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ABSTRACT. The C∗-subalgebra B of all bounded linear operators on the space
L2(R), which is generated by all multiplication operators by piecewise slowly
oscillating functions, by all convolution operators with piecewise slowly os-
cillating symbols and by the range of a unitary representation of the group
of all translations on R, is studied. A faithful representation of the quotient
C∗-algebra Bπ = B/K in a Hilbert space, where K is the ideal of compact
operators on L2(R), is constructed by applying a local-trajectory method and
appropriate spectral measures. This gives a Fredholm symbol calculus for the
C∗-algebra B and a Fredholm criterion for the operators B ∈ B.
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1. INTRODUCTION

Let B := B(L2(R)) be the C∗-algebra of all bounded linear operators acting
on the Lebesgue space L2(R) and let K be the ideal of all compact operators in
B. An operator B ∈ B is called Fredholm if its image is closed and the kernels
KerB and KerB∗ are finite-dimensional, or equivalently, the coset Bπ := B +K is
invertible in the Calkin algebra Bπ := B/K (see, e.g., [16]).

Let F be the Fourier transform,

(F ϕ)(x) =
∫
R

eixy ϕ(y)dy, x ∈ R.

Consider the unital C∗-algebras of convolution type operators

A := alg (aI, W0(b) : a, b ∈ PSO�) ⊂ B,(1.1)

Z := alg (aI, W0(b) : a, b ∈ SO�) ⊂ A,(1.2)
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generated by multiplication operators aI and convolution operators W0(b) :=
F−1bF where, respectively, a, b ∈ PSO� and a, b ∈ SO�. Here SO� is the C∗-
algebra of functions admitting slowly oscillating discontinuities at every point
λ ∈ R∪{∞} and PSO� is the C∗-algebra of piecewise slowly oscillating functions
(see their definitions in Section 2).

Let G denote the commutative group of all translations

(1.3) gh : R→ R, x 7→ x− h (h ∈ R),
with product ghgs = gh+s for all h, s ∈ R. Given a shift gh ∈ G, we define the
unitary shift operator Ugh acting on L2(R) by

(1.4) (Ugh f )(x) := f (x− h) for x ∈ R.

The aim of this paper is to elaborate a Fredholm symbol calculus for the
C∗-algebra of nonlocal convolution type operators

(1.5) B := alg (A, UG) ⊂ B
generated by all operators A ∈ A and by all unitary shift operators Ugh (h ∈
R), or equivalently, to construct a faithful (that is, injective) representation of the
quotient C∗-algebra B/K in an appropriate Hilbert space, where the C∗-algebra
A is given by (1.1) and K ⊂ Z ⊂ A (see Lemma 6.1 in [23]).

The C∗-algebra C ⊂ B(L2(T)) of nonlocal singular integral operators gener-
ated by the Cauchy singular integral operator ST, by the operators of multiplica-
tions by piecewise quasicontinuous (PQC) functions [27], and by the unitary shift
operators Ug(g ∈ G), where G is a discrete amenable [17] group of shifts acting
freely on T, was studied in [11].

Recall that the group of shifts G acts freely on T if the points g(t) (t ∈ T, g ∈
G) are pairwise distinct. The C∗-algebra S ⊂ B(L2(T)) generated by all rotation
operators on T, by all multiplication operators by piecewise slowly oscillating
functions on T and by the operators eh,λSTe−1

h,λ I (h ∈ R, λ ∈ T), where

eh,λ(t) = exp(h(t + λ)/(t− λ)) for t ∈ T \ {λ},
was studied in [4]. The C∗-algebra D ⊂ B(L2(T)) generated by the Cauchy singu-
lar integral operator ST, by the operators of multiplications by piecewise slowly
oscillating functions on T, and by the unitary shift operators Ug(g ∈ G), where
G is a discrete amenable group [17] of shifts acting topologically freely on T and
having the same finite set of fixed points, was studied in [5] (for more general
actions of G see also [6], [7]).

On the other hand, more complicated C∗-algebras B = alg (A, UG) of non-
local convolution type operators were studied only in the case of piecewise con-
tinuous data (see [18], [19]).

In the present paper, applying results of [21]–[23] for the C∗-algebra A of
convolution type operators with PSO� data, we study the C∗-algebra B of non-
local convolution type operators with such data. Since Bπ is an example of C∗-
algebras associated with C∗-dynamical systems and the action of the group G on
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the maximal ideal space of the central subalgebra Zπ := Z/K of the quotient
C∗-algebra Aπ := A/K is not topologically free, for studying the invertibility in
Bπ we apply a version of the local-trajectory method combined with using spec-
tral measures (see [5], [18], and [20]). For other versions of the local-trajectory
method and their applications see [1]–[3].

The paper is organized as follows. In Section 2 we define the C∗-algebras
SO� and PSO� and describe their maximal ideal spaces.

In Section 3 we describe the Gelfand transform for the central subalgebra
Zπ of Aπ and construct a faithful representation of the quotient C∗-algebra Aπ in
a Hilbert space on the basis of [21]–[23].

The local-trajectory method elaborated in [18], [20] to study the invertibility
in the abstract C∗-algebra B = alg (A, UG) generated by a unital C∗-subalgebra A

and a unitary representation U of an amenable group G is presented in Section 4.
In contrast to the local-trajectory methods developed in [1]–[3], the method

presented here is related to the Allan–Douglas local principle (see, e.g., [13]) and
delivers a convenient machinery for studying C∗-algebras of nonlocal type oper-
ators with discontinuous data in case A has a non-trivial central subalgebra Z .
Applying this method, we establish in Section 5 an invertibility criterion for the
C∗-algebra A of functional operators with PSO� coefficients.

In Section 6 we describe the spectral measure associated with a central C∗-
subalgebra Zπ of Aπ and a faithful representation π of the C∗-algebra Bπ in a
Hilbert space, and which is applicable if the action of the group G is not topolog-
ically free. Such spectral measure allows us in Section 7 to decompose Bπ into
the orthogonal sum of G-invariant C∗-algebras BR,∞, B∞,R and B∞,∞.

In Sections 8, 9 and 10 we study the invertibility in the C∗-algebras AR,∞,
BR,∞ and B∞,R, respectively, where AR,∞ ⊂ BR,∞. The faithful representations
for the C∗-algebras BR,∞ and B∞,R are qualitatively different. To study the in-
vertibility in the C∗-algebra BR,∞ we apply the local-trajectory method, while
studying the C∗-algebra B∞,R is based on the fact that the product of each coset
Bπ ∈ Bπ and each coset [W0(v)]π , where v ∈ SO� and lim

x→±∞
v(x) = 0, belongs

to the C∗-algebra Aπ .
In Section 11 we show that the invertibility in the C∗-algebra B∞,∞ fol-

lows from the invertibility in BR,∞ and therefore a faithful representation for
the quotient C∗-algebra Bπ is related only to the invertibility conditions for the
C∗-algebras BR,∞ and B∞,R.

Finally, in Section 12, collecting the results of Sections 7–11, we construct a
faithful representation of the quotient C∗-algebra Bπ in a Hilbert space. This rep-
resentation can be considered as a Fredholm symbol calculus for the C∗-algebra
B. As a corollary, we obtain a Fredholm criterion for the operators B ∈ B in
terms of their Fredholm symbols.
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2. THE C∗-ALGEBRAS SO� AND PSO�

Let Ṙ := R∪ {∞} and R := [−∞,+∞]. For a bounded measurable function
f : Ṙ→ C and a set I ⊂ Ṙ, let

osc ( f , I) = ess sup {| f (t)− f (s)| : t, s ∈ I}.

Similarly to [4], we say that a function f ∈ L∞(R) is called slowly oscillating at a
point λ ∈ Ṙ if for every (equivalently, for some) r ∈ (0, 1),

lim
x→+0

osc ( f , λ + ([−x,−rx] ∪ [rx, x])) = 0 if λ ∈ R,

lim
x→+∞

osc ( f , [−x,−rx] ∪ [rx, x]) = 0 if λ = ∞.

For every λ ∈ Ṙ, let SOλ denote the C∗-subalgebra of L∞(R) defined by

SOλ := { f ∈ Cb(Ṙ \ {λ}) : f slowly oscillates at λ},

where Cb(Ṙ \ {λ}) := C(Ṙ \ {λ}) ∩ L∞(R).
Let SO� be the minimal C∗-subalgebra of L∞(R) that contains all the C∗-

algebras SOλ with λ ∈ Ṙ, PC the C∗-algebra of all functions in L∞(R) that have
one-sided limits at each point t ∈ Ṙ, and let PSO� be the C∗-subalgebra of L∞(R)
generated by the C∗-algebras PC and SO�. All these algebras contain C(Ṙ). El-
ements of the algebras SO� and PSO� are called, respectively, slowly oscillating
and piecewise slowly oscillating functions.

Identifying the points λ ∈ Ṙ with the evaluation functionals δλ on Ṙ given
by δλ( f ) = f (λ) for f ∈ C(Ṙ), we infer that the maximal ideal space M(SO�) of
SO� is of the form

(2.1) M(SO�) =
⋃

λ∈Ṙ
Mλ(SO�)

where Mλ(SO�) := {ξ ∈ M(SO�) : ξ|C(Ṙ) = δλ} are fibers of M(SO�) over points

λ ∈ Ṙ. Similarly to (2.1), M(PSO�) =
⋃

λ∈Ṙ
Mλ(PSO�). Applying Corollary 2.2 in

[23] and Proposition 5 in [8], we infer that for every λ ∈ Ṙ,

Mλ(SO�) = Mλ(SOλ) = M∞(SO∞) = (closSO∗∞R) \R,

where closSO∗∞R is the weak-star closure of R in SO∗∞, the dual space of SO∞.
For each λ ∈ Ṙ, the characters ξ ∈ Mλ(SOλ) are related to partial limits

of functions a ∈ SOλ at the point λ as follows (see Proposition 3.1 in [21] and
Corollary 4.3 in [10]).

PROPOSITION 2.1. If {ak}∞
k=1 is a countable subset of SOλ and ξ ∈ Mλ(SOλ),

where λ ∈ Ṙ, then there exists a sequence {gn} ⊂ R+ such that gn → ∞ as n → ∞,
and for every t ∈ R \ {0} and every k ∈ N,

lim
n→∞

ak(λ + g−1
n t) = ξ(ak) if λ ∈ R, lim

n→∞
ak(gnt) = ξ(ak) if λ = ∞.
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In what follows we write a(ξ) := ξ(a) for a ∈ SO� and ξ ∈ M(SO�).
The maximal ideal space M(PC) of the algebra PC of piecewise continuous

functions can be identified with Ṙ× {0, 1} in the following way: for a ∈ PC,

a(λ, 0) = a(λ− 0), a(λ, 1) = a(λ + 0) if λ ∈ R,

a(λ, 0) = a(+∞), a(λ, 1) = a(−∞) if λ = ∞.

The maximal ideal space M(PSO�) of the algebra PSO� has a similar description.

LEMMA 2.2 ([21], Lemma 3.4). For every λ ∈ Ṙ, the fiber Mλ(PSO�) can be
identified with Mλ(SO�)× {0, 1}, and therefore M(PSO�) = M(SO�)× {0, 1}.

Thus, identifying characters ζ ∈ Mλ(PSO�) for λ ∈ Ṙ with pairs (ξ, µ) ∈
Mλ(SO�)× Mλ(PC), where Mλ(PC) = {0, 1}, we get the following characteri-
zation of the fiber Mλ(PSO�) (see Theorem 3.5 in [21] and Theorem 4.6 in [4]).

