this estimate proves the convergence of the series in S(Rn). Let χ be the sum
of the series ∑

γ∈Γ
ϕ(τγψ) in S(Rn). Then for any y ∈ Rn we have

χ(y)= 〈δy, χ〉=
〈

δy, ∑
γ∈Γ

ϕ(τγψ)
〉
= ∑

γ∈Γ

〈δy, ϕ(τγψ)〉= ∑
γ∈Γ

ϕ(y)ψ(y−γ)= ϕ(y)Ψ(y).

So ϕΨ = ∑
γ∈Γ

ϕ(τγψ) in S(Rn).

If ψ, ϕ ∈ C∞
0 (Rn) and S(Rn) is replaced by C∞

0 (Rn), then the previous re-
marks are trivial.

LEMMA 2.2. Let ψ, ϕ ∈ S(Rn) and u ∈ S ′(Rn) (or ψ, ϕ ∈ C∞
0 (Rn) and u ∈

D′(Rn)). Then Ψ = ∑
γ∈Γ

τγψ ∈ BC∞(Rn) is Γ-periodic and

(2.3) 〈u, Ψϕ〉 = ∑
γ∈Γ

〈u, (τγψ)ϕ〉.

LEMMA 2.3. (i) Let χ ∈ S(Rn) and u ∈ S ′(Rn). Then χ̂u ∈ S ′(Rn) ∩
C∞

pol(R
n). In fact we have

χ̂u(ξ) = 〈e−i〈·, ξ〉u, χ〉 = 〈u, e−i〈·, ξ〉χ〉, ξ ∈ Rn.

(ii) Let u ∈ D′(Rn) (or u ∈ S ′(Rn)) and χ ∈ C∞
0 (Rn) (or χ ∈ S(Rn)). Then

Rn ×Rn 3 (y, ξ)→ ûτyχ(ξ) = 〈u, e−i〈·, ξ〉χ(· − y)〉 ∈ C

is a C∞-function.

Proof. Let q : Rn
x × Rn

ξ → R, q(x, ξ) = 〈x, ξ〉. Then e−iq(u ⊗ 1) is in the
Schwartz space S ′(Rn

x ×Rn
ξ ). If ϕ ∈ S(Rn

ξ ), then we have

〈χ̂u, ϕ〉 = 〈u, χϕ̂〉 = 〈u(x), 〈1(ξ), e−iq(x, ξ)χ(x)ϕ(ξ)〉〉

= 〈u⊗ 1, e−iq(χ⊗ ϕ)〉 = 〈1(ξ), 〈u(x), e−i〈x, ξ〉χ(x)ϕ(ξ)〉〉

= 〈1(ξ), ϕ(ξ)〈u, e−i〈·, ξ〉χ〉〉 = 〈1(ξ), ϕ(ξ)〈e−i〈·, ξ〉u, χ〉〉

=
∫

ϕ(ξ)〈e−i〈·, ξ〉u, χ〉dξ.
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This proves that χ̂u(ξ) = 〈e−i〈·, ξ〉u, χ〉, ξ ∈ Rn.

COROLLARY 2.4. Let k ∈ Kpol(Rn), u ∈ D′(Rn) (or u ∈ S ′(Rn)) and χ ∈
C∞

0 (Rn) (or χ ∈ S(Rn)). Then

Rn 3 y→ f (y) = ‖uτyχ‖Bk ∈ [0, ∞]

is a measurable function.

Proof. Let (Km)m∈N be a sequence of compact subsets of Rn such that Km ⊂
K̊m+1 and

⋃
Km = Rn. Then fm ↗ f , where fm is the continuous function on Rn

defined by

fm(y) =
( ∫

Km

|ûτyχ(ξ)k(ξ)|pdξ
) 1

p
.

Let u ∈ D′(Rn) (or u ∈ S ′(Rn)) and χ ∈ C∞
0 (Rn) \ 0 (or χ ∈ S(Rn) \ 0). Let

χ̃ ∈ C∞
0 (Rn) (or χ̃ ∈ S(Rn))and ϕ ∈ C∞

0 (Rn). By using (2.1) and Lemma 1.5(iv)
we get

〈uτzχ̃, ϕ〉 = 1
‖χ‖2

L2

∫
〈uτzχ̃, (τyχ)(τyχ)ϕ〉dy =

1
‖χ‖2

L2

∫
〈uτyχ, (τzχ̃)(τyχ)ϕ〉dy,

|〈uτzχ̃, ϕ〉| 6 (2π)−n

‖χ‖2
L2

∫
‖uτyχ‖Bk‖(τzχ̃)(τyχ)ϕ‖B 1

ǩ

dy.

Let Γ ⊂ Rn be a lattice. Let u ∈ D′(Rn) (or u ∈ S ′(Rn)) and let χ ∈ C∞
0 (Rn)

(or χ ∈ S(Rn)) be such that Ψ = ΨΓ,χ = ∑
γ∈Γ
|τγχ|2 > 0. Then Ψ, 1

Ψ ∈ BC
∞(Rn)

and both are Γ-periodic. Let χ̃ ∈ C∞
0 (Rn) (or χ̃ ∈ S(Rn)). Using (2.3) and

Lemma 1.5(iv) we obtain that

〈uτzχ̃, ϕ〉 = ∑
γ∈Γ

〈uτγχ, 1
Ψ (τγχ)(τzχ̃)ϕ〉,

|〈uτzχ̃, ϕ〉| 6 (2π)−n ∑
γ∈Γ

‖uτγχ‖Bk

∥∥∥ 1
Ψ
(τγχ)(τzχ̃)ϕ

∥∥∥
B 1

ǩ

6 CΨ ∑
γ∈Γ

‖uτγχ‖Bk‖(τγχ)(τzχ̃)ϕ‖B 1
ǩ

.

