C*-ALGEBRA OF NONLOCAL CONVOLUTION TYPE OPERATORS WITH PIECEWISE SLOWLY OSCILLATING DATA

YURI KARLOVICH and IVÁN LORETO-HERNÁNDEZ

Communicated by Nikolai K. Nikolski

ABSTRACT. The C^* -subalgebra $\mathfrak B$ of all bounded linear operators on the space $L^2(\mathbb R)$, which is generated by all multiplication operators by piecewise slowly oscillating functions, by all convolution operators with piecewise slowly oscillating symbols and by the range of a unitary representation of the group of all translations on $\mathbb R$, is studied. A faithful representation of the quotient C^* -algebra $\mathfrak B^\pi = \mathfrak B/\mathcal K$ in a Hilbert space, where $\mathcal K$ is the ideal of compact operators on $L^2(\mathbb R)$, is constructed by applying a local-trajectory method and appropriate spectral measures. This gives a Fredholm symbol calculus for the C^* -algebra $\mathfrak B$ and a Fredholm criterion for the operators $B \in \mathfrak B$.

KEYWORDS: Convolution type operator, piecewise slowly oscillating function, local-trajectory method, spectral measure, C*-algebra, faithful representation, Fredholmness.

MSC (2010): Primary 47G10; Secondary 45E10, 46J10, 46L45, 47A53, 47L55.

1. INTRODUCTION

Let $\mathcal{B} := \mathcal{B}(L^2(\mathbb{R}))$ be the C^* -algebra of all bounded linear operators acting on the Lebesgue space $L^2(\mathbb{R})$ and let \mathcal{K} be the ideal of all compact operators in \mathcal{B} . An operator $B \in \mathcal{B}$ is called *Fredholm* if its image is closed and the kernels KerB and Ker B^* are finite-dimensional, or equivalently, the coset $B^{\pi} := B + \mathcal{K}$ is invertible in the Calkin algebra $\mathcal{B}^{\pi} := \mathcal{B}/\mathcal{K}$ (see, e.g., [16]).

Let \mathcal{F} be the Fourier transform,

$$(\mathcal{F}\varphi)(x) = \int\limits_{\mathbb{R}} e^{ixy} \varphi(y) dy, \quad x \in \mathbb{R}.$$

Consider the unital C^* -algebras of convolution type operators

(1.1)
$$\mathfrak{A} := \operatorname{alg}(aI, W^{0}(b) : a, b \in PSO^{\diamond}) \subset \mathcal{B},$$

(1.2)
$$\mathcal{Z} := \operatorname{alg}(aI, W^{0}(b) : a, b \in SO^{\diamond}) \subset \mathfrak{A},$$

generated by multiplication operators aI and convolution operators $W^0(b) := \mathcal{F}^{-1}b\mathcal{F}$ where, respectively, $a,b \in PSO^{\diamond}$ and $a,b \in SO^{\diamond}$. Here SO^{\diamond} is the C^* -algebra of functions admitting slowly oscillating discontinuities at every point $\lambda \in \mathbb{R} \cup \{\infty\}$ and PSO^{\diamond} is the C^* -algebra of piecewise slowly oscillating functions (see their definitions in Section 2).

Let *G* denote the commutative group of all translations

$$(1.3) g_h: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x - h \quad (h \in \mathbb{R}),$$

with product $g_hg_s=g_{h+s}$ for all $h,s\in\mathbb{R}$. Given a shift $g_h\in G$, we define the unitary shift operator U_{g_h} acting on $L^2(\mathbb{R})$ by

$$(1.4) (U_{g_h}f)(x) := f(x-h) \text{for } x \in \mathbb{R}.$$

The aim of this paper is to elaborate a Fredholm symbol calculus for the C^* -algebra of nonlocal convolution type operators

$$\mathfrak{B} := \operatorname{alg}(\mathfrak{A}, U_G) \subset \mathcal{B}$$

generated by all operators $A \in \mathfrak{A}$ and by all unitary shift operators U_{g_h} ($h \in \mathbb{R}$), or equivalently, to construct a faithful (that is, injective) representation of the quotient C^* -algebra \mathfrak{B}/\mathcal{K} in an appropriate Hilbert space, where the C^* -algebra \mathfrak{A} is given by (1.1) and $\mathcal{K} \subset \mathcal{Z} \subset \mathfrak{A}$ (see Lemma 6.1 in [23]).

The C^* -algebra $\mathfrak{C} \subset \mathcal{B}(L^2(\mathbb{T}))$ of nonlocal singular integral operators generated by the Cauchy singular integral operator $S_{\mathbb{T}}$, by the operators of multiplications by piecewise quasicontinuous (PQC) functions [27], and by the unitary shift operators $U_g(g \in G)$, where G is a discrete amenable [17] group of shifts acting freely on \mathbb{T} , was studied in [11].

Recall that the group of shifts G acts freely on $\mathbb T$ if the points g(t) ($t \in \mathbb T, g \in G$) are pairwise distinct. The C^* -algebra $\mathfrak S \subset \mathcal B(L^2(\mathbb T))$ generated by all rotation operators on $\mathbb T$, by all multiplication operators by piecewise slowly oscillating functions on $\mathbb T$ and by the operators $e_{h,\lambda}S_{\mathbb T}e_{h,\lambda}^{-1}I$ ($h \in \mathbb R, \lambda \in \mathbb T$), where

$$e_{h,\lambda}(t) = \exp(h(t+\lambda)/(t-\lambda))$$
 for $t \in \mathbb{T} \setminus \{\lambda\}$,

was studied in [4]. The C^* -algebra $\mathfrak{D} \subset \mathcal{B}(L^2(\mathbb{T}))$ generated by the Cauchy singular integral operator $S_{\mathbb{T}}$, by the operators of multiplications by piecewise slowly oscillating functions on \mathbb{T} , and by the unitary shift operators $U_g(g \in G)$, where G is a discrete amenable group [17] of shifts acting topologically freely on \mathbb{T} and having the same finite set of fixed points, was studied in [5] (for more general actions of G see also [6], [7]).

On the other hand, more complicated C^* -algebras $\mathfrak{B} = \operatorname{alg}(\mathfrak{A}, U_G)$ of non-local convolution type operators were studied only in the case of piecewise continuous data (see [18], [19]).

In the present paper, applying results of [21]–[23] for the C^* -algebra $\mathfrak A$ of convolution type operators with PSO^{\diamond} data, we study the C^* -algebra $\mathfrak B$ of non-local convolution type operators with such data. Since $\mathfrak B^{\pi}$ is an example of C^* -algebras associated with C^* -dynamical systems and the action of the group G on

the maximal ideal space of the central subalgebra $\mathcal{Z}^{\pi} := \mathcal{Z}/\mathcal{K}$ of the quotient C^* -algebra $\mathfrak{A}^{\pi} := \mathfrak{A}/\mathcal{K}$ is not topologically free, for studying the invertibility in \mathfrak{B}^{π} we apply a version of the local-trajectory method combined with using spectral measures (see [5], [18], and [20]). For other versions of the local-trajectory method and their applications see [1]–[3].

The paper is organized as follows. In Section 2 we define the C^* -algebras SO^{\diamond} and PSO^{\diamond} and describe their maximal ideal spaces.

In Section 3 we describe the Gelfand transform for the central subalgebra \mathcal{Z}^{π} of \mathfrak{A}^{π} and construct a faithful representation of the quotient C^* -algebra \mathfrak{A}^{π} in a Hilbert space on the basis of [21]–[23].

The local-trajectory method elaborated in [18], [20] to study the invertibility in the abstract C^* -algebra $\mathfrak{B}=\operatorname{alg}(\mathfrak{A},U_G)$ generated by a unital C^* -subalgebra \mathfrak{A} and a unitary representation U of an amenable group G is presented in Section 4.

In contrast to the local-trajectory methods developed in [1]–[3], the method presented here is related to the Allan–Douglas local principle (see, e.g., [13]) and delivers a convenient machinery for studying C^* -algebras of nonlocal type operators with discontinuous data in case $\mathfrak A$ has a non-trivial central subalgebra $\mathcal Z$. Applying this method, we establish in Section 5 an invertibility criterion for the C^* -algebra $\mathcal A$ of functional operators with PSO^{\diamond} coefficients.

In Section 6 we describe the spectral measure associated with a central C^* -subalgebra \mathcal{Z}^{π} of \mathfrak{A}^{π} and a faithful representation π of the C^* -algebra \mathfrak{B}^{π} in a Hilbert space, and which is applicable if the action of the group G is not topologically free. Such spectral measure allows us in Section 7 to decompose \mathfrak{B}^{π} into the orthogonal sum of G-invariant C^* -algebras $\mathfrak{B}_{\mathbb{R},\infty}$, $\mathfrak{B}_{\infty,\mathbb{R}}$ and $\mathfrak{B}_{\infty,\infty}$.

In Sections 8, 9 and 10 we study the invertibility in the C^* -algebras $\mathfrak{A}_{\mathbb{R},\infty}$, $\mathfrak{B}_{\mathbb{R},\infty}$ and $\mathfrak{B}_{\infty,\mathbb{R}}$, respectively, where $\mathfrak{A}_{\mathbb{R},\infty}\subset\mathfrak{B}_{\mathbb{R},\infty}$. The faithful representations for the C^* -algebras $\mathfrak{B}_{\mathbb{R},\infty}$ and $\mathfrak{B}_{\infty,\mathbb{R}}$ are qualitatively different. To study the invertibility in the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$ we apply the local-trajectory method, while studying the C^* -algebra $\mathfrak{B}_{\infty,\mathbb{R}}$ is based on the fact that the product of each coset $B^{\pi}\in\mathfrak{B}^{\pi}$ and each coset $[W^0(v)]^{\pi}$, where $v\in SO^{\diamond}$ and $\lim_{x\to\pm\infty}v(x)=0$, belongs to the C^* -algebra \mathfrak{A}^{π} .

In Section 11 we show that the invertibility in the C^* -algebra $\mathfrak{B}_{\infty,\infty}$ follows from the invertibility in $\mathfrak{B}_{\mathbb{R},\infty}$ and therefore a faithful representation for the quotient C^* -algebra \mathfrak{B}^{π} is related only to the invertibility conditions for the C^* -algebras $\mathfrak{B}_{\mathbb{R},\infty}$ and $\mathfrak{B}_{\infty,\mathbb{R}}$.

Finally, in Section 12, collecting the results of Sections 7–11, we construct a faithful representation of the quotient C^* -algebra \mathfrak{B}^{π} in a Hilbert space. This representation can be considered as a Fredholm symbol calculus for the C^* -algebra \mathfrak{B} . As a corollary, we obtain a Fredholm criterion for the operators $B \in \mathfrak{B}$ in terms of their Fredholm symbols.

2. THE C*-ALGEBRAS SO[⋄] AND PSO[⋄]

Let $\dot{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ and $\overline{\mathbb{R}} := [-\infty, +\infty]$. For a bounded measurable function $f : \dot{\mathbb{R}} \to \mathbb{C}$ and a set $I \subset \dot{\mathbb{R}}$, let

$$\operatorname{osc}(f, I) = \operatorname{ess\,sup}\{|f(t) - f(s)| : t, s \in I\}.$$

Similarly to [4], we say that a function $f \in L^{\infty}(\mathbb{R})$ is called *slowly oscillating at a* point $\lambda \in \mathbb{R}$ if for every (equivalently, for some) $r \in (0,1)$,

$$\lim_{x \to +0} \operatorname{osc} (f, \lambda + ([-x, -rx] \cup [rx, x])) = 0 \quad \text{if } \lambda \in \mathbb{R},$$

$$\lim_{x \to +\infty} \operatorname{osc} (f, [-x, -rx] \cup [rx, x]) = 0 \quad \text{if } \lambda = \infty.$$

For every $\lambda \in \dot{\mathbb{R}}$, let SO_{λ} denote the C^* -subalgebra of $L^{\infty}(\mathbb{R})$ defined by

$$SO_{\lambda} := \{ f \in C_{\mathbf{b}}(\dot{\mathbb{R}} \setminus \{\lambda\}) : f \text{ slowly oscillates at } \lambda \},$$

where
$$C_b(\dot{\mathbb{R}} \setminus \{\lambda\}) := C(\dot{\mathbb{R}} \setminus \{\lambda\}) \cap L^{\infty}(\mathbb{R}).$$

Let SO^{\diamond} be the minimal C^* -subalgebra of $L^{\infty}(\mathbb{R})$ that contains all the C^* -algebras SO_{λ} with $\lambda \in \dot{\mathbb{R}}$, PC the C^* -algebra of all functions in $L^{\infty}(\mathbb{R})$ that have one-sided limits at each point $t \in \dot{\mathbb{R}}$, and let PSO^{\diamond} be the C^* -subalgebra of $L^{\infty}(\mathbb{R})$ generated by the C^* -algebras PC and SO^{\diamond} . All these algebras contain $C(\dot{\mathbb{R}})$. Elements of the algebras SO^{\diamond} and PSO^{\diamond} are called, respectively, slowly oscillating and piecewise slowly oscillating functions.

Identifying the points $\lambda \in \mathbb{R}$ with the evaluation functionals δ_{λ} on \mathbb{R} given by $\delta_{\lambda}(f) = f(\lambda)$ for $f \in C(\mathbb{R})$, we infer that the maximal ideal space $M(SO^{\diamond})$ of SO^{\diamond} is of the form

(2.1)
$$M(SO^{\diamond}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(SO^{\diamond})$$

where $M_{\lambda}(SO^{\diamond}) := \{ \xi \in M(SO^{\diamond}) : \xi|_{C(\mathring{\mathbb{R}})} = \delta_{\lambda} \}$ are fibers of $M(SO^{\diamond})$ over points $\lambda \in \dot{\mathbb{R}}$. Similarly to (2.1), $M(PSO^{\diamond}) = \bigcup_{\lambda \in \mathring{\mathbb{R}}} M_{\lambda}(PSO^{\diamond})$. Applying Corollary 2.2 in

[23] and Proposition 5 in [8], we infer that for every $\lambda \in \dot{\mathbb{R}}$,

$$M_{\lambda}(SO^{\diamond}) = M_{\lambda}(SO_{\lambda}) = M_{\infty}(SO_{\infty}) = (\operatorname{clos}_{SO_{\infty}^*}\mathbb{R}) \setminus \mathbb{R},$$

where $\operatorname{clos}_{SO_{\infty}^*}\mathbb{R}$ is the weak-star closure of \mathbb{R} in SO_{∞}^* , the dual space of SO_{∞} .

For each $\lambda \in \mathbb{R}$, the characters $\xi \in M_{\lambda}(SO_{\lambda})$ are related to partial limits of functions $a \in SO_{\lambda}$ at the point λ as follows (see Proposition 3.1 in [21] and Corollary 4.3 in [10]).

PROPOSITION 2.1. If $\{a_k\}_{k=1}^{\infty}$ is a countable subset of SO_{λ} and $\xi \in M_{\lambda}(SO_{\lambda})$, where $\lambda \in \mathbb{R}$, then there exists a sequence $\{g_n\} \subset \mathbb{R}_+$ such that $g_n \to \infty$ as $n \to \infty$, and for every $t \in \mathbb{R} \setminus \{0\}$ and every $k \in \mathbb{N}$,

$$\lim_{n\to\infty} a_k(\lambda+g_n^{-1}t) = \xi(a_k) \quad \text{if } \lambda \in \mathbb{R}, \quad \lim_{n\to\infty} a_k(g_nt) = \xi(a_k) \quad \text{if } \lambda = \infty.$$

In what follows we write $a(\xi) := \xi(a)$ for $a \in SO^{\diamond}$ and $\xi \in M(SO^{\diamond})$.

The maximal ideal space M(PC) of the algebra PC of piecewise continuous functions can be identified with $\mathbb{R} \times \{0,1\}$ in the following way: for $a \in PC$,

$$a(\lambda,0) = a(\lambda-0), \quad a(\lambda,1) = a(\lambda+0) \quad \text{if } \lambda \in \mathbb{R},$$

 $a(\lambda,0) = a(+\infty), \quad a(\lambda,1) = a(-\infty) \quad \text{if } \lambda = \infty.$

The maximal ideal space $M(PSO^{\diamond})$ of the algebra PSO^{\diamond} has a similar description.

LEMMA 2.2 ([21], Lemma 3.4). For every $\lambda \in \mathbb{R}$, the fiber $M_{\lambda}(PSO^{\diamond})$ can be identified with $M_{\lambda}(SO^{\diamond}) \times \{0,1\}$, and therefore $M(PSO^{\diamond}) = M(SO^{\diamond}) \times \{0,1\}$.

Thus, identifying characters $\zeta \in M_{\lambda}(PSO^{\diamond})$ for $\lambda \in \mathbb{R}$ with pairs $(\xi, \mu) \in M_{\lambda}(SO^{\diamond}) \times M_{\lambda}(PC)$, where $M_{\lambda}(PC) = \{0, 1\}$, we get the following characterization of the fiber $M_{\lambda}(PSO^{\diamond})$ (see Theorem 3.5 in [21] and Theorem 4.6 in [4]).

THEOREM 2.3. If $(\xi, \mu) \in M_{\lambda}(SO^{\diamond}) \times \{0, 1\}$ and $\lambda \in \mathbb{R}$, then $(\xi, \mu)|_{SO^{\diamond}} = \xi$, $(\xi, \mu)|_{C(\mathbb{R})} = \lambda$, $(\xi, \mu)|_{PC} = (\lambda, \mu)$.