THEOREM 2.3. If (ξ, µ) ∈ Mλ(SO�)× {0, 1} and λ ∈ Ṙ, then (ξ, µ)|SO� = ξ,
(ξ, µ)|C(Ṙ) = λ, (ξ, µ)|PC = (λ, µ).

For a ∈ PSO� and ξ ∈ M(SO�), we put

(2.2) a(ξ−) := a(ξ, 0) and a(ξ+) := a(ξ, 1),

where a(ξ, µ) = (ξ, µ)a for (ξ, µ) ∈ M(SO�) × {0, 1}. In particular, if λ ∈ Ṙ,
a ∈ PSO� ∩ Cb(Ṙ \ {λ}) and ξ = lim

α
δtα ∈ Mλ(SO�), where lim

α
tα = λ, then

a(ξ, 0) = lim
α

a(λ− |tα − λ|), a(ξ, 1) = lim
α

a(λ + |tα − λ|) for λ ∈ R,

a(ξ, 0) = lim
α

a(|tα|), a(ξ, 1) = lim
α

a(−|tα|) for λ = ∞.

The Gelfand topology on M(PSO�) can be described as follows. If ξ ∈ Mλ(SO�)
(λ ∈ Ṙ), a base of neighborhoods for (ξ, µ) ∈ M(PSO�) consists of all open sets
of the form

(2.3) U(ξ,µ) =

{
(Uξ,λ × {0}) ∪ (U−ξ,λ × {0, 1}) if µ = 0,

(Uξ,λ × {1}) ∪ (U+
ξ,λ × {0, 1}) if µ = 1,

where Uξ,λ = Uξ ∩Mλ(SO�), Uξ is an open neighborhood of ξ in M(SO�), and
U−ξ,λ, U+

ξ,λ consist of all ζ ∈ Uξ whose restrictions τ = ζ|C(Ṙ) belong, respectively,
to the sets (λ− ε, λ) and (λ, λ + ε) if λ ∈ R, and (ε,+∞) and (−∞,−ε) if λ = ∞,
where ε > 0 if λ ∈ R, and ε ∈ R if λ = ∞.

3. FAITHFUL REPRESENTATION OF THE QUOTIENT C∗-ALGEBRA Aπ

Consider the C∗-algebras A and Z given, respectively, by (1.1) and (1.2). As
K ⊂ Z ⊂ A, from Theorem 4.4 in [23] it follows that the quotient C∗-algebra
Zπ = Z/K is a central subalgebra of the quotient C∗-algebra Aπ = A/K.
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THEOREM 3.1 ([23], Theorem 6.2). The maximal ideal space M(Zπ) of the com-
mutative C∗-algebra Zπ is homeomorphic to the set

(3.1)
Ω :=

( ⋃
t∈R

Mt(SO�)×M∞(SO�)
)
∪
(

M∞(SO�)×
⋃
t∈R

Mt(SO�)
)

∪ (M∞(SO�)×M∞(SO�))

equipped with topology induced by the product topology of M(SO�)×M(SO�), and the
Gelfand transform Γ : Zπ → C(Ω), Aπ 7→ A(·, ·) is defined on the generators Aπ =
(aW0(b))π (a, b ∈SO�) of the algebra Zπ by A(ξ, η)= a(ξ)b(η) for all (ξ, η) ∈Ω.

Given (λ, τ) ∈ Ω̂0 := (R× {∞}) ∪ ({∞} ×R) we introduce the commuta-
tive Banach algebra Dπ

λ,τ ⊂ Bπ generated by the cosets Iπ and [X̂λ,τ ]
π , where

(3.2) X̂λ,τ :=

{
I − (χ+

λ I −W0(χ−0 ))
2 if (λ, τ) ∈ R× {∞},

I − (χ−0 I −W0(χ+
τ ))

2 if (λ, τ) ∈ {∞} ×R,

where χ−t and χ+
t for every t ∈ R are the characteristic functions of (−∞, t) and

(t,+∞), respectively. Then the maximal ideal space M(Dπ
λ,τ) of Dπ

λ,τ coincides
with the spectrum spBπ [X̂λ,τ ]

π of the element [X̂λ,τ ]
π in the C∗-algebra Bπ (see,

e.g., Section 1.19 in [13]). Since p = 2, w = 1 and hence ν(ξ) = 1/2 for all
ξ ∈ M(SO�), it follows (see, e.g., Corollary 2 in [26] and Section 7.4 in [9]) that

(3.3) spBπ [X̂λ,τ ]
π = spessX̂λ,τ = L̃2,1,1/2 = [0, 1],

where L̃p,w,ν(ξ) := {(1 + coth[πx + πi/ν(ξ)])/2 : x ∈ R}.
Fix (λ, τ) ∈ Ω̂0 and consider the commutative Banach algebra Yπ

λ,τ gener-
ated by the cosets [aI]π (a ∈ SO�), [W0(b)]π (b ∈ SO�) and [X̂λ,τ ]

π , where X̂λ,τ is
given by (3.2). For every (ξ, η, µ) ∈ Mλ(SO�)×Mτ(SO�)× [0, 1], let Iπ

ξ,η,µ denote
the closed two-sided ideal of the commutative Banach algebra Yπ

λ,τ generated by
the maximal ideals

Iπ
1,ξ := {[aI]π : a ∈ SO�, a(ξ) = 0},

Iπ
2,η := {[W0(b)]π : b ∈ SO�, b(η) = 0},

Iπ
3,µ := { f ([X̂λ,τ ]

π) : f ∈ C[0, 1], f (µ) = 0},

respectively, of the commutative Banach algebras

{[aI]π : a ∈ SO�}, {[W0(b)]π : b ∈ SO�},Dπ
λ,τ .

Following Subsection 3.2 in [22] and taking into account (3.3), we define

(3.4) Mξ,η := {µ ∈ [0, 1] : Iπ /∈ Iπ
ξ,η,µ}

for every (ξ, η) ∈ Ω0, where

Ω0 =
( ⋃

t∈R
Mt(SO�)×M∞(SO�)

)
∪
(

M∞(SO�)×
⋃
t∈R

Mt(SO�)
)

.
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Then it follows from (3.3) and Theorems 3.2 and 3.5 in [22] that

(3.5) {0, 1} ⊂Mξ,η ⊂ [0, 1] for all (ξ, η) ∈ Ω0.

Consider the set

(3.6) Ω̃ =
( ⋃
(ξ,η)∈Ω0

{(ξ, η)} ×Mξ,η

)
∪ (M∞(SO�)×M∞(SO�)× {0, 1}).

According to Section 4.4 in [22], for each (ξ, η, µ) ∈ Ω̃ we define the mapping

Ψξ,η,µ : {aI : a ∈ PSO�} ∪ {W0(b) : b ∈ PSO�} → C2×2

given by

(3.7)
Ψξ,η,µ(aI) =

[
a(ξ+) 0

0 a(ξ−)

]
,

Ψξ,η,µ(W0(b)) =
[

b(η+)µ + b(η−)(1− µ) [b(η+)− b(η−)]$(µ)
[b(η+)− b(η−)]$(µ) b(η+)(1− µ) + b(η−)µ

]
,

where $(µ) is any fixed value of
√

µ(1− µ), and c(ξ+) = c(ξ, 1), c(ξ−) = c(ξ, 0)
for c ∈ PSO� and (ξ, 1), (ξ, 0) ∈ M(PSO�) in view of (2.2).

For the C∗-algebra A, Theorems 4.6 and 4.7 in [22] imply the following.

THEOREM 3.2. The mappings Ψξ,η,µ((ξ, η, µ) ∈ Ω̃) given on the generators of
the C∗-algebra A by formulas (3.7) extend to C∗-algebra homomorphisms Ψξ,η,µ : A →
C2×2. An operator A ∈ A is Fredholm on the space L2(R) if and only if

(3.8) det Ψξ,η,µ(A) 6= 0 for all (ξ, η, µ) ∈ Ω̃.

To any operator A ∈ A we assign the bounded matrix function

A : Ω̃→ C2×2, (ξ, η, µ) 7→ A(ξ, η, µ) := Ψξ,η,µ(A),

which we call the Fredholm symbol of the operator A. Let B(Ω̃,C2×2) denote the
C∗-algebra of all bounded C2×2-valued functions on Ω̃.

THEOREM 3.3. The Fredholm symbol mapping

Ψ : A→ B(Ω̃,C2×2), A 7→ A(·, ·, ·),
is a C∗-algebra homomorphism whose kernel Ker Ψ coincides with the ideal K of all com-
pact operators on the space L2(R) and the image Ψ(A) is a C∗-subalgebra of B(Ω̃,C2×2).

Proof. For every A ∈ A, from Theorem 3.2 it follows that,

(3.9)
‖Aπ‖2 = r((AA∗)π) = max

(ξ,η,µ)∈Ω̃
r(A(ξ, η, µ)A∗(ξ, η, µ))

= ‖Ψ(A)I‖2
B(L2(Ω̃,C2))

,

where r(Y) is the spectral radius of Y. Equalities (3.9) imply that Ker Ψ = K.
Thus, by Corollary 1.8.3 in [15], the quotient map Aπ 7→ A(·, ·, ·) is a C∗-algebra
isomorphism of the C∗-algebra Aπ onto the C∗-algebra Ψ(A) ⊂ B(Ω̃,C2×2).
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COROLLARY 3.4. The mapping

Ψ0 : Aπ → B
( ⊕
(ξ,η,µ)∈Ω̃

C2
)

, Aπ 7→
⊕

(ξ,η,µ)∈Ω̃

A(ξ, η, µ)I

is a faithful representation.

4. THE LOCAL-TRAJECTORY METHOD AND A RELATED FAITHFUL REPRESENTATION

To study the nonlocal C∗-algebra B of the form (1.5), we apply the local-
trajectory method. Let us recall its statements (see [18], [20]).

Let Q be a unital C∗-algebra, A a C∗-subalgebra of Q with unit I of Q, and
let Z be a central C∗-subalgebra of A with the same unit I. For a discrete group G
with unit e, let U : g 7→ Ug be a unitary morphism of G in Q, that is, a homomor-
phism of the group G onto a group UG = {Ug : g ∈ G} of unitary elements of Q,
where Ug1g2 = Ug1Ug2 and Ue = I. We denote by

(4.1) B := alg (A, UG)

the minimal C∗-subalgebra of Q containing the C∗-algebra A and the group UG =
{Ug : g ∈ G}. Assume that

(A1) for every g ∈ G the mappings αg : a 7→ Ug a U∗g are ∗-automorphisms of the
C∗-algebras A and Z .

According to (A1), B is the closure of the set B0 consisting of all elements
of the form b = ∑ agUg where ag ∈ A and g runs through finite subsets of G.

Since the unital C∗-algebra Z is commutative, the Gelfand–Naimark theo-
rem (see, e.g., Section 16 in [25]) implies that Z ∼= C(M(Z)) where C(M(Z))
is the C∗-algebra of all continuous complex-valued functions on the maximal
ideal space M(Z) of Z . Further, if (A1) is fulfilled, then each ∗-automorphism
αg : Z → Z induces a homeomorphism βg : M(Z)→ M(Z) given by the rule

(4.2) z[βg(m)] = [αg(z)](m), z ∈ Z , m ∈ M(Z), g ∈ G,

where z(·) ∈ C(M(Z)) is the Gelfand transform of the operator z ∈ Z . The set
G(m) := {βg(m) : g ∈ G} is called the G-orbit of a point m ∈ M(Z).