In the last inequality we used the Proposition 1.10 and the fact that 1
Ψ ∈ BC

∞(Rn).
If (Y, µ) is eitherRn with Lebesgue measure or Γ with the counting measure,

then the previous estimates can be written as:

|〈uτzχ̃, ϕ〉| 6 Cst
∫
Y

‖uτyχ‖Bk‖(τzχ̃)(τyχ)ϕ‖B 1
ǩ

dµ(y).
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We shall use Proposition 1.10 to estimate ‖(τzχ̃)(τyχ)ϕ‖B 1
ǩ

. Let us note that

mk = mǩ = m 1
ǩ
= [N + n

2 ] + 1. Then we have

‖(τzχ̃)(τyχ)ϕ‖B 1
ǩ

6 Cst max
|α+β|6mk

‖((τz∂αχ̃)(τy∂βχ))‖∞‖ϕ‖B 1
ǩ

.

There is a continuous seminorm pn,k on S(Rn) so that

|(τz∂αχ̃)(τy∂βχ)(x)| 6 pn,k(χ̃)pn,k(χ)〈x− z〉−2(n+1)〈x− y〉−2(n+1)

6 2n+1 pn,k(χ̃)pn,k(χ)〈2x− z− y〉−n−1〈z− y〉−n−1

6 2n+1 pn,k(χ̃)pn,k(χ)〈z− y〉−n−1, |α + β| 6 mk.

Here we used the inequality

〈X〉−2(n+1)〈Y〉−2(n+1) 6 2n+1〈X + Y〉−n−1〈X−Y〉−n−1, X, Y ∈ Rm

which is a consequence of Peetre’s inequality 〈X ± Y〉n+1 6 2
n+1

2 〈X〉n+1〈Y〉n+1.
Hence

max
|α+β|6mk

‖((τz∂αχ̃)(τy∂βχ))‖∞ 6 2n+1 pn,k(χ̃)pn,k(χ)〈z− y〉−n−1,

‖(τzχ̃)(τyχ)ϕ‖B 1
ǩ

6 C′(n, k, χ,χ̃)〈z− y〉−n−1‖ϕ‖B 1
ǩ

,

|〈uτzχ̃, ϕ〉| 6 C′(n, k, χ,χ̃)
( ∫

Y

‖uτyχ‖Bk 〈z− y〉−n−1dµ(y)
)
‖ϕ‖B 1

ǩ

.

The last estimate implies that

(2.4) ‖uτzχ̃‖Bk 6 C(n, k, χ,χ̃)
( ∫

Y

‖uτyχ‖Bk 〈z− y〉−n−1dµ(y)
)

.

Let 1 6 p < ∞. If (Z, υ) is either Rn with Lebesgue measure or a lattice with the
counting measure, then Schur’s lemma implies( ∫

Z

‖uτzχ̃‖p
Bk

dυ(z)
) 1

p
6 C(n, k, χ,χ̃)‖〈·〉−n−1‖L1

( ∫
Y

‖uτyχ‖p
Bk

dµ(y)
) 1

p
.

For p = ∞ we have

sup
z
‖uτzχ̃‖Bk 6 C(n, k, χ,χ̃)‖〈·〉−n−1‖L1 sup

y
‖uτyχ‖Bk .

By taking different combinations of (Y, µ) and (Z, υ) we obtain the following
result.

PROPOSITION 2.5. Let k ∈ Kpol(Rn) and C, N the positive constants that define
k and 1 6 p < ∞. Let u ∈ D′(Rn) (or u ∈ S ′(Rn)) and χ ∈ C∞

0 (Rn) \ 0 (or
χ ∈ S(Rn) \ 0).
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(i) If χ̃ ∈ C∞
0 (Rn) (or χ̃ ∈ S(Rn)), then there is C(n, k, χ,χ̃) > 0 such that( ∫
‖uτỹχ̃‖p

Bk
dỹ
) 1

p
6 C(n, k, χ,χ̃)

( ∫
‖uτyχ‖p

Bk
dy
) 1

p
,

sup
ỹ
‖uτỹχ̃‖Bk 6 C(n, k, χ,χ̃) sup

y
‖uτyχ‖Bk .

(ii) If Γ ⊂ Rn is a lattice such that Ψ = ΨΓ,χ = ∑
γ∈Γ
|τγχ|2 > 0 and χ̃ ∈ C∞

0 (Rn)

(or χ̃ ∈ S(Rn)), then there is C(n, k, Γ, χ,χ̃) > 0 such that( ∫
‖uτỹχ̃‖p

Bk
dỹ
) 1

p
6 C(n, k, Γ, χ,χ̃)

(
∑

γ∈Γ

‖uτγχ‖p
Bk

) 1
p
,

sup
ỹ
‖uτỹχ̃‖Bk 6 C(n, k, Γ, χ,χ̃) sup

γ
‖uτγχ‖Bk .

(iii) If Γ̃⊂Rn is a lattice and χ̃∈C∞
0 (Rn) (or χ̃∈S(Rn)), then there is C(n, k, Γ̃, χ,χ̃)

> 0 such that (
∑

γ̃∈Γ̃

‖uτγ̃χ̃‖p
Bk

) 1
p
6 C(n, k, Γ̃, χ,χ̃)

( ∫
‖uτyχ‖p

Bk
dy
) 1

p
,

sup
γ̃

‖uτγ̃χ̃‖Bk 6 C(n, k, Γ̃, χ,χ̃) sup
y
‖uτyχ‖Bk .

