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ABSTRACT. In this paper we investigate whether positive elements in the
multiplier algebras of certain finite C∗-algebras can be written as finite lin-
ear combinations of projections with positive coefficients (PCP). Our focus is
on the category of underlying C∗-algebras that are separable, simple, with real
rank zero, stable rank one, finitely many extreme traces, and strict comparison
of projections by the traces. We prove that the strict comparison of projections
holds also in the multiplier algebraM(A⊗K). Based on this result and under
the additional hypothesis thatM(A⊗K) has real rank zero, we characterize
which positive elements ofM(A⊗K) are of PCP.
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1. INTRODUCTION

In this article we focus on three closely related questions for C∗-algebras
and in particular for multiplier algebras:

(A) Which elements are (finite) sums of commutators?
(B) Is every element a (finite) linear combination of projections?
(C) Which positive elements are (finite) linear combinations of projections with

positive coefficients? (Called positive combinations of projections, or PCP for
short.)

During the last several decades much work have been done on these ques-
tions for various algebras, in particular for Questions (A) and (B).

In 1954, Halmos proved that every bounded operator on an infinite dimen-
sional separable Hilbert space H is a sum of two commutators. Then in 1967
Fillmore [8] found that every element of B(H) is a linear combination of 257 pro-
jections, eventually reduced to 8 by Goldstein and Paszkiewicz [10]. Fillmore also
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observed ([8]) that a positive compact operator of infinite rank cannot be a posi-
tive combination of projections; Fong and Murphy proved ([9]) that these are the
only exceptions in B(H).

Almost at the same time the same questions were investigated in von Neu-
mann algebras. In 1967 Pearcy and Topping [29] proved that every element in
a properly infinite algebra is a sum of 2 commutators and every self-adjoint el-
ement is a linear combination of 8 projections. In 1968 they proved [30] that in
every finite type I algebra, self-adjoint elements in the kernel of the central trace
are finite sums of commutators. The same result was proven in the more delicate
case of a type II1 von Neumann algebra by Fack and De La Harpe [7]. Building
on that, Goldstein and Paszkiewicz showed [10] that every element in a von Neu-
mann algebra is a linear combination of projections if and only if it has no finite
type I direct summand with infinite dimensional center.

The investigation of Question (A) for C∗-algebras started in 1982 with the
work of Fack [6] who proved that self-adjoint elements in properly infinite unital
C∗-algebras or in stable C∗-algebras are the sum of 5 self-commutators. Further-
more, Fack [6] proved also that in a simple unital AF algebra self-adjoint elements
in the kernel of all tracial states are sums of 7 commutators. Thomsen extended
his work to a large class of AH algebras which includes the irrational rotation
algebras and crossed products of Cantor minimal systems ([34]).

An important extension of these results was obtained by Marcoux [25] who
proved that in simple C∗-algebras of real rank zero with a unique tracial state
which gives the strict comparison of projections, every self-adjoint element in the
kernel of that trace is a sum of 2 self-commutators. In [24] he proved that all
commutators are linear combinations of projections under mild conditions. This
and other work brought an affirmative answer to (B) for all C∗-algebras in the
following categories:

• Simple purely infinite C∗-algebras;
• AF-algebras with finitely many extremal tracial states;
• AT-algebra with real rank zero and finitely many extremal tracial states.
• Certain AH-algebras with real rank zero, bounded dimension growth, and

finitely many extremal tracial states.

The first definite result about positive combination of projections (Question
(C)) was the above mentioned work of Fong and Murphy [9] for B(H). In re-
cent years the authors of the present paper proved in [13] that every positive ele-
ment in a purely infinite simple σ-unital C∗-algebra A or in its multiplier algebra
M(A) is a positive combination of projections (a PCP).

For von Neumann algebras the answer to Question (C) presented in [12]
mirrors the results in B(H): a positive element in a type II∞ factor is a PCP if
either its range projection is finite or the element does not belong to the ideal
generated by finite projections (the Breuer ideal). The non-factor case is similar
but the conditions are expressed in terms of central essential spectrum.
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The situation is more complex for C∗-algebras of finite type. We proved in
[17] that if A is a simple, separable, unital C∗-algebra with real rank zero, stable
rank one, strict comparison of projections (by traces), and finitely many extremal
tracial states, then a positive element a ∈ A⊗K is a PCP if and only if τ(Ra) < ∞
for every tracial state τ onA, where τ denotes the extension of τ⊗ Tr to a normal
semifinite trace on (A ⊗ K)∗∗ and Ra denotes the range projection of a. Notice
that Ra ∈ (A⊗K)∗∗.

The aim of the present paper is to investigate Question (C) for positive ele-
ments of the multiplier algebraM(A⊗K) for a C∗-algebra A of finite type con-
sidered in [17]. Of independent interest we also consider Questions (A) and (B)
for in the corners ofM(A⊗K), as necessary steps in investigating Question (C).

A key tool in [17] was the strict comparison of projections in A and in
A ⊗ K. In Section 3 we extend strict comparison of projections in M(A⊗K)
(Theorem 3.2) in the sense that if P and Q are projections in M(A⊗K) with
Q 6∈ A ⊗K and if τ(P) < τ(Q) for all tracial states τ on A for which τ(Q) < ∞,
then P - Q.

It follows from the work of Fack and Marcoux that every self-adjoint el-
ement T = T∗ ∈ M(A⊗K) is a sum of two self-commutators of elements
of M(A⊗K). In the case that T ∈ P(M(A⊗K))P for some projection P in
M(A⊗K), it is natural to ask whether those self-commutators can be chosen in
P(M(A⊗K))P. An obvious necessary condition is that τ(T) = 0 for every τ
for which τ(P) < ∞. One of our main results, Theorem 4.5, is that this condi-
tion is also sufficient. As a consequence of this result we then obtain in Theo-
rem 5.1 that every element P(M(A⊗K))P is a linear combination of projections
in P(M(A⊗K))P with control on the coefficients (see Section 5). The control on
the coefficients permits us to prove (see [13] and [17]) that every positive locally
invertible element in P(M(A⊗K))P is PCP (Corollary 6.1).

In the case that M(A⊗K) has real rank zero, by modeling the proof on
the proof of Theorem 6.1 in [17] we prove in Theorem 6.4 that a positive element
T ∈ M(A⊗K) is a PCP if and only if τ(RT) < ∞ for every τ ∈ T (A) for which
T ∈ Iτ . Here Iτ is the closed ideal generated by the projections of M(A⊗K)
with finite τ values. This result is the natural analog of the Fong and Murphy
result in B(H) in view of B(H) =M(C⊗K). Indeed the usual trace Tr on B(H)
is the extension τ of the unique tracial state τ on C, K = Iτ , and T ∈ B(H) is a
PCP if either T 6∈ K or if T ∈ K with Tr(RT) < ∞, i.e., T has finite rank ([9]).

2. PRELIMINARIES

Unless otherwise specified, in this paperA is always assumed to be a unital
separable simple non-elementary C∗-algebra with real rank zero stable rank one
and has strict comparison of projections by traces. The latter means that the tra-
cial simplex T (A) of A (that is the collection of tracial states on A) is non-empty
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and that if p and q are projections in A and τ(p) < τ(q) for all τ ∈ T (A) then
p ≺ q (p is subequivalent to q in the Murray–von Neumann sense).

