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ABSTRACT. If y is a finite measure on the unit disc and k > 0 is an integer,
we study a generalization derived from Engli§’s work, T}(lk), of the traditional

Toeplitz operators on the Bergman space A2, which are the case k = 0. Among
other things, we prove that when p > 0, these operators are bounded if and
only if y is a Carleson measure, they are compact if and only if y is a vani-
shing Carleson measure, and we obtain some estimates for their norms. Also,
we use these operators to characterize the closure of the image of the Berezin
transform applied to the whole operator algebra.
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1. INTRODUCTION AND PRELIMINARIES

Let A? be the Bergman space of holomorphic function on the disc D with
respect to the normalized area measure dA, and £(A?) be the Banach space of
bounded operators on A2. If for z € D, ¢, € Aut(D) denotes the involution that
interchanges 0 and z, the change of variables operator U, f = (f o ¢;) ¢/, is unitary
and self-adjoint. Here, ¢, = —K./||K:||, where K; is the reproducing kernel for
z,and |[Kz]| = (1 [/2) .

For f, g, h € A?, define the rank-one operator (f ® g)h := (h,g) f. In particu-
lar, if ey = vk + 1w* (k > 0) is the standard basis of A2, the operator Ej := ¢; ® ¢,
is the orthogonal projection onto the subspace generated by ¢;. Hence, for every
z€Dand f,g € A?> we have

(U=EoU-f, g) = (1~ |21*)?f ()8 (2).
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So, if dA(z) = (1 — |2|?)"2dA(z) denotes the invariant area measure on I
and a € L*, the traditional Toeplitz operator T, can be written as

T, = /quouza(z) dA(z),
D

where the integral converges in the weak operator topology. This led Englis in [5]
to consider operators defined as above, where Ej is replaced by more general op-
erators R that are diagonal with respect to the standard basis (a radial operator).
Among other results, he proved that if R is a radial operator in the trace class and
a € L%, then

R, = /UZRUZa(z) dA(z) € £(A%) and ||Ry| < ||R ||t ||a]|co-
D

Since such operator R is an ¢!-linear combination of the projections E j, with the
trace norm of R given by the corresponding /;-norm of its eigenvalues, the above
result is equivalent to

T\ ;:/uzgjuza(zmﬁ(z)e):mz) and | T9|| < [la]le
D

for every integer j > 0. We study this type of operators and a generalization

TP(l] ), where a d A is replaced by the expression (1 — |z|2)~2d(z), for 4 a measure
whose variation |du| is a Carleson measure. As in the well known case j = 0,
these operators turned out to be bounded, and when y is positive we find lower
and upper bounds for their norms. We also characterize compactness and show
that these operators are norm limits of traditional Toeplitz operators.

Useful tools for our study will be the n-Berezin transform and the invariant
Laplacian. If n > 0 is an integer, the n-Berezin transform of Q € £(A?) is

Lo (=1)
(1.1) B,(Q)(z) :==(n+1) ( ) . (QUzej, Uze;).
! ];;)] (G+1) T
In particular, if Q = T, where y is a finite measure on D, a straightforward

calculation shows that

(1.2) Bu(1)(2) 1= Bu(T,)(2) = /(n +1)

D

(0 lg-(Q )2
(- [gPP

Observe that the last expression defines By, () for any measure u of finite total
variation, even if T, is not bounded. In particular, if 4 = adA witha € L', we
write B, (a) := By(adA), which is also B, (T,) if T, is bounded. It is clear from
the definition that || B, (Q)||c < (74 1)2"||Q||. Also, it was shown in [10] that

(1.3) BnBO(Q) = BOBTI(Q) and Bn(uwQuw) = Bn(Q) O Puw

for every w € D.

1(0).
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The Berezin transform By of operators, which is given by withn =0,
was introduced by Berezin in [2] as a tool to study spectral theory and to construct
approximations of the exponential of an operator. It has being used extensively
to study properties such as boundedness and compactness of Toeplitz, Hankel
and other related operators.