For $a \in PSO^{\diamond}$ and $\xi \in M(SO^{\diamond})$, we put

(2.2)
$$a(\xi^{-}) := a(\xi, 0)$$
 and $a(\xi^{+}) := a(\xi, 1)$,

where $a(\xi, \mu) = (\xi, \mu)a$ for $(\xi, \mu) \in M(SO^{\circ}) \times \{0, 1\}$. In particular, if $\lambda \in \dot{\mathbb{R}}$, $a \in PSO^{\circ} \cap C_b(\dot{\mathbb{R}} \setminus \{\lambda\})$ and $\xi = \lim_{\alpha} \delta_{t_{\alpha}} \in M_{\lambda}(SO^{\circ})$, where $\lim_{\alpha} t_{\alpha} = \lambda$, then

$$a(\xi,0) = \lim_{\alpha} a(\lambda - |t_{\alpha} - \lambda|), \quad a(\xi,1) = \lim_{\alpha} a(\lambda + |t_{\alpha} - \lambda|) \quad \text{for } \lambda \in \mathbb{R},$$

$$a(\xi,0) = \lim_{\alpha} a(|t_{\alpha}|), \quad a(\xi,1) = \lim_{\alpha} a(-|t_{\alpha}|) \quad \text{for } \lambda = \infty.$$

The Gelfand topology on $M(PSO^{\diamond})$ can be described as follows. If $\xi \in M_{\lambda}(SO^{\diamond})$ ($\lambda \in \mathbb{R}$), a base of neighborhoods for $(\xi, \mu) \in M(PSO^{\diamond})$ consists of all open sets of the form

(2.3)
$$U_{(\xi,\mu)} = \begin{cases} (U_{\xi,\lambda} \times \{0\}) \cup (U_{\xi,\lambda}^- \times \{0,1\}) & \text{if } \mu = 0, \\ (U_{\xi,\lambda} \times \{1\}) \cup (U_{\xi,\lambda}^+ \times \{0,1\}) & \text{if } \mu = 1, \end{cases}$$

where $U_{\xi,\lambda}=U_{\xi}\cap M_{\lambda}(SO^{\diamond})$, U_{ξ} is an open neighborhood of ξ in $M(SO^{\diamond})$, and $U_{\xi,\lambda}^-$, $U_{\xi,\lambda}^+$ consist of all $\zeta\in U_{\xi}$ whose restrictions $\tau=\zeta|_{C(\dot{\mathbb{R}})}$ belong, respectively, to the sets $(\lambda-\varepsilon,\lambda)$ and $(\lambda,\lambda+\varepsilon)$ if $\lambda\in\mathbb{R}$, and $(\varepsilon,+\infty)$ and $(-\infty,-\varepsilon)$ if $\lambda=\infty$, where $\varepsilon>0$ if $\lambda\in\mathbb{R}$, and $\varepsilon\in\mathbb{R}$ if $\lambda=\infty$.

3. FAITHFUL REPRESENTATION OF THE OUOTIENT C^* -ALGEBRA \mathfrak{A}^π

Consider the C^* -algebras $\mathfrak A$ and $\mathcal Z$ given, respectively, by (1.1) and (1.2). As $\mathcal K \subset \mathcal Z \subset \mathfrak A$, from Theorem 4.4 in [23] it follows that the quotient C^* -algebra $\mathcal Z^\pi = \mathcal Z/\mathcal K$ is a central subalgebra of the quotient C^* -algebra $\mathfrak A^\pi = \mathfrak A/\mathcal K$.

THEOREM 3.1 ([23], Theorem 6.2). The maximal ideal space $M(\mathcal{Z}^{\pi})$ of the commutative C^* -algebra \mathcal{Z}^{π} is homeomorphic to the set

(3.1)
$$\Omega := \left(\bigcup_{t \in \mathbb{R}} M_t(SO^{\diamond}) \times M_{\infty}(SO^{\diamond})\right) \cup \left(M_{\infty}(SO^{\diamond}) \times \bigcup_{t \in \mathbb{R}} M_t(SO^{\diamond})\right) \cup \left(M_{\infty}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond})\right)$$

equipped with topology induced by the product topology of $M(SO^{\diamond}) \times M(SO^{\diamond})$, and the Gelfand transform $\Gamma: \mathcal{Z}^{\pi} \to C(\Omega)$, $A^{\pi} \mapsto \mathcal{A}(\cdot, \cdot)$ is defined on the generators $A^{\pi} = (aW^{0}(b))^{\pi}$ $(a,b \in SO^{\diamond})$ of the algebra \mathcal{Z}^{π} by $\mathcal{A}(\xi,\eta) = a(\xi)b(\eta)$ for all $(\xi,\eta) \in \Omega$.

Given $(\lambda, \tau) \in \widehat{\Omega}_0 := (\mathbb{R} \times \{\infty\}) \cup (\{\infty\} \times \mathbb{R})$ we introduce the commutative Banach algebra $\mathcal{D}^{\pi}_{\lambda, \tau} \subset \mathcal{B}^{\pi}$ generated by the cosets I^{π} and $[\widehat{X}_{\lambda, \tau}]^{\pi}$, where

$$\widehat{X}_{\lambda,\tau} := \begin{cases} I - (\chi_{\lambda}^+ I - W^0(\chi_0^-))^2 & \text{if } (\lambda,\tau) \in \mathbb{R} \times \{\infty\}, \\ I - (\chi_0^- I - W^0(\chi_\tau^+))^2 & \text{if } (\lambda,\tau) \in \{\infty\} \times \mathbb{R}, \end{cases}$$

where χ_t^- and χ_t^+ for every $t \in \mathbb{R}$ are the characteristic functions of $(-\infty, t)$ and $(t, +\infty)$, respectively. Then the maximal ideal space $M(\mathcal{D}_{\lambda, \tau}^{\pi})$ of $\mathcal{D}_{\lambda, \tau}^{\pi}$ coincides with the spectrum $\mathrm{sp}_{\mathcal{B}^{\pi}}[\widehat{X}_{\lambda, \tau}]^{\pi}$ of the element $[\widehat{X}_{\lambda, \tau}]^{\pi}$ in the C^* -algebra \mathcal{B}^{π} (see, e.g., Section 1.19 in [13]). Since p = 2, w = 1 and hence $v(\xi) = 1/2$ for all $\xi \in M(SO^{\diamond})$, it follows (see, e.g., Corollary 2 in [26] and Section 7.4 in [9]) that

(3.3)
$$\operatorname{sp}_{\mathcal{B}^{\pi}}[\widehat{X}_{\lambda,\tau}]^{\pi} = \operatorname{sp}_{\operatorname{ess}}\widehat{X}_{\lambda,\tau} = \widetilde{\mathcal{L}}_{2,1,1/2} = [0,1],$$

where $\widetilde{\mathcal{L}}_{v,w,\nu(\xi)} := \{ (1 + \coth[\pi x + \pi i/\nu(\xi)])/2 : x \in \overline{\mathbb{R}} \}.$

Fix $(\lambda, \tau) \in \widehat{\Omega}_0$ and consider the commutative Banach algebra $\mathcal{Y}^{\pi}_{\lambda, \tau}$ generated by the cosets $[aI]^{\pi}$ $(a \in SO^{\diamond})$, $[W^0(b)]^{\pi}$ $(b \in SO^{\diamond})$ and $[\widehat{X}_{\lambda, \tau}]^{\pi}$, where $\widehat{X}_{\lambda, \tau}$ is given by (3.2). For every $(\xi, \eta, \mu) \in M_{\lambda}(SO^{\diamond}) \times M_{\tau}(SO^{\diamond}) \times [0, 1]$, let $\mathcal{I}^{\pi}_{\xi, \eta, \mu}$ denote the closed two-sided ideal of the commutative Banach algebra $\mathcal{Y}^{\pi}_{\lambda, \tau}$ generated by the maximal ideals

$$\begin{split} &\mathcal{I}^{\pi}_{1,\xi} := \{ [aI]^{\pi} : a \in SO^{\diamond}, a(\xi) = 0 \}, \\ &\mathcal{I}^{\pi}_{2,\eta} := \{ [W^{0}(b)]^{\pi} : b \in SO^{\diamond}, b(\eta) = 0 \}, \\ &\mathcal{I}^{\pi}_{3,u} := \{ f([\widehat{X}_{\lambda,\tau}]^{\pi}) : f \in C[0,1], f(\mu) = 0 \}, \end{split}$$

respectively, of the commutative Banach algebras

$$\{[aI]^{\pi}: a \in SO^{\diamond}\}, \{[W^{0}(b)]^{\pi}: b \in SO^{\diamond}\}, \mathcal{D}_{\lambda,\tau}^{\pi}.$$

Following Subsection 3.2 in [22] and taking into account (3.3), we define

(3.4)
$$\mathfrak{M}_{\xi,\eta} := \{ \mu \in [0,1] : I^{\pi} \notin \mathcal{I}^{\pi}_{\xi,\eta,\mu} \}$$

for every $(\xi, \eta) \in \Omega_0$, where

$$\Omega_0 = \Big(\bigcup_{t \in \mathbb{R}} M_t(SO^{\diamond}) \times M_{\infty}(SO^{\diamond})\Big) \cup \Big(M_{\infty}(SO^{\diamond}) \times \bigcup_{t \in \mathbb{R}} M_t(SO^{\diamond})\Big).$$

Then it follows from (3.3) and Theorems 3.2 and 3.5 in [22] that

(3.5)
$$\{0,1\} \subset \mathfrak{M}_{\xi,\eta} \subset [0,1] \text{ for all } (\xi,\eta) \in \Omega_0.$$

Consider the set

$$(3.6) \qquad \widetilde{\Omega} = \Big(\bigcup_{(\xi,\eta)\in\Omega_0} \{(\xi,\eta)\} \times \mathfrak{M}_{\xi,\eta}\Big) \cup (M_{\infty}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond}) \times \{0,1\}).$$

According to Section 4.4 in [22], for each $(\xi, \eta, \mu) \in \widetilde{\Omega}$ we define the mapping

$$\Psi_{\xi,\eta,\mu}: \{aI: a \in PSO^{\diamond}\} \cup \{W^0(b): b \in PSO^{\diamond}\} \rightarrow \mathbb{C}^{2\times 2}$$

given by

(3.7)
$$\Psi_{\xi,\eta,\mu}(aI) = \begin{bmatrix} a(\xi^{+}) & 0 \\ 0 & a(\xi^{-}) \end{bmatrix}, \\
\Psi_{\xi,\eta,\mu}(W^{0}(b)) = \begin{bmatrix} b(\eta^{+})\mu + b(\eta^{-})(1-\mu) & [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) \\ [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) & b(\eta^{+})(1-\mu) + b(\eta^{-})\mu \end{bmatrix},$$

where $\varrho(\mu)$ is any fixed value of $\sqrt{\mu(1-\mu)}$, and $c(\xi^+)=c(\xi,1)$, $c(\xi^-)=c(\xi,0)$ for $c\in PSO^\diamond$ and $(\xi,1)$, $(\xi,0)\in M(PSO^\diamond)$ in view of (2.2).

For the C^* -algebra \mathfrak{A} , Theorems 4.6 and 4.7 in [22] imply the following.

THEOREM 3.2. The mappings $\Psi_{\xi,\eta,\mu}((\xi,\eta,\mu)\in\widetilde{\Omega})$ given on the generators of the C*-algebra $\mathfrak A$ by formulas (3.7) extend to C*-algebra homomorphisms $\Psi_{\xi,\eta,\mu}:\mathfrak A\to\mathbb C^{2\times 2}$. An operator $A\in\mathfrak A$ is Fredholm on the space $L^2(\mathbb R)$ if and only if

(3.8)
$$\det \Psi_{\xi,\eta,\mu}(A) \neq 0 \quad \text{for all } (\xi,\eta,\mu) \in \widetilde{\Omega}.$$

To any operator $A \in \mathfrak{A}$ we assign the bounded matrix function

$$\mathcal{A}: \widetilde{\Omega} \to \mathbb{C}^{2 \times 2}, \quad (\xi, \eta, \mu) \mapsto \mathcal{A}(\xi, \eta, \mu) := \Psi_{\xi, \eta, \mu}(A),$$

which we call the *Fredholm symbol* of the operator A. Let $B(\widetilde{\Omega}, \mathbb{C}^{2\times 2})$ denote the C^* -algebra of all bounded $\mathbb{C}^{2\times 2}$ -valued functions on $\widetilde{\Omega}$.

THEOREM 3.3. The Fredholm symbol mapping

$$\Psi: \mathfrak{A} \to B(\widetilde{\Omega}, \mathbb{C}^{2\times 2}), A \mapsto \mathcal{A}(\cdot, \cdot, \cdot),$$

is a C^* -algebra homomorphism whose kernel $\operatorname{Ker} \Psi$ coincides with the ideal $\mathcal K$ of all compact operators on the space $L^2(\mathbb R)$ and the image $\Psi(\mathfrak A)$ is a C^* -subalgebra of $B(\widetilde{\Omega},\mathbb C^{2\times 2})$.

Proof. For every $A \in \mathfrak{A}$, from Theorem 3.2 it follows that,

(3.9)
$$\|A^{\pi}\|^{2} = r((AA^{*})^{\pi}) = \max_{(\xi,\eta,\mu)\in\widetilde{\Omega}} r(\mathcal{A}(\xi,\eta,\mu)\mathcal{A}^{*}(\xi,\eta,\mu))$$
$$= \|\Psi(A)I\|_{\mathcal{B}(L^{2}(\widetilde{\Omega},\mathbb{C}^{2}))'}^{2}$$

where r(Y) is the spectral radius of Y. Equalities (3.9) imply that $\operatorname{Ker} \Psi = \mathcal{K}$. Thus, by Corollary 1.8.3 in [15], the quotient map $A^{\pi} \mapsto \mathcal{A}(\cdot,\cdot,\cdot)$ is a C^* -algebra isomorphism of the C^* -algebra \mathfrak{A}^{π} onto the C^* -algebra $\Psi(\mathfrak{A}) \subset B(\widetilde{\Omega}, \mathbb{C}^{2\times 2})$.

COROLLARY 3.4. The mapping

$$\Psi_0: \mathfrak{A}^{\pi} \to \mathcal{B}\Big(\bigoplus_{(\xi,\eta,\mu) \in \widetilde{\Omega}} \mathbb{C}^2\Big), \quad A^{\pi} \mapsto \bigoplus_{(\xi,\eta,\mu) \in \widetilde{\Omega}} \mathcal{A}(\xi,\eta,\mu)I$$

is a faithful representation.

4. THE LOCAL-TRAJECTORY METHOD AND A RELATED FAITHFUL REPRESENTATION

To study the nonlocal C^* -algebra \mathfrak{B} of the form (1.5), we apply the local-trajectory method. Let us recall its statements (see [18], [20]).

Let Q be a unital C^* -algebra, $\mathfrak A$ a C^* -subalgebra of Q with unit I of Q, and let $\mathcal Z$ be a central C^* -subalgebra of $\mathfrak A$ with the same unit I. For a discrete group G with unit e, let $U:g\mapsto U_g$ be a unitary morphism of G in Q, that is, a homomorphism of the group G onto a group $U_G=\{U_g:g\in G\}$ of unitary elements of Q, where $U_{g_1g_2}=U_{g_1}U_{g_2}$ and $U_e=I$. We denote by

$$\mathfrak{B} := \operatorname{alg}(\mathfrak{A}, U_G)$$

the minimal C^* -subalgebra of Q containing the C^* -algebra $\mathfrak A$ and the group $U_G = \{U_g : g \in G\}$. Assume that

(A1) for every $g \in G$ the mappings $\alpha_g : a \mapsto U_g \, a \, U_g^*$ are *-automorphisms of the C^* -algebras $\mathfrak A$ and $\mathcal Z$.

According to (A1), \mathfrak{B} is the closure of the set \mathfrak{B}^0 consisting of all elements of the form $b = \sum a_g U_g$ where $a_g \in \mathfrak{A}$ and g runs through finite subsets of G.

Since the unital C^* -algebra $\mathcal Z$ is commutative, the Gelfand–Naimark theorem (see, e.g., Section 16 in [25]) implies that $\mathcal Z \cong C(M(\mathcal Z))$ where $C(M(\mathcal Z))$ is the C^* -algebra of all continuous complex-valued functions on the maximal ideal space $M(\mathcal Z)$ of $\mathcal Z$. Further, if (A1) is fulfilled, then each *-automorphism $\alpha_{\mathcal S}: \mathcal Z \to \mathcal Z$ induces a homeomorphism $\beta_{\mathcal S}: M(\mathcal Z) \to M(\mathcal Z)$ given by the rule

$$(4.2) z[\beta_{\sigma}(m)] = [\alpha_{\sigma}(z)](m), z \in \mathcal{Z}, m \in M(\mathcal{Z}), g \in G,$$

where $z(\cdot) \in C(M(\mathcal{Z}))$ is the Gelfand transform of the operator $z \in \mathcal{Z}$. The set $G(m) := \{\beta_g(m) : g \in G\}$ is called the *G-orbit* of a point $m \in M(\mathcal{Z})$.

In what follows we also assume that

(A2) *G* is an amenable discrete group.

By [17], a discrete group G is called *amenable* if the C^* -algebra $l^{\infty}(G)$ of all bounded complex-valued functions on G with sup-norm has an invariant mean, that is, a positive linear functional ρ of norm 1 satisfying the condition

$$\rho(f) = \rho(sf) = \rho(fs)$$
 for all $s \in G$ and all $f \in l^{\infty}(G)$,

where $(sf)(g) = f(s^{-1}g)$, $(f_s)(g) = f(gs)$, $g \in G$. Finite groups, commutative groups, subexponential groups and solvable groups are examples of amenable groups (see, e.g., [1], [17], [20]).

Let J_m be the closed two-sided ideal of \mathfrak{A} generated by the maximal ideal $m \in M(\mathcal{Z})$ of the central C^* -algebra $\mathcal{Z} \subset \mathfrak{A}$. Then the Allan–Douglas local principle (see, e.g., Theorem 1.35 in [13]) gives the following criterion.