Under these assumptions, we have proven in Theorem 2.9 of [17] that every
quasitrace on A is a trace.

It is well known that T (A) is a w*-compact convex set. Denote by ∂e(T (A))
the extreme boundary of T (A), that is the collection of extreme points of T (A),
or extreme traces for short.

Every tracial state τ ∈ T (A) extends uniquely to the faithful, semifinite,
normal trace τ ⊗ Tr on (A ⊗ K)+. Notice that τ ⊗ Tr(p) > 0 for any nonzero
projection p ∈ A⊗ K and (τ ⊗ Tr)(1⊗ e) = 1 for any rank-one projection e ∈ K.
Up to scalar multiples, all semifinite, normal traces on (A ⊗ K)+ arise in this
way. Thus, to simplify notations and without risk of confusion, we will identify
T (A) with the collection of semifinite, normal traces on (A⊗K)+, normalized
by τ(1⊗ e) = 1 for any rank one projection e ∈ K.

Next for every τ ∈ T (A) denote by τ̃ the natural extension of τ toA∗∗, then
τ̃ is a normal tracial state onA∗∗ and hence τ := τ̃⊗Tr is a normal semifinite (not
necessarily faithful) trace (also called a tracial weight) on the von Neumann alge-
bra A∗∗ ⊗ B(H) which we can identify with (A⊗K)∗∗. Thus τ is also a semifi-
nite trace on the multiplier algebraM(A⊗K)+. Notice that as remarked in 5.3
of [17], by the work of F. Combes ([3], Proposition 4.1 and Proposition 4.4) and
Ortega, Rordam, and Thiel ([28], Proposition 5.2) τ ⊗ Tr has a unique extension
to a lower semicontinuous semifinite trace τ on the enveloping von Neumann
algebra (A⊗K)∗∗ and hence this extension is τ.

Recall that every open projection P ∈ (A ⊗ K)∗∗, and in particular every

projection P ∈ M(A⊗K), has a decomposition P =
∞⊕
1

pj into a series of strictly

converging projections pj ∈ A⊗K. Thus τ(P) =
∞
∑
1

τ(pj) for all τ ∈ T (A).

We have shown in Lemma 2.4 of [17] that strict comparison of projections
holds also for A⊗K. One of the goals of this paper will be to show (see Theo-
rem 3.2) that under the additional hypothesis that ∂e(T (A)) is finite,M(A⊗K)
has a form of strict comparison of projections with respect to the traces τ for
τ ∈ T (A) as described below.

DEFINITION 2.1. If P and Q are projections inM(A⊗K) we say that P is
tracially dominated by Q if τ(P) < τ(Q) for all τ ∈ T (A) for which τ(Q) < ∞.

Thus P is tracially dominated by Q if τ(P) < τ(Q) for all τ ∈ T (A) under
the convention that ∞ < ∞.

Notice that if T (A) has only a finite number of extremal traces, that is if the
extremal boundary ∂e(T (A)) = {τj}n

1 , then τ(P) < τ(Q) for all τ ∈ T (A) if and
only if τ j(P) < τ j(Q) for all 1 6 j 6 n.

Strict comparison of projections within A ⊗ K means that if p and q are
projections in A⊗K and p is tracially dominated by q, then p ≺ q.
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The same cannot hold without further conditions in M(A⊗K) and the
obstruction arises from the ideal structure ofM(A⊗K). Indeed, if P - Q then
P must belong to the same ideal as Q. But it will be easy to show that for every
nonzero projection q ∈ A ⊗ K there is a projection P 6∈ A ⊗ K that is tracially
dominated by q. Thus before further considering strict comparison of projections
inM(A⊗K) we need to recall some facts about ideals inM(A⊗K).

First of all, there exists a minimal ideal Imin that properly contains A ⊗ K
([23], Theorem 1.7). The projections in Imin are the characterized by the following
property.

DEFINITION 2.2 ([23], Definition 2.1). A sequence of projections pj ∈ A⊗K
is called an `1-sequence if for every projection 0 6= r ∈ A ⊗K there is an N ∈ N
such that

[pn] + [pn+1] · · · [pm] 6 [r] ∀m > n > N.

A projection P ∈ M(A⊗K) is called thin if it has a decomposition P =
∞⊕
1

pj into

a strictly converging sum of an `1 -sequence.

We collect here the following known results.

PROPOSITION 2.3 ([23]). (i) If the projection P ∈ M(A⊗K) is thin, then for

any decomposition P =
∞⊕
1

pj into a series of strictly converging projections pj ∈ A⊗K,

the sequence {pj} is `1.
(ii) Finite sums of thin projections are thin and projections majorized by thin projec-

tions are thin.
(iii) There exist thin projections P 6∈ A ⊗ K. Every thin projection P 6∈ A ⊗ K

generates the ideal Imin and every projection in Imin is thin.

Furthermore, recall that for every projection p ∈ A ⊗ K, the evaluation
map p̂ : T (A) 3 τ → τ(p) is affine and continuous. Let Aff(T (A)) denote
the Banach space of real-valued affine continuous functions on T (A). Recall that
under the evaluation map, Ko(A) is dense in Aff(T (A)) ([1], Theorem 6.9.3) and
the dimension semigroup D(A⊗K) \ {0} is dense in Aff(T (A))++, the collection
of strictly positive affine continuous functions on T (A) (see Remark 2.7 of [17].)

For every projection P ∈ M(A⊗K), the evaluation map

P̂ : T (A) 3 τ → τ(P)

is affine and lower semicontinuous. Indeed if P =
∞⊕
1

pj is any strictly convergent

decomposition of P with pi ∈ A ⊗ K, then τ(P) =
∞
∑
1

τ(pi), that is, P̂ =
∞
∑
1

p̂i,

being the pointwise sum of a series of positive continuous affine functions, is
affine lower semicontinuous.
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LEMMA 2.4. Let P ∈ M(A⊗K) be a projection. Then P ∈ Imin if and only if the

evaluation map P̂ : T (A) 3 τ → τ(P) is continuous. Furthermore, if P =
∞⊕
1

pj ∈ Imin

is any strictly convergent decomposition of P with pi ∈ A ⊗ K, then the series
∞
∑
1

p̂j

converges uniformly.

Proof. Assume first that P ∈ Imin. Hence by Proposition 2.3(iii), P =
∞⊕
1

pj

is the sum of an `1 sequence and it will be enough to prove that the series
∞
∑
1

p̂j

converges uniformly. For every ε > 0, by Theorem 6.9.3 of [1] choose a nonzero
projection r ∈ A ⊗ K with τ(r) < ε for all τ ∈ T (A). Then there is an N ∈ N

such that
m⊕
n

pj - r for all m > n > N and hence
m
∑
n

p̂j(τ) < τ(r) < ε. Thus the

sequence of partial sums of the continuous functions p̂j is uniformly Cauchy and
hence its limit P̂ is continuous.

Conversely, assume that P̂ is continuous. Then by Dini’s theorem the se-

quence of partial sums
n
∑
1

p̂j increases uniformly to P̂. Let r ∈ A⊗K be a nonzero

projection. Since r̂ is continuous, r̂(τ) > 0 for all τ, and T (A) is compact, then
there is some α > 0 such that r̂(τ) > α > 0 for all τ. But then there is an N ∈ N
such that for all m > n > N,

τ
( m⊕

n
pj

)
=

m⊕
n

p̂j(τ) < α 6 τ(r) ∀τ ∈ T (A) .