The idea behind the transforms B, of functions in L! goes back to Berezin
(see [3]), and were explicitly used in [1] to prove a deep result about the eigen-
functions of By in the context of the ball in C". The extension of the definition
of B, to operators is quite natural and appears in [10], where it is used to prove
approximation results in the same vein of Corollary4.4]in the present paper.

The organization of the paper is as follows. In Section 2 we introduce the in-

variant Laplacian A and prove some identities involving the interaction between
Ta(j ), B, and A. This will establish the technical foundations for the remaining
sections. In Section 3 we decompose Ty, (g in terms of Tg) )(S)’ and use it to give a
characterization of the L* closure of By(£(A?)), which turns out to be an algebra.
Section 4 contains the main results of the paper. We prove thatif y > 0and k > 1,

the operator TP(lk) is bounded (compact) if and only if y is a Carleson measure (re-
spectively a vanishing Carleson measure), and estimate the norms. We also show

that if u is a complex measure whose variation |y| is Carleson, then T;(,k) is the
limit of traditional Toeplitz operators. All these results generalize known facts
for k = 0. In the last section we construct an example to show that for any k > 1,

k-1 :
||T[§k) || is not majorized by Y. ||Ta(] ) || independently of a € L®. In particular, the
=0

linear map T, — T;k) is not bounded. We will write indistinctly Téo) or T, for the
traditional Toeplitz operator with symbol a € L*.

2. THE ROLE OF THE INVARIANT LAPLACIAN

If A = 99 denotes a quarter of the usual Laplacian, where d and 0 are the tra-
ditional Cauchy-Riemann operators, the invariant Laplacian is A := (1 — |z|?)2A.
It is easy to check that (Af) o ¢ = A(f o ¢) for every f € C2(D) and ¢ € Aut(D).
If a € L*® is such that Az € L}, it is well known that ABy(a) = By(Aa). When also
Aa € L*, this equality rewrites as ABy(T,) = Bo(T,)- In accordance with this
formula we give the following

DEFINITION 2.1. Let
D ={Sec &A% :3T e £(A?) such that ABy(S) = Bo(T)},

and define A: © — £(A?) by AS = T.
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This definition says that ABy(S) = By(AS) for all S € . In [10] it is showed
thatif S € £(A?) and n > 1 then

Av ))anl(s)'

2.1) B,(S) = (1 sy

Hence, a straightforward inductive argument shows that AB,,(S) = B,,(AS) when
S € ® forn > 0. Also, the conformal invariance of A and immediately prove
thatif S € ©, then U, SU, € © and

2.2) A(UypSUy) = Uy (AS) Uy,
Observe also that implies that AB,(S) € L™ for every S € £(A?).

LEMMA 2.2. Let f,g,h, k be analytic on D. Then
M) Afog)=(f©g)+(2f) © () —2(zf) ® (zg)"
(ii) (A(f @ g)h k) = (A(h @ k)f, g)-
Proof. (i) We have:
ABy(f ©8) = A1+ [2[* - 2|z%)f3
= (1— [2P[f'g’ + (2%f)'(22g)" — 2 (2f)' (zg)']
= Bol(f @g)+ (Zf) ® (Z%8) - 2(zf) @ (28)'].
(ii) By (i),
23)  AE"®@z2") =nm(z" @z ) 4+ (n+2)(m+2) (2" @ 2"
—2n+1)(m+1)(z"@z").

Since n||z"~1||2 = 1 when n > 0, for any j, k > 0 we have
U (k) = (m—1n—1),
<Av(zn ®Zm)z]',zk> — -2 (] ) ( )

1 if(jk)=m+1,n+1),
0 otherwise.