THEOREM 4.1. An element $a \in \mathfrak{A}$ is invertible in \mathfrak{A} if and only if for every $m \in M(\mathcal{Z})$ the coset $a + J_m$ is invertible in the quotient algebra \mathfrak{A}/J_m .

Let $\mathcal{P}_{\mathfrak{A}}$ be the set of all pure states (see, e.g., [14], [24]) of the C^* -algebra \mathfrak{A} equipped with induced weak* topology. By Lemma 4.1 in [12], if $\mu \in \mathcal{P}_{\mathfrak{A}}$, then $\ker \mu \supset J_m$ where $m := \mathcal{Z} \cap \ker \mu \in M(\mathcal{Z})$, and consequently $\mathcal{P}_{\mathfrak{A}} = \bigcup_{m \in M(\mathcal{Z})} \{ \nu \in \mathcal{P}_{\mathfrak{A}} \}$

 $\mathcal{P}_{\mathfrak{A}}$: Ker $\nu \supset J_m$ }. Furthermore, let us assume that

(A3) there is a set $M_0 \subset M(\mathcal{Z})$ such that for every finite set $G_0 \subset G$ and for every nonempty open set $W \subset \mathcal{P}_{\mathfrak{A}}$ there exists a state $v \in W$ such that $\beta_g(m_v) \neq m_v$ for all $g \in G_0 \setminus \{e\}$, where the point $m_v = \mathcal{Z} \cap \operatorname{Ker} v$ belongs to the G-orbit $G(M_0) := \{\beta_g(m) : g \in G, m \in M_0\}$ of the set M_0 .

If the C^* -algebra $\mathfrak A$ is commutative itself, then the set $\mathcal P_{\mathfrak A}$ of all pure states of $\mathfrak A$ coincides with the set of all characters of $\mathfrak A$ (see, e.g., Theorem 5.1.6 in [24]). Therefore, choosing $\mathcal Z=\mathfrak A$ and identifying the set of characters of $\mathfrak A$ with the maximal ideal space $M(\mathfrak A)$ of $\mathfrak A$, we can rewrite (A3) in the form:

(A3₀) there is a set $M_0 \subset M(\mathfrak{A})$ such that for every finite set $G_0 \subset G$ and every nonempty open set $W \subset M(\mathfrak{A})$ there exists a point $m_0 \in W \cap G(M_0)$ such that $\beta_g(m_0) \neq m_0$ for all $g \in G_0 \setminus \{e\}$.

For every $m \in M(\mathcal{Z})$, let $\widetilde{\pi}_m$ be an isometric (equivalently, faithful) representation

$$\widetilde{\pi}_m: \mathfrak{A}/J_m \to \mathcal{B}(\mathcal{H}_m)$$

of the quotient algebra \mathfrak{A}/J_m in a Hilbert space \mathcal{H}_m . As is well known (see, e.g., Theorem 3.4.1 in [24] or Theorem 2.6.1 in [15]), every C^* -algebra admits a faithful representation in a Hilbert space H. Moreover, in view of (A1), the spaces \mathcal{H}_m can be chosen equal for all m in the same G-orbit. Further, consider the canonical *-homomorphism $\varrho_m : \mathfrak{A} \to \mathfrak{A}/J_m$ and the representation

Let Ω be the set of G-orbits of all points $m \in M_0$ with $M_0 \subset M(\mathcal{Z})$ taken from (A3), let $\mathcal{H}_{\omega} = \mathcal{H}_m$ where $m = m_{\omega}$ is an arbitrary fixed point of an orbit $\omega \in \Omega$, and let $l^2(G, \mathcal{H}_{\omega})$ be the Hilbert space of all functions $f : G \mapsto \mathcal{H}_{\omega}$ such that $f(g) \neq 0$ for at most countable set of points $g \in G$ and $\sum \|f(g)\|_{\mathcal{H}_{\omega}}^2 < \infty$. For every $\omega \in \Omega$ we consider the representation $\pi_{\omega} : \mathfrak{B} \to \mathcal{B}(l^2(G, \mathcal{H}_{\omega}))$ defined for all $g \in \mathfrak{A}$, all $g, g \in G$ and all $g \in \mathcal{A}$ by

$$[\pi_{\omega}(a)f](g) = \pi'_{m_{\omega}}(\alpha_{g}(a))f(g), \quad [\pi_{\omega}(U_{s})f](g) = f(gs).$$

A slight modification of the proof of Theorem 4.12 in [20], where the superfluous condition of the closedness of the set $M_0 \subset M(\mathcal{Z})$ was imposed, gives the following result.

THEOREM 4.2. If assumptions (A1)–(A3) are satisfied, then an element $b \in \mathfrak{B}$ is invertible in \mathfrak{B} if and only if for every orbit $\omega \in \Omega$ the operator $\pi_{\omega}(b)$ is invertible on the space $l^2(G, \mathcal{H}_{\omega})$ and, in the case of infinite set Ω ,

$$\sup\{\|(\pi_{\omega}(b))^{-1}\|: \omega \in \Omega\} < \infty.$$

We see that Theorem 4.2 is a nonlocal version of Theorem 4.1.

COROLLARY 4.3. Under the conditions of Theorem 4.2, the mapping

$$\pi: \mathfrak{B} \to \mathcal{B}\Big(\bigoplus_{\omega \in \Omega} l^2(G, \mathcal{H}_{\omega})\Big), \quad b \mapsto \bigoplus_{\omega \in \Omega} \pi_{\omega}(b)$$

is a faithful representation.

5. INVERTIBILITY OF FUNCTIONAL OPERATORS

Applying the local-trajectory method, we first study the invertibility of functional operators being the elements of the C^* -algebra

(5.1)
$$\mathcal{A} := \operatorname{alg}(PSO^{\diamond}, U_G) \subset \mathcal{B}(L^2(\mathbb{R}))$$

generated by the multiplication operators by piecewise slowly oscillating functions on \mathbb{R} and by the shift operators U_{g_h} ($g_h \in G$) given by (1.4), where G is the commutative group G of all translations (1.3).

Let $\widetilde{\mathfrak{A}} := \{aI : a \in PSO^{\diamond}\}, \widetilde{\mathcal{Z}} = \widetilde{\mathfrak{A}} \text{ and } \widetilde{\mathfrak{B}} := \text{alg } (\widetilde{\mathfrak{A}}, U_G) = \mathcal{A}. \text{ As } \widetilde{\mathfrak{A}} \cong PSO^{\diamond}, \text{ we get } M(\widetilde{\mathfrak{A}}) = M(PSO^{\diamond}), \text{ where } M(PSO^{\diamond}) = M(SO^{\diamond}) \times \{0,1\} \text{ by Lemma 2.2.}$ Let us check for $\widetilde{\mathfrak{B}}$ the fulfillment of all assumptions made in Section 4.

Obviously, $U_g a U_g^{-1} = (a \circ g)I$ for every function $a \in PSO^{\diamond}$ and every translation $g \in G$. Since $a \circ g \in SO^{\diamond}$ for all $a \in SO^{\diamond}$ and all $g \in G$ in view of Lemma 4.2 in [4] and Lemma 2.1 in [23], we conclude that $a \circ g \in PSO^{\diamond}$ for every $a \in PSO^{\diamond}$ and every $g \in G$. Consequently, for every $g \in G$, the mapping

(5.2)
$$\widetilde{\alpha}_g: \mathcal{A} \to \mathcal{A}, \quad aI \mapsto U_g a U_g^{-1} = (a \circ g)I$$

is a *-automorphism of the commutative C^* -algebra $\widetilde{\mathfrak{A}}\subset \mathcal{B}(L^2(\mathbb{R}))$. Since G is an amenable group, we see that conditions (A1)–(A2) of Section 4 for the C^* -algebra $\mathcal A$ are satisfied.

For every shift $g \in G$, we will use the same letter g for the homeomorphism $\xi \mapsto g(\xi)$ on $M(SO^{\diamond})$ given by

$$(5.3) a(g(\xi)) = (a \circ g)(\xi) \text{for all } a \in SO^{\diamond} \text{ and } \xi \in M(SO^{\diamond}).$$

LEMMA 5.1. For every $g \in G \setminus \{e\}$, the set of all fixed points of the homeomorphism $g: M(SO^{\diamond}) \to M(SO^{\diamond})$ coincides with the set $M_{\infty}(SO^{\diamond})$.

Proof. If $\xi \in M_t(SO^{\diamond})$, then $g(\xi) \in M_{g(t)}(SO^{\diamond})$, and therefore only points $\xi \in M_{\infty}(SO^{\diamond})$ can be fixed points for $g \in G \setminus \{e\}$. To prove that $g(\xi) = \xi$ for all $\xi \in M_{\infty}(SO^{\diamond})$ and all $g \in G$, it is sufficient for these ξ and g to show that

(5.4)
$$a(g(\xi)) = a(\xi) \text{ for all } a \in SO^{\diamond}.$$

Fix $a \in SO^{\diamond}$, $\xi \in M_{\infty}(SO^{\diamond})$, $h \in \mathbb{R}$, and take $g = g_h \in G \setminus \{e\}$. By Proposition 2.1 and (5.3), there is a sequence $\{x_n\} \subset \mathbb{R}_+$ such that $x_n \to +\infty$ and

(5.5)
$$a(\xi) = \lim_{n \to \infty} a(x_n), \quad a(g_h(\xi)) = (a \circ g_h)(\xi) = \lim_{n \to \infty} a(x_n - h).$$

Taking $r_n = x_n$, we conclude that $|h| < r_n/2$ for all sufficiently large $n \in \mathbb{N}$. Then

(5.6)
$$\frac{r_n}{2} \leqslant \min\{x_n, x_n - h\} \leqslant \max\{x_n, x_n - h\} \leqslant \frac{3r_n}{2}.$$

Since $a \in SO^{\diamond}$, it follows from the definition of SO^{\diamond} that

(5.7)
$$\lim_{n \to \infty} \operatorname{osc} \left(a, \left[-3r_n/2, -r_n/2 \right] \cup \left[r_n/2, 3r_n/2 \right] \right) = 0.$$

Because x_n , $g_h(x_n) \in [r_n/2, 3r_n/2]$ in view of (5.6), we infer from (5.7) that

$$\lim_{n\to\infty} a(x_n) = \lim_{n\to\infty} a(g(x_n)),$$

and hence (5.4) follows from (5.5), which completes the proof.

Each *-automorphism $\tilde{\alpha}_g$ given by (5.2) induces the homeomorphism

$$(5.8) \widetilde{\beta}_{g}: M(PSO^{\diamond}) \to M(PSO^{\diamond}), \quad (\xi, \mu) \mapsto (g(\xi), \mu),$$

where $g(\xi)$ is given by (5.3). Hence, taking into account the topologically free action of the group G on \mathbb{R} , Lemma 5.1 and the Gelfand topology (2.3) on $M(PSO^{\diamond})$, we easily conclude that condition (A3₀) for the C^* -algebra \mathcal{A} also holds, with $M_0 := M(PSO^{\diamond}) \setminus M_{\infty}(PSO^{\diamond})$.

Let PSO^0 be the non-closed subalgebra of PSO^{\diamond} consisting of all functions in PSO^{\diamond} with finite sets of discontinuities. Then the C^* -algebra \mathcal{A} is the closure of the algebra $\mathcal{A}^0 \subset \mathcal{A}$ consisting of the functional operators $A = \sum_{g \in F} a_g U_g$, where

 $a_{g} \in PSO^{0}$ and F runs through the finite subsets of G.

With each maximal ideal $(\xi, \mu) \in M(PSO^{\diamond})$ we associate the representation

(5.9)
$$\Pi_{\tilde{c},u}: \mathcal{A} \to \mathcal{B}(l^2(G)), \quad A \mapsto A_{\tilde{c},u}$$

given for the operators $A = \sum_{g \in F} a_g U_g \in \mathcal{A}^0$ with coefficients $a_g \in PSO^0$ by

(5.10)
$$(A_{\xi,\mu}f)(h) = \sum_{g \in F} [(a_g \circ h)(\xi,\mu)] f(hg) \quad (h \in G, f \in l^2(G)).$$

Then the operators $A_{\xi,\mu} \in \mathcal{B}(l^2(G))$ for all $(\xi,\mu) \in M_{\infty}(SO^{\diamond}) \times \{0,1\}$ are given in view of Lemma 5.1 by

(5.11)
$$(A_{\xi,\mu}f)(h) = \sum_{g \in F} a_g(\xi,\mu) f(hg) \quad (h \in G, f \in l^2(G)).$$

With every operator $A_{\xi,\mu}$ given by (5.11) we associate the functional operator

$$(5.12) \widetilde{A}_{\xi,\mu} := \sum_{g \in F} a_g(\xi,\mu) U_g \in \mathcal{B}(L^2(\mathbb{R})) ((\xi,\mu) \in M_\infty(SO^\diamond) \times \{0,1\})$$

with constant coefficients $a_g(\xi,\mu)$. Since the operators $A_{\xi,\mu} \in \mathcal{B}(l^2(G))$ and $\widetilde{A}_{\xi,\mu} \in \mathcal{B}(L^2(\mathbb{R}))$ for all $A \in \mathcal{A}^0$ and every $(\xi,\mu) \in M_\infty(SO^\diamond) \times \{0,1\}$ belong to commutative unital C^* -algebras and have the same Gelfand transform $\sum_{g_h \in F} a_{g_h}(\xi,\mu) \mathrm{e}^{\mathrm{i}hx} \ (x \in \mathbb{R})$ due to (5.11) and (5.12), we conclude that these operators are invertible only simultaneously, which implies that

$$\|\widetilde{A}_{\xi,\mu}\|_{\mathcal{B}(L^2(\mathbb{R}))} = \|A_{\xi,\mu}\|_{\mathcal{B}(l^2(G))} \le \|A\|_{\mathcal{B}(L^2(\mathbb{R}))}$$

for all $(\xi, \mu) \in M_{\infty}(SO^{\diamond}) \times \{0, 1\}$. Hence the map $A \mapsto \widetilde{A}_{\xi, \mu}$ for these (ξ, μ) extends by continuity to a C^* -algebra homomorphism of A into A.

Fix $\tau \in \mathbb{R}$ and consider the set

$$\mathfrak{R}_{\tau} := M_{\tau}(SO^{\diamond}) \times \{0,1\} \subset M(PSO^{\diamond}).$$

The set \mathfrak{R}_{τ} contains exactly one point in each G-orbit defined by the action of the group G on $M(PSO^{\diamond}) \setminus M_{\infty}(PSO^{\diamond})$ by means of the homeomorphisms $\widetilde{\beta}_{g}$ ($g \in G$) given by (5.8).

THEOREM 5.2. A functional operator $A \in \mathcal{A}$ is invertible on the space $L^2(\mathbb{R})$ if and only if for any fixed $\tau \in \mathbb{R}$ and all $(\xi, \mu) \in \mathfrak{R}_{\tau}$ the operators $A_{\xi,\mu}$ are invertible on the space $l^2(G)$ and

(5.14)
$$\sup_{(\xi,\mu)\in\mathfrak{R}_{\tau}} \|(A_{\xi,\mu})^{-1}\|_{\mathcal{B}(l^{2}(G))} < \infty.$$

Proof. Take the maximal ideal $\widetilde{J}_{\xi,\mu} := \{aI : a \in PSO^{\diamond}, a(\xi,\mu) = 0\}$ of $\widetilde{\mathfrak{A}}$ associated with each character $(\xi,\mu) \in M(PSO^{\diamond})$. The mapping

$$\widetilde{\Pi}_{\xi,\mu}: \widetilde{\mathfrak{A}}/\widetilde{J}_{\xi,\mu} \to \mathbb{C}, \quad aI + \widetilde{J}_{\xi,\mu} \mapsto a(\xi,\mu),$$

is an isometric representation of the C^* -algebra $\widetilde{\mathfrak{A}}/\widetilde{J}_{\xi,\mu}$ in \mathbb{C} . Following (4.3)–(4.5) we construct representations of the C^* -algebra \mathcal{A} in the Hilbert space $l^2(G)$ by formulas (5.9) and (5.10). Since \mathcal{A} satisfies conditions (A1), (A2), (A3₀) of the local-trajectory method, Theorem 4.2 immediately implies the statement of the theorem.

Theorem 5.2 and Corollary 4.3 imply the following.

COROLLARY 5.3. The mapping

$$\mathcal{A} \to \mathcal{B}\Big(\bigoplus_{(\xi,u)\in\mathfrak{R}_{\tau}} l^2(G)\Big), \quad A \mapsto \bigoplus_{(\xi,u)\in\mathfrak{R}_{\tau}} A_{\xi,\mu}$$

is a faithful representation.

REMARK 5.4. Replacing $M_0 = M(PSO^{\diamond}) \setminus M_{\infty}(PSO^{\diamond})$ by $M_0 = M(PSO^{\diamond})$, we immediately infer from Theorem 4.2 and Corollary 4.3 that Theorem 5.2 and Corollary 5.3 remain true with \mathfrak{R}_{τ} replaced by $M(PSO^{\diamond})$.

Since for every $(\xi, \mu) \in M_{\infty}(SO^{\diamond}) \times \{0, 1\}$ the map $\mathcal{A} \to \mathcal{A}, A \mapsto \widetilde{A}_{\xi, \mu}$ is a C^* -algebra homomorphism, we immediately obtain the following.

COROLLARY 5.5. If a functional operator $A \in \mathcal{A}$ is invertible on the space $L^2(\mathbb{R})$, then for every $(\xi, \mu) \in M_{\infty}(SO^{\diamond}) \times \{0, 1\}$ the functional operators $\widetilde{A}_{\xi, \mu} \in \mathcal{A}$ given by (5.12) for $A \in \mathcal{A}^0$ are invertible on the space $L^2(\mathbb{R})$ as well.