By the strict comparison of projections in A⊗K it follows that
m⊕
n

pj - r for all

m > n > N and hence P is thin. By Proposition 2.3(iii), P ∈ Imin.

Whenever T (A) does not reduce to a singleton (a unique trace) there are
further proper ideals between Imin andM(A⊗K).

DEFINITION 2.5. For every τ ∈ T (A), let

Iτ := {X ∈ M(A⊗K) : τ(X∗X) < ∞}

where the closure is in the norm topology.

It is immediate to verify that even whenA does not have real rank zero then
Iτ is a two-sided closed ideal ofM(A⊗K) and

(Iτ)+ = {X ∈ M(A⊗K)+ : τ(X) < ∞}.

If A has real rank zero, then as a consequence of results in [36] and [37] it fol-
lows that every projection P ∈ Iτ satisfies the condition τ(P) < ∞ and that Iτ is
generated by all the projections P ∈ M(A⊗K) with τ(P) < ∞.
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In the case when ∂e(T (A)) is finite, say ∂e(T (A)) = {τj}n
1 , then there are

precisely 2n − 1 ideals ofM(A⊗K) distinct from A⊗K, which are obtained by
all the possible intersections of the maximal ideals Iτj for 1 6 j 6 n. In particular,
Imin =

⋂
16j6n

Iτj . This was obtained in [20] for AF algebras and in [33] for a more

general case.
In the case when ∂e(T (A)) is infinite, then the ideal structure ofM(A⊗K)

is considerably more complex. Some results in particular when T (A) is a Bauer
simplex, are obtained in [31].

In Section 5 we will make use of the following simple result which holds for
every unital simple C∗-algebra A.

LEMMA 2.6. Let A be a simple unital C∗-algebra, let T ∈ M(A⊗K)+ and let
τ ∈ T (A). Then T ∈ Iτ if and only if τ(χ(δ,‖T‖](T)) < ∞ for every δ > 0.

Proof. Assume first that τ(χ(δ,‖T‖](T)) < ∞ for every δ > 0. Let

fδ(t) =

{
t− δ if t > δ,
0 if t 6 δ,

and let Tδ := fδ(T). Then RTδ
= χ(δ,‖T‖](T) and hence τ(Tδ) 6 ‖Tδ‖τ(RTδ

) < ∞.
Thus Tδ ∈ Iτ and since ‖T − Tδ‖ 6 δ for every δ > 0 and Iτ is closed, it then
follows that T ∈ Iτ .

Now assume that T ∈ Iτ . By the definition of Iτ , for every δ > 0 there
is a B ∈ (Iτ)+ with τ(B) < ∞ and ‖T − B‖ < δ

4 . By basic results about Cuntz
subequivalence (see for example Lemma 2.2 of [33]) it follows that (T− δ

2 1)+ - B.
But then there is an x ∈ M(A⊗K) such (T − δ

2 1)+ = x∗Bx. Hence

τ((T − δ
2 1)+) 6 τ(x∗Bx) 6 τ(B1/2x∗xB1/2) 6 ‖x‖2τ(B) < ∞.

But then

(T − δ
2 1)+ = (T − δ

2 1)χ( δ
2 ,‖T‖](T) > (T − δ

2 1)χ(δ,‖T‖](T) >
δ

2
χ(δ,‖T‖](T)

and hence τ(χ(δ,‖T‖](T)) < ∞.

3. STRICT COMPARISON OF PROJECTIONS INM(A⊗K)

In the following two results (Proposition 3.1 and Theorem 3.2) we do not
need the assumption that A has stable rank one, but that assumption is used
in Proposition 3.3 and following which depend on the density of the dimension
semigroup D(A ⊗ K) in Aff(QT (A))++ ([1], Theorem 6.9.3) and the fact that
under the hypotheses on A we have QT (A) = T (A) ([17], Theorem 2.9).

We start by considering strict comparison of of projections belonging to the
ideal Imin.
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PROPOSITION 3.1. Let P, Q ∈ Imin be projections for which P is tracially domi-
nated by Q and Q 6∈ A ⊗K. Then P ≺ Q.

Proof. Let P =
∞⊕
1

pj, Q =
∞⊕
1

qj with pj, qj projections in A ⊗ K and the

series converging strictly, and furthermore qj 6= 0 for all j by the assumption that
Q 6∈ A ⊗ K. Then by Proposition 2.3 and Lemma 2.4 these sequences are `1 and

the series of continuous affine functions
∞
∑
1

p̂j and
∞
∑
1

q̂j converge uniformly.

By a routine compactness argument, we can find an index N such that

P̂(τ) <
N

∑
1

q̂j(τ) ∀τ ∈ T (A) .

If only finitely many projections pj are nonzero, then P ∈ A⊗K. But then by the

strict comparison of projections in A⊗K it follows that P ≺
N⊕
1

qj 6 Q and we

are done. Thus assume that all projections pj 6= 0.

Since the series of continuous functions
∞
∑
1

p̂j converges uniformly and qN+1

6= 0, we can find an index m1 such that∥∥∥ ∞

∑
j=m1+1

p̂j

∥∥∥
∞
< min q̂N+1.

Thus for all τ ∈ T (A) we have

(3.1)
m1

∑
1

p̂j(τ) < P̂(τ) <
N

∑
1

q̂j(τ) and
∞

∑
m1+1

p̂j(τ) < q̂N+1(τ).

Since lim
m

∥∥∥ ∞
∑

j=m
p̂j

∥∥∥
∞

= 0 and min q̂N+k > 0 for all k, choose an increasing se-

quence of indices mk such that for all k > 1 and all τ ∈ T (A)
mk+1

∑
mk+1

p̂j(τ) < q̂N+k(τ).

By the strict comparison of projections inA⊗K, we obtain that
m1⊕
1

pj ≺
N⊕
1

qj con-

jugated by a partial isometry V0 ∈ M(A⊗K) and
mk+1⊕
mk+1

pj ≺ qN+k, conjugated

by a partial isometry Vk ∈ M(A⊗K) for all k > 1. By the strict convergence

of the series P =
∞⊕
1

pj and Q =
∞⊕
1

qj, it follows that also the series
∞
∑

k=0
Vk con-

verges strictly. Thus its sum W :=
∞
∑

k=0
Vk is a partial isometry in M(A⊗K),

WPW∗ 6 Q, and hence P ≺ Q.
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To consider comparison of projections not in Imin we will need to further
assume that ∂e(T (A)) is finite. In that case, by the complete characterization of
ideals inM(A⊗K) (see [33]) it follows that

Imin =
⋂

τ∈T (A)
Iτ =

⋂
τ∈∂e(T (A))

Iτ .

THEOREM 3.2. Assume that T (A) has finitely many extremal traces, that is
∂e(T (A)) = {τj}n

1 . Then strict comparison of projections holds for M(A⊗K) in
the sense that if Q 6∈ A ⊗K and τ(P) < τ(Q) for all τ ∈ T (A) for which τ(Q) < ∞
then P - Q.