This clearly shows that (A(z" ® z")2/,2K) = (A(z/ @ Z2F)2",2™). The lemma fol-
lows by sesqui-linearity and an approx1rnatior1 argument. 1

LEMMA 2.3. Let u be a measure of finite variation such that TF(,k) is bounded for
allk > 0. Then T( €D forallk > 0, and

AT e (k+1) (0
(2.4) i kU ke T 2k ) T
or equivalently, (k+1)(k + 2) [T(k+1) — TP(,k)] A[T( ) 4 T(k Vypoy T,EO)}. For-

mally, we set T,E* ) = 0 in @F) when k = 0.
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Proof. By withk =n =m,

AE
(2.5) ﬁ = kEx_q1 + (k+2)Eq — 2(k +1)E,

where E_; := 0. Since by @2), A(UyEpUy) = Uy (AE) Uy, conjugating both
members of the above equality with respect to U, and integrating with respect
to (1 — |w|?)~2du(w), we obtain (2.4), which is our claim. The second formula
follows from by induction on k. It is immediate for k = 0 and assuming that
it holds for an integer k — 1 > 0, we get

AT + AT 4o T 4 7O = AT 4 k(4 1) [T — 1
— (k+ D) (k+2) [T — 1),

Finally, if the last formula holds, substracting the equality for k — 1 from the
equality for k, we obtain (2.4).

LEMMA 24. Ifb,, b € L are such that ||by||c < C, a constant independent of

(k) (k)

n, and by — b pointwise, then T, © — T, in the strong operator topology.

Proof. We can assume that b = 0. For f,¢ € A2,
@6) ULl < (T £ VT ) < (TR f, 12 C2|glla,

where the first inequality follows from Cauchy-Schwarz’s inequality and the sec-
ond because ||T\(bk,,)| | < ||bnlle < C. So, taking supremum in over gl =1

for any fixed value of 1, we see that ||Téf)f|\2 < Cl/? <Tl(b];)|f,f>l/2 —0asn — o
by the dominated convergence theorem. 1
PROPOSITION 2.5. Leta € L® N C%(D) such that Aa € L™. Then ZTék) = Tg;),
Proof. For 0 < r < 1 consider the functions 4,(z) = a(rz). It follows from
the previous lemma that Ttgf ) T,EJ ) in the strong operator topology when r — 1
forall j > 0. Then (2.4) implies that ANT( ) =t AT, Since (Aay)(z) = 12(Aa)(rz)

is bounded by ||Aa||oo, the previous lemma says that T( ) = Tg;). Therefore it is

ay

enough to prove the lemma for a,, meaning that we can assume that a € C?(D).
First observe that

ANZBO(UwEkUw)(Z) = ANBO(Ek)((on(Z)) = ZBO(Ek)((PZ(w)) = ZwBO(qukUZ)(w)/

where the equality in the middle holds because ABy(Ey) is a radial function and
|9w(z)| = |@z(w)|. Therefore

Bo(AT{) (1) = 8By (1) (w) = [ BuBo(UEUL) (w)a(2) dA(2)

_ /A~2B0 U Eglly) (2)a(z) dA(2) / A:By(Uy Uy ) (2)a(z) dA(2),
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and since By (U, ExU;)(w) = Bo(UywErUy)(z) (because By(Ey) is radial),

Bo(T) () = [ Bo(U:Eellz) () (Ba) (2) dA(2) = [ Bo(U Exll) () (An) (2) dA(2).

Since for every fixed w € D, the function

2.7) Bo(UwExUa) (2) = (1= @u(2) ) (k+ 1) (|gu(2) )"
is defined for z in some neighborhood of D, the previous equalities and Green’s

theorem give

Bo(ATYY 1) (w) = / [8:Bo(Uny Exll) (2)a(z) — Bo(UwExU) (2) (4a) (2)] dA(2)

_ / Bo(Uy ExUy ) (z) — Bo(uzuEkuw)(z)%(z)] dmﬂ(z),

where 0/0n is the derivative in the normal direction and dm(z) is the Lebesgue
measure on d). A straightforward calculation from shows that both