(iv) If Γ, Γ̃ ⊂ Rn are lattices such that Ψ = ΨΓ,χ = ∑
γ∈Γ
|τγχ|2 > 0 and χ̃ ∈ C∞

0 (Rn)

(or χ̃ ∈ S(Rn)), then there is C(n, k,Γ, Γ̃, χ,χ̃) > 0 such that(
∑

γ̃∈Γ̃

‖uτγ̃χ‖p
Bk

) 1
p
6 C(n, k,Γ, Γ̃, χ,χ̃)

(
∑

γ∈Γ

‖uτγχ‖p
Bk

) 1
p
,

sup
γ̃

‖uτγ̃χ̃‖Bk 6 C(n, k,Γ, Γ̃, χ,χ̃) sup
γ
‖uτγχ‖Bk .

Let us introduce the space

Bloc
k (Rn) = {u; u ∈ D′(Rn), φu ∈ Bk(Rn) for every φ ∈ C∞

0 (Rn)}.

The next result concerns the regularity of the map z→ uτzχ̃.

LEMMA 2.6. If u ∈ Bloc
k (Rn) and χ̃ ∈ C∞

0 (Rn), then the function

Rn 3 z→ uτzχ̃ ∈ Bk(Rn)

is locally Lipschitz.

Proof. Since local Lipschitz continuity is a local property and u ∈ Bloc
k (Rn),

we can assume that u ∈ Bk(Rn). Let χ ∈ C∞
0 (Rn) \ 0. During the proof of the last

proposition we proved that there is C = C(n, k) such that

‖uτzχ̃‖Bk 6 Cpn,k(χ̃)pn,k(χ)
( ∫
‖uτyχ‖Bk 〈z− y〉−n−1dy

)
.
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Now if we replace χ̃ with τhχ̃− χ̃, |h| 6 1, we can find a seminorm qn,k on S(Rn)
such that pn,k(τhχ̃− χ̃) 6 |h|qn,k(χ̃) and

‖uτz+hχ̃− uτzχ̃‖Bk 6 Cqn,k(χ̃)pn,k(χ)
( ∫
‖uτyχ‖Bk 〈z− y〉−n−1dy

)
|h|

6 C′qn,k(χ̃)pn,k(χ)‖u‖Bk‖χ‖BCmk ‖〈·〉−n−1‖L1 |h|.

DEFINITION 2.7. Let 1 6 p 6 ∞, k ∈ Kpol(Rn) and u ∈ D′(Rn). We say that
u belongs to Hörmander–Kato space Bp

k (R
n) if there is χ ∈ C∞

0 (Rn) \ 0 such that the
measurable function Rn 3 y→ ‖uτyχ‖Bk ∈ R belongs to Lp. We put

‖u‖k,p,χ =
( ∫
‖uτyχ‖p

Bk
dy
) 1

p
, 1 6 p < ∞,

‖u‖k,∞,χ ≡ ‖u‖k,ul,χ = sup
y
‖uτyχ‖Bk .

PROPOSITION 2.8. (i) The above definition does not depend on the choice of the
function χ ∈ C∞

0 (Rn) \ 0.
(ii) If χ ∈ C∞

0 (Rn) \ 0, then ‖ · ‖k,p,χ is a norm on Bp
k (R

n) and the topology that
defines does not depend on the function χ.

(iii) Let Γ ⊂ Rn be a lattice and χ ∈ C∞
0 (Rn) be a function with the property that

Ψ = ΨΓ,χ = ∑
γ∈Γ
|τγχ|2 > 0. Then

Bp
k (R

n) 3 u→


(

∑
γ∈Γ
‖uτγχ‖p

Bk

) 1
p

1 6 p < ∞,

sup
γ
‖uτγχ‖Bk p = ∞,

is a norm on Bp
k (R

n) and the topology that defines is the topology of Bp
k (R

n). We shall
use the notation

‖u‖k,p,Γ,χ =


(

∑
γ∈Γ
‖uτγχ‖p

Bk

) 1
p

1 6 p < ∞,

sup
γ
‖uτγχ‖Bk p = ∞.

(iv) If 1 6 p 6 q 6 ∞, Then

S(Rn) ⊂ B1
k (R

n) ⊂ Bp
k (R

n) ⊂ Bq
k(R

n) ⊂ B∞
k (Rn) ⊂ S ′(Rn).

(v) If k′, k ∈ Kpol(Rn) and k′ 6 Cst · k, then Bp
k (R

n) ⊂ Bp
k′(R

n).
(vi) (Bp

k (R
n), ‖ · ‖k,p,χ) is a Banach space.

(vii) If 1
k ∈ L2(Rn), then B∞

k (Rn) ⊂ BC(Rn).

Proof. (i), (ii), (iii) are immediate consequences of the previous proposition.
(iv) The inclusions B1

k (R
n) ⊂ Bp

k (R
n) ⊂ Bq

k(R
n) ⊂ B∞

k (Rn) are conse-
quences of the elementary inclusions l1 ⊂ lp ⊂ lq ⊂ l∞. What remain to be
shown are the inclusions S(Rn) ⊂ B1

k (R
n), B∞

k (Rn) ⊂ S ′(Rn).
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Let u ∈ B∞
k (Rn), χ ∈ C∞

0 (Rn) \ 0 and ϕ ∈ C∞
0 (Rn). We have

〈u, ϕ〉 = 1
‖χ‖2

L2

∫
〈uτyχ, (τyχ)ϕ〉dy,

|〈u, ϕ〉| 6 1
‖χ‖2

L2

∫
|〈uτyχ, (τyχ)ϕ〉|dy 6

(2π)−n

‖χ‖2
L2

∫
‖uτyχ‖Bk‖(τyχ)ϕ‖B 1

ǩ

dy

6
(2π)−n

‖χ‖2
L2

‖u‖k,∞,χ

∫
‖(τyχ)ϕ‖B 1

ǩ

dy.