Proof. Let ∂e(T (A)) = {τj}n
1 be the extremal boundary of T (A) and let

S := {1 6 j 6 n : τ j(Q) < ∞}.

If S = ∅, i.e., τ j(Q) = ∞ for all j, it follows that τ(Q) = ∞ for all τ ∈ T (A). Then
Q ∼ 1 by 2.4 or 3.6 of [36] and thus P - Q. If S = {1, 2, . . . , n}, i.e., τ(Q) < ∞ for
all τ ∈ ∂e(T (A)), then by the remark preceding this theorem, Q ∈ Imin and hence
P ≺ Q by Proposition 3.1. Thus assume henceforth that ∅ ( S ( {1, 2, . . . , n}.

Let α := min
j∈S

(
τ j(Q)− τ j(P)

)
. Then α > 0. Let P =

∞⊕
1

pj, Q =
∞⊕
1

qj with

pj, qj projections in A ⊗ K, the series converging strictly, and qj 6= 0 ∀j. Since

the series
∞
∑
i

τj(qi) converges for all j ∈ S, we can find an integer n0 such that

τj(qn0) < α for all j ∈ S. Then

∞

∑
1

τj(pi) = τ j(P) 6 τ j(Q)− α < τ j(Q)− τj(qn0) =
∞

∑
1

τj(qi)− τj(qno ) ∀ j ∈ S.

Thus there is an integer n′ > no for which

(3.2)
∞

∑
1

τj(pi) <
n′

∑
1

τj(qi)− τj(qno ) ∀ j ∈ S.

By hypothesis, qi 6= 0 for all i and in particular as all the traces are faithful,

τj(qn0) > 0 for all j ∈ {1, 2, . . . , n}. Since the series
∞
∑
i

τj(pi) converge for all

j ∈ S, we can then find m1 such that

(3.3)
∞

∑
m1+1

τj(pi) < τj(qn0) ∀ j ∈ S.

By (3.2),
m1

∑
1

τj(pi) <
n′

∑
1

τj(qi)− τj(qno ) ∀ j ∈ S.
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By using the divergence of the series
∞
∑
1

τj(qi) for j 6∈ S, we can also find an n1 > n′

such that

(3.4)
m1

∑
1

τj(pi) <
n1−1

∑
1

τj(qi)− τj(qno ) ∀ j ∈ {1, 2, . . . , n}.

This concludes the initial step. Now choose m2 > m1 and n2 > n1 such that
∞

∑
m2+1

τj(pi)<τj(qn1) ∀ j∈S (the left series converges)

m2

∑
m1+1

τj(pi)<
n2−1

∑
i=n1+1

τj(qi)+τj(qno ) ∀ j∈{1, 2, . . . , n} (the right series diverges).(3.5)

Iterating the construction, we can find an increasing sequence of indices mk and
nk such that

(3.6)
mk+1

∑
mk+1

τj(pi) <
nk+1−1

∑
nk+1

τj(qi) + τj(qnk−1) ∀ j ∈ {1, 2, . . . , n}.

Then by the strict comparison of projections in A⊗K we have for all k
m1⊕
1

pi ≺
n1−1⊕

1

qi − qno (by (3.4))

mk+1⊕
mk+1

pi ≺
nk+1−1⊕

nk+1

qi + qnk−1 (by (3.6)).

Reasoning as in the proof of Proposition 3.1 we can construct a partial isometry in
M(A⊗K) to conjugate P to a subprojection of Q, thus obtaining that P - Q.

PROPOSITION 3.3. Assume that T (A) has finitely many extremal traces, that is
∂e(T (A)) = {τj}n

1 . Then for every n-tuple of αj ∈ (0, ∞], there exists a projection
P ∈ M(A⊗K) \A⊗K such that τ j(P) = αj for all 1 6 j 6 n.

Proof. Let S := {1 6 j 6 n : αj < ∞}. If S = ∅, it is enough to choose P = 1.
To simplify notations, assume that ∅ 6= S 6= {1, 2, . . . , n}, the proof in the case
when S = {1, 2, . . . , n} being identical.

Let 1 =
∞⊕
1

Ei be a strictly converging decomposition of the identity into

projections Ei ∼ 1. Recall that for any infinite collection of nonzero projec-

tions Pj 6 Ej, the sum
∞⊕
1

Pi converges in the strict topology to a projection

P ∈ M(A⊗K) \A⊗K.
Recall also that Aff(T (A)) is isomorphic to Rn and that the dimension semi-

group D(A⊗K) is dense in Aff(T (A))++, the collection of strictly positive con-
tinuous affine functions on T (A). Thus there is a projection p1 ∈ A ⊗ K such
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that {
αj − 1 < τj(p1) < αj j ∈ S,
1 < τj(p1) < 2 j 6∈ S.

Since p1 ≺ 1 ∼ E1, we can choose p1 6 E1. Next, we find a projection p2 ∈ A⊗K
with p2 6 E2 and{

αj − τj(p1)− 1
2 < τj(p2) < αj − τj(p1) j ∈ S,

1 < τj(p2) < 2 j 6∈ S.

Iterating, we find a sequence of projections pi ∈ A⊗K, with pi 6 Ei for which
αj − 1

m <
m
∑

i=1
τj(pi) < αj j ∈ S,

m
∑

i=1
τj(pi) > m j 6∈ S.

But then
∞⊕

i=1
pi converges to a projection P ∈ M(A⊗K) \A ⊗K and τ j(P) = αj

for every 1 6 j 6 n.

By combining Proposition 3.3 with Theorem 3.2 we thus obtain:

COROLLARY 3.4. Assume that T (A) has finiteley many extreme traces, that is
∂e(T (A)) = {τj}n

1 . For every projection Q ∈ M(A⊗K) \A ⊗K and every n-tuple
of αj ∈ (0, ∞] with αj < τ j(Q) for all j for which τ j(Q) < ∞, there is a projection P in
M(A⊗K) \A⊗K such that P ≺ Q and τ j(P) = αj for all 1 6 j 6 n.

4. SUMS OF COMMUTATORS IN IDEALS OFM(A⊗K)

Fack proved in Theorem 2.1 of [6] that if a unital algebra B contains two
mutually orthogonal projections equivalent to the identity, then every selfadjoint
element b is the sum of five selfcommutators,

(4.1) b =
5

∑
i=1

[xi, x∗i ] with ‖xj‖ 6
3
2
‖b‖1/2 for 1 6 j 6 5.

The bound ‖x1‖ 6 3
2‖b‖1/2 for the element obtained in the first step of the proof

is implicit in Lemma 1.2 of [6], while the bounds ‖xi‖ ≤ ‖b‖1/2 for the remaining
elements can be seen from the proofs of Lemmas 1.3, 1.4, 2.3 of [6].

Since the identity of M(A⊗K) can be decomposed into the sum of two
mutually orthogonal projections equivalent to the identity, it follows that every
element ofM(A⊗K) is the sum of 10 selfcommutators.

