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INVARIANT SUBSPACES OF COMPOSITION OPERATORS
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ABSTRACT. The invariant subspace lattices of composition operators acting
on H2, the Hilbert–Hardy space over the unit disc, are characterized in select
cases. The lattice of all spaces left invariant by both a composition operator
and the unilateral shift Mz (the multiplication operator induced by the co-
ordinate function), is shown to be nontrivial and is completely described in
particular cases. Given an analytic selfmap ϕ of the unit disc, we prove that ϕ
has an angular derivative at some point on the unit circle if and only if Cϕ, the
composition operator induced by ϕ, maps certain subspaces in the invariant
subspace lattice of Mz into other such spaces. A similar characterization of the
existence of angular derivatives of ϕ, this time in terms of Aϕ, the Aleksandrov
operator induced by ϕ, is obtained.
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INTRODUCTION

Let H2 denote the Hilbert–Hardy space over the open unit disc U, that is the
space of all analytic functions in U with square summable Maclaurin coefficients.
The space H2 is a Hilbert space if endowed with the norm

‖ f ‖2 =

√√√√+∞

∑
n=0
|cn|2,

where {cn} is the sequence of Maclaurin coefficients of f .
It is well known that ‖ · ‖2 has the alternative description

‖ f ‖2 = sup
0<r<1

√√√√∫
T

| f (ru)|2 dm(u),

where m is the normalized arclength measure on the unit circle T = ∂U.
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For any analytic selfmap ϕ of U, the linear operator

Cϕ f = f ◦ ϕ f ∈ H2,

is necessarily bounded. It is called the composition operator with symbol ϕ (or in-
duced by ϕ). The term invariant subspace of an operator T means closed, linear
manifold, left invariant by T. As is well known, the collection Lat T of all these
subspaces, is a lattice (which is why the notation Lat T is used). We call a part of
an operator T, its restriction to an invariant subspace. A subspace left invariant
by both T and its adjoint T∗ is called a reducing subspace of T. The restriction of an
operator T to a reducing subspace is designated by the term reduced part of T.

In this paper, we take up the problem of describing (up to an order preserv-
ing isomorphism), the invariant subspace lattice Lat Cϕ of Cϕ, for various classes
of analytic selfmaps ϕ of U. The symbol ≈ is used to designate order isomorphic
lattices. In the trivial case when ϕ is the coordinate selfmap of U, Lat Cϕ consists
of all closed, linear subspaces of H2 (since Cϕ is the identity operator), a fact we
denote by writing Lat Cϕ = Sub(H2). The notation Sub(H2) for the lattice of all
closed linear subspaces of H2 will be used again in the sequel.

For each M > 1 and each ω ∈ T, the boundary approach region of index M
having vertex at ω is the set

(0.1) ΓM(ω) =
{

z ∈ U :
|ω− z|
1− |z| < M

}
M > 1.

An analytic selfmap ϕ of U has an angular derivative at a boundary point
ω ∈ T if there is some η ∈ T and some c ∈ C, so that, for each M > 1,

η − ϕ(z)
ω− z

→ c as z→ ω inside ΓM(ω).

In that case, the value c is called the angular derivative of ϕ at ω, and we
denote c = ϕ′(ω). Clearly η is the angular limit of ϕ at ω, i.e. the limit of ϕ(z) as
z→ ω inside each region ΓM(ω).

The following necessary and sufficient conditions for the existence of an
angular derivative are known as:

THEOREM 0.1 (The Julia–Carathéodory theorem). Given an analytic selfmap
ϕ of U and a pair ω, η of unimodular numbers, ϕ has an angular derivative at ω if and
only if any of the following two conditions holds:

β = sup
{ |η − ϕ(z)|2

1− |ϕ(z)|2 /
|ω− z|2
1− |z|2 : z ∈ U

}
< +∞,(0.2)

lim inf
z→ω

1− |ϕ(z)|
1− |z| < +∞.(0.3)
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The connection between the quantities in (0.2), (0.3), and the angular derivative
ϕ′(ω) is

(0.4) |ϕ′(ω)| = β = lim inf
z→ω

1− |ϕ(z)|
1− |z|

and η is the angular limit of ϕ at ω.

As is well known, the disc automorphisms fixing a single point p ∈ U are
called elliptic. An analytic selfmap ϕ of U, other than the identity, can have at
most a fixed point in U. This fact is a consequence of the well known Denjoy–
Wolff theorem:

THEOREM 0.2 (Denjoy–Wolff). Let ϕ be an analytic selfmap of U other than
the identity or an elliptic disc automorphism. Then the sequence {ϕ[n]} of iterates of
ϕ converges uniformly on compacts to a constant function ω ∈ U called the Denjoy–
Wolff point of ϕ. When |ω| = 1, the point ω is a boundary fixed point of ϕ, that is
lim

r→1−
ϕ(rω) = ω, namely the only boundary fixed point of ϕ where the angular deriva-

tive ϕ′(ω), satisfies the inequality ϕ′(ω) 6 1.

If |ω| = 1, the maps ϕ with property ϕ′(ω) = 1 are called maps of parabolic
type, whereas those satisfying ϕ′(ω) < 1 are called maps of hyperbolic type. The
terminology is evidently inspired by the properties of the conformal disc auto-
morphisms. As is well known, the invertible composition operators are exactly
those induced by disc automorphisms, for which reason they will be designated
by the term automorphic composition operators.

The interest in understanding the invariant subspace lattices of composition
operators increased considerably after the publication of [15], a paper where it is
proved that the existence of Hilbert space operators with trivial invariant sub-
space lattices acting on complex, separable, infinite-dimensional spaces is equiv-
alent to the existence of an infinite-dimensional atom in the invariant subspace
lattice of an arbitrary, fixed, composition operator induced by a hyperbolic disc
automorphism (e.g. C(2z+1)/(z+2)). Producing an example of such an atom or
showing that all atoms in the invariant subspace lattice of a hyperbolic, automor-
phic, composition operator are 1-dimensional, would solve the so called invariant
subspace problem.

The maps of parabolic type are classified into two categories, based on the
behavior of their orbits. More exactly, recall that, in the statement of the Denjoy–
Wolff theorem, ϕ[n] denoted the n-fold iterate of ϕ, that is, ϕ[n] = ϕ ◦ · · · ◦ ϕ, n
times. By ϕ[0] we denote the coordinate function. With this notation, given any
z ∈ U, we introduce the orbit Oϕ(z) of z under ϕ as follows:

(0.5) Oϕ(z) := {ϕ[n](z) : n = 0, 1, 2, . . . }.
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The maps of parabolic type are called maps of parabolic automorphic type if all
their orbits are pseudo-hyperbolically separated, respectively maps of parabolic non-
automorphic type, if all orbits are not pseudo-hyperbolically separated. For more
details on this classification, the reader is referred to [3].