6. SPECTRAL MEASURES AND THEIR APPLICATION

If conditions (A1)–(A2) of the local-trajectory method (see Section 4) are fulfilled, but condition (A3) does not hold, we need to use spectral measures to decompose the initial C^* -algebra into an orthogonal sum of C^* -algebras for which either condition (A3) holds or these algebras can be studied by other methods (see [5], [18] and [20]).

Let M be a compact Hausdorff space and \mathcal{H} a Hilbert space. By p. 249 in [25], a *spectral measure* $P(\cdot)$ is a map from the σ -algebra $\mathfrak{R}(M)$ of all Borel subsets of M into the set of orthogonal projections in $\mathcal{B}(\mathcal{H})$ such that for every $\xi \in \mathcal{H}$ the function $\Delta \mapsto (P(\Delta)\xi, \xi)$ is the restriction to Borel sets of a measure on M defined by an integral on C(M). Hence, for all $\Delta_1, \Delta_2 \in \mathfrak{R}(M)$:

- (i) $P(\emptyset) = 0$, P(M) = I (the identity operator in $\mathcal{B}(\mathcal{H})$);
- (ii) $P(\Delta_1 \cap \Delta_2) = P(\Delta_1)P(\Delta_2)$;
- (iii) $P(\Delta_1 \cup \Delta_2) = P(\Delta_1) + P(\Delta_2)$ if Δ_1 and Δ_2 are disjoint sets.

Consider now the C^* -algebra $\mathfrak{B}=\operatorname{alg}(\mathfrak{A},U_G)$ defined by (4.1) under the only condition (A1) of the local-trajectory method for the C^* -algebras \mathfrak{A} and $\mathcal{Z}\subset \mathfrak{A}$. Let $\pi:\mathfrak{B}\to\mathcal{B}(\mathcal{H})$ be an isometric representation of the C^* -algebra \mathfrak{B} in a Hilbert space \mathcal{H} . According to Section 17 in [25], for the representation $\pi|_{\mathcal{Z}}:\mathcal{Z}\to\mathcal{B}(\mathcal{H})$ of a unital commutative C^* -algebra \mathcal{Z} , there is a unique spectral measure $P_\pi(\cdot)$ which commutes with all operators in the C^* -algebra $\pi(\mathcal{Z})$ and in its commutant $\pi(\mathcal{Z})'$, and such that

$$\pi(z) = \int\limits_{M(\mathcal{Z})} z(m) \, \mathrm{d}P_{\pi}(m) \quad ext{for all } z \in \mathcal{Z},$$

where $z(\cdot) \in C(M(\mathcal{Z}))$ is the Gelfand transform of an element $z \in \mathcal{Z}$. Let $\mathfrak{R}(M(\mathcal{Z}))$ denote the σ -algebra of all Borel subsets of $M(\mathcal{Z})$, and let

(6.1)
$$\mathfrak{R}_G(M(\mathcal{Z})) = \{ \Delta \in \mathfrak{R}(M(\mathcal{Z})) : \beta_g(\Delta) = \Delta \text{ for all } g \in G \},$$

where the homeomorphisms β_g are given by (4.2). Since az = za for all $a \in \mathfrak{A}$ and all $z \in \mathcal{Z}$, it follows that

(6.2)
$$\pi(a)P_{\pi}(\Delta) = P_{\pi}(\Delta)\pi(a)$$
 for all $\Delta \in \mathfrak{R}(M(\mathcal{Z}))$ and all $a \in \mathfrak{A}$.

Moreover, since (A1) holds, we deduce from Lemma 4.6 in [20] that

(6.3)
$$\pi(U_g)P_{\pi}(\Delta) = P_{\pi}(\Delta)\pi(U_g)$$
 for all $\Delta \in \mathfrak{R}_G(M(\mathcal{Z}))$ and all $g \in G$.

Given $\Delta \in \mathfrak{R}_G(M(\mathcal{Z}))$ such that $P_{\pi}(\Delta) \neq 0$, we define the Hilbert space

$$\mathcal{H}_{\Delta} := P_{\pi}(\Delta)\mathcal{H} = \{P_{\pi}(\Delta)\xi : \xi \in \mathcal{H}\}$$

and introduce the following three C^* -subalgebras of $\mathcal{B}(\mathcal{H}_{\Lambda})$:

$$\mathfrak{B}_{\Delta} := \{ P_{\pi}(\Delta)\pi(b) : b \in \mathfrak{B} \}, \quad \mathfrak{A}_{\Delta} := \{ P_{\pi}(\Delta)\pi(a) : a \in \mathfrak{A} \},$$
 and
$$\mathcal{Z}_{\Delta} := \{ P_{\pi}(\Delta)\pi(z) : z \in \mathcal{Z} \}.$$

Since \mathcal{Z} is a central C^* -subalgebra of \mathfrak{A} , we immediately conclude from (6.2) that \mathcal{Z}_{Δ} is a central C^* -subalgebra of \mathfrak{A}_{Δ} , where $\mathfrak{A}_{\Delta} \subset \mathfrak{B}_{\Delta}$.

Given $\Delta \subset M(\mathcal{Z})$, let $\overline{\Delta}$ denote the closure of Δ in $M(\mathcal{Z})$. The next result follows from Lemmas 5.1 and 5.2 in [20].

LEMMA 6.1. If
$$\Delta$$
 is an open set of $M(\mathcal{Z})$, then $P_{\pi}(\Delta) \neq 0$ and $\mathcal{Z}_{\Delta} \cong C(\overline{\Delta})$.

To study C^* -algebras \mathfrak{A}_{Δ} , we need the following (see Lemma 3.5 in [5]).

LEMMA 6.2. Let \mathcal{A} be a unital C^* -algebra and \mathcal{Z} a central C^* -subalgebra of \mathcal{A} with the same unit. Let $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a representation of \mathcal{A} in a Hilbert space \mathcal{H} . Given an open set Δ of the maximal ideal space $M(\mathcal{Z})$ of \mathcal{Z} , let $\mathcal{Z}(\Delta)$ denote the subset of \mathcal{Z} composed by the elements $z \in \mathcal{Z}$ whose Gelfand transforms $z(\cdot)$ are real functions in $C(M(\mathcal{Z}))$ with support in $\overline{\Delta}$ and values in the segment [0,1]. Then

(6.4)
$$||P_{\pi}(\Delta)\pi(a)||_{\mathcal{B}(\mathcal{H})} = \sup_{z \in \mathcal{Z}(\Delta)} ||\pi(az)||_{\mathcal{B}(\mathcal{H})} for all \ a \in \mathcal{A}.$$

Combining the properties of the spectral measure $P_{\pi}(\cdot)$ with (6.2) and (6.3) gives the next decomposition result (see Proposition 3.3 in [5]).

PROPOSITION 6.3. Let $\pi: \mathfrak{B} \to \mathcal{B}(\mathcal{H})$ be an isometric representation of the C^* -algebra $\mathfrak{B} = \operatorname{alg}(\mathfrak{A}, U_G)$ in a Hilbert space \mathcal{H} and let $\{\Delta_i\}$ be an at most countable family of disjoint Borel sets in $\mathfrak{R}_G(M(\mathcal{Z}))$ such that $P_\pi(\Delta_i) \neq 0$ for all i and $P_\pi(M(\mathcal{Z}) \setminus \bigcup_i \Delta_i) = 0$. If condition (A1) is fulfilled, then the mapping

$$\Theta: \mathfrak{B} \to \bigoplus_{i} \mathfrak{B}_{\Delta_{i}}, \quad b \mapsto \bigoplus_{i} P_{\pi}(\Delta_{i})\pi(b)$$

is an isometric C^* -algebra homomorphism from the C^* -algebra $\mathfrak B$ into the C^* -algebra $\bigoplus_i \mathfrak B_{\Delta_i}$. Then an element $b \in \mathfrak B$ is invertible if and only if for each i the operator $P_{\pi}(\Delta_i)\pi(b)$ is invertible on the Hilbert space $\mathcal H_{\Delta_i}$ and

$$\sup_{i} \|(P_{\pi}(\Delta_{i})\pi(b))^{-1}\| < \infty \quad \text{in case } \{\Delta_{i}\} \text{ is countable }.$$

Thus, it is sufficient to study the C^* -algebras \mathfrak{B}_{Δ_i} separately, where it is convenient to choose open subsets of $\mathfrak{R}_G(M(\mathcal{Z}))$ in the capacity of Δ_i . If these algebras satisfy conditions (A1)–(A3), we can apply Theorem 4.2.

7. DECOMPOSITION OF THE C^* -ALGEBRA \mathfrak{B}^{π}

We now consider the C^* -algebra (1.5) written in the form

$$\mathfrak{B} = \operatorname{alg}(aI, W^0(b), U_g: a, b \in PSO^{\diamond}, g \in G) \subset \mathcal{B}(L^2(\mathbb{R})),$$

where *G* is the group of all translations $g_h : \mathbb{R} \to \mathbb{R}$, $x \mapsto x - h$ ($h \in \mathbb{R}$).

Let \mathfrak{A}^0 be the non-closed subalgebra of \mathfrak{A} generated by the operators aI and $W^0(b)$, where $a,b \in PSO^0$. Then \mathfrak{A}^0 consists of all operators of the form $\sum_{i=1}^n T_{i1}T_{i2}\cdots T_{ij_i}$ where $n,j_i \in \mathbb{N}$ and $T_{i,k} \in \{aI,W^0(b): a,b \in PSO^0\}$.

Let \mathfrak{B}^0 denote the dense non-closed subalgebra of the C^* -algebra \mathfrak{B} consisting of all operators of the form $\sum\limits_{i=1}^n T_{i1}T_{i2}\cdots T_{ij_i}$ where $n,j_i\in\mathbb{N}$ and $T_{i,k}\in\{aI,W^0(b),U_g:a,b\in PSO^0,g\in G\}$. Then, by analogy with $A\in\mathcal{A}^0$, where \mathcal{A} is given by (5.1), every operator $B\in\mathfrak{B}^0$ can be represented in the form

$$(7.1) B = \sum_{g \in F} D_g U_g$$

where $D_g \in \mathfrak{A}^0$ and F is a finite subset of G. Any operator $B \in \mathfrak{B}$ is the limit in $\mathcal{B}(L^2(\mathbb{R}))$ of a sequence of operators $B_n \in \mathfrak{B}^0$.

For all functions $a, b \in PSO^{\diamond}$ and each translation $g \in G$, we have

(7.2)
$$U_g a U_g^{-1} = (a \circ g)I, \quad U_g W^0(b) U_g^{-1} = W^0(b),$$

where $a \circ g \in SO^{\diamond}$ for $a \in SO^{\diamond}$ and $a \circ g \in PSO^{\diamond}$ for $a \in PSO^{\diamond}$ (see Section 5). Consequently, for every $g \in G$, the mapping

(7.3)
$$\alpha_g: A^{\pi} \mapsto U_g^{\pi} A^{\pi} (U_g^{\pi})^{-1}$$

is a *-automorphism of the C^* -algebras \mathfrak{A}^{π} and \mathcal{Z}^{π} . Thus, condition (A1) of the local-trajectory method for the C^* -algebra \mathfrak{B}^{π} is fulfilled.

From (7.2) and Theorem 3.1 it follows that

$$[\Gamma(U_g^\pi Z^\pi(U_g^\pi)^{-1})](\xi,\eta) = [\Gamma(Z^\pi)](g(\xi),\eta) \quad \text{for all } Z \in \mathcal{Z}, g \in G, (\xi,\eta) \in \Omega,$$

where Ω is given by (3.1) and $\Gamma: \mathcal{Z}^{\pi} \to C(\Omega)$ is the Gelfand transform described in Theorem 3.1. Hence, each diffeomorphism $g \in G$ induces on Ω a homeomorphism β_g acting by the rule

(7.4)
$$\beta_g: \Omega \to \Omega, \quad (\xi, \eta) \mapsto (g(\xi), \eta),$$

where $g(\xi)$ is given by (5.3). Lemma 5.1 immediately implies the following.

LEMMA 7.1. The set of all fixed points for each homeomorphism β_g $(g \in G \setminus \{e\})$ coincides with the set $M_{\infty}(SO^{\diamond}) \times M(SO^{\diamond})$.

Following Proposition 6.3, let us decompose the quotient C^* -algebra \mathfrak{B}^{π} with \mathfrak{B} given by (1.5) by making use of an appropriate spectral measure.

Fix an isometric representation

(7.5)
$$\varphi: \mathfrak{B}^{\pi} \to \mathcal{B}(\mathcal{H}_{\varphi}), \quad B^{\pi} \mapsto \varphi(B^{\pi})$$

of the C^* -algebra \mathfrak{B}^{π} in an abstract Hilbert space \mathcal{H}_{φ} and put

$$\Omega_{\mathbb{R},\infty}:=igcup_{t\in\mathbb{R}}M_t(SO^\diamond) imes M_\infty(SO^\diamond),\quad \Omega_{\infty,\mathbb{R}}:=M_\infty(SO^\diamond) imes igcup_{t\in\mathbb{R}}M_t(SO^\diamond),$$

(7.6)
$$\Omega_{\infty,\infty} := M_{\infty}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond}),$$

where the sets $\Omega_{\mathbb{R},\infty}$ and $\Omega_{\infty,\mathbb{R}}$ are open in Ω , while the set $\Omega_{\infty,\infty}$ is closed in Ω . Along with \mathcal{H}_{φ} we consider the concrete Hilbert space

(7.7)
$$\mathcal{H}_{\phi} := \left(\bigoplus_{(\xi,\eta) \in \Omega_{\mathbb{R},\infty}} l^{2}(\mathfrak{M}_{\xi,\eta},\mathbb{C}^{2}) \right) \oplus \left(\bigoplus_{(\xi,\eta) \in \Omega_{\infty,\mathbb{R}}} l^{2}(\mathfrak{M}_{\xi,\eta},\mathbb{C}^{2}) \right) \\ \oplus \left(\bigoplus_{(\xi,\eta) \in \Omega_{\infty,\infty}} l^{2}(\{0,1\},\mathbb{C}^{2}) \right),$$

where the sets $\mathfrak{M}_{\xi,\eta}$ are given by (3.4) and satisfy (3.5), and the Hilbert space $l^2(X,\mathbb{C}^2)$ for $X\in\{\Omega_{\mathbb{R},\infty},\Omega_{\infty,\mathbb{R}},\{0,1\}\}$ consists of all functions $f:X\to\mathbb{C}^2$ such that $f(x)\neq 0$ for at most countable set of points $x\in X$ and the norm $\|f\|=\Big(\sum_{x\in X}\|f(x)\|_{\mathbb{C}^2}^2\Big)^{1/2}<\infty$. Further, we introduce the C^* -subalgebra $\phi(\mathfrak{A}^\pi)$ of $\mathcal{B}(\mathcal{H}_{\phi})$ consisting of the operators

(7.8)
$$\phi(A^{\pi}) = \left(\bigoplus_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}} \Psi_{\xi,\eta,\cdot}(A)I\right) \oplus \left(\bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}} \Psi_{\xi,\eta,\cdot}(A)I\right) \\ \oplus \left(\bigoplus_{(\xi,\eta)\in\Omega_{\infty,\infty}} \Psi_{\xi,\eta,\cdot}(A)I\right) \quad \text{for } A \in \mathfrak{A},$$

where for functions $f_{\xi,\eta} \in l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2)$ given by $f_{\xi,\eta} : \mathfrak{M}_{\xi,\eta} \to \mathbb{C}^2$, $\mu \mapsto f_{\xi,\eta}(\mu)$ the operators $\Psi_{\xi,\eta,\cdot}(A)I \in \mathcal{B}(l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2))$ act by

$$(7.9) [\Psi_{\xi,\eta,\cdot}(A)f_{\xi,\eta}](\mu) = \Psi_{\xi,\eta,\mu}(A)f_{\xi,\eta}(\mu) \text{for } \mu \in \mathfrak{M}_{\xi,\eta},$$

and for functions $f_{\xi,\eta}\in l^2(\{0,1\},\mathbb{C}^2)$ given by $f_{\xi,\eta}:\{0,1\}\to\mathbb{C}^2,\mu\mapsto f_{\xi,\eta}(\mu)$ the operators $\Psi_{\xi,\eta,\cdot}(A)I\in\mathcal{B}(l^2(\{0,1\},\mathbb{C}^2))$ act by

$$[\Psi_{\xi,\eta,\iota}(A)f_{\xi,\eta}](\mu) = \Psi_{\xi,\eta,\mu}(A)f_{\xi,\eta}(\mu) \quad \text{for } \mu \in \{0,1\}.$$

By Corollary 3.4, the homomorphism

(7.10)
$$\phi: \mathfrak{A}^{\pi} \to \mathcal{B}(\mathcal{H}_{\phi}), \quad A^{\pi} \mapsto \phi(A^{\pi})$$

is an isometric representation of \mathfrak{A}^{π} in the Hilbert space \mathcal{H}_{ϕ} .