In particular, every element in a corner PM(A⊗K) P for some projection
P ∈ M(A⊗K) is a sum of commutators of elements ofM(A⊗K). These ele-
ments do not necessarily belong to PM(A⊗K) P. Indeed if τ(P) < ∞ for some
τ ∈ T (A), then τ is a finite trace on PM(A⊗K) P and hence vanishes on all the
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commutators of elements of PM(A⊗K) P. Thus for T ∈ PM(A⊗K) P to be a
sum of commutators of elements of PM(A⊗K) P it is necessary that τ(T) = 0
for all τ ∈ T (A) for which τ(P) < ∞. We shall prove that the condition is also
sufficient under the additional hypothesis that ∂e(T (A)) is finite. Based on the
work in [21], [25], and [34], we obtained in a previous paper:

LEMMA 4.1 ([17], Lemma 3.3). Let B be a unital separable simple C∗-algebra
of real rank zero, stable rank one, and strict comparison of projections. Let b ∈ B be a
selfadjoint element, let η > 0, and assume that |τ(b)| 6 η for all τ ∈ T(B). Then
for every ε > 0 there exist elements v1, v2, v3, v4 ∈ B such that ‖vi‖ 6

√
2‖b‖1/2 for

1 6 i 6 4 and
∥∥∥b−

4
∑

i=1
[vi, v∗i ]

∥∥∥ < η + ε.

We start with the following extension of this lemma to the corners ofA⊗K
by projections ofM(A⊗K).

LEMMA 4.2. Assume that T (A) has finite extreme boundary ∂e(T (A)) = {τj}n
1 ,

let P be a nonzero projection inM(A⊗K), and set

S := {1 6 j 6 n : τ j(P) < ∞} and α := min
j∈S

τ j(P).

Let a ∈ P(A⊗K)P be a selfadjoint element, let η > 0, and assume that |τj(a)| 6 η for
all j ∈ S. Then for every ε > 0 there exist elements v1, v2, v3, v4, v5 ∈ P(A⊗K)P such

that ‖vi‖ 6
√

2‖a‖1/2 for 1 6 i 6 5 and
∥∥∥a−

5
∑

j=1
[vi, v∗i ]

∥∥∥ < η
α + ε.

Proof. The case when S = ∅, namely when τ j(P) = ∞ for all 1 6 j 6 n and
hence τ(P) = ∞ for all τ ∈ T (A), is immediate because then P ∼ 1 and without
loss of generality, P = 1. But then by Fack’s theorem 1.1 of [6], a is the sum of five
selfcommutators. The bounds on the norms are implicit in Fack’s proof.

We leave to the reader the case when S = {1, 2, . . . , n} which is similar but
somewhat simpler than the general case. Thus assume that ∅ 6= S 6= {1, 2, . . . , n}.
To simplify notation, assume furthermore that ‖a‖ = 1.

Choose 0 < β < α so that

(4.2)
η

β
<

η

α
+

ε

5
.

Decompose a into its positive and negative parts a = a+ − a−. Since A⊗ K
has real rank zero, by Lemma 2.3 of [16] we can approximate from underneath

a+ (respectively, a−) with a positive finite spectrum element
n1
∑

i=1
λi pi 6 a+ with

mutually orthogonal projections pi ∈ A ⊗ K and scalars λi > 0, (respectively,
n2
∑

k=1
µkqk 6 a− with mutually orthogonal projections qk ∈A⊗K and scalars µk > 0)
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so that

(4.3) b := a+ −
n1

∑
i

λi pi − a− +
n2

∑
k=1

µkqk

has norm ‖b‖ 6 εβ
5 maxj∈S τ j(P) . In particular,

(4.4) ‖b‖ < ε

5
.

Set

a′ :=
n1

∑
i

λi pi −
n2

∑
k=1

µkqk.

Since Rb 6 P, for all j ∈ S we have |τj(b)| 6
εβ
5 . Since a′ = a − b and hence

|τj(a′)| 6 |τj(a)|+ |τj(b)|, we also have

(4.5) |τj(a′)| 6 η +
εβ

5
∀ j ∈ S.

Choose an integer m > 5
ε . By the density of the dimension semigroup D(A⊗K)

in the collection Aff(T (A))++ of strictly positive continuous affine functions on
T (A), choose projections in {p′′i , q′′k } in A⊗ K withτj(pi)−

β
(n1+n2)(m+1) < τj(p′′i ) < τj(pi) j ∈ S,

τj(p′′i ) < min
{

β
(n1+n2)(m+1) , τj(pi)

}
j 6∈ S;τj(qk)−

β
(n1+n2)(m+1) < τj(q′′k ) < τj(qk) j ∈ S,

τj(q′′k ) < min
{

β
(n1+n2)(m+1) , τj(qk)

}
j 6∈ S.

Then by using strict comparison of projections in A⊗ K (see Corollary 3.4), find
projections p′i ∼ p′′i , q′k ∼ q′′k in A⊗ K with p′i 6 pi, q′k 6 qk for all i, k. Set

r :=
n1

∑
i=1

(pj − p′i) +
n2

∑
k=1

(qk − q′k), r′ :=
n1

∑
i=1

p′i +
n2

∑
k=1

q′k,

c :=
n1

∑
i=1

λi(pi − p′i)−
n2

∑
k=1

µk(qk − q′k), c′ :=
n1

∑
i=1

λi p′i −
n2

∑
k=1

µkq′k.

Notice that the projections {pi, qk}, and hence the projections {p′i, q′k} are
all mutually orthogonal and are majorized by P, hence r and r′ are projections
in P(A ⊗ K)P, and c and c′ are selfadjoint elements of P(A ⊗ K)P with range
projections Rc = r and Rc′ = r′ respectively. Then

a′ = c + c′, τj(r) <
β

m + 1
for j ∈ S, τj(r′) <

β

m + 1
for j 6∈ S.
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Since Rc = r and ‖c‖ 6 ‖a‖ = 1, Rc′ = r′ and ‖c′‖ 6 ‖a‖ = 1, we have

|τj(c)| 6 ‖c‖τj(r) 6
β

m + 1
<

εβ

5
for j ∈ S,

|τj(c′)| 6 ‖c′‖τj(r′) 6
β

m + 1
<

εβ

5
for j 6∈ S.

By (4.5) and the above inequalities we obtain

|τj(c′)| 6
{
|τj(a′)|+ |τj(c)| < η + 2εβ

5 j ∈ S,
εβ
5 j 6∈ S,

6 η +
2εβ

5
∀ j

and hence

(4.6) |τ(c′]| < η +
2εβ

5
∀ τ ∈ T (A) .

Since by construction r′ ∈ P(A ⊗ K)P and hence r′ 6= P, it follows that
τj(r′) < τ j(P) for all j. Invoking again the density of D(A⊗K) in Aff(T (A))++,
choose a projection s ∈ A⊗K with

max(τj(r′), β) < τj(s) <

{
τ j(P) j ∈ S,
max(τj(r′), β) + 1 j 6∈ S.

Using strict comparison of projections in A ⊗ K and in M(A⊗K), it is now
routine to show that s can be chosen so that r′ 6 s 6 P. By construction, τ(s) > β
for all τ ∈ T (A).

Now c′ belongs to s(A⊗K)s which is a unital separable simple C∗-algebra
of real rank zero, stable rank one, and with strict comparison of projections. Every
tracial state τ̃ ∈ T(s(A ⊗ K)s) is the restriction and the rescaling of a trace in
τ ∈ T (A), i.e., τ̃(c′) = τ(c′)

τ(s) . But then for every τ̃ ∈ T(s(A⊗K)s) we have by
(4.2) and (4.6)

|τ̃(c′)| < |τ(c
′)|

β
<

η + 2εβ/5
β

=
η

β
+

2ε

5
<

η

α
+

3ε

5
.