We shall use Proposition 1.10 to estimate ‖(τyχ)ϕ‖B 1
ǩ

. Let χ̃ ∈ C∞
0 (Rn), χ̃ = 1 on

suppχ. If mk = m 1
ǩ
= [N + n

2 ] + 1, then we obtain that

‖(τyχ)ϕ‖B 1
ǩ

6 C max
|α+β|6mk

‖(∂α ϕ)(τy∂βχ)‖∞‖τyχ̃‖B 1
ǩ

= C max
|α+β|6mk

‖(∂α ϕ)(τy∂βχ)‖∞‖χ̃‖B 1
ǩ

.

Since χ, ϕ ∈ S(Rn) it follows that there is a continuous seminorm pn,k on S(Rn)
so that

|(∂α ϕ)(τy∂βχ)(x)| 6 pn,k(ϕ)pn,k(χ)〈x− y〉−2(n+1)〈x〉−2(n+1)

6 2n+1 pn,k(ϕ)pn,k(χ)〈2x− y〉−(n+1)〈y〉−(n+1)

6 2n+1 pn,k(ϕ)pn,k(χ)〈y〉−(n+1), |α + β| 6 mk.

Hence

|〈u, ϕ〉| 6 2n+1C
(2π)−n

‖χ‖2
L2

‖u‖k,∞,χ‖〈·〉−(n+1)‖L1‖χ̃‖B 1
ǩ

pn,k(χ)pn,k(ϕ).

If u ∈ S(Rn), χ ∈ C∞
0 (Rn) \ 0 and χ̃ ∈ C∞

0 (Rn), χ̃ = 1 on suppχ, then Propo-
sition 1.10 and the above arguments imply that there is a continuous seminorm
pn,k on S(Rn) so that

‖(τyχ)u‖Bk 6 C max
|α+β|6mk

‖(∂αu)(τy∂βχ)‖∞‖τyχ̃‖Bk

= C max
|α+β|6mk

‖(∂αu)(τy∂βχ)‖∞‖χ̃‖Bk

6 2n+1Cpn,k(u)pn,k(χ)〈y〉−(n+1)‖χ̃‖Bk .

Hence u ∈ B1
k (R

n) and

‖u‖k,1,χ 6 Cst‖〈·〉−(n+1)‖L1‖χ̃‖Bk pn,k(u)pn,k(χ).

(v) is trivial.
(vi) Let χ∈C∞

0 (Rn) \ 0. Then a consequence of Holder’s inequality and (2.4)
is that there is C=C(n, k) and a continuous seminorm pn,k on S(Rn) such that

‖uτzχ‖Bk 6 Cpn,k(χ)
2 max{‖〈·〉−(n+1)‖L1 , 1}‖u‖k,p,χ, z ∈ Rn.
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Let {un} be a Cauchy sequence in Bp
k (R

n). Then for any z ∈ Rn there is uz ∈
Bk(Rn) such that unτzχ → uz in Bk(Rn). Since Bp

k (R
n) ⊂ S ′(Rn) and S ′(Rn) is

sequentially complete, there is u ∈ S ′(Rn) such that un → u in S ′(Rn) and this
implies that uz = uτzχ for any z ∈ Rn. Then ‖un − u‖k,p,χ → 0 by Fatou’s lemma.

(vii) If 1
k ∈ L2, then B∞

k (Rn) ⊂ BC(Rn). Let χ ∈ C∞
0 (Rn) be such that

χ(0) = 1. Then for x ∈ Rn

|u(x)| = |uτxχ(x)| 6 (2π)−n‖ûτxχ‖L1 6 (2π)−n
∥∥∥1

k

∥∥∥
L2
‖uτxχ‖Bk

= (2π)−n
∥∥∥1

k

∥∥∥
L2
‖u‖k,∞,χ.

REMARK 2.9. The spaces Bp
k (R

n) are particular cases of Wiener amalgam
spaces. More precisely, we have Bp

k (R
n) = W(Bk, Lp) with local component

Bk(Rn) and global component Lp(Rn). Wiener amalgam spaces were introduced
by Hans Georg Feichtinger in 1980.

Now using the techniques of Coifman and Meyer, developed for the study
of Beurling algebras Aω and Bω (see pp. 7–10 of [9]), we shall prove an interesting
result.

THEOREM 2.10 (localization principle). Bk(Rn) = B2
k (R

n) = W(Bk, L2).

This theorem is a consequence of the next two lemmas where we prove the
inclusions that we need. In the proof of these lemmas we shall use the partition
of unity built in the previous section.

LEMMA 2.11. B2
k (R

n) ⊂ Bk(Rn).

Proof. Let ‖ · ‖k,2 be a fixed norm on B2
k (R

n). Let u ∈ B2
k (R

n). We have u =
m
∑

j=1
χju with χju = ∑

γ∈Zn
(τγhj)u. Since u ∈ B2

k (R
n), Proposition 2.5 implies that

∑
γ∈Zn

‖(τγhj)u‖2
Bk

6 C2
j ‖u‖2

k,2 < ∞.

Using Lemma 1.9 it follows that χju ∈ Bk(Rn) and

‖χju‖2
Bk
≈ ∑

γ∈Zn
‖(τγhj)u‖2

Bk
6 C2

j ‖u‖2
k,2.