In what follows we also assume that

(A2) G is an amenable discrete group.
By [17], a discrete group G is called amenable if the C∗-algebra l∞(G) of all

bounded complex-valued functions on G with sup-norm has an invariant mean,
that is, a positive linear functional ρ of norm 1 satisfying the condition

ρ( f ) = ρ(s f ) = ρ( fs) for all s ∈ G and all f ∈ l∞(G),

where (s f )(g) = f (s−1g), ( fs)(g) = f (gs), g ∈ G. Finite groups, commutative
groups, subexponential groups and solvable groups are examples of amenable
groups (see, e.g., [1], [17], [20]).
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Let Jm be the closed two-sided ideal of A generated by the maximal ideal
m ∈ M(Z) of the central C∗-algebra Z ⊂ A. Then the Allan–Douglas local prin-
ciple (see, e.g., Theorem 1.35 in [13]) gives the following criterion.

THEOREM 4.1. An element a ∈ A is invertible in A if and only if for every m ∈
M(Z) the coset a + Jm is invertible in the quotient algebra A/Jm.

Let PA be the set of all pure states (see, e.g., [14], [24]) of the C∗-algebra A

equipped with induced weak∗ topology. By Lemma 4.1 in [12], if µ ∈ PA, then
Ker µ ⊃ Jm where m := Z ∩Ker µ ∈ M(Z), and consequently PA =

⋃
m∈M(Z)

{ν ∈

PA : Ker ν ⊃ Jm}. Furthermore, let us assume that

(A3) there is a set M0 ⊂ M(Z) such that for every finite set G0 ⊂ G and for every
nonempty open set W ⊂ PA there exists a state ν ∈ W such that βg(mν) 6= mν for
all g ∈ G0 \ {e}, where the point mν = Z ∩ Ker ν belongs to the G-orbit G(M0) :=
{βg(m) : g ∈ G, m ∈ M0} of the set M0.

If the C∗-algebra A is commutative itself, then the set PA of all pure states
of A coincides with the set of all characters of A (see, e.g., Theorem 5.1.6 in [24]).
Therefore, choosing Z = A and identifying the set of characters of A with the
maximal ideal space M(A) of A, we can rewrite (A3) in the form:

(A30) there is a set M0 ⊂ M(A) such that for every finite set G0 ⊂ G and every
nonempty open set W ⊂ M(A) there exists a point m0 ∈ W ∩ G(M0) such that
βg(m0) 6= m0 for all g ∈ G0 \ {e}.

For every m ∈ M(Z), let π̃m be an isometric (equivalently, faithful) repre-
sentation

(4.3) π̃m : A/Jm → B(Hm)

of the quotient algebra A/Jm in a Hilbert space Hm. As is well known (see, e.g.,
Theorem 3.4.1 in [24] or Theorem 2.6.1 in [15]), every C∗-algebra admits a faithful
representation in a Hilbert space H. Moreover, in view of (A1), the spaces Hm
can be chosen equal for all m in the same G-orbit. Further, consider the canonical
∗-homomorphism $m : A→ A/Jm and the representation

(4.4) π′m : A→ B(Hm), A 7→ (π̃m ◦ $m)(A).

Let Ω be the set of G-orbits of all points m ∈ M0 with M0 ⊂ M(Z) taken from
(A3), let Hω = Hm where m = mω is an arbitrary fixed point of an orbit ω ∈ Ω,
and let l2(G,Hω) be the Hilbert space of all functions f : G 7→ Hω such that
f (g) 6= 0 for at most countable set of points g ∈ G and ∑ ‖ f (g)‖2

Hω
< ∞. For

every ω ∈ Ω we consider the representation πω : B→ B(l2(G,Hω)) defined for
all a ∈ A, all g, s ∈ G and all f ∈ l2(G,Hω) by

(4.5) [πω(a) f ](g) = π′mω
(αg(a)) f (g), [πω(Us) f ](g) = f (gs).
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A slight modification of the proof of Theorem 4.12 in [20], where the super-
fluous condition of the closedness of the set M0 ⊂ M(Z) was imposed, gives the
following result.

THEOREM 4.2. If assumptions (A1)–(A3) are satisfied, then an element b ∈ B is
invertible in B if and only if for every orbit ω ∈ Ω the operator πω(b) is invertible on
the space l2(G,Hω) and, in the case of infinite set Ω,

sup{‖(πω(b))−1‖ : ω ∈ Ω} < ∞.

We see that Theorem 4.2 is a nonlocal version of Theorem 4.1.

COROLLARY 4.3. Under the conditions of Theorem 4.2, the mapping

π : B→ B
( ⊕

ω∈Ω

l2(G,Hω)
)

, b 7→
⊕

ω∈Ω

πω(b)

is a faithful representation.

5. INVERTIBILITY OF FUNCTIONAL OPERATORS

Applying the local-trajectory method, we first study the invertibility of func-
tional operators being the elements of the C∗-algebra

(5.1) A := alg (PSO�, UG) ⊂ B(L2(R))
generated by the multiplication operators by piecewise slowly oscillating func-
tions on Ṙ and by the shift operators Ugh (gh ∈ G) given by (1.4), where G is the
commutative group G of all translations (1.3).

Let Ã := {aI : a ∈ PSO�}, Z̃ = Ã and B̃ := alg (Ã, UG) = A. As Ã ∼= PSO�,
we get M(Ã) = M(PSO�), where M(PSO�) = M(SO�)× {0, 1} by Lemma 2.2.
Let us check for B̃ the fulfillment of all assumptions made in Section 4.

Obviously, UgaU−1
g = (a ◦ g)I for every function a ∈ PSO� and every trans-

lation g ∈ G. Since a ◦ g ∈ SO� for all a ∈ SO� and all g ∈ G in view of Lemma 4.2
in [4] and Lemma 2.1 in [23], we conclude that a ◦ g ∈ PSO� for every a ∈ PSO�

and every g ∈ G. Consequently, for every g ∈ G, the mapping

(5.2) α̃g : A → A, aI 7→ UgaU−1
g = (a ◦ g)I

is a ∗-automorphism of the commutative C∗-algebra Ã ⊂ B(L2(R)). Since G is an
amenable group, we see that conditions (A1)–(A2) of Section 4 for the C∗-algebra
A are satisfied.

For every shift g ∈ G, we will use the same letter g for the homeomorphism
ξ 7→ g(ξ) on M(SO�) given by

(5.3) a(g(ξ)) = (a ◦ g)(ξ) for all a ∈ SO� and ξ ∈ M(SO�).

LEMMA 5.1. For every g ∈ G \ {e}, the set of all fixed points of the homeomor-
phism g : M(SO�)→ M(SO�) coincides with the set M∞(SO�).
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Proof. If ξ ∈ Mt(SO�), then g(ξ) ∈ Mg(t)(SO�), and therefore only points
ξ ∈ M∞(SO�) can be fixed points for g ∈ G \ {e}. To prove that g(ξ) = ξ for all
ξ ∈ M∞(SO�) and all g ∈ G, it is sufficient for these ξ and g to show that

(5.4) a(g(ξ)) = a(ξ) for all a ∈ SO�.

Fix a ∈ SO�, ξ ∈ M∞(SO�), h ∈ R, and take g = gh ∈ G \ {e}. By Proposition 2.1
and (5.3), there is a sequence {xn} ⊂ R+ such that xn → +∞ and

(5.5) a(ξ) = lim
n→∞

a(xn), a(gh(ξ)) = (a ◦ gh)(ξ) = lim
n→∞

a(xn − h).

Taking rn = xn, we conclude that |h| < rn/2 for all sufficiently large n ∈ N. Then

(5.6)
rn

2
6 min{xn, xn − h} 6 max{xn, xn − h} 6 3rn

2
.

Since a ∈ SO�, it follows from the definition of SO� that

(5.7) lim
n→∞

osc (a, [−3rn/2,−rn/2] ∪ [rn/2, 3rn/2]) = 0.

Because xn, gh(xn) ∈ [rn/2, 3rn/2] in view of (5.6), we infer from (5.7) that

lim
n→∞

a(xn) = lim
n→∞

a(g(xn)),

and hence (5.4) follows from (5.5), which completes the proof.

Each ∗-automorphism α̃g given by (5.2) induces the homeomorphism

(5.8) β̃g : M(PSO�)→ M(PSO�), (ξ, µ) 7→ (g(ξ), µ),

where g(ξ) is given by (5.3). Hence, taking into account the topologically free ac-
tion of the group G on Ṙ, Lemma 5.1 and the Gelfand topology (2.3) on M(PSO�),
we easily conclude that condition (A30) for the C∗-algebra A also holds, with
M0 := M(PSO�) \M∞(PSO�).

Let PSO0 be the non-closed subalgebra of PSO� consisting of all functions
in PSO� with finite sets of discontinuities. Then the C∗-algebraA is the closure of
the algebra A0 ⊂ A consisting of the functional operators A = ∑

g∈F
agUg, where

ag ∈ PSO0 and F runs through the finite subsets of G.
With each maximal ideal (ξ, µ) ∈ M(PSO�) we associate the representation

(5.9) Πξ,µ : A → B(l2(G)), A 7→ Aξ,µ

given for the operators A = ∑
g∈F

agUg ∈ A0 with coefficients ag ∈ PSO0 by

(5.10) (Aξ,µ f )(h) = ∑
g∈F

[(ag ◦ h)(ξ, µ)] f (hg) (h ∈ G, f ∈ l2(G)).

Then the operators Aξ,µ ∈ B(l2(G)) for all (ξ, µ) ∈ M∞(SO�)× {0, 1} are given
in view of Lemma 5.1 by

(5.11) (Aξ,µ f )(h) = ∑
g∈F

ag(ξ, µ) f (hg) (h ∈ G, f ∈ l2(G)).
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With every operator Aξ,µ given by (5.11) we associate the functional operator

(5.12) Ãξ,µ := ∑
g∈F

ag(ξ, µ)Ug ∈ B(L2(R)) ((ξ, µ) ∈ M∞(SO�)× {0, 1})

with constant coefficients ag(ξ, µ). Since the operators Aξ,µ ∈ B(l2(G)) and
Ãξ,µ ∈ B(L2(R)) for all A ∈ A0 and every (ξ, µ) ∈ M∞(SO�) × {0, 1} be-
long to commutative unital C∗-algebras and have the same Gelfand transform

∑
gh∈F

agh(ξ, µ)eihx (x ∈ R) due to (5.11) and (5.12), we conclude that these opera-

tors are invertible only simultaneously, which implies that

‖Ãξ,µ‖B(L2(R)) = ‖Aξ,µ‖B(l2(G)) 6 ‖A‖B(L2(R))

for all (ξ, µ) ∈ M∞(SO�) × {0, 1}. Hence the map A 7→ Ãξ,µ for these (ξ, µ)
extends by continuity to a C∗-algebra homomorphism of A into A.

Fix τ ∈ R and consider the set

(5.13) Rτ := Mτ(SO�)× {0, 1} ⊂ M(PSO�).

The set Rτ contains exactly one point in each G-orbit defined by the action of the
group G on M(PSO�) \M∞(PSO�) by means of the homeomorphisms β̃g (g ∈ G)
given by (5.8).

THEOREM 5.2. A functional operator A ∈ A is invertible on the space L2(R) if
and only if for any fixed τ ∈ R and all (ξ, µ) ∈ Rτ the operators Aξ,µ are invertible on
the space l2(G) and

(5.14) sup
(ξ,µ)∈Rτ

‖(Aξ,µ)
−1‖B(l2(G)) < ∞.

Proof. Take the maximal ideal J̃ξ,µ := {aI : a ∈ PSO�, a(ξ, µ) = 0} of Ã

associated with each character (ξ, µ) ∈ M(PSO�). The mapping

Π̃ξ,µ : Ã/ J̃ξ,µ → C, aI + J̃ξ,µ 7→ a(ξ, µ),

is an isometric representation of the C∗-algebra Ã/ J̃ξ,µ in C. Following (4.3)–(4.5)
we construct representations of the C∗-algebra A in the Hilbert space l2(G) by
formulas (5.9) and (5.10). Since A satisfies conditions (A1), (A2), (A30) of the
local-trajectory method, Theorem 4.2 immediately implies the statement of the
theorem.