Thus by Lemma 3.3 of [17] (see Lemma 4.1), we can find elements v1, v2, v3, v4 in
s(A⊗K)s ⊂ P(A⊗K)P with

‖vi‖ 6
√

2‖c′‖1/2 6
√

2‖a‖1/2 =
√

2 for all 1 6 i 6 4,(4.7) ∥∥∥c′ −
4

∑
i=1

[vi, v∗i ]
∥∥∥ <

η

α
+

3ε

5
.(4.8)

Now we consider c which has range projection r ∈ A⊗K. Since

τj(r) <


β

m+1 <
τ j(P)
m+1 j ∈ S,

∞ =
τ j(P)
m+1 j 6∈ S,

by Theorem 3.2 we can find m mutually orthogonal subprojections {rj}m
1 of P− r

with rj ∼ r. Since A⊗K is an ideal ofM(A⊗K), all the projections rj are also
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in A⊗K. Let rj = vjrv∗j for some partial isometries vj ∈ A ⊗ K. Then we can

identify e := c− 1
m

m
∑

i=1
vicv∗i with the diagonal element of Mm+1(r(A⊗K)r) given

by the matrix 
c 0 · · · 0
0 − 1

m c · · · 0
. . .

0 · · · 0 − 1
m c

 .

From Lemma 1.3 of [6], there is an element v5 ∈ Mm+1(r(A⊗K)r), which
in turns we can identify with an element of

(∑m
i=0 ri)(A⊗K)(∑m

i=0 ri) ⊂ P(A⊗K)P,

where ro := r, such that e = [v5, v∗5 ] and ‖v5‖ 6 ‖c‖1/2 6 ‖a‖1/2 = 1. But

(4.9) ‖c− [v5, v∗5 ]‖ =
‖c‖
m

6
‖a‖
m

6
ε

5
.

We thus have

a−
5

∑
i=1

[vi, v∗i ] = b + c′ −
4

∑
i=1

[vi, v∗i ] + c− [v5, v∗5 ],

and hence from (4.4), (4.8 ), and (4.9)∥∥∥a−
5

∑
i=1

[vi, v∗i ]
∥∥∥ 6 η

α
+ ε.

Now we extend Lemma 4.2 to corners ofM(A⊗K).

LEMMA 4.3. Assume that T (A) has finite extreme boundary ∂e(T (A)) = {τj}n
1 ,

let P be a nonzero projection inM(A⊗K), and set

S := {1 6 j 6 n : τ j(P) < ∞}.

Let T ∈ PM(A⊗K) P be a selfadjoint element and assume that τj(T) = 0 for all
j ∈ S. Then for every ε > 0 there are 10 elements V1, V2, . . . , V10 ∈ PM(A⊗K) P
such that ‖Vi‖ 6 4

√
2‖T‖1/2 for 1 6 i 6 10 and∥∥∥T −

10

∑
j=1

[Vi, V∗i ]
∥∥∥ < ε.

Proof. Let π : PM(A⊗K) P → PM(A⊗K) P/P(A⊗K)P be the canon-
ical quotient map. By Theorem 3.6 of [18] and for a more general case, ([19],
Theorem A and 4.5), the corona algebraM(A⊗K) /A⊗K is purely infinite and
hence so is PM(A⊗K) P/P(A ⊗ K)P. For completeness purpose, we show
how this fact follows easily from Theorem 3.2.
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By [37] one can write P = Q⊕Q′, where Q and Q′ are equivalent projections

ofM(A⊗K). Then τ(Q) = τ(Q′) = 1
2 τ(P) for all τ ∈ T (A). Write P =

∞⊕
1

pj as

a strictly convergent sum of projections of A⊗K. Then τ(P) =
∞
∑

j=1
τ(pj) for all

τ ∈ T (A).
Let sn =

n⊕
1

pj and choose no so that for all n > no,

τ j(P− sn)

{
< τ j(Q) < ∞ ∀j ∈ S,
= τ j(Q) = ∞ ∀j 6∈ S.

It follows from Theorem 3.2 that P− sn - Q. Since sn ∈ A ⊗ K, it follows that
π(P) = π(P− sn) ≺ π(Q) as wanted.

Then by Fack’s theorem 2.1 of [6] and (4.1), there are five elements

Ṽi ∈ PM(A⊗K) P/P(A⊗K)P

such that

π(T) =
5

∑
i=1

[Ṽi, Ṽ∗i ] and ‖Ṽi‖ 6
3
2
‖π(T)‖1/2 6

3
2
‖T‖1/2 for 1 6 i 6 5.

Now choose liftings Vi ∈ PM(A⊗K) P of Ṽi such that ‖Vi‖ 6 2√
3
‖Ṽi‖, hence

‖Vi‖ 6
√

3‖T‖1/2 for 1 6 i 6 5. Let

(4.10) a := T −
5

∑
i=1

[Vi, V∗i ].

Then a = a∗ ∈ P(A⊗ K)P. Notice that

−V∗i Vi 6 ViV∗i −V∗i Vi 6 ViV∗i
and hence ‖[Vi, V∗i ]‖ 6 ‖Vi‖2. Thus

‖a‖ 6 ‖T‖+
5

∑
i=1
‖Vi‖2 6 16‖T‖.

Furthermore, τj(ViV∗i ) 6 ‖Vi‖2τ j(P) < ∞ for every j ∈ S. Then

τj(a) = τj(T)−
5

∑
i=1

τj([Vi, V∗i ]) = 0 ∀ j ∈ S.

By Lemma 4.2, the selfadjoint element a can be approximated by the sum of five
selfcommutators of elements Vj ∈ P(A⊗K)P with

‖Vj‖ 6
√

2‖a‖1/2 6 4
√

2‖T‖1/2 for 6 6 i 6 10, and
∥∥∥a−

10

∑
j=6

[Vi, V∗i ]
∥∥∥ < ε.

This combined with (4.10) concludes the proof.
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Notice that the bounds are of course far from sharp. By same proof we could
replace 4

√
2 with any number strictly larger than 3.5

√
2.

LEMMA 4.4. Assume that T (A) has finite extreme boundary ∂e(T (A)) = {τj}n
1 ,

let P be a nonzero projection inM(A⊗K) \A⊗K, and set

S := {1 6 j 6 n : τ j(P) < ∞}.

Then there are three sequences of projections Pn, Qn, Rn in PM(A⊗K) P with the
properties:

(i) P1 + Q1 + R1 = P.
(ii) The projections {Rn}∞

1 are mutually orthogonal.
(iii) Pn + Qn = Rn−1 for all n > 2.

(iv)

{
P1 ∼ Q1 ≺ R1 n = 1,
Pn ∼ Qn ∼ Rn n > 2.

(v) τj(Rn) = τj(Pn) = τj(Qn) = ∞ for every j 6∈ S and every n.

Proof. By using the fact that every projection inM(A⊗K) \A ⊗ K can be
halved, i.e., decomposed into the sum of two orthogonal equivalent projections
([37], Theorem 1.1) it is routine to find a sequence {Rn} of mutually orthogonal
subprojections of P for which

2[Rn] =

{
[P] n = 1,
[Rn−1] n > 2.