This proves that u =
m
∑

j=1
χju ∈ Bk(Rn) and that

‖u‖Bk 6
m

∑
j=1
‖χju‖Bk 6

( m

∑
j=1

Cj

)
‖u‖k,2.

LEMMA 2.12. Bk(Rn) ⊂ B2
k (R

n).

Proof. The following statements are equivalent:
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(i) u ∈ Bk(Rn).
(ii) χju ∈ Bk(Rn), j = 1, . . . , m. (Here we use Lemma 1.6(ii).)
(iii) {‖(τγhj)u‖Bk}γ∈Zn ∈ l2(Zn), j = 1, . . . , m. (Here we use Lemma 1.9.)

Now h =
m
∑

j=1
hj and ‖(τγh)u‖Bk 6

m
∑

j=1
‖(τγhj)u‖Bk , γ ∈ Zn imply that

{‖(τγh)u‖Bk}γ∈Zn ∈ l2(Zn). Since h ∈ C∞
0 (Rn), h > 0 and ∑

γ∈Zn
τγh = 1 it follows

that u ∈ B2
k (R

n) and

‖u‖k,2,h ≈ ‖{‖(τγh)u‖Bk}γ∈Zn‖l2(Zn) 6
m

∑
j=1
‖{‖(τγhj)u‖Bk}γ∈Zn‖l2(Zn)

≈
m

∑
j=1
‖χju‖Bk 6 Cst‖u‖Bk .

When 1 6 p < ∞ the Hörmander–Kato spaces Bp
k (R

n) can be obtained as
completion of S(Rn) with respect to the Bp

k (R
n)-norm.

LEMMA 2.13. If 1 6 p < ∞, then S(Rn) is dense in Bp
k (R

n).

Proof. Let χ ∈ C∞
0 (Rn) be such that Ψ = ΨZn ,χ = ∑

γ∈Zn
|τγχ|2 > 0 and let

‖ · ‖k,p,Zn ,χ be the associated norm in Bp
k (R

n).
Step 1. Let ψ ∈ C∞

0 (Rn) be such that ψ = 1 on B(0, 1), ψε(x) = ψ(εx),
0 < ε 6 1, x ∈ Rn. If u ∈ Bk(Rn), then ψεu→ u in Bk(Rn). Moreover we have

‖ψεu‖Bk 6 C(k, ψ)‖u‖Bk , 0 < ε 6 1,

where C(k, ψ) = (2π)−nC(
∫
〈η〉N |ψ̂(η)|dη).

Step 2. Suppose that u ∈ Bp
k (R

n). Let F ⊂ Zn be an arbitrary finite subset.
Then the subadditivity property of the norm ‖ · ‖lp implies that:

‖ψεu− u‖k,p,Zn ,χ 6
(

∑
γ∈F
‖ψεuτγχ− uτγχ‖p

Bk

) 1
p
+
(

∑
γ∈Zn\F

‖ψεuτγχ‖p
Bk

) 1
p

+
(

∑
γ∈Zn\F

‖uτγχ‖p
Bk

) 1
p

6
(

∑
γ∈F
‖ψεuτγχ−uτγχ‖p

Bk

) 1
p
+(C(k, ψ)+1)

(
∑

γ∈Zn\F
‖uτγχ‖p

Bk

) 1
p
.

By making ε→ 0 we deduce that

lim sup
ε→0

‖ψεu− u‖k,p,Zn ,χ 6 (C(k, ψ) + 1)
(

∑
γ∈Zn\F

‖uτγχ‖p
Bk

) 1
p

for any F ⊂ Zn finite subset. Hence lim
ε→0

ψεu = u in Bp
k (R

n). The immediate

consequence is that E ′(Rn) ∩ Bp
k (R

n) is dense in Bp
k (R

n).
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Step 3. Suppose now that u ∈ E ′(Rn) ∩ Bp
k (R

n). Let ϕ ∈ C∞
0 (Rn) be such

that supp ϕ ⊂ B(0; 1),
∫

ϕ(x)dx = 1. For ε ∈ (0, 1], we set ϕε = ε−n ϕ( ·ε ). Let
K =supp u + B(0; 1). Then there is a finite set F = FK,χ ⊂ Zn such that (τγχ)(ϕε ∗
u− u) = 0 for any γ ∈ Zn \ F. It follows that

‖ϕε ∗ u− u‖k,p,Zn ,χ =
(

∑
γ∈F
‖(τγχ)(ϕε ∗ u− u)‖p

Bk

) 1
p

≈
(

∑
γ∈F
‖(τγχ)(ϕε ∗ u− u)‖2

Bk

) 1
2

≈ ‖ϕε ∗ u− u‖Bk → 0, as ε→ 0.

In contrast with the last result we have the following lemma.

LEMMA 2.14. If 1
k ∈ L2(Rn), then S(Rn) is not dense in B∞

k (Rn).

Proof. Let ‖ · ‖k,∞ be a fixed norm on B∞
k (Rn). Since B∞

k (Rn) ⊂ BC(Rn),
there is C > 1 such that ‖ · ‖∞ 6 C‖ · ‖k,∞ (here we apply Proposition 2.8(vii)).
Suppose that S(Rn) is dense in B∞

k (Rn). Since we obviously have 1 ∈ B∞
k (Rn),

there is ψ ∈ S(Rn) such that ‖1− ψ‖∞ 6 C‖1− ψ‖k,∞ < 1
2 . Let ϕ ∈ C∞

0 (Rn)

be such that ‖ψ− ϕψ‖∞ < 1
2 . Then 1 6 ‖1− ϕψ‖∞ 6 ‖1− ψ‖∞ + ‖ψ− ϕψ‖∞

< 1
2 + 1

2 = 1 which is a contradiction.