Let $\Re(\Omega)$ be the σ -algebra of all Borel subsets of Ω and let

(7.11)
$$P_{\varphi}: \mathfrak{R}(\Omega) \to \mathcal{B}(\mathcal{H}_{\varphi}), \quad P_{\phi}: \mathfrak{R}(\Omega) \to \mathcal{B}(\mathcal{H}_{\phi})$$

be the spectral measures associated with the representations (7.5) and (7.10) of the commutative unital C^* -algebra \mathcal{Z}^{π} in the Hilbert spaces \mathcal{H}_{φ} and \mathcal{H}_{φ} , respectively. By analogy with (6.1), let

$$\mathfrak{R}_{G}(\Omega) := \{ \Delta \in \mathfrak{R}(\Omega) : \beta_{g}(\Delta) = \Delta \text{ for all } g \in G \},$$

where the homeomorphisms $\beta_g:\Omega\to\Omega$ for $g\in G$ are defined by (7.4). Observe that

(7.13)
$$\Omega = \Omega_{\mathbb{R},\infty} \cup \Omega_{\infty,\mathbb{R}} \cup \Omega_{\infty,\infty}$$

where the distinct sets $\Omega_{\mathbb{R},\infty}$, $\Omega_{\infty,\mathbb{R}}$ and $\Omega_{\infty,\infty}$ given by (7.6) belong to $\mathfrak{R}_G(\Omega)$. Furthermore, for the representation (7.10) it is easily seen that

$$(7.14) \quad P_{\phi}(\Omega_{\mathbb{R},\infty}) = I \oplus O \oplus O, \quad P_{\phi}(\Omega_{\infty,\mathbb{R}}) = O \oplus I \oplus O, \quad P_{\phi}(\Omega_{\infty,\infty}) = O \oplus O \oplus I,$$

where *O* and *I* are, respectively, the zero and identity operators on the Hilbert spaces

$$\bigoplus_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}}l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2), \bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}}l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2), \bigoplus_{(\xi,\eta)\in\Omega_{\infty,\infty}}l^2(\{0,1\},\mathbb{C}^2).$$

Introduce C^* -subalgebras of $\varphi(\mathfrak{B}^\pi)$ associated to the decomposition (7.13). Let

$$\mathfrak{B}_{\mathbb{R},\infty} := \operatorname{alg} \left\{ P_{\varphi}(\Omega_{\mathbb{R},\infty}) \varphi(A^{\pi}), \ P_{\varphi}(\Omega_{\mathbb{R},\infty}) \varphi(U_{g}^{\pi}) : A \in \mathfrak{A}, g \in G \right\}$$

denote the C^* -subalgebra of the C^* -algebra $\mathcal{B}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi})$ generated by the operators $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})$ ($A\in\mathfrak{A}$) and $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(U_g^{\pi})$ ($g\in G$). Analogously we define the C^* -subalgebras

$$\mathfrak{B}_{\infty,\mathbb{R}} := \operatorname{alg} \{ P_{\varphi}(\Omega_{\infty,\mathbb{R}}) \varphi(A^{\pi}), P_{\varphi}(\Omega_{\infty,\mathbb{R}}) \varphi(U_{\varphi}^{\pi}) : A \in \mathfrak{A}, g \in G \},$$

$$(7.17) \mathfrak{B}_{\infty,\infty} := alg \{ P_{\varphi}(\Omega_{\infty,\infty}) \varphi(A^{\pi}), P_{\varphi}(\Omega_{\infty,\infty}) \varphi(U_{g}^{\pi}) : A \in \mathfrak{A}, g \in G \},$$

of
$$\mathcal{B}(P_{\varphi}(\Omega_{\infty,\mathbb{R}})\mathcal{H}_{\varphi})$$
 and $\mathcal{B}(P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi})$, respectively.

Since the sets (7.6) in (7.13) belong to the collection $\mathfrak{R}_G(\Omega)$ given by (7.12), and since the sets $\Omega_{\mathbb{R},\infty}$, $\Omega_{\infty,\mathbb{R}}$ are open and therefore the corresponding spectral projections are not zero due to Lemma 6.1, we immediately infer the following abstract Fredholm criterion from Proposition 6.3.

THEOREM 7.2. An operator B in the C*-algebra $\mathfrak B$ given by (1.5) is Fredholm on the space $L^2(\mathbb R)$ if and only if

- (i) the operator $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(B^{\pi})$ is invertible on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$;
- (ii) the operator $P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi})$ is invertible on the Hilbert space $P_{\varphi}(\Omega_{\infty,\mathbb{R}})\mathcal{H}_{\varphi}$;
- (iii) for $P_{\varphi}(\Omega_{\infty,\infty}) \neq 0$, the operator $P_{\varphi}(\Omega_{\infty,\infty})\varphi(B^{\pi})$ is invertible on the Hilbert space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$.

8. INVERTIBILITY CRITERION FOR THE C^* -ALGEBRA $\mathfrak{A}_{\mathbb{R},\infty}$

In this section, using the property of spectral measures given in Lemma 6.2, we obtain an invertibility criterion for the C*-algebra

$$\mathfrak{A}_{\mathbb{R},\infty} := P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(\mathfrak{A}^{\pi}) \subset \mathfrak{B}_{\mathbb{R},\infty}$$

consisting of the operators $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})$ $(A \in \mathfrak{A})$.

Take the Hilbert space \mathcal{H}_{ϕ} defined by (7.7) and its subspace $P_{\phi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\phi}$ $l^2(\mathfrak{M}_{\xi,n},\mathbb{C}^2)$ acwhich is isometrically isomorphic to the Hilbert space \oplus $(\xi,\eta)\in\Omega_{\mathbb{R}}$

cording to (7.14). Along with the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty} := P_{\varphi}(\Omega_{\mathbb{R},\infty}) \varphi(\mathfrak{A}^{\pi})$ we consider the C*-algebra

$$\widetilde{\mathfrak{A}}_{\mathbb{R},\infty}:=P_{\phi}(\Omega_{\mathbb{R},\infty})\phi(\mathfrak{A}^{\pi})\subset\mathcal{B}\Big(igoplus_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}}l^{2}(\mathfrak{M}_{\xi,\eta},\mathbb{C}^{2})\Big)$$

consisting of the operators $P_{\phi}(\Omega_{\mathbb{R},\infty})\phi(A^{\pi})$ $(A \in \mathfrak{A})$. Comparing the images of spectral measures (7.11) we obtain the following.

THEOREM 8.1. The mapping given by

$$(8.1) P_{\phi}(\Omega_{\mathbb{R}}) \varphi(A^{\pi}) \mapsto P_{\phi}(\Omega_{\mathbb{R}}) \varphi(A^{\pi}) \text{for all } A \in \mathfrak{A}$$

is a C^* -algebra isomorphism of the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty}$ onto the C^* -algebra $\widetilde{\mathfrak{A}}_{\mathbb{R},\infty}$.

Proof. According to Lemma 6.2, for the open Borel set $\Omega_{\mathbb{R},\infty}\subset\Omega$ and for each $A \in \mathfrak{A}$, we have the equalities

(8.2)
$$||P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} = \sup_{Z \in \mathcal{Z}(\Omega_{\mathbb{R},\infty})} ||\varphi(Z^{\pi}A^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})},$$

(8.2)
$$\|P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})} = \sup_{Z \in \mathcal{Z}(\Omega_{\mathbb{R},\infty})} \|\varphi(Z^{\pi}A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})},$$
(8.3)
$$\|P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})} = \sup_{Z \in \mathcal{Z}(\Omega_{\mathbb{R},\infty})} \|\varphi(Z^{\pi}A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})},$$

where the set $\mathcal{Z}(\Omega_{\mathbb{R},\infty})$ consists of the operators $Z\in\mathcal{Z}$ for which the Gelfand transform of the coset Z^{π} is a real function $z(\cdot,\cdot) \in C(\Omega)$ with values in [0,1]and with support in the closure of the set $\Omega_{\mathbb{R},\infty}$. Since φ and ϕ are isometric representations of the C^* -algebra \mathfrak{A}^{π} , the right-hand sides of (8.2) and (8.3) are equal, and therefore

$$(8.4) \|P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})} = \|P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\varphi})} for all A \in \mathfrak{A},$$

which in view of (6.2) implies that the mapping (8.1) is a well-defined isometric *-isomorphism of the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty}$ onto the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty}$.

Let $\widetilde{\mathcal{Z}}_{\mathbb{R},\infty}$ denote the C^* -subalgebra of $\widetilde{\mathfrak{A}}_{\mathbb{R},\infty}$ generated by all the operators $P_{\phi}(\Omega_{\mathbb{R},\infty})\phi(Z^{\pi})$ ($Z \in \mathcal{Z}$). Since \mathcal{Z}^{π} is a central C^* -subalgebra of \mathfrak{A}^{π} , we deduce from (6.2) and Lemma 6.1 that the C^* -algebra $\widetilde{\mathcal{Z}}_{\mathbb{R},\infty}$ is a central C^* -subalgebra of $\widetilde{\mathfrak{A}}_{\mathbb{R},\infty}$, and the maximal ideal space $M(\widetilde{\mathcal{Z}}_{\mathbb{R},\infty})$ of $\widetilde{\mathcal{Z}}_{\mathbb{R},\infty}$ coincides with the closure

$$(8.5) \overline{\Omega}_{\mathbb{R},\infty} = \Omega_{\mathbb{R},\infty} \cup \Omega_{\infty,\infty}$$

of the set $\Omega_{\mathbb{R},\infty}$ in Ω . Along with the set $\widetilde{\Omega}$ given by (3.6), we consider the set

$$\widetilde{\Omega}_{\mathbb{R},\infty} := \Big(\bigcup_{(\xi,\eta) \in \Omega_{\mathbb{R},\infty}} \{(\xi,\eta)\} \times \mathfrak{M}_{\xi,\eta}\Big) \cup (\Omega_{\infty,\infty} \times \{0,1\}) \subset \widetilde{\Omega}.$$

Let $B(\widetilde{\Omega}_{\mathbb{R},\infty},\mathbb{C}^{2 imes 2})$ denote the C^* -algebra of all bounded $\mathbb{C}^{2 imes 2}$ -valued functions on $\widetilde{\Omega}_{\mathbb{R},\infty}$, and let $\Psi(A)|_{\widetilde{\Omega}_{\mathbb{R},\infty}}$ be the restriction to $\widetilde{\Omega}_{\mathbb{R},\infty}$ of the matrix function $\Psi(A)$ given for $A\in\mathfrak{A}$ by Theorem 3.3.

LEMMA 8.2. The mapping

$$\widetilde{\mathfrak{A}}_{\mathbb{R},\infty} \to B(\widetilde{\Omega}_{\mathbb{R},\infty},\mathbb{C}^{2\times 2}), \quad P_{\phi}(\Omega_{\mathbb{R},\infty})\phi(A^{\pi}) \mapsto \Psi(A)|_{\widetilde{\Omega}_{\mathbb{R},\infty}}$$

is an isometric C*-algebra homomorphism.

Proof. By (7.8) and (7.14), the C^* -algebra $\widetilde{\mathfrak{A}}_{\mathbb{R},\infty}$ consisting of the operators

$$\bigoplus_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}} \Psi_{\xi,\eta,\cdot}(A)I \in \mathcal{B}\Big(\bigoplus_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}} l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2)\Big) \quad \text{for all } A\in\mathfrak{A},$$

where the operators $\Psi_{\xi,\eta,\cdot}(A)I\in\mathcal{B}(l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2))$ act by the rule (7.9), is isometrically *-isomorphic to the C^* -algebra of the matrix functions

$$\Psi(A):\bigcup_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty}}\{(\xi,\eta)\}\times\mathfrak{M}_{\xi,\eta}\to\mathbb{C}^{2\times2}\quad\text{for all }A\in\mathfrak{A},$$

which, in its turn, is isometrically *-isomorphic to the C^* -algebra of the matrix functions

$$\Psi(A)|_{\widetilde{\Omega}_{\mathbb{R},\infty}}:\widetilde{\Omega}_{\mathbb{R},\infty}\to\mathbb{C}^{2 imes 2}\quad(A\in\mathfrak{A}).$$

Indeed, by (3.7), $\Psi_{\xi,\eta,\mu}(A)$ is a diagonal matrix for every point $(\xi,\eta,\mu)\in\Omega_{\infty,\infty}\times\{0,1\}$ and every $A\in\mathfrak{A}$, and its entries $[\Psi_{\xi,\eta,\mu}(A)]_{1,1}$ and $[\Psi_{\xi,\eta,\mu}(A)]_{2,2}$ can be approximated, in view of (3.7) and the Gelfand topology on Ω , by the corresponding entries of the matrices $\Psi_{\xi,\eta,\mu}(A)$ where $\xi\in\bigcup_{\tau\in\mathbb{R}}M_{\tau}(SO^{\diamond})$ and τ belong to the right semi-neighborhood of ∞ in the case of $[\Psi_{\xi,\eta,\mu}(A)]_{1,1}$ and to the left semi-neighborhood of ∞ in the case of $[\Psi_{\xi,\eta,\mu}(A)]_{2,2}$. Hence,

$$\sup_{(\xi,\eta)\in\Omega_{\mathbb{R},\infty},\mu\in\mathfrak{M}_{\xi,\eta}}\|\Psi_{\xi,\eta,\mu}(A)\|_{\mathrm{sp}}=\sup_{(\xi,\eta,\mu)\in\widetilde{\Omega}_{\mathbb{R},\infty}}\|\Psi_{\xi,\eta,\mu}(A)\|_{\mathrm{sp}}(A\in\mathfrak{A})$$

where $\|\cdot\|_{sp}$ is the spectral matrix norm.

Combining Theorem 8.1, Lemma 8.2 and (3.8), we obtain the following invertibility criterion.

THEOREM 8.3. The mapping

$$\mathrm{Sym}_{\mathbb{R},\infty}:\mathfrak{A}_{\mathbb{R},\infty}\to B(\widetilde{\Omega}_{\mathbb{R},\infty},\mathbb{C}^{2\times 2}),\quad P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})\mapsto \Psi(A)|_{\widetilde{\Omega}_{\mathbb{R},\infty}}$$

is an isometric C^* -algebra homomorphism. For every operator $A \in \mathfrak{A}$, the operator $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi})$ is invertible on the space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$ if and only if

$$\det(\Psi_{\xi,\eta,\mu}(A)) \neq 0 \quad \textit{for all } (\xi,\eta,\mu) \in \widetilde{\Omega}_{\mathbb{R},\infty}.$$

9. INVERTIBILITY CRITERION FOR THE C^* -ALGEBRA $\mathfrak{B}_{\mathbb{R},\infty}$

Applying the local-trajectory method expounded in Section 4, we establish here an invertibility criterion for the operators in the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$.

Consider now the C^* -subalgebra $\mathcal{Z}_{\mathbb{R},\infty}$ of $\mathcal{B}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi})$ generated by all the operators $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(Z^{\pi})$ ($Z\in\mathcal{Z}$). By Theorem 8.1, $\mathcal{Z}_{\mathbb{R},\infty}\cong\widetilde{\mathcal{Z}}_{\mathbb{R},\infty}$. Hence $\mathcal{Z}_{\mathbb{R},\infty}$ is a central subalgebra of $\mathfrak{A}_{\mathbb{R},\infty}$ and $M(\mathcal{Z}_{\mathbb{R},\infty})=\overline{\Omega}_{\mathbb{R},\infty}$, with $\overline{\Omega}_{\mathbb{R},\infty}$ given by (8.5).

Observe from (7.15) that $\mathfrak{B}_{\mathbb{R},\infty} = \operatorname{alg}(\mathfrak{A}_{\mathbb{R},\infty}, U_{\mathbb{R},\infty}(G))$, the C^* -algebra generated by $\mathfrak{A}_{\mathbb{R},\infty}$ and the range of the unitary representation

$$U_{\mathbb{R},\infty}: G \to \mathcal{B}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}), \quad g \mapsto U_{g,\mathbb{R},\infty}:=P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(U_{g}^{\pi}).$$

For each $g \in G$, the mapping

$$\alpha_{g,\mathbb{R},\infty}: P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}) \mapsto U_{g,\mathbb{R},\infty}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}))U_{g,\mathbb{R},\infty}^{*}$$

is a *-automorphism of the C^* -algebras $\mathcal{Z}_{\mathbb{R},\infty}$ and $\mathfrak{A}_{\mathbb{R},\infty}$ because

$$U_{g,\mathbb{R},\infty}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}))U_{g,\mathbb{R},\infty}^{*}=P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(U_{g}^{\pi}A^{\pi}(U_{g}^{\pi})^{*})$$

and the mapping (7.3) is a *-automorphism of the C^* -algebras \mathcal{Z}^π and \mathfrak{A}^π . Thus, condition (A1) of the local-trajectory method is satisfied for the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$. Condition (A2) also holds. Each *-automorphism $\alpha_{g,\mathbb{R},\infty}$ ($g\in G$) induces on the maximal ideal space $M(\mathcal{Z}_{\mathbb{R},\infty})=\overline{\Omega}_{\mathbb{R},\infty}$ the homeomorphism

$$(9.1) \beta_{g,\mathbb{R},\infty}: \overline{\Omega}_{\mathbb{R},\infty} \to \overline{\Omega}_{\mathbb{R},\infty}, \quad (\xi,\eta) \mapsto \beta_g(\xi,\eta),$$

where β_g is given by (7.4).

Let $\mathcal{P}_{\mathbb{R},\infty}:=\mathcal{P}_{\mathfrak{A}_{\mathbb{R},\infty}}$ be the set of pure states of the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty}$. By Section 4, $\mathcal{P}_{\mathbb{R},\infty}=\bigcup_{(\xi,\eta)\in\overline{\Omega}_{\mathbb{R},\infty}}\mathcal{P}_{\xi,\eta}$, where $\mathcal{P}_{\xi,\eta}:=\{\rho\in\mathcal{P}_{\mathbb{R},\infty}:\operatorname{Ker}\rho\supset J_{\xi,\eta}\}$

and $J_{\xi,\eta}$ for $(\xi,\eta) \in \overline{\Omega}_{\mathbb{R},\infty}$ is the smallest closed two-sided ideal of $\mathfrak{A}_{\mathbb{R},\infty}$ which contains the set $\{P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(Z^{\pi}): Z \in \mathcal{Z}, \ [\Gamma(Z^{\pi})](\xi,\eta)=0\}.$

Since $\Omega_{\infty,\infty}$ is the set of fixed points of all homeomorphisms $\beta_{g,\mathbb{R},\infty}$ ($g \in G \setminus \{e\}$), to verify the fulfillment of condition (A3) of the local-trajectory method for the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$, we only need to prove the approximability (in the weak* topology) of all pure states $\rho \in \mathcal{P}_{\xi,\eta}$ for $(\xi,\eta) \in \Omega_{\infty,\infty}$ by pure states in $\mathcal{P}_{\xi,\eta}$, with $(\xi,\eta) \in \Omega_{\mathbb{R},\infty}$. Then we may take $M_0 = \Omega_{\mathbb{R},\infty}$ in (A3).