Then by halving we find projections Pn ∼ Qn so that

Pn + Qn =

{
P− R1 n = 1,
Rn−1 n > 2.

For n = 1 we have 2[P1] = [P− R1] = [R1] hence P1 ∼ Q1 ≺ R1, while for n > 2
we have 2[Pn] = [Rn−1] = 2[Rn], hence Pn ∼ Qn ∼ Rn. (v) is now immediate
since τ j(P) = ∞ for all j 6∈ S.

THEOREM 4.5. Assume that T (A) has finitely many extremal traces, that is
∂e(T (A)) = {τj}n

1 , let P be a nonzero projection inM(A⊗K) \A⊗K, and set

S := {1 6 j 6 n : τ j(P) < ∞}.

Let T = T∗ ∈ PM(A⊗K) P, and assume that τj(T) = 0 for all j ∈ S. Then there

are two elements Vi ∈ P(M(A⊗K))P such that T =
2
∑

j=1
[Vi, V∗i ]. Furthermore, the

elements Vj can be chosen such that ‖Vj‖ 6 c‖T‖1/2 where c is a constant that does not
depend on T, P, or the C∗-algebra A.

Proof. By adapting Fack’s proof of Theorem 3.1 in [6] and its modification by
Thomsen ([34], Theorem 1.8), Marcoux has shown in Lemma 3.9 of [25] that if B
is a simple, unital C∗-algebra with real rank zero, strict comparison of projections
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and a unique tracial state, then every selfadjont element in the kernel of the trace
is the sum 8 selfcommutators. The two key elements of his proof are in Lemma 3.7
of [6], which state the existence of a sequence of projections satisfying conditions
(i)–(iii) and a weaker form of (iv) of Lemma 4.4, and Proposition 3.6 of [6], which
states that every selfadjont element in the kernel of the trace can be approximated
arbitrarily well by the sum of 2 selfcommutators (with control on the norms of
the operators). If we replace the latter result by Lemma 4.3 which provides an
approximation by the sum of 10 selfcommutators (with control on the norms of
the operators), we see that Marcoux’s proof holds in our setting and shows that
every selfadjont element T ∈ PM(A⊗K) P in the kernel of the extremal traces
{τj}j∈S is the sum of 16 selfcommutators in PM(A⊗K) P (with control on the
norms of the operators).

Moreover, the number of selfcommutators can be reduced to two as in The-
orem 3.10 of [25]. The norms of the elements forming the selfcommutators are
bounded by a constant multiple c of ‖T‖1/2, but the estimates of c are very far
from sharp as discussed in Remark 5.3 of [25] (see also Proof of Theorem 3.4,
Remark 3.5 in [17].

5. LINEAR COMBINATION OF PROJECTIONS INM(A⊗K)

Marcoux has shown in Theorem 3.8 of [24] that in every unital C∗-algebra
that contains three projections P1 + P1 + P3 = 1 with Pi - 1− Pi for 1 6 i 6 3,
every commutator [x, y] is a linear combination of 84 projections. Furthermore,
in 5.1 of [25], Marcoux notices that the coefficients in this linear combination can
be bounded by 8‖x‖ ‖y‖.

Since the identity of 1 ∈ M(A⊗K) can be decomposed into the sum of
three mutually orthogonal projections Pi ∼ 1, and since, as remarked at the be-
ginning of Section 3, every element T ∈ M(A⊗K) is the sum of 10 commu-
tators (with control on the norms), it follows immediately that every element of
T ∈ M(A⊗K) is a linear combination of 840 projections with control on the
norms of the coefficients. However the results in the previous sections permit
us to obtain a stronger result, namely that if T is in a corner PM(A⊗K) P of
M(A⊗K) then T is a linear combination of projections belonging to the same
corner.

THEOREM 5.1. There are constants N and M such that if A is a unital separable
simple C∗-algebra of real rank zero, stable rank one, strict comparison of projections and
has finitely many extreme tracial states and P ∈ M(A⊗K) is a projection, then every

element T ∈ PM(A⊗K) P is a linear combination of projections T =
N
∑

j=1
λjPj with

λj ∈ C and Pj 6 P projections, with |λj| < M for all j.
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Proof. In the case when P ∈ A⊗K and hence PM(A⊗K) P = P(A⊗K)P,
the result follows from Theorem 4.4 of [17]. Thus assume henceforth that P does
not belong to A⊗K.

Let ∂e(T (A)) = {τj}n
1 and let S := {j ∈ N : 1 6 j 6 n, τ j(P) < ∞}. Assume

also that T > 0 and 0 6= ‖T‖ < 1.
By Proposition 3.3 there is a projection Q ∈ M(A⊗K) \A⊗K such that

τ(Q) =

{
τ(T) j ∈ S,
1 j 6∈ S.

Since τj(T) < τ j(P) for all j ∈ S, it follows by Theorem 3.2 that Q ≺ P, so
assume without loss of generality that Q 6 P. Let B := T − Q. Then B = B∗ ∈
PM(A⊗K) and τ j(B) = 0 for all j ∈ S. By Theorem 4.5, B is the sum of two
selfcommutators (with control on the norms of the elements), and each is the
linear combination of 84 projections by Theorem 3.8 of [24] with control of the
coefficients (see remarks preceding this theorem), thus T is a linear combination
of 169 projections in PM(A⊗K) P, also with control on the coefficients. As a
consequence, every T ∈ PM(A⊗K) P is a linear combination of 676 projections
PM(A⊗K)(A⊗K)P, also with control on the coefficients.

We say that an algebra B is the linear span of its projections with control on
the coefficients if it has a constant V such that for every b ∈ B there are n scalars
λj ∈ C and projections pj ∈ B such that

(i) b =
n
∑
1

λj pj;

(ii)
n
∑
1
|λj| < V‖b‖.

Thus Theorem 5.1 states that if the extremal boundary ∂e(T (A)) is finite,
then every hereditary subalgebra PM(A⊗K) P ofM(A⊗K) is the linear span
of its projections with control on the coefficients.

6. POSITIVE COMBINATION OF PROJECTIONS INM(A⊗K)

Now we start investigating linear combinations of projections with positive
coefficients, (positive combinations of projections, or PCP for short). We are inter-
ested in the question of which, necessarily positive, elements are PCP.

We obtained in Proposition 2.7 of [13] extending a B(H) result by Fong and
Murphy [9], that if B is a unital C∗-algebra that is the span of its projections with
control on the coefficients and if PCPs are norm dense in B+, then every positive
invertible element of B is a PCP.

Even in the case when M(A⊗K) does not have real rank zero, PCPs are
norm dense in M(A⊗K)+ by Theorem 1.1 of [35]. The same holds for all the
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corners PM(A⊗K) P for projections P ∈ M(A⊗K). Thus combining Theo-
rem 5.1 and Proposition 2.7 of [13] we obtain the following result.

COROLLARY 6.1. Assume that T (A) has finite extreme boundary. Then for ev-
ery projection P ∈ M(A⊗K), every positive invertible element of PM(A⊗K) P is
a PCP.