It is well known that a composition operators Cϕ is a contraction if and
only if ϕ(0) = 0. On the other hand, composition operators whose symbol ϕ
fixes a point p ∈ U are similar to a contraction and are therefore power-bounded
operators (a fact we will use in our arguments). Indeed, one can consider the self-
inverse disc automorphism αp(z) = (p− z)/(1− pz), inducing the (necessarily
selfinverse) composition operator Cαp , and the useful operator similarity

(0.6) Cαp CϕCαp = Cψ

where

(0.7) ψ = αp ◦ ϕ ◦ αp.

Visibly, ψ is an analytic selfmap fixing the origin. Thus, when studying the in-
variant subspace lattice of a composition operator induced by a symbol ϕ fixing
a point p ∈ U, that lattice is order isomorphic via (0.6) to Lat Cψ (since similar
operators have order isomorphic invariant subspace lattices). If the symbols ϕ
and ψ satisfy (0.7) we say they are conformally conjugated to each other. Inner func-

tions are analytic selfmaps ϕ of U with the property
∣∣∣ lim

r→1−
ϕ(reiθ)

∣∣∣ = 1 a.e., where

the term almost everywhere is used with respect to the arclength measure. It is
well known that inner functions come in essentially two flavors [6]. The first is
Blaschke products, that is products of finitely many (possibly repeated) disc auto-
morphisms or infinte products of the form

B(z) = λzp
∞

∏
k=1

|zk|
zk

zk − z
1− zkz

z ∈ U,

where {zk} is a sequence of nonzero numbers in U with property

(0.8)
∞

∑
k=1

(1− |zk|) < ∞,

|λ| = 1, and p is a nonnegative integer. Condition (0.8) is necessary for the con-
vergence of the infinite product B.

The other basic type of inner function is a singular inner function that is, a
function of the form

Sµ(z) = λe−
∫
T

u+z
u−z dµ(u) z ∈ U,

where µ is a finite, nonnegative, Borel measure on T, singular with respect to m,
and |λ| = 1. Clearly, point masses concentrated at points of T are Borel measures
on T, singular with respect to m. Throughout this paper, given ω ∈ T, the unit
point mass concentrated at ω will be denoted δω.
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As the reader could note so far, the current section is dedicated to introduc-
ing the main concepts and setting up the notation. We continue by describing the
results obtained in the next sections.

In the first part of Section 1 (the next section), we characterize the invariant
subspace lattices of composition operators induced by inner functions ϕ fixing a
point as follows (Theorem 1.2): Lat Cϕ ≈ {0,C}×Lat S provided that ϕ is not the
identity or an elliptic disc automorphism. By C we denote the space of constant
functions, whereas S is a unilateral forward shift of infinite multiplicity.

Recall that a unilateral forward shift is a Hilbert space isometry S acting on
some complex, separable, infinite dimensional space H, with the property S∗n →
0 pointwise on H. If S is a unilateral forward shift, then the Hilbert dimension
dim(H	 SH) of the subspace H	 SH (called the wandering subspace of S) is called
the multiplicity of S. It is well known that unilateral forward shifts of equal mul-
tiplicities are unitarily equivalent. Unilateral forward shifts have invariant sub-
space lattices with a well known description ([16], Section 3.5). In the particular
case of unilateral forward shifts of multiplicity 1 (which must be unitarily equiv-
alent with Mz the multiplication operator on H2 with symbol z, the coordinate
function), that description has the following beautiful and easy to understand
form (due to A. Beurling [2]):

(0.9) Lat (Mz) = {0} ∪ {uH2 : u any inner function}.

Let ϕ be an elliptic automorphism. If ϕ is conformally conjugated to a rota-
tion by a primitive root of unity of order n, then Lat Cϕ ≈ SubH2 × · · · × SubH2.
If ϕ is not conformally conjugated to a rotation by a primitive root of unity, then
Lat Cϕ ≈ P(N) where P(N) is the lattice of all parts of N, the set of nonnegative
integers (Proposition 1.4).

The second part of Section 1 contains results on the invariant subspace lat-
tices of some particular composition operators whose non-inner symbols fix a
point. If Cϕ is induced by some ϕ conformally conjugated to a map of type
ψ(z) = λz, 0 < |λ| < 1, one still has that Lat Cϕ ≈ P(N) (Proposition 1.6),
but if ϕ is conformally conjugated to a map of type ψ(z) = λzk, 0 < |λ| < 1,
k > 2, then Lat Cϕ has a more complicated structure involving many reducing
subspaces of Cψ. We are able to completely characterize the invariant subspace
lattices of those reduced parts of Cψ (Proposition 1.12).

Section 2 contains results on the lattice Lat Cϕ∩Lat Mz. We show that lat-
tice is always nontrivial (Remark 2.16). The lattice Lat Cϕ∩Lat Mz is completely
characterized in the case when ϕ is an elliptic automorphism (Proposition 2.9
and Corollaries 1.7 and 2.10). Results proved in [8] for the case of composition
operators induced by inner functions are easily generalized to the case of arbi-
trary composition operators. The Julia–Carathéodory theorem for some symbol
ϕ is shown to be equivalent to the fact that the associated composition operator
Cϕ maps select subspaces in Lat Mz into similar subspaces (Theorem 2.11), re-
spectively to properties of the “composition operator on the space of measures”,
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an operator we introduce and call the Aleksandrov operator of symbol ϕ (Theo-
rem 2.13).

1. SYMBOLS FIXING A POINT IN U

1.1. INNER SYMBOLS. Recall that the space H2 is a reproducing kernel Hilbert
space (RKHS) (that is a Hilbert space consisting of functions where point eval-
uations are bounded linear functionals), and hence, a sequence in H2 is weakly
convergent if and only if it is norm-bounded and pointwise convergent (a rather
well known fact).

The subspaces in Lat Cϕ are even weakly closed. Indeed, convex norm-
closed subsets of Hilbert spaces are weakly closed ([18], Theorem 3.12).

In [14], the fact that the only isometric composition operators on H2 are
those induced by inner functions fixing the origin is proved.