Bo(UoEelin)(2) and o Bo(LiuExlly) (2)

vanish when |z| = 1. The proposition follows because By is one-to-one. 1

COROLLARY 2.6. Ifa € L* is harmonic, Ték) = T, for every integer k > 0

Proof. By Prop051t10n AT( ) = g ) = 0forallk > 1. The corollary now
follows from the second formula of Lemma- 1

Taking a = 1 in the Corollary, we see that Tl(k) is the identity for all k > 0
This also follows from the so called Schur orthogonality relations and it is the
main ingredient in Engli§’s proof of the result cited in the introduction. Indeed,
the first inequality in implies that if 2 € L%, then HTa(k) I < [la]loo ||T1(k) | =
[1a]|co-

PROPOSITION 2.7. Let u be a finite measure such that T,Ek) is bounded for all

_ 7k
k 2 0. Then TBn(T;Sk)) = TBn(H)'

Proof. First we prove that T Tg;)(y) by induction on k. For k = 0

Bo(Ti)
there is not to prove. Suppose that the equality holds for j = 0,...,k. By

Proposition|2.5, the commutativity of By and A, and (2.4),

Apyr) = Tanyr) = Tnar)
= (k+1)[k TBO(T;H)) + (k+2) TBO(T;M )~ 2(k+1) BO(T<k>)]
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and by (2.4

(k) (k=1) o Tk+1) _ k)
ATy () = Bo) T K+ 2) Ty = 2064 D) Ty )
By inductive hypothesis the left members of these formulas are equal, implying
r(k+1)
Bo(}l) ’
lemma by induction on n. So, suppose that the equality holds for n — 1 > 0. Then

— (k+ 1)k T}

that T, (i) = Now suppose that k > 0 is fixed and we prove the
(S

) o _®
71(1’1 + 1) [Tanl(T;Ek)) TBn(T;Sk))] - ATanl(Ty ) AT B l(V)
—n(n+1)[TP 1

By_1(p) Bu(p)

where the equality in middle holds by inductive hypothesis and the other two by
Proposition[2.5/and (2.T). This proves our claim. &

3. Tp, IN TERMS OF Ty AND APPLICATIONS

It is clear that By : £(A%) — L* is not multiplicative but less clear that
its image is not a multiplicative set. We show this by constructing the following
example.

Let f,¢ € A? such that T¢Tg is bounded but ¢ ¢ H*. To see that such
functions exist, take for instance f(z) = (1 —2z)* and g(z) = (1 —z)™%, with
0 < & < 1/2. The elementary inequalities

12 () < 1 guw)] < -2 ()

1+ [w] |w]

yield
1+|w| pe 2
Bll17)Balls ") 2) = [ 11 gs1aa [ o <[ [ ()" datw)] <o

—[w]

if 0 < p < a~!. Hence, there is some p > 2 such that By(|f|”)Bo(|g|") is bounded,
which by Theorem 5.2 of [9] is a sufficient condition for the boundedness of TfTs.

Since g ¢ H®, thereis h € A% such that gh ¢ A?, implying that the operator
(f ® gh) is not bounded. However, it is well defined on the reproducing kernels
K and satisfies (f ® ¢gh)K, = g(z)h(z)f € A? for all z € D. This holds because
K; also reproduces functions in the Bergman space A'. In particular, its Berezin
transform is defined, and

Bo(f @ gh)(z) = (1 - |z*)?h(z) f(2)g(2) = Bo(1 ® h)(z) Bo(TTg) (2).

So, if By(£(A?)) is an algebra there must be Q € £(A?) such that By(Q) = Bo(f ®
gh)(z). Consequently the function

F(z,w) := (QKz, Ky) — ((f ® ¢h)Kz, Ky)
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is analytic on the bidisc D? and vanishes on the points (Z,z), implying that F =
0. Since the span of the reproducing kernels is dense in A2, we conclude that
IIf ® gh|| = ||Q|| < 0, a contradiction.