As in [13] and [17], the key tool for constructing PCP decompositions in our
setting is given by the following result, which is an immediate consequence of
Corollary 6.1 and Lemma 2.9 of [13]:

LEMMA 6.2. Assume that T (A) has finite extreme boundary. Let P, Q be projec-
tions inM(A⊗K) with PQ = 0, Q - P and let B = QB = BQ be a positive element
of M(A⊗K). Then for every scalar α > ‖B‖, the positive element T := αP ⊕ B is
a PCP.

The next step is to prove that ifM(A⊗K) has real rank zero, every positive
element in a corner PM(A⊗K) P that has sufficiently large range with respect
to P is also PCP (see statement below). The proof is modeled on that of Lemma 6.4
in [17] but with some substantial differences, so for clarity and completeness sake,
we present a proof here.

LEMMA 6.3. Assume that T (A) has finite extreme boundary and that the multi-
plier algebra M(A⊗K) has real rank zero. Let P ∈ M(A⊗K) be a projection and
T ∈ PM(A⊗K)+ P satisfy the conditions:

(i) for every τ ∈ T (A), T ∈ Iτ if and only if τ(P) < ∞;

(ii)

{
τ(RT) >

1
2 τ(P) if τ(P) < ∞,

τ(RT) = ∞ if τ(P) = ∞.
Then T is a PCP.

Proof. The case when P ∈ A ⊗ K is covered by Lemma 6.4 of [17], thus
assume henceforth that P 6∈ A ⊗ K. To simplify notations, we can assume that
‖T‖ = 1. Let ∂e(T (A)) = {τi}n

1 and let S := {1 6 j 6 n : τ j(P) < ∞}. Assume
furthermore that ∅ 6= S 6= {1 6 j 6 n}, leaving to the reader the simpler cases
when S = ∅ and when S = {1 6 j 6 n}.

Consider T as an element of PM(A⊗K) P and denote by χ(T) its spectral
measure with values being projections in (PM(A⊗K) P)∗∗.

By the w*-lower semicontinuity of each τi and the w*-continuity of the re-
striction of τi to PM(A⊗K) P for each i ∈ S, we have

lim
λ→0+

τi(χ(λ,1](T)) = τi(RT) ∀1 6 i 6 n, lim
λ→0+

τi(χ(0,λ)(T)) = 0 ∀i ∈ S.

For every i 6∈ S, by hypothesis T 6∈ Iτi , hence by Lemma 2.6 there is a δi > 0 such
that τi(χ(δi ,1](T)) = ∞. Let γ6 := min

i 6∈S
δi. Then

(6.1) τi(χ(γ6,1](T)) > χ(δi ,1](T) = ∞ ∀ i 6∈ S.
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For every i ∈ S,

τi(χ{0}(T)) = τi(P)− τi(RT) < τi(RT).

Thus we can find 0 < γ4 < γ6 such that

(6.2) τi(χ[0,γ4)
(T)) < τi(χ(γ6,1](T)) ∀ i ∈ S.

Now choose numbers

γ1, γ2, γ3, γ5 so that 0 < γ1 < γ2 < γ3 < γ4 < γ5 < γ6 < 1.

Let f : [0, 1]→ [0, 1] be the continuous function defined by

f (t) =


t t ∈ [0, 1] \ [γ1, γ3],
γ1 t ∈ [γ1, γ2],
linear t ∈ [γ2, γ3].

Since RR(PM(A⊗K) P) = 0, by Brown’s interpolation property [2], there exist
projections S, R, Q ∈ PM(A⊗K) P such that

χ[0,γ1]
(T)6S6χ[0,γ2)

(T), χ[0,γ3]
(T)6Q6χ[0,γ4)

(T), χ[γ6,1](T)6R6χ(γ5,1](T).

Then
τi(Q) 6 τi(χ[0,γ4)

(T)) 6 τi(χ[γ6,1](T)) 6 τi(R) ∀ i

and by (6.2), the inequality τi(Q) 6 τi(R) is strict for i ∈ S while τi(R) = ∞ for
i 6∈ S by (6.1). Then by Theorem 3.2 we obtain that Q - R.

Since S − χ[0,γ1]
(T) 6 χ(γ1,γ2)

(T) and the function f (t) is constant on the
interval [γ1, γ2], it follows that S − χ[0,γ1]

(T) and hence S commute with f (T).
Define:

T1 := f (T)− f (T)S− γ4R, B := T − f (T) + f (T)S, T2 := B + γ4R.

By a simple computation,

T1 > min{γ1, γ5 − γ4}(P− S)

and RT1 = P− S. Thus T1 is positive and invertible in (P− S)M(A⊗K)(P− S)
and hence a PCP by Corollary 6.1.

Since B = QBQ > 0, QR = 0, Q - R and ‖B‖ 6 γ2 < γ4, T2 is a PCP by
Lemma 6.2. Since T = T1 + T2 this concludes the proof.

THEOREM 6.4. Assume that T (A) has finite extreme boundary and that the mul-
tiplier algebra M(A⊗K) has real rank zero. Then T ∈ M(A⊗K)+ is PCP if and
only if either T is full (i.e., belongs to no proper ideal ofM(A⊗K)), or τ(RT) < ∞ for
every τ ∈ T (A) for which T ∈ Iτ .

Proof. Assume that T is PCP, namely T =
n
∑

j=1
λjPj with scalars λj > 0 and

projections Pj ∈ M(A⊗K). If T ∈ Iτ for some τ ∈ T (A), then for every 1 6
j 6 n it follows that Pj 6 1

λj
T and hence Pj ∈ Iτ . But then τ(Pj) < ∞. Since
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RT =
n∨
1

Pj, it follows by standard properties of traces on von Neumann algebras

that

τ(RT) 6
n

∑
j=1

τ(Pj) < ∞.

Assume now that τ(RT) < ∞ for every τ ∈ T (A) for which T ∈ Iτ . Let
∂e(T (A)) = {τi}n

1 and let S := {1 6 j 6 n : T ∈ Iτj}.
In the case when S = ∅, τ(RT) = ∞ for all τ ∈ T (A), hence the result is

given by Lemma 6.3 applied to P = 1. Thus assume that S 6= ∅.
By Proposition 3.3, there is a projection P ∈ M(A⊗K) \A⊗K such that{

τ j(RT) < τ j(P) < 2τ j(RT) < ∞ j ∈ S,
τ j(P) = ∞ j 6∈ S.

Reasoning as in the proof of Lemma 6.3 in [17] and using the strict compar-
ison of projections in M(A⊗K) (Theorem 3.2), we can find a partial isometry
W ∈ M(A⊗K)∗∗ such that WW∗ = RT , W∗W 6 P and such that the map
Φ(X) := W∗XW is a ∗-isomorphism between her T = her RT and the hereditary
algebra her(W∗W) ⊂ PM(A⊗K) P. Since τ(RΦ(T)) = τ(RT) for all τ ∈ T (A),
by Lemma 6.3, Φ(T) is PCP in PM(A⊗K) P and hence in her(W∗W). But then
T is PCP in her T, which completes the proof.
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ADDED IN PROOFS. In our recent paper “Strict comparison of positive elements in
multiplier algebras”, arXiv:1501.05463 [math.OA], we have obtained the same result of
Theorem 6.4 but without asking that the multiplier algebraM(A⊗K) has real rank zero.
We proved that strict comparison of positive elements holds in the multiplier algebra and
that it can be used in lieu of Brown’s interpolation theorem which is the key tool in the
proof of Theorem 6.4.
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