Composition isometries are nonunitary in most cases with the only excep-
tion of symbols of the form ϕ(z) = λz, |λ| = 1. The author of [14] finds the
Wold decomposition of those that are nonunitary showing it has the form C⊕ H2

0 ,
where H2

0 = zH2. As we will show below, this fact combines with some simple
observations and the well known description of the invariant subspace lattice of
a unilateral forward shift into describing the invariant subspace lattice of nonuni-
tary composition isometries.

Some explanations are necessary here. Any Hilbert space isometry V acting
on a separable, infinite-dimensional space H, possesses an associated direct sum
decomposition H = H0 ⊕ H1 (called the Wold decomposition of V), where H0
and H1 are reducing subspaces of V and the restrictions V|H0 and V|H1 are a
unitary operator, respectively a unilateral forward shift.

If ϕ is inner, not a rotation or the identity, and ϕ(0) = 0, then it is easy to
prove that the unilateral forward shift S = Cϕ|H2

0 has infinite multiplicity, ([5],
Lemma 3).

A simple but important consequence of the Denjoy–Wolff theorem and the
fact that composition operators induced by symbols fixing a point are power
bounded, is the following result, which we present with a very short proof for
the sake of completeness.

PROPOSITION 1.1 ([9], Theorem 4.10). If ϕ fixes a point p ∈ U and is not the
identity or an elliptic automorphism then, for each L ∈ Lat Cϕ, either C ⊆ L or L ⊆
αp H2.

Proof. Consider u ∈ H2. The sequence {u ◦ ϕ[n]} tends to u(p) pointwise
and hence weakly in H2 (since that sequence is norm-bounded). If a single func-
tion u ∈ L has the property u(p) 6= 0, then u(p), the weak limit of the sequence
{Cn

ϕu = u ◦ ϕ[n]}, belongs to L, that is C ⊆ L. Otherwise, all functions in L are
null at p, that is L ⊆ αp H2.
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An immediate application of Proposition 1.1 is characterizing, up to an or-
der isomorphism, the invariant subspace lattice of noninvertible, composition op-
erators, induced by inner functions fixing a point p ∈ U.

THEOREM 1.2. If ϕ is inner, not an elliptic automorphism or the identity, and
ϕ(p) = p, for some p ∈ U, then

(1.1) Lat Cϕ ≈ {0,C} × Lat S,

where S is a unilateral forward shift of infinite multiplicity.

Proof. Indeed, if p = 0, L ∈ Lat Cϕ and C * L thenL ⊆ H2
0 henceL ∈ Lat S.

On the other hand, if C ⊆ L, it is easy to see that L	C ∈ Lat Cϕ|H2
0 . By (0.6), the

proof is over.

Any composition operator Cϕ leaves invariant the subspace of constant func-
tions, given the evident equality Cϕ1 = 1 (where the function constantly equal to
1 is also denoted by 1). In some cases, C is the only nonzero, finite-dimensional
invariant subspace.

PROPOSITION 1.3. The only nonzero, finite-dimensional, invariant subspace of a
composition operator induced by an inner selfmap ϕ (other than the identity or an elliptic
automorphism), that fixes a point p ∈ U is C.

Proof. Indeed, it is well known that a unilateral forward shift has no eigen-
vectors. Given (1.1), this proves our claim.

Proposition 1.3 extends (in the case of inner symbols), ([9], Proposition 4.7)
where the fact that C is the only nonzero finite-dimensional invariant subspace of
Cϕ is proved for the case of any ϕ, fixing a point p ∈ U and satisfying ϕ′(p) = 0.

PROPOSITION 1.4. If ϕ is an elliptic disc automorphism fixing p ∈ U and ψ(z),
given by (0.7), has the form ψ(z) = λz where λ is a primitive root of unity of order n > 1
then

Lat Cϕ ≈ SubH2 × · · · × SubH2.

The cartesian product above has n factors. If λ is not a root of unity, then

Lat Cϕ ≈ P(N)

where P(N) is the lattice of all parts of the set of nonnegative integers N.

Proof. Indeed, if λ is a primitive root of unity of order n > 1, Lat Cϕ ≈
Lat Cλz and Cλz is a diagonal operator whose diagonal repeats infinitely many
times the finite sequence 1, λ, λ2, . . . , λn−1, hence this operator has n infinite-
dimensional reducing subspaces H0, . . . , Hn−1 so that H2 = H0⊕ · · · ⊕ Hn−1 and
Cλz = IH0 ⊕ λIH1 ⊕ λ2 IH2 ⊕ · · · ⊕ λn−1 IHn−1 (where IHk is the identity operator
acting on Hk, k = 0, 1, . . . , n− 1).

If λ is not a root of 1, Cϕ is still similar to Cλz, but this time, Cλz is a diag-
onal operator whose diagonal entries {1, λ, λ2, λ3, . . . } are distinct, form a dense
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subset of T, and are associated to the eigenvectors zn, n = 0, 1, 2, . . . which form
a complete, orthonormal basis of H2. Thus, those eigenvalues lie on a Jordan
curve and so, by Theorem 3 of [22] spectral synthesis holds for Cλz, that is Lat Cλz
consists of the closed subspaces spanned by the eigenvectors of Cλz. Thus Lat Cϕ

consists of the subspaces

Cαp Span({zn : n ∈ E}) E ⊆ {0, 1, 2, . . . },

with the agreement of setting Span({zn : n ∈ E}) = 0 if E = ∅.

It is easy to observe that, if ϕ is an elliptic disc automorphism fixing p ∈ U,
then ψ(z) given by (0.7) necessarily has the form ψ(z) = λz where |λ| = 1 so,
Proposition 1.4 takes care of the description of the invariant subspace lattice of el-
liptic automorphic composition operators, thus completing our discussion about
invaraiant subspace lattices of composition operators induced by inner functions
with a fixed point.

As an immediate application we obtain the following extension of Theo-
rem 2 in [8].

COROLLARY 1.5. If ϕ fixes a point p ∈ U and is not the identity or an elliptic
automorphism, then Lat Cϕ cannot contain spaces of the form Sµ H2 where Sµ is a non-
constant, singular, inner function. If ϕ, not the identity, is an elliptic automorphism
conjugated to some ψ(z) = λz via (0.7), then Lat Mz ∩ Lat Cϕ contains nontrivial
subspaces of form SµH2 only if λ is a root of unity.

Indeed, assume ϕ fixes a point p ∈ U and is not the identity or an elliptic
automorphism. A space of form SµH2 where Sµ is a nonconstant, singular, inner
function is not contained in spaces of form αpH2 because Sµ is a zero-free func-
tion and SµH2 cannot contain the space of constant functions either. By Proposi-
tion 1.1, Lat Mz∩Lat Cϕ cannot contain nontrivial subspaces of form SµH2.