Theorem 5.2 and Corollary 4.3 imply the following.

COROLLARY 5.3. The mapping

A → B
( ⊕
(ξ,µ)∈Rτ

l2(G)
)

, A 7→
⊕

(ξ,µ)∈Rτ

Aξ,µ

is a faithful representation.
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REMARK 5.4. Replacing M0 = M(PSO�) \M∞(PSO�) by M0 = M(PSO�),
we immediately infer from Theorem 4.2 and Corollary 4.3 that Theorem 5.2 and
Corollary 5.3 remain true with Rτ replaced by M(PSO�).

Since for every (ξ, µ) ∈ M∞(SO�)× {0, 1} the map A → A, A 7→ Ãξ,µ is a
C∗-algebra homomorphism, we immediately obtain the following.

COROLLARY 5.5. If a functional operator A ∈ A is invertible on the space L2(R),
then for every (ξ, µ) ∈ M∞(SO�)× {0, 1} the functional operators Ãξ,µ ∈ A given by
(5.12) for A ∈ A0 are invertible on the space L2(R) as well.

6. SPECTRAL MEASURES AND THEIR APPLICATION

If conditions (A1)–(A2) of the local-trajectory method (see Section 4) are ful-
filled, but condition (A3) does not hold, we need to use spectral measures to de-
compose the initial C∗-algebra into an orthogonal sum of C∗-algebras for which
either condition (A3) holds or these algebras can be studied by other methods
(see [5], [18] and [20]).

Let M be a compact Hausdorff space and H a Hilbert space. By p. 249 in
[25], a spectral measure P(·) is a map from the σ-algebra R(M) of all Borel subsets
of M into the set of orthogonal projections in B(H) such that for every ξ ∈ H the
function ∆ 7→ (P(∆)ξ, ξ) is the restriction to Borel sets of a measure on M defined
by an integral on C(M). Hence, for all ∆1, ∆2 ∈ R(M):

(i) P(∅) = 0, P(M) = I (the identity operator in B(H));
(ii) P(∆1 ∩∆2) = P(∆1)P(∆2);

(iii) P(∆1 ∪∆2) = P(∆1) + P(∆2) if ∆1 and ∆2 are disjoint sets.

Consider now the C∗-algebra B = alg (A, UG) defined by (4.1) under the
only condition (A1) of the local-trajectory method for the C∗-algebras A and Z ⊂
A. Let π : B → B(H) be an isometric representation of the C∗-algebra B in
a Hilbert space H. According to Section 17 in [25], for the representation π|Z :
Z → B(H) of a unital commutative C∗-algebra Z , there is a unique spectral
measure Pπ(·) which commutes with all operators in the C∗-algebra π(Z) and in
its commutant π(Z)′, and such that

π(z) =
∫

M(Z)

z(m)dPπ(m) for all z ∈ Z ,

where z(·) ∈ C(M(Z)) is the Gelfand transform of an element z ∈ Z .
Let R(M(Z)) denote the σ-algebra of all Borel subsets of M(Z), and let

(6.1) RG(M(Z)) = {∆ ∈ R(M(Z)) : βg(∆) = ∆ for all g ∈ G},
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where the homeomorphisms βg are given by (4.2). Since az = za for all a ∈ A and
all z ∈ Z , it follows that

(6.2) π(a)Pπ(∆) = Pπ(∆)π(a) for all ∆ ∈ R(M(Z)) and all a ∈ A.

Moreover, since (A1) holds, we deduce from Lemma 4.6 in [20] that

(6.3) π(Ug)Pπ(∆) = Pπ(∆)π(Ug) for all ∆ ∈ RG(M(Z)) and all g ∈ G.

Given ∆ ∈ RG(M(Z)) such that Pπ(∆) 6= 0, we define the Hilbert space

H∆ := Pπ(∆)H = {Pπ(∆)ξ : ξ ∈ H}
and introduce the following three C∗-subalgebras of B(H∆):

B∆ := {Pπ(∆)π(b) : b ∈ B}, A∆ := {Pπ(∆)π(a) : a ∈ A},
and Z∆ := {Pπ(∆)π(z) : z ∈ Z}.

Since Z is a central C∗-subalgebra of A, we immediately conclude from (6.2) that
Z∆ is a central C∗-subalgebra of A∆, where A∆ ⊂ B∆.

Given ∆ ⊂ M(Z), let ∆ denote the closure of ∆ in M(Z). The next result
follows from Lemmas 5.1 and 5.2 in [20].

LEMMA 6.1. If ∆ is an open set of M(Z), then Pπ(∆) 6= 0 and Z∆
∼= C(∆).

To study C∗-algebras A∆, we need the following (see Lemma 3.5 in [5]).

LEMMA 6.2. Let A be a unital C∗-algebra and Z a central C∗-subalgebra of A
with the same unit. Let π : A → B(H) be a representation of A in a Hilbert space H.
Given an open set ∆ of the maximal ideal space M(Z) of Z , let Z(∆) denote the subset
of Z composed by the elements z ∈ Z whose Gelfand transforms z(·) are real functions
in C(M(Z)) with support in ∆ and values in the segment [0, 1]. Then

(6.4) ‖Pπ(∆)π(a)‖B(H) = sup
z∈Z(∆)

‖π(az)‖B(H) for all a ∈ A.

Combining the properties of the spectral measure Pπ(·) with (6.2) and (6.3)
gives the next decomposition result (see Proposition 3.3 in [5]).

PROPOSITION 6.3. Let π : B → B(H) be an isometric representation of the
C∗-algebra B = alg (A, UG) in a Hilbert space H and let {∆ i} be an at most count-
able family of disjoint Borel sets in RG(M(Z)) such that Pπ(∆ i) 6= 0 for all i and
Pπ(M(Z) \⋃i ∆ i) = 0. If condition (A1) is fulfilled, then the mapping

Θ : B→
⊕

i
B∆ i , b 7→

⊕
i

Pπ(∆ i)π(b)

is an isometric C∗-algebra homomorphism from the C∗-algebra B into the C∗-algebra⊕
i
B∆ i . Then an element b ∈ B is invertible if and only if for each i the operator

Pπ(∆ i)π(b) is invertible on the Hilbert spaceH∆ i and

sup
i
‖(Pπ(∆ i)π(b))−1‖ < ∞ in case {∆ i} is countable .
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Thus, it is sufficient to study the C∗-algebras B∆ i separately, where it is
convenient to choose open subsets of RG(M(Z)) in the capacity of ∆ i. If these
algebras satisfy conditions (A1)–(A3), we can apply Theorem 4.2.

7. DECOMPOSITION OF THE C∗-ALGEBRA Bπ

We now consider the C∗-algebra (1.5) written in the form

B = alg (aI, W0(b), Ug : a, b ∈ PSO�, g ∈ G) ⊂ B(L2(R)),

where G is the group of all translations gh : R→ R, x 7→ x− h (h ∈ R).
Let A0 be the non-closed subalgebra of A generated by the operators aI

and W0(b), where a, b ∈ PSO0. Then A0 consists of all operators of the form
n
∑

i=1
Ti1Ti2 · · · Tiji where n, ji ∈ N and Ti,k ∈ {aI, W0(b) : a, b ∈ PSO0}.

Let B0 denote the dense non-closed subalgebra of the C∗-algebra B con-

sisting of all operators of the form
n
∑

i=1
Ti1Ti2 · · · Tiji where n, ji ∈ N and Ti,k ∈

{aI, W0(b), Ug : a, b ∈ PSO0, g ∈ G}. Then, by analogy with A ∈ A0, where A is
given by (5.1), every operator B ∈ B0 can be represented in the form

(7.1) B = ∑
g∈F

DgUg

where Dg ∈ A0 and F is a finite subset of G. Any operator B ∈ B is the limit in
B(L2(R)) of a sequence of operators Bn ∈ B0.

For all functions a, b ∈ PSO� and each translation g ∈ G, we have

(7.2) UgaU−1
g = (a ◦ g)I, UgW0(b)U−1

g = W0(b),

where a ◦ g ∈ SO� for a ∈ SO� and a ◦ g ∈ PSO� for a ∈ PSO� (see Section 5).
Consequently, for every g ∈ G, the mapping

(7.3) αg : Aπ 7→ Uπ
g Aπ(Uπ

g )
−1

is a ∗-automorphism of the C∗-algebras Aπ and Zπ . Thus, condition (A1) of the
local-trajectory method for the C∗-algebra Bπ is fulfilled.

From (7.2) and Theorem 3.1 it follows that

[Γ(Uπ
g Zπ(Uπ

g )
−1)](ξ, η) = [Γ(Zπ)](g(ξ), η) for all Z ∈ Z , g ∈ G, (ξ, η) ∈ Ω,

where Ω is given by (3.1) and Γ : Zπ → C(Ω) is the Gelfand transform described
in Theorem 3.1. Hence, each diffeomorphism g ∈ G induces on Ω a homeomor-
phism βg acting by the rule

(7.4) βg : Ω→ Ω, (ξ, η) 7→ (g(ξ), η),

where g(ξ) is given by (5.3). Lemma 5.1 immediately implies the following.
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LEMMA 7.1. The set of all fixed points for each homeomorphism βg (g ∈ G \ {e})
coincides with the set M∞(SO�)×M(SO�).

Following Proposition 6.3, let us decompose the quotient C∗-algebra Bπ

with B given by (1.5) by making use of an appropriate spectral measure.
Fix an isometric representation

(7.5) ϕ : Bπ → B(Hϕ), Bπ 7→ ϕ(Bπ)

of the C∗-algebra Bπ in an abstract Hilbert spaceHϕ and put

ΩR,∞ :=
⋃
t∈R

Mt(SO�)×M∞(SO�), Ω∞,R := M∞(SO�)×
⋃
t∈R

Mt(SO�),

Ω∞,∞ := M∞(SO�)×M∞(SO�),(7.6)

where the sets ΩR,∞ and Ω∞,R are open in Ω, while the set Ω∞,∞ is closed in Ω.
Along withHϕ we consider the concrete Hilbert space

(7.7)

Hφ :=
( ⊕
(ξ,η)∈ΩR,∞

l2(Mξ,η ,C2)
)
⊕
( ⊕
(ξ,η)∈Ω∞,R

l2(Mξ,η ,C2)
)

⊕
( ⊕
(ξ,η)∈Ω∞,∞

l2({0, 1},C2)
)

,

where the sets Mξ,η are given by (3.4) and satisfy (3.5), and the Hilbert space
l2(X,C2) for X ∈ {ΩR,∞, Ω∞,R, {0, 1}} consists of all functions f : X → C2

such that f (x) 6= 0 for at most countable set of points x ∈ X and the norm

‖ f ‖ =
(

∑
x∈X
‖ f (x)‖2

C2

)1/2
< ∞. Further, we introduce the C∗-subalgebra φ(Aπ)

of B(Hφ) consisting of the operators

(7.8)

φ(Aπ) =
( ⊕
(ξ,η)∈ΩR,∞

Ψξ,η,·(A)I
)
⊕
( ⊕
(ξ,η)∈Ω∞,R

Ψξ,η,·(A)I
)