PROPOSITION 2.15. Let 1 6 p 6 ∞, k ∈ Kpol(Rn) and C, N the positive
constants that define k. Let mk = [N + n

2 ] + 1. Then
(i) BCmk (Rn) · Bp

k (R
n) ⊂ Bp

k (R
n).

(ii) BCmk (Rn) ⊂ B∞
k (Rn).

Proof. (i) Let u ∈ Bp
k (R

n) and ψ ∈ BCmk (Rn). Let χ ∈ C∞
0 (Rn) \ 0. By using

Proposition 1.10 we obtain that ψuτyχ ∈ Bk(Rn) and

‖ψuτyχ‖Bk 6 Ck‖ψ‖BCmk ‖uτyχ‖Bk .

This inequality implies that ‖ψu‖k,p,χ 6 Ck‖ψ‖BCmk ‖u‖k,p,χ.
(ii) Since 1 ∈ B∞

k (Rn) it follows that

BCmk (Rn) = BCmk (Rn) · 1 ⊂ BCmk (Rn) · B∞
k (Rn) ⊂ B∞

k (Rn).

3. THE SPACES Bp
k AND SCHATTEN–VON NEUMANNN CLASS PROPERTIES

FOR PSEUDO-DIFFERENTIAL OPERATORS

We begin this section with some interpolation results of Bp
k spaces. For

k ∈ Kpol(Rn), let L2
k = {v ∈ S ′(Rn) : kv ∈ L2(Rn)}, ‖v‖L2

k
= ‖kv‖L2 , v ∈ L2

k .
Then the Fourier transformF is an isometry (up to a constant factor) from Bk(Rn)
onto L2

k and the inverse Fourier transform F−1 is an isometry (up to a constant
factor) from L2

k onto Bk(Rn). The interpolation property implies then that F
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maps continuously [Bk0(R
n),Bk1(R

n)]θ into [L2
k0

, L2
k1
]θ and F−1 maps continu-

ously [L2
k0

, L2
k1
]θ into [Bk0(R

n),Bk1(R
n)]θ , so that [Bk0(R

n),Bk1(R
n)]θ coincides

with the tempered distributions whose Fourier transform belongs to [L2
k0

, L2
k1
]θ

(and one deduces in the same way that it is an isometry if one uses the cor-
responding norms). Identifying interpolation spaces between spaces Bk(Rn) is
then the same question as interpolating between some L2 spaces with weights.
The following lemma is a consequence of this remark and Theorem 1.18.5 in [26].

LEMMA 3.1. If k0, k1∈Kpol(Rn), 0< θ<1 and k= k1−θ
0 · kθ

1∈Kpol(Rn), then

[Bk0(R
n),Bk1(R

n)]θ = Bk(Rn).

Using the results of Subsection 1.18.1 in [26] we obtain the following corol-
lary.

COROLLARY 3.2. Let k0, k1∈Kpol(Rn), 16 p0<∞, 16 p16∞, 0< θ<1 and

1
p
=

1− θ

p0
+

θ

p1
, k = k1−θ

0 · kθ
1 ∈ K(Rn).

Then

[lp0(Zn,Bk0(R
n)), lp1(Zn,Bk1(R

n))]θ = lp(Zn,Bk(Rn)).

We pass now to the Hörmander–Kato spaces Bp
k . We choose χZn ∈ C∞

0 (Rn)
so that ∑

γ∈Zn
χZn(· − γ) = 1. For γ ∈ Zn we define the operator

Sγ : D′(Rn)→ D′(Rn), Sγu = (τγχZn)u.

Now from the definition of Bp
k it follows that the linear operator

S : Bp
k (R

n)→ lp(Zn,Bk(Rn)), Su = (Sγu)γ∈Zn

is well defined and continuous.
On the other hand, for any χ ∈ C∞

0 the operator

Rχ : lp(Zn,Bk(Rn))→ Bp
k (R

n),

Rχ((uγ)γ∈Zn) = ∑
γ∈Zn

(τγχ)uγ

is well defined and continuous.
Let u = (uγ)γ∈Zn ∈ lp(Zn,Bk(Rn)). Using Proposition 1.10 we get

‖(τγ′χZn)(τγχ)uγ‖Bk 6 Cst max
|α+β|6mk

‖(τγ′∂
αχZn)(τγ∂βχ)‖∞‖uγ‖Bk ,
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where mk = [N + n
2 ] + 1. Now for some continuous seminorm q = qn,k on S(Rn)

we have

|(τγ′∂
αχZn)(τγ∂βχ)(x)| 6 q(χZn)q(χ)〈x− γ′〉−2(n+1)〈x− γ〉−2(n+1)

6 2n+1q(χZn)q(χ)〈2x− γ′ − γ〉−n−1〈γ′ − γ〉−n−1

6 2n+1q(χZn)q(χ)〈γ′ − γ〉−n−1, |α + β| 6 mk.

Hence

max
|α+β|6mk

‖(τγ′∂
αχZn)(τγ∂βχ)‖∞ 6 2n+1q(χZn)q(χ)〈γ′ − γ〉−n−1,

‖(τγ′χZn)(τγχ)uγ‖Bk 6 C(n, k,χZn , χ)〈γ′ − γ〉−n−1‖uγ‖Bk .

The last estimate implies that

‖(τγ′χZn)Rχ(u)‖Bk 6 C(n, k,χZn , χ) ∑
γ∈Zn
〈γ′ − γ〉−n−1‖uγ‖Bk .