For the case when ϕ is conformally conjugated to an elliptic automorphism
via (0.7), we note that spaces of type SµH2 where Sµ is a nonconstant, singular,
inner function, belong to Lat Cϕ if and only if similar spaces belong to Lat Cψ.
If ψ(z) = λz and λ is not a root of 1, that fact is impossible, because it would
mean that SµH2 = Span{zk : k ∈ E} for some subset E of the nonnegative inte-
gers, which is contradictory, given that SµH2 does not contain nonzero constant
functions and Sµ is a zero-free function.

Given λ a primitive root of unity of order n > 1, nontrivial, singular mea-
sures µ so that SµH2 is invariant under Cλz obviously exist; take for instance
n−1
∑

k=0
δλk . Thus, the same is valid for any elliptic automorphism conjugated to some

λz via (0.7).

1.2. SOME NON-INNER SYMBOLS. The following is a class of very particular non-
inner symbols with a fixed point, for which, we are able to describe the invariant
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subspace lattice of the induced composition operator. It should be noted that
each such symbol ϕ has property ‖ϕ‖∞ < 1 (where ‖ · ‖∞ denotes the supremum
norm), and hence, Cϕ is compact.

PROPOSITION 1.6. If ϕ fixes p ∈ U and αp ◦ ϕ ◦ αp(z) = λz, z ∈ U, for some
constant λ, |λ| < 1, then

(1.2) Lat Cϕ = {0,C} × αp SubH2,

if λ = 0 (i.e. if ϕ is constant), respectively

(1.3) Lat Cϕ ≈ P(N) if λ 6= 0.

Proof. If λ = 0, then Cϕ is similar to C0, the orthogonal projection onto C
and one easily gets that

(1.4) Lat C0 = {0,C} × SubH2
0 .

Therefore Lat Cϕ has description (1.2).
If λ 6= 0, then Cϕ is similar to Cλz a nonzero diagonal operator whose diag-

onal entries {λn} are distinct and tend to 0. Such operators are known to have
invariant subspace lattices order isomorphic to P(N), ([16], Section 4.3). Actually,

Lat Cϕ = {0} ∪ {{Span{αk
p : k ∈ E} : E ⊆ N}.

Here is an immediate consequence (see also Corollary 1 of [8]):

COROLLARY 1.7. If ϕ fixes p ∈ U and αp ◦ ϕ ◦ αp(z) = λz, z ∈ U, for some
constant λ, |λ| 6 1, other than a root of unity, then the only nontrivial subspaces in
Lat Cϕ ∩ Lat Mz are those of the form αn

p H2, n = 1, 2, 3, . . .

Indeed, assume that Span{αk
p : k ∈ E} = uH2 for some nonconstant, inner

u and some E ⊆ N, and note that the equality is equivalent to

Span{zk : k ∈ E} = u ◦ αp H2

because Cαp is selfinverse, which combines with (0.9) into showing that u ◦ αp =
zn where n is the least element of E, and so, E consists of all integers larger than
or equal to n. We deduce that u = αn

p.
Next we turn to the lattice of finite-dimensional invariant subspaces. Those

subspaces, if not null, are clearly generated by eigenvectors. Thus we begin by
recalling:

THEOREM 1.8 (Koenigs’s theorem). Let ϕ be a non-automorphic, analytic self-
map of U fixing p ∈ U. If ϕ′(p) 6= 0 then there is a nonzero function σ which satisfies
equation

(1.5) Cϕσ = λσ

for λ = ϕ′(p). Consequently, for all n = 1, 2, 3, . . . , the functions σn satisfy the same

equation for λ = (ϕ′(p))n, respectively. The eigenspaces of
∼
Cϕ corresponding to the
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eigenvalues above are all 1-dimensional, where
∼
Cϕ is the composition operator induced

by ϕ on the space of all holomorphic functions.

Under the assumptions in Theorem 1.8, the remarkable function σ, with
property σ′(p) = 1 is called the Koenigs function of Cϕ. On the other hand, it
is an exercise of basic complex analysis proving that the only complex numbers
that can be eigenvalues of Cϕ are 0, 1, ϕ′(p), (ϕ′(p))2, . . . and so ϕ′(p) is an eigen-
value of Cϕ if and only if σ ∈ H2, which is not always the case. However, it is
well known that: σn ∈ H2 n = 1, 2, . . . , if Cϕ is a compact operator. Recall the
following theorem of Joel Shapiro:

THEOREM 1.9 ([19] or [10]). If ϕ fixes 0 ∈ U and is not an inner function, then

‖Cϕ|H2
0‖ < 1.

We leave to the reader the easy job of checking that C is a reducing subspace
of Cϕ if ϕ(0) = 0. Thus, the eigenspace associated to the eigenvalue 1 is C and,
since a composition operator induced by a non-constant map is injective, one
gets:

REMARK 1.10. If ϕ, a non-constant map, fixes p ∈ U, is not an inner func-
tion, and ϕ′(p) = 0, then the lattice of finite-dimensional invariant subspaces of
Cϕ is {0,C}. If ϕ′(p) 6= 0 and Cϕ is compact, then the same lattice consists of the
subspaces

(1.6) Span({σn : n ∈ E})

where E is any finite subset of N. Hence {Span({σn : n ∈ E}) : E ⊆ N} ⊆ Lat Cϕ.

This remark combines with Proposition 1.3 into establishing ([9], Proposi-
tion 4.7) and raising the problem of describing the full invariant subspace lattice
(not just the one of finite-dimensional subspaces), for compact composition op-
erators, a class of operators induced by non-inner maps with a fixed point in
U. Note that in Proposition 1.6 this job is done in the case of composition op-
erators similar to diagonalizable compact operators, showing that, in that case,
{Span({σn : n ∈ E}) : E ⊆ N} = Lat Cϕ. Indeed, for the composition operators
in Proposition 1.6, one can easily see that σ = αp.

REMARK 1.11. Another consequence of Theorem 1.9 is the fact that, if ϕ(0) =
0 and ϕ is not inner, then

Lat Cϕ = {0,C} ⊕ Lat (Cϕ|H2
0) ≈ {0,C} × Lat (Cϕ|H2

0)

that is, the invariant subspace lattice of the direct sum Cϕ = (Cϕ|C)⊕ (Cϕ|H2
0),

splits.