⊕
( ⊕
(ξ,η)∈Ω∞,∞

Ψξ,η,·(A)I
)

for A ∈ A,

where for functions fξ,η ∈ l2(Mξ,η ,C2) given by fξ,η : Mξ,η → C2, µ 7→ fξ,η(µ)

the operators Ψξ,η,·(A)I ∈ B(l2(Mξ,η ,C2)) act by

(7.9) [Ψξ,η,·(A) fξ,η ](µ) = Ψξ,η,µ(A) fξ,η(µ) for µ ∈Mξ,η ,

and for functions fξ,η ∈ l2({0, 1},C2) given by fξ,η : {0, 1} → C2, µ 7→ fξ,η(µ) the
operators Ψξ,η,·(A)I ∈ B(l2({0, 1},C2)) act by

[Ψξ,η,·(A) fξ,η ](µ) = Ψξ,η,µ(A) fξ,η(µ) for µ ∈ {0, 1}.
By Corollary 3.4, the homomorphism

(7.10) φ : Aπ → B(Hφ), Aπ 7→ φ(Aπ)

is an isometric representation of Aπ in the Hilbert spaceHφ.
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Let R(Ω) be the σ-algebra of all Borel subsets of Ω and let

(7.11) Pϕ : R(Ω)→ B(Hϕ), Pφ : R(Ω)→ B(Hφ)

be the spectral measures associated with the representations (7.5) and (7.10) of the
commutative unital C∗-algebraZπ in the Hilbert spacesHϕ andHφ, respectively.
By analogy with (6.1), let

(7.12) RG(Ω) := {∆ ∈ R(Ω) : βg(∆) = ∆ for all g ∈ G},

where the homeomorphisms βg : Ω→ Ω for g ∈ G are defined by (7.4). Observe
that

(7.13) Ω = ΩR,∞ ∪Ω∞,R ∪Ω∞,∞,

where the distinct sets ΩR,∞, Ω∞,R and Ω∞,∞ given by (7.6) belong to RG(Ω).
Furthermore, for the representation (7.10) it is easily seen that

Pφ(ΩR,∞)= I⊕O⊕O, Pφ(Ω∞,R)=O⊕ I⊕O, Pφ(Ω∞,∞)=O⊕O⊕ I,(7.14)

where O and I are, respectively, the zero and identity operators on the Hilbert
spaces ⊕

(ξ,η)∈ΩR,∞

l2(Mξ,η ,C2),
⊕

(ξ,η)∈Ω∞,R

l2(Mξ,η ,C2),
⊕

(ξ,η)∈Ω∞,∞

l2({0, 1},C2).

Introduce C∗-subalgebras of ϕ(Bπ) associated to the decomposition (7.13).
Let

(7.15) BR,∞ := alg {Pϕ(ΩR,∞)ϕ(Aπ), Pϕ(ΩR,∞)ϕ(Uπ
g ) : A ∈ A, g ∈ G}

denote the C∗-subalgebra of the C∗-algebra B(Pϕ(ΩR,∞)Hϕ) generated by the
operators Pϕ(ΩR,∞)ϕ(Aπ) (A ∈ A) and Pϕ(ΩR,∞)ϕ(Uπ

g ) (g ∈ G). Analogously
we define the C∗-subalgebras

B∞,R := alg {Pϕ(Ω∞,R)ϕ(Aπ), Pϕ(Ω∞,R)ϕ(Uπ
g ) : A ∈ A, g ∈ G},(7.16)

B∞,∞ := alg {Pϕ(Ω∞,∞)ϕ(Aπ), Pϕ(Ω∞,∞)ϕ(Uπ
g ) : A ∈ A, g ∈ G},(7.17)

of B(Pϕ(Ω∞,R)Hϕ) and B(Pϕ(Ω∞,∞)Hϕ), respectively.
Since the sets (7.6) in (7.13) belong to the collection RG(Ω) given by (7.12),

and since the sets ΩR,∞, Ω∞,R are open and therefore the corresponding spectral
projections are not zero due to Lemma 6.1, we immediately infer the following
abstract Fredholm criterion from Proposition 6.3.

THEOREM 7.2. An operator B in the C∗-algebra B given by (1.5) is Fredholm on
the space L2(R) if and only if

(i) the operator Pϕ(ΩR,∞)ϕ(Bπ) is invertible on the Hilbert space Pϕ(ΩR,∞)Hϕ;
(ii) the operator Pϕ(Ω∞,R)ϕ(Bπ) is invertible on the Hilbert space Pϕ(Ω∞,R)Hϕ;

(iii) for Pϕ(Ω∞,∞) 6= 0, the operator Pϕ(Ω∞,∞)ϕ(Bπ) is invertible on the Hilbert
space Pϕ(Ω∞,∞)Hϕ.
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8. INVERTIBILITY CRITERION FOR THE C∗-ALGEBRA AR,∞

In this section, using the property of spectral measures given in Lemma 6.2,
we obtain an invertibility criterion for the C∗-algebra

AR,∞ := Pϕ(ΩR,∞)ϕ(Aπ) ⊂ BR,∞

consisting of the operators Pϕ(ΩR,∞)ϕ(Aπ) (A ∈ A).
Take the Hilbert space Hφ defined by (7.7) and its subspace Pφ(ΩR,∞)Hφ

which is isometrically isomorphic to the Hilbert space
⊕

(ξ,η)∈ΩR,∞

l2(Mξ,η ,C2) ac-

cording to (7.14). Along with the C∗-algebra AR,∞ := Pϕ(ΩR,∞)ϕ(Aπ) we con-
sider the C∗-algebra

ÃR,∞ := Pφ(ΩR,∞)φ(Aπ) ⊂ B
( ⊕
(ξ,η)∈ΩR,∞

l2(Mξ,η ,C2)
)

consisting of the operators Pφ(ΩR,∞)φ(Aπ) (A ∈ A). Comparing the images of
spectral measures (7.11) we obtain the following.

THEOREM 8.1. The mapping given by

(8.1) Pϕ(ΩR,∞)ϕ(Aπ) 7→ Pφ(ΩR,∞)φ(Aπ) for all A ∈ A

is a C∗-algebra isomorphism of the C∗-algebra AR,∞ onto the C∗-algebra ÃR,∞.

Proof. According to Lemma 6.2, for the open Borel set ΩR,∞ ⊂ Ω and for
each A ∈ A, we have the equalities

‖Pϕ(ΩR,∞)ϕ(Aπ)‖B(Hϕ) = sup
Z∈Z(ΩR,∞)

‖ϕ(Zπ Aπ)‖B(Hϕ),(8.2)

‖Pφ(ΩR,∞)φ(Aπ)‖B(Hφ) = sup
Z∈Z(ΩR,∞)

‖φ(Zπ Aπ)‖B(Hφ),(8.3)

where the set Z(ΩR,∞) consists of the operators Z ∈ Z for which the Gelfand
transform of the coset Zπ is a real function z(·, ·) ∈ C(Ω) with values in [0, 1]
and with support in the closure of the set ΩR,∞. Since ϕ and φ are isometric
representations of the C∗-algebra Aπ , the right-hand sides of (8.2) and (8.3) are
equal, and therefore

(8.4) ‖Pϕ(ΩR,∞)ϕ(Aπ)‖B(Hϕ) = ‖Pφ(ΩR,∞)φ(Aπ)‖B(Hφ) for all A ∈ A,

which in view of (6.2) implies that the mapping (8.1) is a well-defined isometric
∗-isomorphism of the C∗-algebra AR,∞ onto the C∗-algebra ÃR,∞.

Let Z̃R,∞ denote the C∗-subalgebra of ÃR,∞ generated by all the operators
Pφ(ΩR,∞)φ(Zπ) (Z ∈ Z). Since Zπ is a central C∗-subalgebra of Aπ , we deduce
from (6.2) and Lemma 6.1 that the C∗-algebra Z̃R,∞ is a central C∗-subalgebra of
ÃR,∞, and the maximal ideal space M(Z̃R,∞) of Z̃R,∞ coincides with the closure

(8.5) ΩR,∞ = ΩR,∞ ∪Ω∞,∞
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of the set ΩR,∞ in Ω. Along with the set Ω̃ given by (3.6), we consider the set

Ω̃R,∞ :=
( ⋃
(ξ,η)∈ΩR,∞

{(ξ, η)} ×Mξ,η

)
∪ (Ω∞,∞ × {0, 1}) ⊂ Ω̃.

Let B(Ω̃R,∞,C2×2) denote the C∗-algebra of all bounded C2×2-valued func-
tions on Ω̃R,∞, and let Ψ(A)|Ω̃R,∞

be the restriction to Ω̃R,∞ of the matrix function
Ψ(A) given for A ∈ A by Theorem 3.3.

LEMMA 8.2. The mapping

ÃR,∞ → B(Ω̃R,∞,C2×2), Pφ(ΩR,∞)φ(Aπ) 7→ Ψ(A)|Ω̃R,∞

is an isometric C∗-algebra homomorphism.

Proof. By (7.8) and (7.14), the C∗-algebra ÃR,∞ consisting of the operators⊕
(ξ,η)∈ΩR,∞

Ψξ,η,·(A)I ∈ B
( ⊕
(ξ,η)∈ΩR,∞

l2(Mξ,η ,C2)
)

for all A ∈ A,

where the operators Ψξ,η,·(A)I ∈ B(l2(Mξ,η ,C2)) act by the rule (7.9), is isometri-
cally ∗-isomorphic to the C∗-algebra of the matrix functions

Ψ(A) :
⋃

(ξ,η)∈ΩR,∞

{(ξ, η)} ×Mξ,η → C2×2 for all A ∈ A,

which, in its turn, is isometrically ∗-isomorphic to the C∗-algebra of the matrix
functions

Ψ(A)|Ω̃R,∞
: Ω̃R,∞ → C2×2 (A ∈ A).

Indeed, by (3.7), Ψξ,η,µ(A) is a diagonal matrix for every point (ξ, η, µ) ∈ Ω∞,∞ ×
{0, 1} and every A ∈ A, and its entries [Ψξ,η,µ(A)]1,1 and [Ψξ,η,µ(A)]2,2 can be ap-
proximated, in view of (3.7) and the Gelfand topology on Ω, by the correspond-
ing entries of the matrices Ψζ,η,µ(A) where ζ ∈ ⋃

τ∈R
Mτ(SO�) and τ belong to the

right semi-neighborhood of ∞ in the case of [Ψξ,η,µ(A)]1,1 and to the left semi-
neighborhood of ∞ in the case of [Ψξ,η,µ(A)]2,2. Hence,

sup
(ξ,η)∈ΩR,∞ ,µ∈Mξ,η

‖Ψξ,η,µ(A)‖sp = sup
(ξ,η,µ)∈Ω̃R,∞

‖Ψξ,η,µ(A)‖sp(A ∈ A)

where ‖ · ‖sp is the spectral matrix norm.

Combining Theorem 8.1, Lemma 8.2 and (3.8), we obtain the following in-
vertibility criterion.

THEOREM 8.3. The mapping

SymR,∞ : AR,∞ → B(Ω̃R,∞,C2×2), Pϕ(ΩR,∞)ϕ(Aπ) 7→ Ψ(A)|Ω̃R,∞
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is an isometric C∗-algebra homomorphism. For every operator A ∈ A, the operator
Pϕ(ΩR,∞)ϕ(Aπ) is invertible on the space Pϕ(ΩR,∞)Hϕ if and only if

det(Ψξ,η,µ(A)) 6= 0 for all (ξ, η, µ) ∈ Ω̃R,∞.

9. INVERTIBILITY CRITERION FOR THE C∗-ALGEBRA BR,∞

Applying the local-trajectory method expounded in Section 4, we establish
here an invertibility criterion for the operators in the C∗-algebra BR,∞.