Despite the fact that By(£(A?)) is not an algebra, we will see that its closure
is a uniform algebra, in fact, the largest uniform algebra that previously known
results allow. The key ingredient in the proof is the following decomposition of
TBn(S)’ for S € E(Az)

LEMMA 3.1. Let S € £(A?) and n > 0 integer. Then

(3.1) Tg, n+1:0()]+1 (5
Proof.
(12 () T it ) = 55 ()= 0l oG5 2) 000
B / . (l¢2(|z|)2|)2)n+2 Bo(S)(z) dA(z)
_ Bu(Bo(S))(w) _ Bo(Tp,(5))(w)
- (1) (m+1)

where the last equality holds because B, and By commute. The lemma follows
because By is one-to-one. 1

For z, w € D, the expressions

14+ p(z,w)
—p(z,w)

define the pseudo-hyperbolic and the hyperbolic metric, respectively. Consider
the uniform algebra A C L*(D) of functions that are uniformly continuous
from the metric space (D, B) into the complex plane with the euclidean metric
(C,|-1]). In [4] Coburn proved that By(S) is a Lipschitz function between these
metric spaces for every S € £(A?). In particular, By(£(A?)) C A, a fact used in
[10] to study some subalgebras of £(A?) in terms of their Berezin transforms. We
see next that the inclusion is dense.

THEOREM 3.2. The L®-closure of Bo(£(A?)) is A.

p(zw) = [gz(w)| and p(z,w) = log 3

Proof. Let a € A. Replacing By(S) by a in the chain of equalities of the
previous proof (except for the last one), gives

Lo\ (1))

Bo((n+1) » (}) 1) ) = By(a).
j=0

Taking dyu = adA in (1.2), a change of variables shows that
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Bu(a)(z) = /ﬂ((Pz(C))(” +1)(1—[¢*)" dA(G) — a(g=(0)) = a(2)
D

uniformly on z when n — oo, because since 4 € A, the functions a o ¢, are
equicontinuous at 0, and the probability measures (1 + 1)(1 — | - |?)"dA tend to
accumulate all the mass at 0 when n — co. Thus, A C Bg(£(A2)). 1

COROLLARY 3.3. Theset {Tg,(s) : S € £(A?)} is norm dense in {T, : a € L*}.

Proof. The last theorem implies that {Tp(5) : S € £(A?)} is norm dense in
{T; : a € A}, which by Theorem 5.7 of [10] is norm dense in {T, : a € L®}. &

The next result is an easy consequence of the identities in the previous sec-
tion and Lemma We need some notation first. Let m > 0 be an integer and
x = {x }n>0 be a sequence of complex numbers. The m-difference of x, denoted
A"y, is the sequence whose n-th term is

My o (_1\M - (M —1)/ )
Alix = (=1)" ) j (=1) xpyj, for n>0.
=0

That is, A™ is the m-iteration of the difference operator A{x,},>0 = {xy+1 —
xn}n>0-

PROPOSITION 3.4. Let f,g,hk € A? and integers n,j > 0. Then
(T, (fog)h k) = (Tp, ek f,8) and
[ (Ut ) Uty ) f(w)g(@) dA@) = [ (Uuej, £){Une;, ) h(w)kw) dA(w).

In particular,

62) [ Uy 1) | () FdA@) = [ [{Unes, ) 1) dA(w)

Proof. Since || Tp, (rag)ll < Cullfll2 gll2, it is enough to assume that all the

functions are polynomials. Since By(f ® g) = (1 — |z|?)?fg, the first assertion is
clear for n = 0. So, assuming that the result holds up to n, by we need to
prove the equality for AB, instead of Bj,.