Indeed, for a Hilbert space operator A, let η(A) denote the full spectrum
of A, that is the union of σ(A), the spectrum of A, and the bounded connected
components of C \ σ(A). Note that η(Cϕ|C) ∩ η(Cϕ|H2

0) = ∅, by Theorem 1.9,
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and so Lat Cϕ = Lat ((Cϕ|C)⊕ (Cϕ|H2
0)), splits ([16], Theorem 4.16). On the other

hand, Cϕ|C is the identity operator acting on C.
We will consider now operators Cϕ similar via (0.6) to Cψ where ψ(z) = λzk,

k > 2, 0 < |λ| < 1. Let us denote Mk := {kn : n ∈ N} the set consisting of
the nonnegative, integral powers of k and by Nk the subset of N consisting of
numbers that are not divisible by k. Then {mMk : m ∈ Nk} is a partition of
N∗ = N \ {0}.

Recall that, if H is a complex, separable, infinite-dimensional Hilbert space,
{en : n ∈ N} an orthonormal basis of H, and {wn} a bounded sequence of com-
plex numbers, the bounded, linear operator T uniquely determined by the rela-
tions

Ten = wnen+1 n ∈ N
is called the unilateral forward weighted shift with weight sequence {wn} acting
on H.

PROPOSITION 1.12. Let ψ(z) = λzk, k > 2, 0 < |λ| < 1. Then Lm :=
Span({zn : n ∈ mMk}), m ∈ Nk form a family of mutually orthogonal reducing sub-
spaces of Cψ|H2

0 ,

(1.7) Cψ|H2
0 = ∑

m∈Nk

⊕(Cψ|Lm),

the invariant subspace lattices of the reduced parts Cψ|Lm of Cψ are given by

(1.8) Lat (Cψ|Lm) = {Span({zi : i = mkn, n > N}) : N ∈ N} ∪ {0},

and the reducing subspaces of Cψ are those of the following form

(1.9) S⊕ ∑
m∈Nk , Sm∈{0,Lm}

⊕Sm S ∈ {0,C}.

Proof. By the evident relation zmkn ◦ ψ = λmkn
zmkn+1

, Cψ leaves Lm and
H2 	 Lm invariant, for all m ∈ Nk. Furthermore, it is visible that Cψ|Lm is uni-
tarily equivalent to a unilateral forward weighted shift having weight sequence
{λmkn}, and hence to a forward weighted shift having weight sequence {|λmkn |}
([21], pp. 51). This last sequence of weights is decreasing and summable so, ac-
cording to [13], the associated weighted shift is unicellular (that is, it is an op-
erator with totally ordered invariant subspace lattice), and so, its invariant sub-
space lattice consists of the spaces of vectors having the first n Fourier coefficients
null, n = 1, 2, 3, . . . , the null space, and the whole space, which proves (1.8). It
is obvious that subspaces of the form (1.9) reduce Cψ. On the other hand, if a

subspace reduces Cψ then it reduces
√

C∗ψCψ and hence it must be of the form

Span{zn : n ∈ E}, for some E ⊆ N, because
√

C∗ψCψ is a diagonalizable compact

operator. Clearly, if mknm ∈ E, for some m ∈ Nk and some positive integer nm,
then the fact that the given subspace is left invariant by Cψ implies that mkn ∈ E
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for all n > nm. Let n0 be the least nonnegative integer with property mkn0 ∈ E. If
n0 6= 0, then the subspace under consideration is not left invariant by C∗ψ. There-
fore, that subspace must have the form (1.9).

Description (1.9) can be obtained as a particular case of Theorem 3 in [7].
Instead of just citing that result, we chose to write the proof above due to its sim-
plicity, but also for the sake of completeness and the extra information contained
by (1.8).

Clearly, under the assumptions in Proposition 1.12, the following are invari-
ant subspaces of Cψ:

(1.10) S⊕ ∑
m∈Nk ,Sm∈Lat (Cψ |Lm)

⊕Sm S ∈ {0,C}.

It is tempting to assume these are all the invariant subspaces of Cψ. Unfor-
tunately, the assumption is false:

EXAMPLE 1.13. The invariant subspace lattice Lat Cψ contains subspaces
which are not of form (1.10). For instance, consider

f (z) = ∑
j∈Nk

zj

j
z ∈ U,

and denote by L, the 1-dimensional subspace spanned by f . Then H2 	 L is in
Lat Cψ, but does not have the form (1.10).

Indeed, by our considerations C∗ψ f = 0, hence H2 	 L is in Lat Cψ, but the
only finite-codimensional subspaces of form (1.10) are those whose orthocom-
plements are spanned by finitely many monomials zj. Those orthocomplements
cannot contain f and hence are different from L.

2. THE LATTICE Lat Mz∩Lat Cϕ

2.1. THE FIRST APPROACH. We say that the orbit Oϕ(z) is Blaschke summable if

(2.1) ∑
w∈Oϕ(z)

(1− |w|) < +∞.

Visibly, this terminology comes from the well known convergence condition for
Blaschke products (0.8).

One of the main questions raised in [8], was when the lattice Lat Mz∩Lat Cϕ

is nontrivial. We obtained already some extensions of the results in that paper as
Corollaries 1.5 and 1.7. The extensions consisted of noting that results stated in
[8] as valid for inner symbols ϕ, are actually true for arbitrary symbols. The same
is true for the following:
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THEOREM 2.1 ([8], Theorem 1). If ϕ is an inner function, then Lat Mz∩Lat Cϕ

contains spaces of the form BH2 with B a nonconstant Blaschke product, if and only if ϕ
has at least a Blaschke summable orbit.

It is elementary to note that:

REMARK 2.2. The statement in the theorem above is valid for arbitrary sym-
bols, not just for the inner ones.

Indeed, if Oϕ(z) is Blaschke summable, let B denote the Blaschke product
having zeros the elements of Oϕ(z), all being simple zeros. Then clearly B ◦ ϕ is
null on Oϕ(z), that is CϕBH2 ⊆ BH2. Conversely, if CϕBH2 ⊆ BH2 and B is a
nonconstant Blaschke product then, if z is a zero of B, so is ϕ(z), the consequence
being that all elements of Oϕ(z) are zeros of the convergent Blaschke product B,
hence ϕ has at least a Blaschke summable orbit.

Therefore, it is interesting to know when analytic selfmaps of U possess
Blaschke summable orbits. If ϕ(p) = p for some p ∈ U, then Oϕ(p) is a singleton
hence Blaschke summable. In that case, one obviously has

(2.2) Cϕ(α
n
p H2) ⊆ αn

p H2 n = 1, 2, . . . .