Consider now the C∗-subalgebra ZR,∞ of B(Pϕ(ΩR,∞)Hϕ) generated by all
the operators Pϕ(ΩR,∞)ϕ(Zπ) (Z ∈ Z). By Theorem 8.1, ZR,∞

∼= Z̃R,∞. Hence
ZR,∞ is a central subalgebra of AR,∞ and M(ZR,∞) = ΩR,∞, with ΩR,∞ given
by (8.5).

Observe from (7.15) that BR,∞ = alg (AR,∞, UR,∞(G)), the C∗-algebra gen-
erated by AR,∞ and the range of the unitary representation

UR,∞ : G → B(Pϕ(ΩR,∞)Hϕ), g 7→ Ug,R,∞ := Pϕ(ΩR,∞)ϕ(Uπ
g ).

For each g ∈ G, the mapping

αg,R,∞ : Pϕ(ΩR,∞)ϕ(Aπ) 7→ Ug,R,∞(Pϕ(ΩR,∞)ϕ(Aπ))U∗g,R,∞

is a ∗-automorphism of the C∗-algebras ZR,∞ and AR,∞ because

Ug,R,∞(Pϕ(ΩR,∞)ϕ(Aπ))U∗g,R,∞ = Pϕ(ΩR,∞)ϕ(Uπ
g Aπ(Uπ

g )
∗)

and the mapping (7.3) is a ∗-automorphism of the C∗-algebras Zπ and Aπ . Thus,
condition (A1) of the local-trajectory method is satisfied for the C∗-algebra BR,∞.
Condition (A2) also holds. Each ∗-automorphism αg,R,∞ (g ∈ G) induces on the
maximal ideal space M(ZR,∞) = ΩR,∞ the homeomorphism

(9.1) βg,R,∞ : ΩR,∞ → ΩR,∞, (ξ, η) 7→ βg(ξ, η),

where βg is given by (7.4).
Let PR,∞ := PAR,∞ be the set of pure states of the C∗-algebra AR,∞. By

Section 4, PR,∞ =
⋃

(ξ,η)∈ΩR,∞

Pξ,η , where Pξ,η := {ρ ∈ PR,∞ : Ker ρ ⊃ Jξ,η}

and Jξ,η for (ξ, η) ∈ ΩR,∞ is the smallest closed two-sided ideal of AR,∞ which
contains the set {Pϕ(ΩR,∞)ϕ(Zπ) : Z ∈ Z , [Γ(Zπ)](ξ, η) = 0}.

Since Ω∞,∞ is the set of fixed points of all homeomorphisms βg,R,∞ (g ∈
G \ {e}), to verify the fulfillment of condition (A3) of the local-trajectory method
for the C∗-algebra BR,∞, we only need to prove the approximability (in the weak*
topology) of all pure states ρ ∈ Pξ,η for (ξ, η) ∈ Ω∞,∞ by pure states in Pζ,η , with
(ζ, η) ∈ ΩR,∞. Then we may take M0 = ΩR,∞ in (A3).

Applying Theorem 8.3 we deduce the following two assertions:
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(i) For each (ξ, η) ∈ ΩR,∞, the mapping

π̃ξ,η : Pϕ(ΩR,∞)ϕ(Aπ) + Jξ,η 7→
⊕

µ∈Mξ,η

Ψξ,η,µ(A)

is a C∗-algebra isomorphism between the C∗-algebras AR,∞/Jξ,η and the C∗-sub-

algebra
{ ⊕

µ∈Mξ,η

Ψξ,η,µ(A) : A ∈ A
}

of
⊕

µ∈Mξ,η

C2×2.

(ii) For each (ξ, η) ∈ Ω∞,∞, the mapping

(9.2) π̃ξ,η : Pϕ(ΩR,∞)ϕ(Aπ) + Jξ,η 7→ diag{Ψξ,η,0(A), Ψξ,η,1(A)},

is a C∗-algebra isomorphism between the C∗-algebras AR,∞/Jξ,η and the C∗-sub-
algebra {diag{Ψξ,η,0(A), Ψξ,η,1(A)} : A ∈ A} of C4×4.

Since the set Pξ,η ((ξ, η) ∈ Ω̃R,∞) is in bijection with the set of pure states
of AR,∞/Jξ,η (see, e.g., Theorem 2.11.8(i) in [15]) and since the matrices Ψξ,η,µ(A)
for A ∈ A and (ξ, η, µ) ∈ Ω∞,∞ × {0, 1} are diagonal, we conclude from (9.2) that
for each (ξ, η) ∈ Ω∞,∞ the C∗-algebra AR,∞/Jξ,η is commutative and therefore its
set of pure states consists of four multiplicative linear functionals whose values
coincide with the diagonal entries of the matrices Ψξ,η,0(A) and Ψξ,η,1(A). Hence,
for every (ξ, η) ∈ Ω∞,∞,

Pξ,η = { ρ
(1)
ξ,η,0, ρ

(2)
ξ,η,0, ρ

(1)
ξ,η,1, ρ

(2)
ξ,η,1},

where the pure states ρ
(j)
ξ,η,µ for j = 1, 2 and µ ∈ {0, 1} are given by

(9.3) ρ
(j)
ξ,η,µ : AR,∞ → C, Pϕ(ΩR,∞)ϕ(Aπ) 7→ [Ψξ,η,µ(A)]j,j,

and [Ψξ,η,µ(A)]j,j is the (j, j)-entry of the matrix Ψξ,η,µ(A). Fix (ξ, η) ∈ Ω∞,∞ and
µ ∈ {0, 1}. By the proof of Lemma 8.2, from (9.3) it follows that every open
neighborhood of ρ

(1)
ξ,η,µ and ρ

(2)
ξ,η,µ in the weak* topology contains, respectively, a

pure state ρ
(1)
ζ,η,µ, where ζ ∈ Mτ(SO�) and τ ∈ R is on the right of−∞, and a pure

state ρ
(2)
ζ,η,µ, where ζ ∈ Mτ(SO�) and τ ∈ R is on the left of +∞. Thus, condition

(A3) for the C∗-algebra BR,∞ is also fulfilled, with M0 = Mt0(SO�)×M∞(SO�)
and any point t0 ∈ R.

For each (ξ, η, µ) in the set

NR,∞ :=
⋃

(ξ,η)∈ΩR,∞

{(ξ, η)} ×Mξ,η ,

we consider the representation

(9.4) πξ,η,µ : BR,∞ → B(l2(G,C2))
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given on the generators of the C∗-algebra BR,∞ by

[πξ,η,µ(Pϕ(ΩR,∞)ϕ((aI)π)) f ](g) = [Ψξ,η,µ((a ◦ g)I)] f (g),

[πξ,η,µ(Pϕ(ΩR,∞)ϕ((W0(b))π)) f ](g) = [Ψξ,η,µ(W0(b))] f (g),(9.5)

[πξ,η,µ(Pϕ(ΩR,∞)ϕ(Uπ
s )) f ](g) = f (gs),

where a, b ∈ PSO�, g, s ∈ G and f ∈ l2(G,C2).
Fix τ ∈ R and introduce the sets

(9.6) Ωτ,∞ := Mτ(SO�)×M∞(SO�), Nτ,∞ :=
⋃

(ξ,η)∈Ωτ,∞

{(ξ, η)} ×Mξ,η .

THEOREM 9.1. For each B ∈ B, the operator

BR,∞ := Pϕ(ΩR,∞)ϕ(Bπ) ∈ BR,∞

is invertible on the space Pϕ(ΩR,∞)Hϕ if and only if for all (ξ, η, µ) ∈ Nτ,∞ the opera-
tors πξ,η,µ(BR,∞) are invertible on the space l2(G,C2) and

(9.7) sup
(ξ,η,µ)∈Nτ,∞

‖(πξ,η,µ(BR,∞))−1‖B(l2(G,C2)) < ∞.

Proof. The set Nτ,∞ given by (9.6) contains exactly one point in each G-orbit
defined on the set ΩR,∞ ⊂ ΩR,∞ by the group {βg,R,∞ : g ∈ G} of homeo-
morphisms given by (9.1). Thus, following (4.3)–(4.5), we obtain the family of
representations (9.4) indexed by the points (ξ, η, µ) ∈ Nτ,∞. Since assumptions
(A1)–(A3) for the C∗-algebra BR,∞ are fulfilled, Theorem 4.2 implies the assertion
of the theorem.

10. INVERTIBILITY CRITERION FOR THE C∗-ALGEBRA B∞,R

In this section we will find an invertibility criterion for the operators in the
C∗-algebra B∞,R = Pϕ(Ω∞,R)ϕ(Bπ) represented in the form (7.16).

Since Ω∞,R is an open subset of Ω and the C∗-algebras ϕ(Aπ) and φ(Aπ)
are isometrically ∗-isomorphic, applying Lemma 6.2 and (6.4), we infer similarly
to (8.4) that

(10.1) ‖Pϕ(Ω∞,R)ϕ(Aπ)‖B(Hϕ) = ‖Pφ(Ω∞,R)φ(Aπ)‖B(Hφ) for all A ∈ A.

Following Lemma 6.2, we define the set

(10.2) Z(Ω∞,R) :={Z ∈ Z : supp z(·, ·)⊂Ω∞,R, z(ξ, η)∈ [0, 1] for (ξ, η)∈Ω},

where z(·, ·) ∈ C(Ω) is the Gelfand transform of the coset Zπ , supp z(·, ·) is the
support of z(·, ·), and Ω∞,R = Ω∞,R ∪Ω∞,∞ is the closure in Ω of the set Ω∞,R
given by (7.6).
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Let eh be the function given by eh(x) = eihx for all h, x ∈ R. Consider the
Hilbert space

H∞,R =
⊕

(ξ,η)∈Ω∞,R

l2(Mξ,η ,C2)

and introduce the C∗-algebra

(10.3) Ψ∞,R(B
π) := alg {Ψ∞,R(Aπ), Ψ∞,R(Uπ

g ) : A ∈ A, g ∈ G} ⊂ B(H∞,R)

generated by the operators Ψ∞,R(Aπ) (A ∈ A) and Ψ∞,R(Uπ
g ) (g ∈ G) where

(10.4) Ψ∞,R(Aπ) :=
⊕

(ξ,η)∈Ω∞,R

Ψξ,η,·(A)I, Ψ∞,R(Uπ
gh
) :=

⊕
(ξ,η)∈Ω∞,R

eihη I.

Observe that the mapping g 7→ Ψ∞,R(Uπ
g ) is a unitary representation of the group

G in the Hilbert space H∞,R, the adjoint operator Ψ∞,R(Uπ
g )
∗ equals Ψ∞,R(Uπ

g−1),

and Ψ∞,R(Uπ
g )Ψ∞,R(Aπ)Ψ∞,R(Uπ

g )
∗ = Ψ∞,R(Aπ) for all g ∈ G and all A ∈ A due

to (10.4). Consequently, the C∗-algebra Ψ∞,R(B
π) is the closure of the C∗-algebra

composed by the finite sums of the form ∑
g

Ψ∞,R(Aπ
g )Ψ∞,R(Uπ

g ) where Ag ∈ A.

THEOREM 10.1. The mapping

(10.5) Pϕ(Ω∞,R)ϕ
(

∑
g∈F

Aπ
g Uπ

g

)
7→ ∑

g∈F
Ψ∞,R(Aπ

g )Ψ∞,R(Uπ
g ),

where F is a finite subset of G and Ag ∈ A for g ∈ F, extends to a C∗-algebra isomor-
phism of the C∗-algebra B∞,R onto the C∗-algebra Ψ∞,R(B

π) given by (10.3)–(10.4).