Applying Theorem 8.3 we deduce the following two assertions:

(i) For each $(\xi, \eta) \in \Omega_{\mathbb{R}, \infty}$, the mapping

$$\widetilde{\pi}_{\xi,\eta}: P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}) + J_{\xi,\eta} \mapsto \bigoplus_{\mu \in \mathfrak{M}_{\xi,\eta}} \Psi_{\xi,\eta,\mu}(A)$$

is a C^* -algebra isomorphism between the C^* -algebras $\mathfrak{A}_{\mathbb{R},\infty}/J_{\xi,\eta}$ and the C^* -subalgebra $\Big\{\bigoplus_{\mu\in\mathfrak{M}_{\mathcal{E},\eta}}\Psi_{\xi,\eta,\mu}(A):A\in\mathfrak{A}\Big\}$ of $\bigoplus_{\mu\in\mathfrak{M}_{\mathcal{E},\eta}}\mathbb{C}^{2\times 2}$.

(ii) For each $(\xi, \eta) \in \Omega_{\infty,\infty}$, the mapping

$$(9.2) \qquad \widetilde{\pi}_{\xi,\eta}: P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}) + J_{\xi,\eta} \mapsto \operatorname{diag}\{\Psi_{\xi,\eta,0}(A), \Psi_{\xi,\eta,1}(A)\},$$

is a C^* -algebra isomorphism between the C^* -algebras $\mathfrak{A}_{\mathbb{R},\infty}/J_{\xi,\eta}$ and the C^* -subalgebra $\{\operatorname{diag}\{\Psi_{\xi,\eta,0}(A),\Psi_{\xi,\eta,1}(A)\}:A\in\mathfrak{A}\}$ of $\mathbb{C}^{4\times 4}$.

Since the set $\mathcal{P}_{\xi,\eta}$ $((\xi,\eta)\in\widetilde{\Omega}_{\mathbb{R},\infty})$ is in bijection with the set of pure states of $\mathfrak{A}_{\mathbb{R},\infty}/J_{\xi,\eta}$ (see, e.g., Theorem 2.11.8(i) in [15]) and since the matrices $\Psi_{\xi,\eta,\mu}(A)$ for $A\in\mathfrak{A}$ and $(\xi,\eta,\mu)\in\Omega_{\infty,\infty}\times\{0,1\}$ are diagonal, we conclude from (9.2) that for each $(\xi,\eta)\in\Omega_{\infty,\infty}$ the C^* -algebra $\mathfrak{A}_{\mathbb{R},\infty}/J_{\xi,\eta}$ is commutative and therefore its set of pure states consists of four multiplicative linear functionals whose values coincide with the diagonal entries of the matrices $\Psi_{\xi,\eta,0}(A)$ and $\Psi_{\xi,\eta,1}(A)$. Hence, for every $(\xi,\eta)\in\Omega_{\infty,\infty}$,

$$\mathcal{P}_{\xi,\eta} = \{ \rho_{\xi,\eta,0}^{(1)}, \, \rho_{\xi,\eta,0}^{(2)}, \rho_{\xi,\eta,1}^{(1)}, \, \rho_{\xi,\eta,1}^{(2)} \},$$

where the pure states $\rho_{\xi,\eta,\mu}^{(j)}$ for j=1,2 and $\mu\in\{0,1\}$ are given by

$$(9.3) \rho_{\xi,\eta,\mu}^{(j)}: \mathfrak{A}_{\mathbb{R},\infty} \to \mathbb{C}, P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(A^{\pi}) \mapsto [\Psi_{\xi,\eta,\mu}(A)]_{j,j},$$

and $[\Psi_{\xi,\eta,\mu}(A)]_{j,j}$ is the (j,j)-entry of the matrix $\Psi_{\xi,\eta,\mu}(A)$. Fix $(\xi,\eta)\in\Omega_{\infty,\infty}$ and $\mu\in\{0,1\}$. By the proof of Lemma 8.2, from (9.3) it follows that every open neighborhood of $\rho_{\xi,\eta,\mu}^{(1)}$ and $\rho_{\xi,\eta,\mu}^{(2)}$ in the weak* topology contains, respectively, a pure state $\rho_{\xi,\eta,\mu}^{(1)}$, where $\zeta\in M_{\tau}(SO^{\circ})$ and $\tau\in\mathbb{R}$ is on the right of $-\infty$, and a pure state $\rho_{\xi,\eta,\mu}^{(2)}$, where $\zeta\in M_{\tau}(SO^{\circ})$ and $\tau\in\mathbb{R}$ is on the left of $+\infty$. Thus, condition (A3) for the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$ is also fulfilled, with $M_0=M_{t_0}(SO^{\circ})\times M_{\infty}(SO^{\circ})$ and any point $t_0\in\mathbb{R}$.

For each (ξ, η, μ) in the set

$$\mathfrak{N}_{\mathbb{R},\infty}:=igcup_{(ar{\xi},\eta)\in\Omega_{\mathbb{R},\infty}}\{(ar{\xi},\eta)\} imes\mathfrak{M}_{ar{\xi},\eta},$$

we consider the representation

(9.4)
$$\pi_{\tilde{c},n,u}:\mathfrak{B}_{\mathbb{R},\infty}\to\mathcal{B}(l^2(G,\mathbb{C}^2))$$

given on the generators of the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$ by

$$[\pi_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi((aI)^{\pi}))f](g) = [\Psi_{\xi,\eta,\mu}((a\circ g)I)]f(g),$$

$$[\pi_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi((W^{0}(b))^{\pi}))f](g) = [\Psi_{\xi,\eta,\mu}(W^{0}(b))]f(g),$$

$$[\pi_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(U_{s}^{\pi}))f](g) = f(gs),$$

where $a, b \in PSO^{\diamond}$, $g, s \in G$ and $f \in l^2(G, \mathbb{C}^2)$.

Fix $\tau \in \mathbb{R}$ and introduce the sets

$$(9.6) \qquad \Omega_{\tau,\infty} := M_{\tau}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond}), \quad \mathfrak{N}_{\tau,\infty} := \bigcup_{(\xi,\eta) \in \Omega_{\tau,\infty}} \{(\xi,\eta)\} \times \mathfrak{M}_{\xi,\eta}.$$

THEOREM 9.1. For each $B \in \mathfrak{B}$, the operator

$$B_{\mathbb{R},\infty} := P_{\varphi}(\Omega_{\mathbb{R},\infty}) \varphi(B^{\pi}) \in \mathfrak{B}_{\mathbb{R},\infty}$$

is invertible on the space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$ if and only if for all $(\xi,\eta,\mu)\in\mathfrak{N}_{\tau,\infty}$ the operators $\pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty})$ are invertible on the space $l^2(G,\mathbb{C}^2)$ and

(9.7)
$$\sup_{(\xi,\eta,\mu)\in\mathfrak{N}_{\tau,\infty}} \|(\pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty}))^{-1}\|_{\mathcal{B}(l^2(G,\mathbb{C}^2))} < \infty.$$

Proof. The set $\mathfrak{N}_{\tau,\infty}$ given by (9.6) contains exactly one point in each G-orbit defined on the set $\Omega_{\mathbb{R},\infty}\subset\overline{\Omega}_{\mathbb{R},\infty}$ by the group $\{\beta_{g,\mathbb{R},\infty}:g\in G\}$ of homeomorphisms given by (9.1). Thus, following (4.3)–(4.5), we obtain the family of representations (9.4) indexed by the points $(\xi,\eta,\mu)\in\mathfrak{N}_{\tau,\infty}$. Since assumptions (A1)–(A3) for the C^* -algebra $\mathfrak{B}_{\mathbb{R},\infty}$ are fulfilled, Theorem 4.2 implies the assertion of the theorem.

10. INVERTIBILITY CRITERION FOR THE C^* -ALGEBRA $\mathfrak{B}_{\infty,\mathbb{R}}$

In this section we will find an invertibility criterion for the operators in the C^* -algebra $\mathfrak{B}_{\infty,\mathbb{R}} = P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(\mathfrak{B}^{\pi})$ represented in the form (7.16).

Since $\Omega_{\infty,\mathbb{R}}$ is an open subset of Ω and the C^* -algebras $\varphi(\mathfrak{A}^{\pi})$ and $\varphi(\mathfrak{A}^{\pi})$ are isometrically *-isomorphic, applying Lemma 6.2 and (6.4), we infer similarly to (8.4) that

$$(10.1) ||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(A^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} = ||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(A^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} for all A \in \mathfrak{A}.$$

Following Lemma 6.2, we define the set

$$(10.2) \quad \mathcal{Z}(\Omega_{\infty,\mathbb{R}}) := \{ Z \in \mathcal{Z} : \operatorname{supp} z(\cdot, \cdot) \subset \overline{\Omega}_{\infty,\mathbb{R}}, z(\xi, \eta) \in [0, 1] \text{ for } (\xi, \eta) \in \Omega \},$$

where $z(\cdot,\cdot)\in C(\Omega)$ is the Gelfand transform of the coset \mathcal{Z}^{π} , supp $z(\cdot,\cdot)$ is the support of $z(\cdot,\cdot)$, and $\overline{\Omega}_{\infty,\mathbb{R}}=\Omega_{\infty,\mathbb{R}}\cup\Omega_{\infty,\infty}$ is the closure in Ω of the set $\Omega_{\infty,\mathbb{R}}$ given by (7.6).

Let e_h be the function given by $e_h(x) = e^{ihx}$ for all $h, x \in \mathbb{R}$. Consider the Hilbert space

$$\mathcal{H}_{\infty,\mathbb{R}} = \bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}} l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2)$$

and introduce the C*-algebra

$$(10.3) \qquad \Psi_{\infty,\mathbb{R}}(\mathfrak{B}^{\pi}) := \operatorname{alg} \left\{ \Psi_{\infty,\mathbb{R}}(A^{\pi}), \Psi_{\infty,\mathbb{R}}(U_{g}^{\pi}) : A \in \mathfrak{A}, g \in G \right\} \subset \mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})$$

generated by the operators $\Psi_{\infty,\mathbb{R}}(A^{\pi})$ ($A \in \mathfrak{A}$) and $\Psi_{\infty,\mathbb{R}}(U_g^{\pi})$ ($g \in G$) where

$$(10.4) \qquad \Psi_{\infty,\mathbb{R}}(A^{\pi}) := \bigoplus_{(\xi,\eta) \in \Omega_{\infty,\mathbb{R}}} \Psi_{\xi,\eta,\cdot}(A)I, \quad \Psi_{\infty,\mathbb{R}}(U^{\pi}_{g_h}) := \bigoplus_{(\xi,\eta) \in \Omega_{\infty,\mathbb{R}}} \mathrm{e}^{\mathrm{i}h\eta}I.$$

Observe that the mapping $g\mapsto \Psi_{\infty,\mathbb{R}}(U_g^\pi)$ is a unitary representation of the group G in the Hilbert space $\mathcal{H}_{\infty,\mathbb{R}}$, the adjoint operator $\Psi_{\infty,\mathbb{R}}(U_g^\pi)^*$ equals $\Psi_{\infty,\mathbb{R}}(U_{g^{-1}}^\pi)$, and $\Psi_{\infty,\mathbb{R}}(U_g^\pi)\Psi_{\infty,\mathbb{R}}(A^\pi)\Psi_{\infty,\mathbb{R}}(U_g^\pi)^*=\Psi_{\infty,\mathbb{R}}(A^\pi)$ for all $g\in G$ and all $A\in\mathfrak{A}$ due to (10.4). Consequently, the C^* -algebra $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^\pi)$ is the closure of the C^* -algebra composed by the finite sums of the form $\sum\limits_g \Psi_{\infty,\mathbb{R}}(A_g^\pi)\Psi_{\infty,\mathbb{R}}(U_g^\pi)$ where $A_g\in\mathfrak{A}$.

THEOREM 10.1. The mapping

$$(10.5) P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi\Big(\sum_{g\in F}A_g^{\pi}U_g^{\pi}\Big)\mapsto \sum_{g\in F}Y_{\infty,\mathbb{R}}(A_g^{\pi})Y_{\infty,\mathbb{R}}(U_g^{\pi}),$$

where F is a finite subset of G and $A_g \in \mathfrak{A}$ for $g \in F$, extends to a C^* -algebra isomorphism of the C^* -algebra $\mathfrak{B}_{\infty,\mathbb{R}}$ onto the C^* -algebra $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^{\pi})$ given by (10.3)–(10.4).

Proof. Consider the coset $B^\pi = \sum\limits_{g \in F} A_g^\pi U_g^\pi \in \mathfrak{B}^\pi$, where F is a finite subset of G and $A_g \in \mathfrak{A}$ for $g \in F$, and put $\Psi_{\infty,\mathbb{R}}(B^\pi) := \sum\limits_{g \in F} \Psi_{\infty,\mathbb{R}}(A_g^\pi) \Psi_{\infty,\mathbb{R}}(U_g^\pi)$. Since the set $\Omega_{\infty,\mathbb{R}}$ is open and since $P_{\varphi}(\Omega_{\infty,\mathbb{R}}) \varphi(B^\pi) = \varphi(B^\pi) P_{\varphi}(\Omega_{\infty,\mathbb{R}})$, we infer similarly to Lemma 6.2 that

(10.6)
$$||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} = \sup_{Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})} ||\varphi(B^{\pi}Z^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})},$$

where $\mathcal{Z}(\Omega_{\infty,\mathbb{R}})$ is the set (10.2).

Consider the set $SO^{\diamond}(0) = \left\{v \in SO^{\diamond} : \lim_{x \to \pm \infty} v(x) = 0\right\}$. If $v \in SO^{\diamond}(0)$ and $v(\mathbb{R}) \subset [0,1]$, then $W^0(v) \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})$. Moreover, $\mathcal{Z}(\Omega_{\infty,\mathbb{R}}) = \{W^0(v) : v \in SO^{\diamond}(0), v(\mathbb{R}) \subset [0,1]\}$. For every $v \in SO^{\diamond}(0)$ and every $h \in \mathbb{R}$, the operator

$$U_{g_h}W^0(v) = W^0(e_h)W^0(v) = W^0(e_hv)$$

belongs to the C^* -algebra $\mathfrak A$ because $e_h v \in SO^{\diamond}(0)$. Hence, for each $Z \in \mathcal Z(\Omega_{\infty,\mathbb R})$ and given $B \in \mathfrak B$, we conclude that the coset $B^{\pi}Z^{\pi}$ belongs to the C^* -algebra $\mathfrak A^{\pi}$. Hence, for every $Z \in \mathcal Z(\Omega_{\infty,\mathbb R})$, by (7.8) and (10.4), we obtain $\phi_{\infty,\mathbb R}(B^{\pi}Z^{\pi}) =$

 $\Psi_{\infty,\mathbb{R}}(B^{\pi})\phi_{\infty,\mathbb{R}}(Z^{\pi})$ where $\phi_{\infty,\mathbb{R}}:\mathfrak{A}^{\pi}\to\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})$ is the restriction of the representation ϕ (see (7.7)–(7.10)) to the space $\mathcal{H}_{\infty,\mathbb{R}}=\bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}}l^2(\mathfrak{M}_{\xi,\eta},\mathbb{C}^2)$ consid-

ered as an invariant Hilbert subspace of \mathcal{H}_{ϕ} . Therefore, applying (10.1) and (7.14), we get

$$||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi}Z^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} = ||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi}Z^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})}$$

$$= ||\Psi_{\infty,\mathbb{R}}(B^{\pi})\varphi_{\infty,\mathbb{R}}(Z^{\pi})||_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})}.$$
(10.7)

Since for all $Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})$,

$$P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi}Z^{\pi}) = \varphi(B^{\pi})P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(Z^{\pi}) = \varphi(B^{\pi}Z^{\pi}),$$

we deduce from equalities (10.6) and (10.7) that

$$\sup_{Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})} \| \Psi_{\infty,\mathbb{R}}(B^{\pi}) \phi_{\infty,\mathbb{R}}(Z^{\pi}) \|_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})} = \sup_{Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})} \| P_{\varphi}(\Omega_{\infty,\mathbb{R}}) \varphi(B^{\pi} Z^{\pi}) \|_{\mathcal{B}(\mathcal{H}_{\varphi})}$$

$$= \sup_{Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})} \| \varphi(B^{\pi} Z^{\pi}) \|_{\mathcal{B}(\mathcal{H}_{\varphi})}$$
(10.8)
$$= \| P_{\varphi}(\Omega_{\infty,\mathbb{R}}) \varphi(B^{\pi}) \|_{\mathcal{B}(\mathcal{H}_{\varphi})}.$$

Consider the identical representation π_0 of the unital C^* -algebra $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^\pi)$ in the Hilbert space $\mathcal{H}_{\infty,\mathbb{R}}$. By (10.4), $\phi_{\infty,\mathbb{R}}(\mathcal{Z}^\pi)$ is a central C^* -subalgebra of $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^\pi)$ with the same unit. Clearly, the maximal ideal space of $\phi_{\infty,\mathbb{R}}(\mathcal{Z}^\pi)$ coincides with $\overline{\Omega}_{\infty,\mathbb{R}}$. Since $\Omega_{\infty,\mathbb{R}}$ is an open subset of $\overline{\Omega}_{\infty,\mathbb{R}}$ and since the corresponding spectral projection $P_{\pi_0}(\Omega_{\infty,\mathbb{R}})$ is the identity operator on Hilbert space $\mathcal{H}_{\infty,\mathbb{R}}$, we conclude from Lemma 6.2 that

$$\begin{split} \|\Psi_{\infty,\mathbb{R}}(B^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})} &= \|P_{\pi_0}(\Omega_{\infty,\mathbb{R}})\Psi_{\infty,\mathbb{R}}(B^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})} \\ &= \sup_{Z \in \mathcal{Z}(\Omega_{\infty,\mathbb{R}})} \|\Psi_{\infty,\mathbb{R}}(B^{\pi})\phi_{\infty,\mathbb{R}}(Z^{\pi})\|_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})'} \end{split}$$

which together with (10.8) implies that

(10.9)
$$||P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi})||_{\mathcal{B}(\mathcal{H}_{\varphi})} = ||\Psi_{\infty,\mathbb{R}}(B^{\pi})||_{\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})}$$

for all finite sums $B^{\pi} = \sum\limits_{g \in F} A_g^{\pi} U_g^{\pi} \in \mathfrak{B}^{\pi}$ with $A_g^{\pi} \in \mathfrak{A}^{\pi}$. Since the set of such finite sums is dense in \mathfrak{B}^{π} and since (10.9) holds, the mapping (10.5) uniquely extends to a C^* -algebra isomorphism of $\mathfrak{B}_{\infty,\mathbb{R}}$ onto $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^{\pi})$.