As noted in Corollaries 1.5 and 1.7, sometimes these are the only nontrivial sub-
spaces in Lat Mz∩Lat Cϕ and, if ϕ, not a disc automorphism or the identity, fixes
a point in U, then the lattice Lat Mz∩Lat Cϕ will not contain nontrivial subspaces
of the form SµH2, where Sµ is a singular inner function.

If ϕ is an inner function of either hyperbolic or parabolic automorphic type,
then it has been recently shown [11], that Cϕ has nonconstant, singular inner
invariant functions. On the other hand, it has been proved in Theorem 4.4 of [3]
that

(2.3)
∞

∑
n=0

(1− |ϕ[n](0)|) < ∞

if ϕ is an analytic selfmap of hyperbolic or parabolic automorphic type.
Thus, to review, the previous coinsiderations proved the following:

REMARK 2.3. The lattice Lat Mz∩Lat Cϕ is nontrivial if

ϕ(p) = p for some p ∈ U, respectively if(2.4)

ϕ is a function of either hyperbolic or parabolic automorphic type.(2.5)

If (2.5) holds and ϕ is an inner function, not a conformal automorphism, then
Lat Mz∩Lat Cϕ contains spaces of the form uH2 where u can be a nonconstant
Blaschke product, a nonconstant singular inner function, or a product of such
factors.

This raises the question if Lat Cϕ∩Lat Mz is always nontrivial. The answer
is affirmative and we obtain it as Remark 2.16, in Subsection 2.3.
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We turn now to the Blaschke summability of orbits and want to observe that
it holds for all orbits in certain cases. More exactly:

LEMMA 2.4. Let ϕ be an analytic selfmap of U and p ∈ U. Denote ψ = αp ◦ ϕ ◦
αp. The orbit of p under ϕ is Blaschke summable, if and only if, the orbit of 0 under ψ is
Blaschke summable.

Proof. First note that ψ[n] = αp ◦ ϕ[n] ◦ αp, n = 1, 2, 3, . . . . Next recall that

1− |αp(z)|2 =
(1− |p|2)(1− |z|2)

|1− pz|2 p, z ∈ U,

for which reason, one can write

1− |ψ[n](0)|2 =
(1− |p|2)(1− |ϕ[n](p)|2)

|1− pϕ[n](p)|2
n = 1, 2, 3, . . . .

So, it readily follows that

1−|p|2
4

(1−|ϕ[n](p)|2)61−|ψ[n](0)|26 1+|p|
1−|p| (1−|ϕ

[n](p)|2) n=1, 2, 3, . . . .

Also:

LEMMA 2.5. Let ϕ be an analytic selfmap of U (not the identity or an elliptic
automorphism), and p ∈ U. Denote ψ = αp ◦ ϕ ◦ αp. Then exactly one of the following
holds:

(i) ϕ and ψ are maps with a fixed point in U,
(ii) ϕ and ψ are maps of hyperbolic type,

(iii) ϕ and ψ are maps of parabolic automorphic type,
(iv) ϕ and ψ are maps of parabolic non-automorphic type.

Proof. Given that ψ[n] = αp ◦ ϕ[n] ◦ αp , n = 1, 2, 3, . . . , an application of the
Denjoy–Wolff theorem leads to the conclusion that η = αp(ω), where ω and η
are the Denjoy–Wolff points of ϕ and ψ respectively. Thus |ω| < 1 if and only
if |η| < 1. Given that αp is selfinverse, one obtains that α′p(ω)α′p(η) = 1, which
leads to ψ′(η) = α′p(ω)ϕ′(ω)α′p(η) = ϕ′(ω).

This means that ϕ and ψ are simultaneously maps with a fixed point in U,
maps of hyperbolic, respectively of parabolic type. We still need to prove that ϕ
and ψ, if of parabolic type, simultaneously have pseudohyperbolically separated,
respectively nonseparated orbits. This is an immediate consequence of a well
known property of the pseudohyperbolic distance ρ(z, w) = |αw(z)| z, w ∈ U,
namely:

ρ(αp(z), αp(w)) = ρ(z, w) p, z, w ∈ U.

The consequence of the two lemmas above and Theorem 4.4 of [3] is:

PROPOSITION 2.6. If ϕ is an analytic selfmap of U of hyperbolic type, or of para-
bolic automorphic type, then all the orbits under ϕ are Blaschke summable.
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Proof. If ϕ is such a map, then, for all p ∈ U, the map ψ = αp ◦ ϕ ◦ αp is a
map of the same type and hence, the orbit of 0 under ψ is Blaschke summable by
Theorem 4.4 of [3], that is the orbit of p under ϕ is Blaschke summable.

Very little is known about composition operators induced by maps of par-
abolic non-automorphic type. One of the most studied classes of such maps is a
rather particular class of linear fractional selfmaps of U, namely those of the form

(2.6) ϕa(z) =
(2− a)z + a
−az + 2 + a

Re a > 0.

Recently, Lat Cϕa was characterized [12]:

THEOREM 2.7. Lat Cϕa = {Span{e−p 1+z
1−z : p ∈ F} : F ∈ CP([0,+∞))}, where

CP([0,+∞)) is the lattice of closed parts of [0, ∞).

An immediate consequence is:

COROLLARY 2.8. The maps (2.6) have Blaschke non-summable orbits.

The lattice Lat Cϕ ∩Lat Mz is easy to describe completely when ϕ is an el-
liptic disc automorphism conformally conjugated to a rotation by a root of unity.
The details are:

PROPOSITION 2.9. If λ 6= 1 is a primitive root of unity of order n > 1, then
uH2 ∈ Lat Cλz if and only if u = BSµ where B is a Blaschke product whose set of zeros
is a union of orbits under the map λz, the order of all zeros belonging to the same orbit
being the same, whereas µ is a singular measure invariant under the rotation λz.

Proof. If u = BSµ where B is a Blaschke product and Sµ a singular inner
function, it is easy to see that CλzuH2 ⊆ uH2 if and only if u divides u(λz) (in the
sense of inner functions division). Observe that αp ◦ λz = λαλp, p ∈ U. Thus, if
Z(B) denotes the set of zeros of the Blaschke product B, one must have

Z(B) ⊆ λZ(B) ⊆ λ2Z(B) ⊆ · · · ⊆ λnZ(B) = Z(B)

in order that B(λz) be divisible by B. Hence, Z(B) must be a union of distinct
orbits of the map λz, the order of zeros belonging to the same orbit being the
same.