(AT, (fag)h k) =(Bu(f@)1, k) + (Ba((2*f) @ (2°8)" )1, k) =2(Bu ((2f) @ (28) )1, k)
=(Bu(h@k)f,g)+(Bu(h@k)(2*f)', (2°8)") ~2(Bn(h2k) (zf)', (28)")
=(Bu(h @ k), A1~ |2*)*fg) = (ABu(h @ k), f8) = (AT, (hen) f £,

where the first equalit follows from Proposition 2.5, the commutativity of By,
and A, and Lemma [2.2} the second equality holds by inductive hypothesis, the
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fourth one by Green'’s theorem, and the last one by Proposition[2.5again. Writing
0i(z) = 7, 3.) says that

Tg, (fog) & (1 (=1 ) B _
n+1 _jg <]> j+1 TBO(f®g)_(_1)n/A6(Uwaj®uw‘7j) f(w)g(w) dA(w).

Therefore the equality (Tg, (sl k) = (T, (nek)f, §) rewrites as

83 U, 1) [Ty )  (0)5(10) A () = 83 [ (U, ) Uy g1 ()R () dA ),

and the second claim follows by inductiononn. &

4. CARLESON MEASURES AS SYMBOLS

A positive measure u on D is called a Carleson measure if A> C L?(dpu).
If in addition the inclusion is compact, u is called a vanishing Carleson measure.
Among the many known characterizations of Carleson measures (see p. 123 of
[13] for comments and references), a positive measure yu is Carleson if and only if
[IBo(#)]|ec < 00, a quantity that is equivalent to the operator norm of the inclusion
of A% in L2(y). Another characterization comes from replacing the kernel of the
Berezin integral by a box kernel. Indeed, if 0 < r < 1 and v € D, consider the
pseudo-hyperbolic disk

D(v,r):={ze€D: |py(z)| <r} anditsarea |D(v,r)|:= / dA.
D(.vr)

If p is a positive measure on D and 0 < r < 1, there is a constant C(r) > 0
depending only on r such that

1 uD() o D)
@D G DGy S Pl < CWap e BT

Clearly, if the above supremum is finite for some r then it is finite forall0 < r < 1.
Finally, a positive measure y is Carleson if and only if T, is bounded (see pp. 111~

112 of [13]). We shall see that the same holds for T,Ek) when k > 1. For a positive
measure y write dji := (1 — |z|?) 2 dpu.

LEMMA 4.1. Let p be a positive finite measure on ID. Then

u(D(v,r)) rr(1=r*)12 _ u(D(v,71)) 4r 12
ID(o,7)] T <oen) < 1D (o, 7)] {(1—72)2}

foreveryv € Dand 0 <r < 1.



A GENERALIZATION OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE 325

Proof. Since by p. 60 of [13], |D(v,7)| = [(r(1 — |0]?))/ (1 — |0>?)]?,

N - - fef) 2
Fown = | <1—|¢|2>2‘D<v,r>|D(/ Na=gpya ] @

D(v,r) v,r

The lemma follows immediately from the easy inequalities, valid for ¢ € D(v,r):

1-7) _ (1-pp) _ 4
o Sa-EpSa-ay

THEOREM 4.2. Let u be a positive finite measure on . Then Tp(,k) is bounded if
and only if y is a Carleson measure, in which case,

C
tixay IBmle <1171 <

where C > 0 is an absolute constant.

(4.2) 4(k +2)[|Bo ()|,

(k)

Proof. Firstlet us assume that T, is a bounded operator. For k > 1 consider
the function f(x) = (k + 1)x¥(1 — x)? defined in [0,1]. This function reaches its
maximum at x = k/(k+2). If (k—1/2)/(k+2) < x < (k+1)/(k+2) (that is,
x=(k+y)/(k+2)with —1/2 < y < 1), then

k+y k+yikr2—yi2 . (k+1) 5/2 1k 1
=fly—>)=(+1 > 1- > ,
fx) f(k+2> e+ )[k+2} {k+2] (k+2)2{ k+2} (k+2)
where c; > 0 is a constant independent of k. This means that there is an absolute
constant ¢; > 0 such that forall k > 1,

(o] i k— 1/2
(k+2) k+2
Now, let 0 < r < z; := /k/(k+2). By the geometric arguments in p. 3 of [6],
D(z,r) is contained in the annulus