Every coset B^{π} of the C^* -algebra \mathfrak{B}^{π} is the limit of a sequence of cosets of the form $B_n^{\pi} = \sum\limits_{g \in F_n} A_{g,n}^{\pi} U_g^{\pi}$ where $A_{g,n}^{\pi} \in \mathfrak{A}^{\pi}$ and g runs through finite subsets F_n of G $(n \in \mathbb{N})$. Then according to Theorem 10.1 the operator $\Psi_{\infty,\mathbb{R}}(B^{\pi})$ in the C^* -algebra $\Psi_{\infty,\mathbb{R}}(\mathfrak{B}^{\pi})$ has the form

$$\Psi_{\infty,\mathbb{R}}(B^{\pi}) = \lim_{n \to \infty} \sum_{g \in F_n} \Psi_{\infty,\mathbb{R}}(A_{g,n}^{\pi}) \Psi_{\infty,\mathbb{R}}(U_g^{\pi}),$$

where the *-homomorphism $\Psi_{\infty,\mathbb{R}}:\mathfrak{B}^{\pi}\to\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})$ is an extension of the *-homomorphism $\phi_{\infty,\mathbb{R}}:\mathfrak{A}^{\pi}\to\mathcal{B}(\mathcal{H}_{\infty,\mathbb{R}})$ to the C^* -algebra \mathfrak{B}^{π} in view of (7.8) and (10.4). Thus, setting $h_g=h$ for shifts $g=g_h\in G$, we obtain

(10.10)
$$\Psi_{\infty,\mathbb{R}}(B^{\pi}) = \bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}} B_{\infty,\mathbb{R}}(\xi,\eta,\cdot)I \in \mathcal{B}\Big(\bigoplus_{(\xi,\eta)\in\Omega_{\infty,\mathbb{R}}} l^{2}(\mathfrak{M}_{\xi,\eta},\mathbb{C}^{2})\Big),$$

$$B_{\infty,\mathbb{R}}(\xi,\eta,\cdot): \mathfrak{M}_{\xi,\eta} \to \mathbb{C}^{2\times2}, \quad \mu \mapsto \lim_{n\to\infty} \sum_{g\in F_{n}} [\Psi_{\xi,\eta,\mu}(A_{g,n})] e^{ih_{g}\eta}.$$

Thus, for every (ξ, η, μ) in the set

$$\mathfrak{N}_{\infty,\mathbb{R}} := \bigcup_{(\xi,\eta) \in \Omega_{\infty\mathbb{R}}} \{(\xi,\eta)\} imes \mathfrak{M}_{\xi,\eta},$$

we obtain the representation

(10.11)
$$\sigma_{\xi,\eta,u}:\mathfrak{B}_{\infty,\mathbb{R}}\to\mathcal{B}(\mathbb{C}^2)$$

given on the generators of the C^* -algebra $\mathfrak{B}_{\infty,\mathbb{R}}$ by

(10.12)
$$\sigma_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi((aI)^{\pi}))f = [\Psi_{\xi,\eta,\mu}(aI)]f,$$

$$\sigma_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi((W^{0}(b))^{\pi}))f = [\Psi_{\xi,\eta,\mu}(W^{0}(b))]f,$$

$$\sigma_{\xi,\eta,\mu}(P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(U^{\pi}_{g_{h}}))f = e^{ih\eta}f,$$

where $a, b \in PSO^{\diamond}$, $g_h \in G$ and $f \in \mathbb{C}^2$.

Applying Theorem 10.1 and (10.10)–(10.12), we immediately obtain an invertibility criterion for the operators in the C^* -algebra $\mathfrak{B}_{\infty\mathbb{R}}$.

THEOREM 10.2. For each $B \in \mathfrak{B}$, the operator $B_{\infty,\mathbb{R}} := P_{\varphi}(\Omega_{\infty,\mathbb{R}})\varphi(B^{\pi}) \in \mathfrak{B}_{\infty,\mathbb{R}}$ is invertible on the space $P_{\varphi}(\Omega_{\infty,\mathbb{R}})\mathcal{H}_{\varphi}$ if and only if for all $(\xi,\eta,\mu) \in \mathfrak{N}_{\infty,\mathbb{R}}$ the operators $\sigma_{\xi,\eta,\mu}(B_{\infty,\mathbb{R}})$ are invertible on the space \mathbb{C}^2 and

$$\sup_{(\xi,\eta,\mu)\in\mathfrak{N}_{\infty,\mathbb{R}}}\|(\sigma_{\xi,\eta,\mu}(B_{\infty,\mathbb{R}}))^{-1}\|_{\mathcal{B}(\mathbb{C}^2)}<\infty.$$

11. INVERTIBILITY IN THE C^* -ALGEBRA $\mathfrak{B}_{\infty,\infty}$

In this section we will show that for every $B \in \mathfrak{B}$ the invertibility of the operator $P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(B^{\pi})$ on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$ implies the invertibility of the operators $P_{\varphi}(\Omega_{\infty,\infty})\varphi(B^{\pi})$ on the Hilbert spaces $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$. This means that condition (iii) in Theorem 7.2 is superfluous.

Consider the C^* -algebra $\mathfrak{B}_{\infty,\infty}=P_{\varphi}(\Omega_{\infty,\infty})\varphi(\mathfrak{B}^{\pi})$ (see (7.17)) where $\Omega_{\infty,\infty}$ is given by (7.6). Since $\Omega_{\infty,\infty}\in\mathfrak{R}_{G}(\Omega)$ and, by Lemma 7.1, $\Omega_{\infty,\infty}$ is a set of fixed points for homeomorphisms β_g ($g\in G\setminus\{e\}$), we infer that the C^* -algebra $\mathfrak{B}_{\infty,\infty}$

is commutative. Consider its central C^* -subalgebra $\mathcal{Z}_{\infty,\infty}:=P_{\varphi}(\Omega_{\infty,\infty})\varphi(\mathcal{Z}^{\pi})$. If $Z^{\pi}\in\mathcal{Z}^{\pi}$ and

$$\min_{(\xi,\eta)\in\Omega_{\infty,\infty}}|[\Gamma(Z^{\pi})](\xi,\eta)|>0,$$

then $|[\Gamma(Z^\pi)](\xi,\eta)|>0$ in the closure \overline{V} of an open neighborhood V of $\Omega_{\infty,\infty}$ in Ω . Hence, because $P_{\varphi}(V)\varphi(\mathcal{Z}^\pi)\cong C(\overline{V})$ and the isomorphism is given by $P_{\varphi}(V)\varphi(Z^\pi)\mapsto z(\cdot,\cdot)|_{\overline{V}}$ where $z(\cdot,\cdot)|_{\overline{V}}$ is the restriction of the Gelfand transform $\Gamma(Z^\pi)$ to \overline{V} (see Lemma 6.1), we conclude that the operator $P_{\varphi}(V)\varphi(Z^\pi)$ is invertible on the Hilbert space $P_{\varphi}(V)\mathcal{H}_{\varphi}$. This implies the invertibility of the operator $P_{\varphi}(\Omega_{\infty,\infty})\varphi(Z^\pi)$ on the Hilbert space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$. Thus, we proved the following.

Proposition 11.1. $M(\mathcal{Z}_{\infty,\infty}) \subset \Omega_{\infty,\infty}$.

Let $\mathcal{J}_{\xi,\eta}$ be the minimal closed two-sided ideal of the C^* -algebra $\mathfrak{B}_{\infty,\infty}$ that contains the maximal ideal $(\xi,\eta)\in M(\mathcal{Z}_{\infty,\infty})$, and let $\mathfrak{B}_{\infty,\infty}/\mathcal{J}_{\xi,\eta}$. By the Allan–Douglas local principle applied with respect to $M(\mathcal{Z}_{\infty,\infty})$ (see Theorem 4.1), we obtain the following.

LEMMA 11.2. The operator $B_{\infty,\infty} = P_{\varphi}(\Omega_{\infty,\infty})\varphi(B^{\pi})$ is invertible on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$ if and only if for every $(\xi,\eta) \in M(\mathcal{Z}_{\infty,\infty})$ the coset $B_{\infty,\infty} + \mathcal{J}_{\xi,\eta}$ is invertible in the quotient algebra $\mathfrak{B}_{\infty,\infty}/\mathcal{J}_{\xi,\eta}$.

With every operator $B = \sum_{g \in F} D_g U_g \in \mathfrak{B}^0$ of the form (7.1), where $D_g \in \mathfrak{A}^0$ and F is a finite subset of G, and with every $\eta \in M_{\infty}(SO^{\diamond})$ we associate two functional operators $A_n^{\pm} \in \mathcal{A}^0$ given by

(11.1)
$$A_{\eta}^{+} = \sum_{g \in F} [\Psi_{\cdot,\eta,1}(D_g)]_{1,1} U_g = \sum_{g \in F} [\Psi_{\cdot,\eta,0}(D_g)]_{2,2} U_g,$$
$$A_{\eta}^{-} = \sum_{g \in F} [\Psi_{\cdot,\eta,0}(D_g)]_{1,1} U_g = \sum_{g \in F} [\Psi_{\cdot,\eta,1}(D_g)]_{2,2} U_g,$$

where the functions

$$\begin{split} \xi \mapsto [\Psi_{\xi,\eta,1}(D_g)]_{1,1}, \quad \xi \mapsto [\Psi_{\xi,\eta,0}(D_g)]_{2,2}, \\ \xi \mapsto [\Psi_{\xi,\eta,0}(D_g)]_{1,1}, \quad \xi \mapsto [\Psi_{\xi,\eta,1}(D_g)]_{2,2}, \end{split}$$

defined for almost all $\xi \in \mathbb{R}$, are in PSO^0 and for almost all $\xi \in \mathbb{R}$,

$$[\Psi_{\xi,\eta,1}(D_g)]_{1,1} = [\Psi_{\xi,\eta,0}(D_g)]_{2,2}, \quad [\Psi_{\xi,\eta,0}(D_g)]_{1,1} = [\Psi_{\xi,\eta,1}(D_g)]_{2,2}.$$

THEOREM 11.3. If $B \in \mathfrak{B}^0$ is written in the form (7.1) and the operator $B_{\mathbb{R},\infty} := P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(B^{\pi})$ is invertible on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$, then for every $\eta \in M_{\infty}(SO^{\diamond})$ the functional operators A_{η}^{\pm} given by (11.1) are invertible on the Hilbert space $L^2(\mathbb{R})$.

Proof. Fix $\tau \in \mathbb{R}$. Let the operator $B \in \mathfrak{B}^0$ be of the form (7.1) and let the operator $B_{\mathbb{R},\infty}$ be invertible on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$. Then, by Theorem 9.1, the operators $\pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty})$ for all $(\xi,\eta,\mu) \in \mathfrak{N}_{\tau,\infty}$ are invertible on the Hilbert space $l^2(G,\mathbb{C}^2)$ and condition (9.7) is fulfilled. In particular, the operators $\pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty})$ are invertible on the space $l^2(G,\mathbb{C}^2)$ for all $\eta \in M_{\infty}(SO^{\diamond})$ and all $(\xi,\mu) \in \mathfrak{R}_{\tau}$, where $\mathfrak{R}_{\tau} = M_{\tau}(SO^{\diamond}) \times \{0,1\}$ due to (5.13). It is easily seen from (9.5), (3.7), (11.1) and (5.10) that there exists a permutation matrix T such that for every $\eta \in M_{\infty}(SO^{\diamond})$ and every $\xi \in M_{\tau}(SO^{\diamond})$,

(11.2)
$$\pi_{\xi,\eta,0}(B_{\mathbb{R},\infty}) = T \operatorname{diag}\{(A_{\eta}^{-})_{\xi,1}, (A_{\eta}^{+})_{\xi,0}\}T^{-1}, \\ \pi_{\xi,\eta,1}(B_{\mathbb{R},\infty}) = T \operatorname{diag}\{(A_{\eta}^{+})_{\xi,1}, (A_{\eta}^{-})_{\xi,0}\}T^{-1}.$$

Consequently, the invertibility of the operators $\pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty})$ in the space $l^2(G,\mathbb{C}^2)$ for all $(\xi,\eta,\mu)\in\mathfrak{N}_{\tau,\infty}$ implies, by virtue of (11.2), the invertibility of the operators $(A^+_\eta)_{\xi,\mu}$ and $(A^-_\eta)_{\xi,\mu}$ in the space $l^2(G)$ for all $(\xi,\mu)\in\mathfrak{R}_\tau$ and all $\eta\in M_\infty(SO^\diamond)$. Moreover, we infer from (9.7) and (11.2) that condition (5.14) for all functional operators A^\pm_η defined by (11.1) is also fulfilled. Then, by Theorem 5.2, the functional operators A^\pm_η are invertible on the space $L^2(\mathbb{R})$ for all $\eta\in M_\infty(SO^\diamond)$.

Further, we infer from Theorem 11.3 that for every operator $B \in \mathfrak{B}^0$ with invertible operator $B_{\mathbb{R},\infty}$ and every $\eta \in M_{\infty}(SO^{\diamond})$,

$$\begin{aligned} \|A_{\eta}^{\pm}\|_{\mathcal{B}(L^{2}(\mathbb{R}))}^{2} &= r(A_{\eta}^{\pm}(A_{\eta}^{\pm})^{*}) \leqslant r(B_{\mathbb{R},\infty}B_{\mathbb{R},\infty}^{*}) \\ &= \|B_{\mathbb{R},\infty}\|_{\mathcal{B}(P_{\sigma}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\sigma})}^{2} \leqslant \|B\|_{\mathcal{B}(L^{2}(\mathbb{R}))}^{2}. \end{aligned}$$

Hence the mappings $B \mapsto B_{\mathbb{R},\infty} \mapsto A_{\eta}^{\pm}$ extend by continuity to C^* -algebra homomorphisms $\nu_{\eta}^{\pm}: \mathfrak{B} \to \mathfrak{B}_{\mathbb{R},\infty} \to \mathcal{A}$, and therefore Theorem 11.3 remains true for all $B \in \mathfrak{B}$. Thus, taking into account the relations

$$(11.3) \qquad (\widetilde{A}_{\eta}^{+})_{\xi,1} = \sum_{g \in F} [\Psi_{\xi,\eta,1}(D_g)]_{1,1} U_g, \quad (\widetilde{A}_{\eta}^{+})_{\xi,0} = \sum_{g \in F} [\Psi_{\xi,\eta,0}(D_g)]_{2,2} U_g, (\widetilde{A}_{\eta}^{-})_{\xi,1} = \sum_{g \in F} [\Psi_{\xi,\eta,0}(D_g)]_{1,1} U_g, \quad (\widetilde{A}_{\eta}^{-})_{\xi,0} = \sum_{g \in F} [\Psi_{\xi,\eta,1}(D_g)]_{2,2} U_g,$$

for $B \in \mathfrak{B}^0$ and all $\xi, \eta \in M_{\infty}(SO^{\diamond})$, which follow from (11.1) and (5.12), we obtain the next result from Theorem 11.3 for $B \in \mathfrak{B}$ and Corollary 5.5.

COROLLARY 11.4. If $B \in \mathfrak{B}$ and the operator $B_{\mathbb{R},\infty} := P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(B^{\pi})$ is invertible on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$, then for every $(\xi,\eta) \in \Omega_{\infty,\infty}$ and every $\mu \in \{0,1\}$ the functional operators $(\widetilde{A}_{\eta}^{\pm})_{\xi,\mu}$ given by (11.3) are invertible on the Hilbert space $L^{2}(\mathbb{R})$, and therefore the operators $P_{\varphi}(\Omega_{\infty,\infty})\varphi((\widetilde{A}_{\eta}^{\pm})_{\xi,\mu}^{\pi})$ are invertible on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$.

THEOREM 11.5. If $B \in \mathfrak{B}$ and the operator $B_{\mathbb{R},\infty} = P_{\varphi}(\Omega_{\mathbb{R},\infty})\varphi(B^{\pi})$ is invertible on the space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$, then the operator $B_{\infty,\infty} = P_{\varphi}(\Omega_{\infty,\infty})\varphi(B^{\pi})$ is invertible on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$.