Similarly, for singular inner functions, one has that

Sµ(λz) = e−
∫
T

u+λz
u−λz dµ(u) = e−

∫
T

λu+z
λu−z

dµ(u)
= Sµλ(z)

where
µλ(E) = µ(λE)

for all Borel subsets E ⊆ T. Thus, one needs that

µ 6 µλ 6 µλ2 6 · · · 6 µλn = µ,

that is µ must be invariant under the rotation λz.



258 VALENTIN MATACHE

COROLLARY 2.10. Let ϕ be an elliptic disc automorphism with fixed point p 6= 0,
which is conformally similar via (0.7) to ψ(z) = λz, with λ a primitive root of unity of
order n > 1. Then the nonzero subspaces contained by Lat Cϕ∩Lat Mz are those of form
(B ◦ αp)(Sµ ◦ αp)H2 where B and Sµ are Blaschke products, respectively singular inner
functions with the properties in Proposition 2.9.

Recall that, the characterization of Lat Cϕ∩Lat Mz, when ϕ is an elliptic disc
automorphism with fixed point p 6= 0, conformally similar to a rotation by a
unimodular number which is not a root of unity was already obtained as Corol-
lary 1.7.

2.2. THE JULIA–CARATHÉODORY THEOREM VIA COMPOSITION OPERATORS. We
want to observe that the Julia–Carathéodory theorem can be understood in terms
of the action of Cϕ on some subspaces in Lat Mz. More exactly, we prove:

THEOREM 2.11. The analytic selfmap ϕ of U has an angular derivative at ω ∈ T
if and only if there is some η ∈ T and p > 0 so that

(2.7) Cϕ(Spδη
H2) ⊆ Sδω

H2.

If condition (2.7) holds, then η is the angular limit of ϕ at ω and

(2.8) |ϕ′(ω)| = min{p > 0 : p satisfies (2.7)}.
Proof. Indeed, recall that

P(z, ω) = Re
ω + z
ω− z

=
1− |z|2
|ω− z|2 ω ∈ T, z ∈ U,

is the usual Poisson kernel.
Therefore, if ϕ has an angular derivative at ω ∈ T and the angular limit of

ϕ at ω ∈ T is η, then, according to Theorem 0.1,

|ϕ′(ω)| = sup
{

Re
ω + z
ω− z

/Re
η + ϕ(z)
η − ϕ(z)

: z ∈ U
}

.

Hence, for all p > |ϕ′(ω)|, one can write

Re
ω + z
ω− z

6 pRe
η + ϕ(z)
η − ϕ(z)

z ∈ U

or, equivalently

(2.9) |e−(p η+ϕ(z)
η−ϕ(z)−

ω+z
ω−z )| 6 1 z ∈ U.

Denote

F(z) := e−(p η+ϕ(z)
η−ϕ(z)−

ω+z
ω−z ) z ∈ U,

and consider any f ∈ H2. Then

Cϕ(Spδη
f ) = Sδω

F( f ◦ ϕ)

and so, (2.7) holds for all p > |ϕ′(ω)|.
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To finish the proof, we assume that (2.7) holds for some p > 0 and η ∈ T,
and show that, in that case, ϕ′(ω) exists, |ϕ′(ω)| 6 p, and η is the angular limit
of ϕ at ω. Indeed, if (2.7) holds, then

Cϕ(Spδη
) ∈ Sδω

H2.

This means that the inner part of the bounded analytic function

G(z) = e−(p η+ϕ(z)
η−ϕ(z) ) z ∈ U

is divisible (in the sense of inner functions divisibility) by Sδω
and the ratio G/Sδω

is a bounded analytic function, more exactly

|e−(p η+ϕ(z)
η−ϕ(z)−

ω+z
ω−z )| 6 1 z ∈ U

(since |G| < 1). Therefore, one has

e−Re(p η+ϕ(z)
η−ϕ(z)−

ω+z
ω−z ) 6 1 z ∈ U

which is equivalent to

Re
(

p
η + ϕ(z)
η − ϕ(z)

− ω + z
ω− z

)
> 0 z ∈ U

and hence to
|η − ϕ(z)|2
1− |ϕ(z)|2 /

|ω− z|2
1− |z|2 6 p z ∈ U.

By Theorem 0.1, the proof is over.

2.3. ALEKSANDROV OPERATORS AND THE JULIA–CARATHÉODORY THEOREM.
The version of the Julia–Carathéodory theorem in the previous subsection raises
the following problem.

PROBLEM 1. If ϕ is some analytic selfmap ϕ of U and µ, ν are nonzero singular
measures on T, then what characterization can be written for the condition

(2.10) Cϕ(SµH2) ⊆ SνH2?

We begin by a simple proposition.

PROPOSITION 2.12. Let ϕ be an analytic selfmap of the disc other than the identity
or an elliptic automorphism. If ω, the Denjoy–Wolff point of ϕ, is in U or |ω| = 1, and
ω does not belong to suppµ, then (2.10) cannot hold.

Proof. Indeed, if ω ∈ U is the fixed point of ϕ and one assumes (2.10) holds,
then 0 6= Sµ(ω) = lim

n→∞
Sµ ◦ ϕ[n] ∈ Sν H2, that is

(2.11) C ⊆ Sν H2,

because Sν H2 is weakly closed and {Sµ ◦ ϕ[n]} tends weakly to Sµ(ω). Indeed,
that sequence is pointwise convergent to its limit and norm-bounded, because
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the supremum norm of Sµ is 1. Condition (2.11) cannot hold unless ν is the null
measure.

If |ω| = 1, but ω does not belong to suppµ, then Sµ(ω) = 1 6= 0, and so,
one gets the contradictory statement (2.11), by the same argument.

The so called “composition operators on the space of measures” ([20]), are
called by this author Aleksandrov operators, given a construction by Aleksan-
drov [1], which we present in the sequel. The Julia–Carathéodory theorem can be
understood in terms of such operators as well. Here are the details.

For each ω ∈ T, we denote by τω, the Aleksandrov measure of index ω of
ϕ, that is the measure whose Poisson integral equals P(ϕ(z), ω). There exists a
unique such measure, by the well-known Herglotz theorem ([17], Theorem 11.19).

The Aleksandrov operator Aϕ with symbol ϕ is the operator on the spaceM of
complex Borel measures on T satisfying:

PAϕ(µ) = Pµ ◦ ϕ µ ∈ M,

where for all measures ν, Pν denotes the Poisson integral of ν. As shown in [11],
Aϕ is not a composition operator, but a similar copy of the composition operator
with symbol ϕ acting on the space h1 of Poisson integrals of complex Borel mea-
sures. Therefore, all Aleksandrov operators are bounded, since all composition
operators on that space are known to be bounded (see [11] or [20]).