Now Schur’s lemma implies the result(
∑

γ′∈Zn
‖(τγ′χZn)Rχ(u)‖p

Bk

) 1
p
6 C′(n, k,χZn , χ)‖〈·〉−n−1‖L1

(
∑

γ∈Zn
‖uγ‖p

Bk

) 1
p
.

If χ = 1 on a neighborhood of suppχZn , then χχZn = χZn and as a conse-
quence RχS = idBp

k (Rn):

RχSu = ∑
γ∈Zn

(τγχ)Sγu = ∑
γ∈Zn

(τγχ)(τγχZn)u = ∑
γ∈Zn

(τγχZn)u = u.

Thus we proved the following result.

PROPOSITION 3.3. Under the above conditions, the operator Rχ is a retraction
and the operator S is a coretraction.

COROLLARY 3.4. Let k0, k1∈Kpol(Rn), 16 p0<∞, 16 p16∞, 0< θ<1 and

1
p
=

1− θ

p0
+

θ

p1
, k = k1−θ

0 · kθ
1 ∈ K(Rn).

Then

[Bp0
k0
(Rn),Bp1

k1
(Rn)]θ = Bp

k (R
n).

Proof. The last part of Proposition 2.8(iv) shows that {Bp0
k0
(Rn),Bp1

k1
(Rn)} is

an interpolation couple (in the sense of the notations of Subsection 1.2.1 in [26]
one can choose A = S ′(Rn)). If F is an interpolation functor, then one obtains by
Theorem 1.2.4 of [26] that

‖u‖F({Bp0
k0
(Rn),Bp1

k1
(Rn)}) ≈ ‖(Sγu)γ∈Zn‖F({lp0 (Zn ,Bk0

),lp1 (Zn ,Bk1
)}).
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By specialization we obtain

‖u‖
[Bp0

k0
(Rn),Bp1

k1
(Rn)]θ

≈ ‖(Sγu)γ∈Zn‖[lp0 (Zn ,Bk0
(Rn)),lp1 (Zn ,Bk1

(Rn))]θ

≈ ‖(Sγu)γ∈Zn‖lp(Zn ,Bk(Rn)) ≈ ‖u‖Bp
k (Rn).

In addition to the above interpolation results we need an embedding theo-
rem which we shall prove below. First we shall recall the definition of spaces that
appear in this theorem.

DEFINITION 3.5. Let 1 6 p 6 ∞. We say that a distribution u ∈ D′(Rn)

belongs to Sp
w(Rn) if there is χ ∈ C∞

0 (Rn) \ 0 such that the measurable function

Uχ,p : Rn → [0,+∞),

Uχ,p(ξ) =


sup
y∈Rn

|ûτyχ(ξ)| if p = ∞,

(
∫
|ûτyχ(ξ)|pdy)

1
p if 1 6 p < ∞,

belongs to L1(Rn).

These spaces are special cases of modulation spaces which were introduced
by Hans Georg Feichtinger in 1983. They were used by many authors (Boulkhe-
mair, Gröchenig, Heil, Sjöstrand, Toft ...) in the analysis of pseudo-differential
operators defined by symbols more general than usual.

Now we give some properties of these spaces.

PROPOSITION 3.6. (i) Let u ∈ Sp
w(Rn) and let χ ∈ C∞

0 (Rn). Then the measur-
able function

Uχ,p : Rn → [0,+∞),

Uχ,p(ξ) =


sup
y∈Rn

|ûτyχ(ξ)| if p = ∞,

(
∫
|ûτyχ(ξ)|pdy)

1
p if 1 6 p < ∞,

belongs to L1(Rn).
(ii) If we fix χ ∈ C∞

0 (Rn) \ 0 and if we put

‖u‖Sp
w ,χ =

∫
Uχ,p(ξ)dξ = ‖Uχ,p‖L1 , u ∈ Sw(Rn),

then ‖ · ‖Sp
w ,χ is a norm on Sp

w(Rn) and the topology that defines does not depend on the
choice of the function χ ∈ C∞

0 (Rn) \ 0.
(iii) Let 1 6 p 6 q 6 ∞. Then

S1
w(Rn) ⊂ Sp

w(Rn) ⊂ Sq
w(Rn) ⊂ S∞

w (Rn) = Sw(Rn) ⊂ BC(Rn) ⊂ S ′(Rn).

A proof of this proposition can be found for instance in [1] or [24].

THEOREM 3.7. Let k ∈ Kpol(Rn) and 1 6 p 6 ∞. If 1
k ∈ L1(Rn), then

Bp
k (R

n) ↪→ Sp
w(Rn).
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Proof. Let u ∈ Bp
k (R

n). Let χ, χ̃ ∈ C∞
0 (Rn) \ 0 be such that χ̃ = 1 on suppχ.

For y ∈ Rn we have

uτyχ = (uτyχ̃)(τyχ) ⇒ ûτyχ = (2π)−nûτyχ̃ ∗ τ̂yχ.

Multiplying by k(ξ) and noting the inequality k(ξ) 6 C〈ξ − η〉Nk(η), we obtain

k(ξ)|ûτyχ(ξ)| 6 (2π)−nC
∫

k(η)|ûτyχ̃(η)|〈ξ − η〉N |τ̂yχ(ξ − η)|dξ

6 (2π)−nC‖kûτyχ̃‖L2‖〈·〉N τ̂yχ‖L2 = (2π)−nC‖uτyχ̃‖Bk‖χ‖HN ,

hence

|ûτyχ(ξ)| 6 (2π)−nC‖χ‖HN
1

k(ξ)
‖uτyχ̃‖Bk .