Proof. Consider the coset Bπ = ∑
g∈F

Aπ
g Uπ

g ∈ Bπ , where F is a finite subset of

G and Ag ∈ A for g ∈ F, and put Ψ∞,R(Bπ) := ∑
g∈F

Ψ∞,R(Aπ
g )Ψ∞,R(Uπ

g ). Since the

set Ω∞,R is open and since Pϕ(Ω∞,R)ϕ(Bπ) = ϕ(Bπ)Pϕ(Ω∞,R), we infer similarly
to Lemma 6.2 that

(10.6) ‖Pϕ(Ω∞,R)ϕ(Bπ)‖B(Hϕ) = sup
Z∈Z(Ω∞,R)

‖ϕ(BπZπ)‖B(Hϕ),

where Z(Ω∞,R) is the set (10.2).

Consider the set SO�(0) =
{

v ∈ SO� : lim
x→±∞

v(x) = 0
}

. If v ∈ SO�(0)

and v(R) ⊂ [0, 1], then W0(v) ∈ Z(Ω∞,R). Moreover, Z(Ω∞,R) = {W0(v) : v ∈
SO�(0), v(R) ⊂ [0, 1]}. For every v ∈ SO�(0) and every h ∈ R, the operator

UghW0(v) = W0(eh)W0(v) = W0(ehv)

belongs to the C∗-algebra A because ehv ∈ SO�(0). Hence, for each Z ∈ Z(Ω∞,R)
and given B ∈ B, we conclude that the coset BπZπ belongs to the C∗-algebra
Aπ . Hence, for every Z ∈ Z(Ω∞,R), by (7.8) and (10.4), we obtain φ∞,R(BπZπ) =
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Ψ∞,R(Bπ)φ∞,R(Zπ) where φ∞,R : Aπ → B(H∞,R) is the restriction of the repre-
sentation φ (see (7.7)–(7.10)) to the space H∞,R =

⊕
(ξ,η)∈Ω∞,R

l2(Mξ,η ,C2) consid-

ered as an invariant Hilbert subspace ofHφ. Therefore, applying (10.1) and (7.14),
we get

‖Pϕ(Ω∞,R)ϕ(BπZπ)‖B(Hϕ) = ‖Pφ(Ω∞,R)φ(BπZπ)‖B(Hφ)

= ‖Ψ∞,R(Bπ)φ∞,R(Zπ)‖B(H∞,R).(10.7)

Since for all Z ∈ Z(Ω∞,R),

Pϕ(Ω∞,R)ϕ(BπZπ) = ϕ(Bπ)Pϕ(Ω∞,R)ϕ(Zπ) = ϕ(BπZπ),

we deduce from equalities (10.6) and (10.7) that

sup
Z∈Z(Ω∞,R)

‖Ψ∞,R(Bπ)φ∞,R(Zπ)‖B(H∞,R) = sup
Z∈Z(Ω∞,R)

‖Pϕ(Ω∞,R)ϕ(BπZπ)‖B(Hϕ)

= sup
Z∈Z(Ω∞,R)

‖ϕ(BπZπ)‖B(Hϕ)

= ‖Pϕ(Ω∞,R)ϕ(Bπ)‖B(Hϕ).(10.8)

Consider the identical representation π0 of the unital C∗-algebra Ψ∞,R(B
π)

in the Hilbert space H∞,R. By (10.4), φ∞,R(Zπ) is a central C∗-subalgebra of
Ψ∞,R(B

π) with the same unit. Clearly, the maximal ideal space of φ∞,R(Zπ)

coincides with Ω∞,R. Since Ω∞,R is an open subset of Ω∞,R and since the corre-
sponding spectral projection Pπ0(Ω∞,R) is the identity operator on Hilbert space
H∞,R, we conclude from Lemma 6.2 that

‖Ψ∞,R(Bπ)‖B(H∞,R) = ‖Pπ0(Ω∞,R)Ψ∞,R(Bπ)‖B(H∞,R)

= sup
Z∈Z(Ω∞,R)

‖Ψ∞,R(Bπ)φ∞,R(Zπ)‖B(H∞,R),

which together with (10.8) implies that

(10.9) ‖Pϕ(Ω∞,R)ϕ(Bπ)‖B(Hϕ) = ‖Ψ∞,R(Bπ)‖B(H∞,R)

for all finite sums Bπ = ∑
g∈F

Aπ
g Uπ

g ∈ Bπ with Aπ
g ∈ Aπ . Since the set of such

finite sums is dense in Bπ and since (10.9) holds, the mapping (10.5) uniquely
extends to a C∗-algebra isomorphism of B∞,R onto Ψ∞,R(B

π).

Every coset Bπ of the C∗-algebra Bπ is the limit of a sequence of cosets of
the form Bπ

n = ∑
g∈Fn

Aπ
g,nUπ

g where Aπ
g,n ∈ Aπ and g runs through finite subsets

Fn of G (n ∈ N). Then according to Theorem 10.1 the operator Ψ∞,R(Bπ) in the
C∗-algebra Ψ∞,R(B

π) has the form

Ψ∞,R(Bπ) = lim
n→∞ ∑

g∈Fn

Ψ∞,R(Aπ
g,n)Ψ∞,R(Uπ

g ),
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where the ∗-homomorphism Ψ∞,R : Bπ → B(H∞,R) is an extension of the ∗-
homomorphism φ∞,R : Aπ → B(H∞,R) to the C∗-algebra Bπ in view of (7.8) and
(10.4). Thus, setting hg = h for shifts g = gh ∈ G, we obtain

(10.10)

Ψ∞,R(Bπ) =
⊕

(ξ,η)∈Ω∞,R

B∞,R(ξ, η, ·)I ∈ B
( ⊕
(ξ,η)∈Ω∞,R

l2(Mξ,η ,C2)
)

,

B∞,R(ξ, η, ·) : Mξ,η → C2×2, µ 7→ lim
n→∞ ∑

g∈Fn

[Ψξ,η,µ(Ag,n)]eihgη .

Thus, for every (ξ, η, µ) in the set

N∞,R :=
⋃

(ξ,η)∈Ω∞,R

{(ξ, η)} ×Mξ,η ,

we obtain the representation

(10.11) σξ,η,µ : B∞,R → B(C2)

given on the generators of the C∗-algebra B∞,R by

σξ,η,µ(Pϕ(Ω∞,R)ϕ((aI)π)) f = [Ψξ,η,µ(aI)] f ,

σξ,η,µ(Pϕ(Ω∞,R)ϕ((W0(b))π)) f = [Ψξ,η,µ(W0(b))] f ,(10.12)

σξ,η,µ(Pϕ(Ω∞,R)ϕ(Uπ
gh
)) f = eihη f ,

where a, b ∈ PSO�, gh ∈ G and f ∈ C2.
Applying Theorem 10.1 and (10.10)–(10.12), we immediately obtain an in-

vertibility criterion for the operators in the C∗-algebra B∞,R.

THEOREM 10.2. For each B ∈ B, the operator B∞,R := Pϕ(Ω∞,R)ϕ(Bπ) ∈
B∞,R is invertible on the space Pϕ(Ω∞,R)Hϕ if and only if for all (ξ, η, µ) ∈ N∞,R the
operators σξ,η,µ(B∞,R) are invertible on the space C2 and

sup
(ξ,η,µ)∈N∞,R

‖(σξ,η,µ(B∞,R))
−1‖B(C2) < ∞.

11. INVERTIBILITY IN THE C∗-ALGEBRA B∞,∞

In this section we will show that for every B ∈ B the invertibility of the
operator Pϕ(ΩR,∞)ϕ(Bπ) on the Hilbert space Pϕ(ΩR,∞)Hϕ implies the inverti-
bility of the operators Pϕ(Ω∞,∞)ϕ(Bπ) on the Hilbert spaces Pϕ(Ω∞,∞)Hϕ. This
means that condition (iii) in Theorem 7.2 is superfluous.

Consider the C∗-algebra B∞,∞ = Pϕ(Ω∞,∞)ϕ(Bπ) (see (7.17)) where Ω∞,∞
is given by (7.6). Since Ω∞,∞ ∈ RG(Ω) and, by Lemma 7.1, Ω∞,∞ is a set of fixed
points for homeomorphisms βg (g ∈ G \ {e}), we infer that the C∗-algebra B∞,∞
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is commutative. Consider its central C∗-subalgebra Z∞,∞ := Pϕ(Ω∞,∞)ϕ(Zπ). If
Zπ ∈ Zπ and

min
(ξ,η)∈Ω∞,∞

|[Γ(Zπ)](ξ, η)| > 0,

then |[Γ(Zπ)](ξ, η)| > 0 in the closure V of an open neighborhood V of Ω∞,∞
in Ω. Hence, because Pϕ(V)ϕ(Zπ) ∼= C(V) and the isomorphism is given by
Pϕ(V)ϕ(Zπ) 7→ z(·, ·)|V where z(·, ·)|V is the restriction of the Gelfand trans-
form Γ(Zπ) to V (see Lemma 6.1), we conclude that the operator Pϕ(V)ϕ(Zπ)
is invertible on the Hilbert space Pϕ(V)Hϕ. This implies the invertibility of the
operator Pϕ(Ω∞,∞)ϕ(Zπ) on the Hilbert space Pϕ(Ω∞,∞)Hϕ. Thus, we proved
the following.

PROPOSITION 11.1. M(Z∞,∞) ⊂ Ω∞,∞.

Let Jξ,η be the minimal closed two-sided ideal of the C∗-algebra B∞,∞ that
contains the maximal ideal (ξ, η) ∈ M(Z∞,∞), and let B∞,∞/Jξ,η . By the Allan–
Douglas local principle applied with respect to M(Z∞,∞) (see Theorem 4.1), we
obtain the following.

LEMMA 11.2. The operator B∞,∞ = Pϕ(Ω∞,∞)ϕ(Bπ) is invertible on the space
Pϕ(Ω∞,∞)Hϕ if and only if for every (ξ, η) ∈ M(Z∞,∞) the coset B∞,∞ + Jξ,η is
invertible in the quotient algebra B∞,∞/Jξ,η .

With every operator B = ∑
g∈F

DgUg ∈ B0 of the form (7.1), where Dg ∈ A0

and F is a finite subset of G, and with every η ∈ M∞(SO�) we associate two
functional operators A±η ∈ A0 given by

(11.1)

A+
η = ∑

g∈F
[Ψ·,η,1(Dg)]1,1Ug = ∑

g∈F
[Ψ·,η,0(Dg)]2,2Ug,

A−η = ∑
g∈F

[Ψ·,η,0(Dg)]1,1Ug = ∑
g∈F

[Ψ·,η,1(Dg)]2,2Ug,

where the functions

ξ 7→ [Ψξ,η,1(Dg)]1,1, ξ 7→ [Ψξ,η,0(Dg)]2,2,

ξ 7→ [Ψξ,η,0(Dg)]1,1, ξ 7→ [Ψξ,η,1(Dg)]2,2,

defined for almost all ξ ∈ R, are in PSO0 and for almost all ξ ∈ R,

[Ψξ,η,1(Dg)]1,1 = [Ψξ,η,0(Dg)]2,2, [Ψξ,η,0(Dg)]1,1 = [Ψξ,η,1(Dg)]2,2.