Denote by σω the singular part of τω in its Lebesgue decomposition with
respect to m. We call the little Aleksandrov operator with symbol ϕ, the operator
aϕ(µ) equal to the singular part of Aϕ(µ) with respect to m. With the notation
above, aϕ(δω) = σω, ω ∈ T. The following is a solution of Problem 1 and a
version of the Julia–Caratéodory theorem in terms of Aleksandrov operators.

THEOREM 2.13. Condition (2.10) holds if and only if

(2.12) aϕ(µ) > ν.

As a consequence, the angular derivative of some analytic selfmap ϕ of U exists at some
ω ∈ T if and only if there is some η ∈ U so that

(2.13) [aϕ(δη)]({ω}) > 0.

Clearly one has [aϕ(δη)]({ω}) = [Aϕ(δη)]({ω}) and, if (2.13) holds, then η is the
angular limit of ϕ at ω and [aϕ(δη)]({ω}) = 1/|ϕ′(ω)|.

Proof. Condition (2.12) is equivalent to Aϕ(µ) > ν (because ν is singular
with respect to m) and hence to PAϕ(µ) > Pν. Borrowing from the proof Theo-
rem 2.11, one can write the following.

Let F denote the function

F(z) = e
∫
T

u+z
u−z dν(u)−

∫
T

u+ϕ(z)
u−ϕ(z) dµ(u).

One has that ‖F‖∞ 6 1 and for all f ∈ H2, Cϕ(Sµ f ) = SνF( f ◦ ϕ) ∈ Sν H2, that is,
(2.10) holds if (2.12) holds.
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Conversely, if (2.10) holds, then Sµ ◦ ϕ = SνF ∈ Sν H2. This means that Sν

is an inner divisor of the inner factor of Sµ ◦ ϕ and hence ‖F‖∞ 6 1, a fact that
implies PAϕ(µ) > Pν and hence (2.12) holds.

Let c := [Aϕ(δη)]({ω}) = [aϕ(δη)]({ω}). If c > 0, then

1
c
[aϕ(δη)]({ω}) = 1 that is aϕ

((1
c

)
δη

)
> δω.

The consequence is

Cϕ(S(1/c)δη
H2) ⊆ Sδω

H2.

Hence, by Theorem 2.11, ϕ′(ω) exists, 1/|ϕ′(ω)| > c, and η is the angular limit
of ϕ at ω.

Conversely, if ϕ′(ω) exists and η is the angular limit of ϕ at ω, then, by
Theorem 2.11 and what we have already proved, one has

[aϕ(pδη)] > δω that is [aϕ(δη)]({ω}) >
1
p

p > |ϕ′(ω)|,

Hence c > 1/|ϕ′(ω)| > 0.

All these considerations raise the problem:

PROBLEM 2. What conditions on ϕ are equivalent to condition (2.12)?

It is particularly easy to solve Problem 2 in the case of purely atomic singular
measures, that is (possibly infinite) sums of weighted point masses. If µ is such a
measure, then we denote by atoms(µ) the set of all its atoms, that is atoms(µ) :=
{ω ∈ T : µ({ω}) > 0}. With this notation we prove:

PROPOSITION 2.14. Let ν and µ be nonzero purely atomic measures on T. Then
(2.12) holds if and only if

(2.14)
µ({ϕ(ω)})

ν({ω}) > |ϕ′(ω)| ω ∈ atoms(ν),

that is if and only if ϕ(atoms(ν)) ⊆ atoms(µ), and for all ω ∈ atoms(ν), the angular
derivative ϕ′(ω) exists and satisfies relation (2.14), where ϕ(ω) denotes the radial limit
of ϕ at ω.

Proof. Let

µ = ∑
η∈atoms(µ)

ληδη hence Aϕ(µ) = ∑
η∈atoms(µ)

λη Aϕ(δη).

If (2.12) holds, then for any fixed ω ∈ atoms(ν), one has that Aϕ(µ)({ω}) > 0,
hence λη Aϕ(δη)({ω}) = ληaϕ(δη)({ω}) > 0, for some η ∈ atoms(µ). Then,
according to Theorem 2.13, the angular derivative ϕ′(ω) exists, η is necessarily
the angular limit of ϕ at ω, that is, in our notation, η = ϕ(ω), and λη = λϕ(ω) > 0,
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that is µ({ϕ(ω)}) > 0, which proves that ϕ(atoms(ν)) ⊆ atoms(µ). Observe
that, by Theorem 2.13, one can write

[Aϕ(µ)]({ω}) = [aϕ(µ)]({ω}) = [aϕ(δϕ(ω))]({ω})λϕ(ω) =
λϕ(ω)

|ϕ′(ω)| ,

and hence, the inequality

[aϕ(µ)]({ω}) > ν({ω})

means that (2.14) holds.
Conversely, if (2.14) holds, then, by the previous considerations, this means

[aϕ(µ)]({ω}) > ν({ω}) ω ∈ atoms(ν)

which implies condition (2.12).

As an immediate consequence, we state the following:

COROLLARY 2.15. If µ is purely atomic, then, one has

(2.15) Cϕ(SµH2) ⊆ SµH2

if and only if

ϕ(atoms(µ)) ⊆ atoms(µ)) and(2.16)

µ({ϕ(ω)})
µ({ω}) > |ϕ′(ω)| ω ∈ atoms(µ).

Furthermore, let us note that:

REMARK 2.16. A purely atomic measure µ on T can satisfy the relation
(2.16) only if ϕ is of parabolic or hyperbolic type with Denjoy–Wolff point ω ∈
suppµ. Actually, that Denjoy–Wolff point is the only boundary fixed point of ϕ
which can be an atom of µ. Therefore, Remark 2.3 upgrades to: Lat Cϕ∩Lat Mz is
always nontrivial.

For a simple example of such a measure, consider µ = ν = δω, where ω is
Denjoy–Wolff point of ϕ, a selfmap of of parabolic or hyperbolic type. Obviously
this is the only case when relation (2.15) is satisfied by a unit mass concentrated
at a point. However, relation (2.15) can hold for more complicated singular mea-
sures than the point mass associated to the Denjoy–Wolff point of ϕ, since inner
symbols of parabolic automorphic or hyperbolic type induce composition opera-
tors with singular inner eigenfunctions associated to different measures [11] (and,
in some cases, those measures can be completely non-atomic [8]).
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