It follows that

Uχ,p(ξ) 6 (2π)−nC‖χ‖HN
1

k(ξ)
‖u‖k,p,χ̃,

which implies that

‖u‖Sp
w ,χ = ‖Uχ,p‖L1 6 (2π)−nC‖χ‖HN

∥∥∥1
k

∥∥∥
L1
‖u‖k,p,χ̃, u ∈ Bp

k .

This embedding theorem allows us to deal with Schatten–von Neumann
class properties of pseudo-differential operators.

Let τ ∈ endR(Rn) ≡ Mn×n(R), a ∈ S(Rn ×Rn), v ∈ S(Rn). We define

Opτ(a)v(x) = aτ(X, D)v(x) = (2π)−n
∫∫

ei〈x−y,η〉a((1− τ)x + τy, η)v(y)dydη.

If u, v ∈ S(Rn), then

〈Opτ(a)v, u〉 = (2π)−n
∫∫∫

ei〈x−y,η〉a((1− τ)x + τy, η)u(x)v(y)dxdydη

= 〈((1⊗F−1)a) ◦ cτ , u⊗ v〉,

where

cτ : Rn ×Rn → Rn ×Rn, cτ(x, y) = ((1− τ)x + τy, x− y).

We can define Opτ(a) as an operator in B(S(Rn),S ′(Rn)) for any distribution
a ∈ S ′(Rn ×Rn)

〈Opτ(a)v, u〉 = 〈KOpτ(a), u⊗ v〉, KOpτ(a) = ((1⊗F−1)a) ◦ cτ .

THEOREM 3.8. Let k ∈ Kpol(Rn ×Rn) be such that 1
k ∈ L1(Rn ×Rn).

(i) Let 1 6 p < ∞, τ ∈ endR(Rn) ≡ Mn×n(R) and a ∈ Bp
k (R

n ×Rn). Then

Opτ(a) = aτ(X, D) ∈ Bp(L2(Rn)),

where Bp(L2(Rn)) denote the Schatten ideal of compact operators whose singular values
lie in lp. We have

‖Opτ(a)‖Bp(L2(Rn)) 6 Cst‖a‖Bp
k
.
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Moreover, the mapping

endR(Rn) 3 τ → Opτ(a) = aτ(X, D) ∈ Bp(L2(Rn))

is continuous.
(ii) Let τ ∈ endR(Rn) ≡ Mn×n(R) and a ∈ B∞

k (Rn ×Rn). Then

Opτ(a) = aτ(X, D) ∈ B(L2(Rn)).

We have
‖Opτ(a)‖B(L2(Rn)) 6 Cst‖a‖B∞

k
.

Moreover, the mapping

endR(Rn) 3 τ → Opτ(a) = aτ(X, D) ∈ B(L2(Rn))

is continuous.

Proof. This theorem is a consequence of the previous theorem and the fact
that it is true for pseudo-differential operators with symbols in Sp

w(Rn ×Rn) (see
for instance [1] or [24] for 1 6 p < ∞ and [6] for p = ∞).

THEOREM 3.9. Let k ∈ Kpol(Rn × Rn) be such that 1
k ∈ L1(Rn × Rn) and

1 6 p < ∞. If τ ∈ endR(Rn) ≡ Mn×n(R) and a ∈ Bp

k|1−
2
p |
(Rn ×Rn) then

Opτ(a) = aτ(X, D) ∈ Bp(L2(Rn)).

Moreover, the mapping

endR(Rn) 3 τ → Opτ(a) = aτ(X, D) ∈ Bp(L2(Rn))

is continuous.

Proof. The Schwartz kernel of the operator Opτ(a) is ((1 ⊗ F−1)a) ◦ cτ .
Therefore, a ∈ B2

1(Rn ×Rn) ≡ L2(Rn ×Rn) implies that Opτ(a) ∈ B2(L2(Rn)).
Next we use the interpolation properties of Hörmander–Kato spaces Bp

k and of
the Schatten ideals Bp(L2(Rn)) to finish the theorem.

[B2
1(Rn ×Rn),B1

k (R
n ×Rn)] 2

p−1 = Bp

k
2
p−1

(Rn ×Rn),

[B2(L2(Rn)),B1(L2(Rn))] 2
p−1 = Bp(L2(Rn)), 1 6 p 6 2,

[B2
1(Rn ×Rn),B∞

k (Rn ×Rn)]1− 2
p
= Bp

k1− 2
p
(Rn ×Rn),

[B2(L2(Rn)),B(L2(Rn))]1− 2
p
= Bp(L2(Rn)), 2 6 p < ∞.

We shall end this section by considering pseudo-differential operators de-
fined by

(3.1) Op(a)v(x) =
∫∫

ei〈x−y,θ〉a(x, y, θ)v(y)dydθ, v ∈ S(Rn),
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with a ∈ Bp
k (R

3n), k ∈ Kpol(R3n), 1
k ∈ L1(R3n) and 1 6 p 6 ∞. For a ∈ S∞

w (R3n)
such operators and Fourier integral operators were studied by A. Boulkhemair
in [6]. In [6], the author give a meaning to the above integral and proves L2-
boundedness of global non-degenerate Fourier integral operators related to the
Sjöstrand class Sw = S∞

w . Therefore, by taking into account the embedding theo-
rem it follows that the above integral defines a bounded operator in L2(Rn). Now
if we use Proposition 4.6. in [24] or Proposition 5.4. in [1] we obtain the following
result.

PROPOSITION 3.10. Let k∈Kpol(R3n) be such that 1
k ∈ L1(R3n), 16 p<∞ and

a∈Bp
k (R

3n). If Op(a) is the operator defined by (3.1), then Op(a)∈Bp(L2(Rn)) and

‖Op(a)‖Bp(L2(Rn)) 6 Cst‖a‖Bp
k
.
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