Proof. Let $u_+ \in C(\overline{\mathbb{R}})$, $u_+(+\infty) = 1$, $u_+(-\infty) = 0$, and let $u_- = 1 - u_+$. By Proposition 11.1, $M(\mathcal{Z}_{\infty,\infty}) \subset \Omega_{\infty,\infty}$. One can see that for every operator $B \in \mathfrak{B}$ and every $(\xi, \eta) \in M(\mathcal{Z}_{\infty,\infty})$ the coset $B_{\infty,\infty} + \mathcal{J}_{\xi,\eta}$ has the form

$$B_{\infty,\infty} + \mathcal{J}_{\xi,\eta} = P_{\varphi}(\Omega_{\infty,\infty}) \varphi([(\widetilde{A}_{\eta}^{+})_{\xi,1}(u_{-}W^{0}(u_{-})) + (\widetilde{A}_{\eta}^{+})_{\xi,0}(u_{+}W^{0}(u_{-})) + (\widetilde{A}_{\eta}^{-})_{\xi,1}(u_{-}W^{0}(u_{+})) + (\widetilde{A}_{\eta}^{-})_{\xi,0}(u_{+}W^{0}(u_{+}))]^{\pi}) + \mathcal{J}_{\xi,\eta}.$$
(11.4)

By Corollary 11.4, the invertibility of the operator $B_{\mathbb{R},\infty}$ on the Hilbert space $P_{\varphi}(\Omega_{\mathbb{R},\infty})\mathcal{H}_{\varphi}$ implies the invertibility of all operators $P_{\varphi}(\Omega_{\infty,\infty})\varphi((\widetilde{A}_{\eta}^{\pm})_{\xi,\mu}^{\pi})$ on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$. Taking a sequence of open sets $\Delta_n\subset\Omega$ such that $\bigcap \Delta_n=\Omega_{\infty,\infty}$, one can easily prove that

(11.5)
$$P_{\varphi}(\Omega_{\infty,\infty})\varphi([u_{+}u_{-}I]^{\pi}) = P_{\varphi}(\Omega_{\infty,\infty})\varphi([W^{0}(u_{+}u_{-})]^{\pi}) = 0.$$

Since the operators

$$P_{\varphi}(\Omega_{\infty,\infty})\varphi([u_{\pm}I]^{\pi})$$
, $P_{\varphi}(\Omega_{\infty,\infty})\varphi([W^{0}(u_{\pm})]^{\pi})$, $P_{\varphi}(\Omega_{\infty,\infty})\varphi(U_{g}^{\pi})$ $(g \in G)$ pairwise commute and the operators

$$P_{\varphi}(\Omega_{\infty,\infty})\varphi([u_-W^0(u_+)]^{\pi}), \quad P_{\varphi}(\Omega_{\infty,\infty})\varphi([u_+W^0(u_+)]^{\pi})$$

are projections on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$, we infer from (11.5) that for every $(\xi,\eta)\in M(\mathcal{Z}_{\infty,\infty})$ the coset

$$\begin{split} P_{\varphi}(\Omega_{\infty,\infty})\varphi([((\widetilde{A}_{\eta}^{+})_{\xi,1})^{-1}(u_{-}W^{0}(u_{-})) + ((\widetilde{A}_{\eta}^{+})_{\xi,0})^{-1}(u_{+}W^{0}(u_{-})) \\ &+ ((\widetilde{A}_{\eta}^{-})_{\xi,1})^{-1}(u_{-}W^{0}(u_{+})) + ((\widetilde{A}_{\eta}^{-})_{\xi,0})^{-1}(u_{+}W^{0}(u_{+}))]^{\pi}) + \mathcal{J}_{\xi,\eta} \end{split}$$

is the inverse to the coset (11.4). Finally, applying Lemma 11.2, we obtain the invertibility of the operator $B_{\infty,\infty}$ on the space $P_{\varphi}(\Omega_{\infty,\infty})\mathcal{H}_{\varphi}$.

12. FAITHFUL REPRESENTATION OF THE OUOTIENT C^* -ALGEBRA \mathfrak{B}^{π}

Let *G* be the commutative group of all translations $g_h : x \mapsto x - h$ ($h \in \mathbb{R}$) on \mathbb{R} . Consider the C^* -algebra

$$\mathfrak{B} := \operatorname{alg}(aI, W^0(b), U_g : a, b \in PSO^{\diamond}, g \in G) \subset \mathcal{B}(L^2(\mathbb{R})),$$

generated by all multiplication operators aI ($a \in PSO^{\diamond}$), by the convolutions operators $W^0(b)$ ($b \in PSO^{\diamond}$) and by all shift operators U_g ($g \in G$).

Fix $\tau \in \mathbb{R}$ and consider the sets

$$\Omega_{\tau,\infty} = M_{\tau}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond}), \quad \mathfrak{N}_{\tau,\infty} = \bigcup_{(\xi,\eta) \in \Omega_{\tau,\infty}} \{(\xi,\eta)\} \times \mathfrak{M}_{\xi,\eta}.$$

For each $(\xi, \eta, \mu) \in \mathfrak{N}_{\tau, \infty}$, we introduce the representation

(12.1)
$$\Phi_{\xi,\eta,\mu}:\mathfrak{B}\to\mathcal{B}(l^2(G,\mathbb{C}^2)),\quad B\mapsto \pi_{\xi,\eta,\mu}(B_{\mathbb{R},\infty})$$

given on the generators of the C^* -algebra $\mathfrak B$ according to (9.4)–(9.5) by

$$[\Phi_{\xi,\eta,\mu}(aI)f](g) = \text{diag}\{(a \circ g)(\xi^+), (a \circ g)(\xi^-)\}f(g),$$

(12.2)
$$[\Phi_{\xi,\eta,\mu}(W^{0}(b))f](g) = \begin{bmatrix} b(\eta^{+})\mu + b(\eta^{-})(1-\mu) & [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) \\ [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) & b(\eta^{+})(1-\mu) + b(\eta^{-})\mu \end{bmatrix} f(g),$$

$$[\Phi_{\xi,\eta,\mu}(U_{s})f](g) = f(gs),$$

where $a, b \in PSO^{\diamond}$, $g, s \in G$ and $f \in l^2(G, \mathbb{C}^2)$.

We now consider the sets

$$\Omega_{\infty,\mathbb{R}} = M_{\infty}(SO^{\diamond}) imes igcup_{t \in \mathbb{R}} M_t(SO^{\diamond}), \quad \mathfrak{N}_{\infty,\mathbb{R}} = igcup_{(\xi,\eta) \in \Omega_{\infty,\mathbb{R}}} \{(\xi,\eta)\} imes \mathfrak{M}_{\xi,\eta}.$$

For each $(\xi, \eta, \mu) \in \mathfrak{N}_{\infty, \mathbb{R}}$, we introduce the representation

(12.3)
$$\Phi_{\xi,\eta,\mu}:\mathfrak{B}\to\mathcal{B}(\mathbb{C}^2),\quad B\mapsto\sigma_{\xi,\eta,\mu}(B_{\infty,\mathbb{R}}),$$

given on the generators of the C^* -algebra $\mathfrak B$ according to (10.11)–10.12 by

$$\Phi_{\xi,\eta,\mu}(aI)f = \operatorname{diag}\{a(\xi^+), a(\xi^-)\}f,$$

(12.4)
$$\Phi_{\xi,\eta,\mu}(W^{0}(b))f = \begin{bmatrix} b(\eta^{+})\mu + b(\eta^{-})(1-\mu) & [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) \\ [b(\eta^{+}) - b(\eta^{-})]\varrho(\mu) & b(\eta^{+})(1-\mu) + b(\eta^{-})\mu \end{bmatrix} f,$$

$$\Phi_{\xi,\eta,\mu}(U_{g_{h}})f = e^{ih\eta}f,$$

where $a, b \in PSO^{\diamond}$, $g_h \in G$ and $f \in \mathbb{C}^2$.

Finally, combining Theorems 7.2, 9.1, 10.2 and 11.5, we obtain the following Fredholm criterion for the operators B in the C^* -algebra \mathfrak{B} .

THEOREM 12.1. An operator $B \in \mathfrak{B}$ is Fredholm on the space $L^2(\mathbb{R})$ if and only if the following two conditions are satisfied:

(i) for any (equivalently, some) $\tau \in \mathbb{R}$ and all $(\xi, \eta, \mu) \in \mathfrak{N}_{\tau,\infty}$ the operators $\Phi_{\xi,\eta,\mu}(B)$ are invertible on the space $l^2(G,\mathbb{C}^2)$ and

$$\sup_{(\xi,\eta,\mu)\in\mathfrak{N}_{\tau,\infty}}\|(\Phi_{\xi,\eta,\mu}(B))^{-1}\|_{\mathcal{B}(l^2(G,\mathbb{C}^2))}<\infty;$$

(ii) for all $(\xi, \eta, \mu) \in \mathfrak{N}_{\infty, \mathbb{R}}$ the operators $\Phi_{\xi, \eta, \mu}(B)$ are invertible on the space \mathbb{C}^2 and

$$\sup_{(\xi,\eta,\mu)\in\mathfrak{N}_{\omega,\mathbb{R}}}\|(\Phi_{\xi,\eta,\mu}(B))^{-1}\|_{\mathcal{B}(\mathbb{C}^2)}<\infty.$$

Fix $\tau \in \mathbb{R}$ and consider the operator function $\Phi(B)$ defined on $\mathfrak{N}_{\tau,\infty} \cup \mathfrak{N}_{\infty,\mathbb{R}}$ by $(\xi,\eta,\mu) \mapsto \Phi_{\xi,\eta,\mu}(B)$, where the operators $\Phi_{\xi,\eta,\mu}(B)$ are given by (12.1)–(12.4), and equip it with the norm

$$\|\Phi(B)\| = \max \Big\{ \sup_{(\xi,\eta,\mu) \in \mathfrak{N}_{\tau,\infty}} \|\Phi_{\xi,\eta,\mu}(B)\|_{\mathcal{B}(l^2(G,\mathbb{C}^2))}, \sup_{(\xi,\eta,\mu) \in \mathfrak{N}_{\infty,\mathbb{R}}} \|\Phi_{\xi,\eta,\mu}(B)\|_{\mathcal{B}(\mathbb{C}^2)} \Big\}.$$

The operator function $\Phi(B)$ is referred to as the *Fredholm symbol* of an operator $B \in \mathfrak{B}$. Clearly, the set $\Phi(\mathfrak{B}) := \{\Phi(B) : B \in \mathfrak{B}\}$ is a C^* -algebra, and the mapping $\Phi: B \mapsto \Phi(B)$ is a C^* -algebra homomorphism of the C^* -algebra \mathfrak{B} onto the C^* -algebra $\Phi(\mathfrak{B})$ with kernel Ker $\Phi = \mathcal{K}$. Hence $\mathfrak{B}^\pi \cong \Phi(\mathfrak{B})$. Making use of this symbol calculus, Theorem 12.1 can be rewritten in the following form.

THEOREM 12.2. An operator $B \in \mathfrak{B}$ is Fredholm on the space $L^2(\mathbb{R})$ if and only if its Fredholm symbol $\Phi(B)$ is invertible.

Consider the Hilbert space

$$\mathcal{H}_{\mathfrak{B}}:=\Big(igoplus_{(\xi,\eta,\mu)\in\mathfrak{N}_{ au,\infty}}l^2(G,\mathbb{C}^2)\Big)igoplus\Big(igoplus_{(\xi,\eta,\mu)\in\mathfrak{N}_{\infty,\mathbb{R}}}\mathbb{C}^2\Big).$$

THEOREM 12.3. The mapping $\Phi_0: \mathfrak{B}^{\pi} \to \mathcal{B}(\mathcal{H}_{\mathfrak{B}})$ given by

$$B^{\pi} \mapsto \Big(\bigoplus_{(\xi,\eta,\mu) \in \mathfrak{N}_{\tau,\infty}} \Phi_{\xi,\eta,\mu}(B)\Big) \bigoplus \Big(\bigoplus_{(\xi,\eta,\mu) \in \mathfrak{N}_{\infty,\mathbb{R}}} \Phi_{\xi,\eta,\mu}(B)\Big)$$

is a faithful representation of the quotient C^* -algebra \mathfrak{B}^{π} in the space $\mathcal{H}_{\mathfrak{B}}$.

Acknowledgements. The first author was partially supported by the CONACYT Project No. 168104 (México) and by PROMEP (México) via "Proyecto de Redes", and the second author was supported by a postdoctoral grant of PROMEP (México).

REFERENCES

- [1] A.B. ANTONEVICH, *Linear Functional Equations. Operator Approach*, Oper. Theory Adv. Appl., vol. 83, Birkhäuser, Basel 1995; Russian original: University Press, Minsk 1988.
- [2] A. ANTONEVICH, M. BELOUSOV, A. LEBEDEV, Functional Differential Equations: II. C*-Applications. Part 2 Equations with Discontinuous Coefficients and Boundary Value Problems, Pitman Monographs and Surveys in Pure and Appl. Math., vol. 95, Longman Sci. Tech., Harlow 1998.
- [3] A. Antonevich, A. Lebedev, *Functional Differential Equations*: I. *C*-Theory*, Pitman Monographs and Surveys in Pure and Appl. Math., vol. 70, Longman Sci. Tech., Harlow 1994.
- [4] M.A. BASTOS, C.A. FERNANDES, YU.I. KARLOVICH, C*-algebras of integral operators with piecewise slowly oscillating coefficients and shifts acting freely, *Integral Equations Operator Theory* 55(2006), 19–67.
- [5] M.A. BASTOS, C.A. FERNANDES, YU.I. KARLOVICH, Spectral measures in *C**-algebras of singular integral operators with shifts, *J. Funct. Anal.* **242**(2007), 86–126.
- [6] M.A. BASTOS, C.A. FERNANDES, YU.I. KARLOVICH, C*-algebras of singular integral operators with shifts having the same nonempty set of fixed points, *Complex Anal. Oper. Theory* **2**(2008), 241–272.

- [7] M.A. BASTOS, C.A. FERNANDES, Yu.I. KARLOVICH, A nonlocal *C**-algebra of singular integral operators with shifts having periodic points, *Integral Equations Operator Theory* **71**(2011), 509–534.
- [8] M.A. BASTOS, YU.I. KARLOVICH, B. SILBERMANN, Toeplitz operators with symbols generated by slowly oscillating and semi-almost periodic matrix functions, *Proc. London Math. Soc.* 89(2004), 697–737.
- [9] A. BÖTTCHER, YU.I. KARLOVICH, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Progr. Math., vol. 154, Birkhäuser, Basel 1997.
- [10] A. BÖTTCHER, YU.I. KARLOVICH, V.S. RABINOVICH, The method of limit operators for one-dimensional singular integrals with slowly oscillating data, *J. Operator Theory* **43**(2000), 171–198.
- [11] A. BÖTTCHER, YU.I. KARLOVICH, B. SILBERMANN, Singular integral equations with *PQC* coefficients and freely transformed argument, *Math. Nachr.* **166**(1994), 113–133.
- [12] A. BÖTTCHER, YU.I. KARLOVICH, I.M. SPITKOVSKY, The *C**-algebra of singular integral operators with semi-almost periodic coefficients, *J. Funct. Anal.* **204**(2003), 445–484.
- [13] A. BÖTTCHER, B. SILBERMANN, Analysis of Toeplitz Operators, 2nd edn, Springer, Berlin 2006.
- [14] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics. I: C*- and W*-algebras, Symmetry Groups, Decomposition of States, Springer, New York 1979.
- [15] J. DIXMIER, C*-Algebras, North-Holland, Amsterdam 1977.
- [16] I. GOHBERG, N. KRUPNIK, *One-Dimensional Linear Singular Integral Equations*, Vols. 1 and 2, Oper. Theory Adv. Appl., vols. 53–54, Birkhäuser, Basel 1992.
- [17] F.P. GREENLEAF, *Invariant Means on Topological Groups and their Representations*, Van Nostrand-Reinhold, New York 1969.
- [18] YU.I. KARLOVICH, The local-trajectory method of studying invertibility in C*-algebras of operators with discrete groups of shifts, Soviet Math. Dokl. 37(1988), 407–411.
- [19] YU.I. KARLOVICH, *C**-algebras of operators of convolution type with discrete groups of shifts and oscillating coefficients, *Soviet Math. Dokl.* **38**(1989), 301–307.
- [20] Yu.I. KARLOVICH, A local-trajectory method and isomorphism theorems for nonlocal *C**-algebras, in *Modern Operator Theory and Applications*. *The Igor Borisovich Simonenko Anniversary Volume*, Oper. Theory Adv. Appl., vol. 170, Birkhäuser, Basel 2007, pp. 137–166.
- [21] Yu.I. Karlovich, I. Loreto-Hernández, Algebras of convolution type operators with piecewise slowly oscillating data. I: Local and structural study, *Integral Equations Operator Theory* **74**(2012), 377–415.
- [22] YU.I. KARLOVICH, I. LORETO-HERNÁNDEZ, Algebras of convolution type operators with piecewise slowly oscillating data. II: Local spectra and Fredholmness, *Integral Equations Operator Theory* **75**(2013), 49–86.

- [23] Yu.I. KARLOVICH, I. LORETO-HERNÁNDEZ, On convolution type operators with piecewise slowly oscillating data, in *Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. The Vladimir Rabinovich Anniversary Volume*, Oper. Theory Adv. Appl., vol. 228, Birkhäuser/Springer, Basel 2013, pp. 185–207.
- [24] G.J. MURPHY, C*-Algebras and Operator Theory, Academic Press, Boston 1990.
- [25] M.A. NAIMARK, *Normed Algebras*, Wolters-Noordhoff, Groningen, The Netherlands 1972.
- [26] S. ROCH, B. SILBERMANN, Algebras generated by idempotents and the symbol calculus for singular integral operators, *Integral Equations Operator Theory* **11**(1988), 385–419.
- [27] D. SARASON, Toeplitz operators with piecewise quasicontinuous symbols, *Indiana Univ. Math. J.* **26**(1977), 817–838.

YURI KARLOVICH, FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS, CUERNAVACA, 62209, MÉXICO

E-mail address: karlovich@uaem.mx

IVÁN LORETO-HERNÁNDEZ, FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS, CUERNAVACA, 62209, MÉXICO

E-mail address: ilh48eagle@gmail.com

Received November 11, 2013.