THEOREM 11.3. If B ∈ B0 is written in the form (7.1) and the operator BR,∞ :=
Pϕ(ΩR,∞)ϕ(Bπ) is invertible on the Hilbert space Pϕ(ΩR,∞)Hϕ, then for every η ∈
M∞(SO�) the functional operators A±η given by (11.1) are invertible on the Hilbert space
L2(R).
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Proof. Fix τ ∈ R. Let the operator B ∈ B0 be of the form (7.1) and let the
operator BR,∞ be invertible on the Hilbert space Pϕ(ΩR,∞)Hϕ. Then, by Theo-
rem 9.1, the operators πξ,η,µ(BR,∞) for all (ξ, η, µ) ∈ Nτ,∞ are invertible on the
Hilbert space l2(G,C2) and condition (9.7) is fulfilled. In particular, the operators
πξ,η,µ(BR,∞) are invertible on the space l2(G,C2) for all η ∈ M∞(SO�) and all
(ξ, µ) ∈ Rτ , where Rτ = Mτ(SO�)× {0, 1} due to (5.13). It is easily seen from
(9.5), (3.7), (11.1) and (5.10) that there exists a permutation matrix T such that for
every η ∈ M∞(SO�) and every ξ ∈ Mτ(SO�),

(11.2)
πξ,η,0(BR,∞) = Tdiag{(A−η )ξ,1, (A+

η )ξ,0}T−1,

πξ,η,1(BR,∞) = Tdiag{(A+
η )ξ,1, (A−η )ξ,0}T−1.

Consequently, the invertibility of the operators πξ,η,µ(BR,∞) in the space l2(G,C2)
for all (ξ, η, µ) ∈ Nτ,∞ implies, by virtue of (11.2), the invertibility of the operators
(A+

η )ξ,µ and (A−η )ξ,µ in the space l2(G) for all (ξ, µ) ∈ Rτ and all η ∈ M∞(SO�).
Moreover, we infer from (9.7) and (11.2) that condition (5.14) for all functional op-
erators A±η defined by (11.1) is also fulfilled. Then, by Theorem 5.2, the functional
operators A±η are invertible on the space L2(R) for all η ∈ M∞(SO�).

Further, we infer from Theorem 11.3 that for every operator B ∈ B0 with
invertible operator BR,∞ and every η ∈ M∞(SO�),

‖A±η ‖2
B(L2(R)) = r(A±η (A±η )

∗) 6 r(BR,∞B∗R,∞)

= ‖BR,∞‖2
B(Pϕ(ΩR,∞)Hϕ)

6 ‖B‖2
B(L2(R)).

Hence the mappings B 7→ BR,∞ 7→ A±η extend by continuity to C∗-algebra homo-
morphisms ν±η : B → BR,∞ → A, and therefore Theorem 11.3 remains true for
all B ∈ B. Thus, taking into account the relations

(11.3)

(Ã+
η )ξ,1 = ∑

g∈F
[Ψξ,η,1(Dg)]1,1Ug, (Ã+

η )ξ,0 = ∑
g∈F

[Ψξ,η,0(Dg)]2,2Ug,

(Ã−η )ξ,1 = ∑
g∈F

[Ψξ,η,0(Dg)]1,1Ug, (Ã−η )ξ,0 = ∑
g∈F

[Ψξ,η,1(Dg)]2,2Ug,

for B ∈ B0 and all ξ, η ∈ M∞(SO�), which follow from (11.1) and (5.12), we
obtain the next result from Theorem 11.3 for B ∈ B and Corollary 5.5.

COROLLARY 11.4. If B ∈ B and the operator BR,∞ := Pϕ(ΩR,∞)ϕ(Bπ) is in-
vertible on the Hilbert space Pϕ(ΩR,∞)Hϕ, then for every (ξ, η) ∈ Ω∞,∞ and every
µ ∈ {0, 1} the functional operators (Ã±η )ξ,µ given by (11.3) are invertible on the Hilbert
space L2(R), and therefore the operators Pϕ(Ω∞,∞)ϕ((Ã±η )π

ξ,µ) are invertible on the
space Pϕ(Ω∞,∞)Hϕ.



238 YURI KARLOVICH AND IVÁN LORETO-HERNÁNDEZ

THEOREM 11.5. If B ∈ B and the operator BR,∞ = Pϕ(ΩR,∞)ϕ(Bπ) is invert-
ible on the space Pϕ(ΩR,∞)Hϕ, then the operator B∞,∞ = Pϕ(Ω∞,∞)ϕ(Bπ) is invertible
on the space Pϕ(Ω∞,∞)Hϕ.

Proof. Let u+ ∈ C(R), u+(+∞) = 1, u+(−∞) = 0, and let u− = 1− u+. By
Proposition 11.1, M(Z∞,∞) ⊂ Ω∞,∞. One can see that for every operator B ∈ B

and every (ξ, η) ∈ M(Z∞,∞) the coset B∞,∞ + Jξ,η has the form

B∞,∞ + Jξ,η = Pϕ(Ω∞,∞)ϕ([(Ã+
η )ξ,1(u−W0(u−)) + (Ã+

η )ξ,0(u+W0(u−))

+ (Ã−η )ξ,1(u−W0(u+)) + (Ã−η )ξ,0(u+W0(u+))]
π) + Jξ,η .(11.4)

By Corollary 11.4, the invertibility of the operator BR,∞ on the Hilbert space
Pϕ(ΩR,∞)Hϕ implies the invertibility of all operators Pϕ(Ω∞,∞)ϕ((Ã±η )π

ξ,µ) on
the space Pϕ(Ω∞,∞)Hϕ. Taking a sequence of open sets ∆n ⊂ Ω such that⋂
n

∆n = Ω∞,∞, one can easily prove that

(11.5) Pϕ(Ω∞,∞)ϕ([u+u− I]π) = Pϕ(Ω∞,∞)ϕ([W0(u+u−)]π) = 0.

Since the operators

Pϕ(Ω∞,∞)ϕ([u± I]π), Pϕ(Ω∞,∞)ϕ([W0(u±)]π), Pϕ(Ω∞,∞)ϕ(Uπ
g ) (g ∈ G)

pairwise commute and the operators

Pϕ(Ω∞,∞)ϕ([u−W0(u±)]π), Pϕ(Ω∞,∞)ϕ([u+W0(u±)]π)

are projections on the space Pϕ(Ω∞,∞)Hϕ, we infer from (11.5) that for every
(ξ, η) ∈ M(Z∞,∞) the coset

Pϕ(Ω∞,∞)ϕ([((Ã+
η )ξ,1)

−1(u−W0(u−)) + ((Ã+
η )ξ,0)

−1(u+W0(u−))

+ ((Ã−η )ξ,1)
−1(u−W0(u+)) + ((Ã−η )ξ,0)

−1(u+W0(u+))]
π) + Jξ,η

is the inverse to the coset (11.4). Finally, applying Lemma 11.2, we obtain the
invertibility of the operator B∞,∞ on the space Pϕ(Ω∞,∞)Hϕ.

12. FAITHFUL REPRESENTATION OF THE QUOTIENT C∗-ALGEBRA Bπ

Let G be the commutative group of all translations gh : x 7→ x − h (h ∈ R)
on R. Consider the C∗-algebra

B := alg (aI, W0(b), Ug : a, b ∈ PSO�, g ∈ G) ⊂ B(L2(R)),

generated by all multiplication operators aI (a ∈ PSO�), by the convolutions
operators W0(b) (b ∈ PSO�) and by all shift operators Ug (g ∈ G).

Fix τ ∈ R and consider the sets

Ωτ,∞ = Mτ(SO�)×M∞(SO�), Nτ,∞ =
⋃

(ξ,η)∈Ωτ,∞

{(ξ, η)} ×Mξ,η .
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For each (ξ, η, µ) ∈ Nτ,∞, we introduce the representation

(12.1) Φξ,η,µ : B→ B(l2(G,C2)), B 7→ πξ,η,µ(BR,∞)

given on the generators of the C∗-algebra B according to (9.4)–(9.5) by

(12.2)

[Φξ,η,µ(aI) f ](g)=diag{(a ◦ g)(ξ+), (a ◦ g)(ξ−)} f (g),

[Φξ,η,µ(W0(b)) f ](g)=
[

b(η+)µ+b(η−)(1−µ) [b(η+)− b(η−)]$(µ)
[b(η+)− b(η−)]$(µ) b(η+)(1−µ)+b(η−)µ

]
f (g),

[Φξ,η,µ(Us) f ](g)= f (gs),

where a, b ∈ PSO�, g, s ∈ G and f ∈ l2(G,C2).
We now consider the sets

Ω∞,R = M∞(SO�)×
⋃
t∈R

Mt(SO�), N∞,R =
⋃

(ξ,η)∈Ω∞,R

{(ξ, η)} ×Mξ,η .

For each (ξ, η, µ) ∈ N∞,R, we introduce the representation

(12.3) Φξ,η,µ : B→ B(C2), B 7→ σξ,η,µ(B∞,R),

given on the generators of the C∗-algebra B according to (10.11)–10.12 by

Φξ,η,µ(aI) f = diag{a(ξ+), a(ξ−)} f ,

Φξ,η,µ(W0(b)) f =

[
b(η+)µ + b(η−)(1− µ) [b(η+)− b(η−)]$(µ)
[b(η+)− b(η−)]$(µ) b(η+)(1− µ) + b(η−)µ

]
f ,(12.4)

Φξ,η,µ(Ugh) f = eihη f ,

where a, b ∈ PSO�, gh ∈ G and f ∈ C2.
Finally, combining Theorems 7.2, 9.1, 10.2 and 11.5, we obtain the following

Fredholm criterion for the operators B in the C∗-algebra B.

THEOREM 12.1. An operator B ∈ B is Fredholm on the space L2(R) if and only
if the following two conditions are satisfied:

(i) for any (equivalently, some) τ ∈ R and all (ξ, η, µ) ∈ Nτ,∞ the operators
Φξ,η,µ(B) are invertible on the space l2(G,C2) and

sup
(ξ,η,µ)∈Nτ,∞

‖(Φξ,η,µ(B))−1‖B(l2(G,C2)) < ∞;

(ii) for all (ξ, η, µ) ∈ N∞,R the operators Φξ,η,µ(B) are invertible on the space C2 and

sup
(ξ,η,µ)∈N∞,R

‖(Φξ,η,µ(B))−1‖B(C2) < ∞.

Fix τ ∈ R and consider the operator function Φ(B) defined on Nτ,∞ ∪N∞,R
by (ξ, η, µ) 7→ Φξ,η,µ(B), where the operators Φξ,η,µ(B) are given by (12.1)–(12.4),
and equip it with the norm

‖Φ(B)‖ = max
{

sup
(ξ,η,µ)∈Nτ,∞

‖Φξ,η,µ(B)‖B(l2(G,C2)), sup
(ξ,η,µ)∈N∞,R

‖Φξ,η,µ(B)‖B(C2)

}
.
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The operator function Φ(B) is referred to as the Fredholm symbol of an operator
B ∈ B. Clearly, the set Φ(B) := {Φ(B) : B ∈ B} is a C∗-algebra, and the
mapping Φ : B 7→ Φ(B) is a C∗-algebra homomorphism of the C∗-algebra B onto
the C∗-algebra Φ(B) with kernel Ker Φ = K. Hence Bπ ∼= Φ(B). Making use of
this symbol calculus, Theorem 12.1 can be rewritten in the following form.

THEOREM 12.2. An operator B ∈ B is Fredholm on the space L2(R) if and only
if its Fredholm symbol Φ(B) is invertible.

Consider the Hilbert space

HB :=
( ⊕
(ξ,η,µ)∈Nτ,∞

l2(G,C2)
)⊕ ( ⊕

(ξ,η,µ)∈N∞,R

C2
)

.

THEOREM 12.3. The mapping Φ0 : Bπ → B(HB) given by

Bπ 7→
( ⊕
(ξ,η,µ)∈Nτ,∞

Φξ,η,µ(B)
)⊕ ( ⊕

(ξ,η,µ)∈N∞,R

Φξ,η,µ(B)
)

is a faithful representation of the quotient C∗-algebra Bπ in the spaceHB.
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