(4.3) (k+1)z*(1 - z)? >

Zj — 7T
1—rz

Zx +r
1+1’Zk‘

Thus, if we choose r < \/k/ (k + 2) small enough so that

k—1/2 _\/k/(k+2)—r \/k/ k+2)+r_
(4.4) < and
k+2 " 1—r/k/(k+2) k/(k—|—2) k+2
for all k > 1, then D(z, r) is contained in the annulus (k — 1/2)/(k +2) < |z|? <
(k4+1)/(k+2), implying that the inequalities in (4.3) hold for z € D(zg,r). We
see next that 0 < r < 1/10 does the trick. Clearing r from (4.4) we get the equiva-
lent inequalities

\/k/ k+2)—+/(k—1/2)/(k+2) and r< V (k4+1)/ (k+2)—/k/ (k+
1—k/ (k+2)\/(k—=1/2)/ (k+2)] S —vk/ (k+2)/(k+1)/ (k+ 2)]’

< Jw| <
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meaning that » must be bounded by

min{ Vk+2 1/2 vVk+2 1 }
(Vk+vVk—=172) [k+2 VK2 —k/2]" [Vk+Vk+1] [k+2— V2 +k] !

The claim follows because this minimum is bounded below by

Vk+2 1/2 - 1/4
Wk+VEk+1] k+2- VK2 —k/2] ~ [k+2— VK —k/2]
_ k24 VIE—k/2  2%+3/2 1

[(8k+16]  ~ [18k+16] ~ 10°
Therefore, if r < 1/10,
du(z
B(T) )= [k + Dlew (=) (1 = lgu(a) PP L o
dp(z)

" z
> [ A Dlge@P 0l g
D(w(zk).7)
by 1 / du(z)

~ o (k+2 1—|z[2)2
( )D(ﬁozv(zk)/’) ( | ‘ )

(45) =T3P (P(@u(z0).1)):

Taking the supremum for w € D and using that {¢(z¢) : w € D} = D for any
fixed zx € D, we get

(46) I > 1Bo(T) oo > 1755 sup (D@, 1)

for any r < 1/10. By (41), Lemma and (£.6)), there are absolute constants
Cp, Cq and Cy, such that

H(D(@ 1))
Do, 55)
This proves the first inequality in (4.2).

Now suppose that y is a Carleson measure and let F(z) = Y ajej(z) € A2,
For0 <t <2mand 0 <r < 1wehave

|(F(e''z), (Urex) (2))17 = }_aja {ej(e'z), (Urer) (2)) (er(ei'z), (Urex) (2))

jl
= Ea]ﬁl ei(];l)t <€j, Urek> <€], Llrek>,

[1Bo (1) lleo < Cosup < Crsup fi(D(v, 1)) < Calk +2)|| T,
v
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and since |(F, U,ier)| = [(F(z), (Urer) (e tz))| = |(F(el'z), (Uyer)(z))|, then

21

dt
JUE Ue P 5 = a1 ey Urei) P > lag P ex, Ure)
0 ]
27 dt
= [(F, ex) [*[{ex, Urer) |* = |<F,ek>|2/|<ek, Ureit€k>|2§-
0

Multiplying by 2r dr and integrating yields
JIF W2 dAG) > I(F a0l [ ey, Ued) 2 dA).
So, taking F = U, f we get
[ 1(Uaf, U PAAG) > [(Unf,e) P [ Ifer, Use) PAA(2).

Writing A = (zw —1)/(1 — wz), we have Uy U; = U, (;)Va, where (Vih)(w) =
Ah(Aw) for h € A%. Consequently,

|(Uwf, Uzer)| = [(f, UwUzer)| = [(f, u(pw(z)ek> |,
and the change of variables v = ¢ (z) in the first integral above yields
J 14 e P19 ()P dA() > [(Uaf e [ (e, User) PdA(z).

Integrating with respect to dji(w),

an [ [ [ LD duw)] 10, e PA(©) > e [ (L, ) P i),
D

|1 —wol*
D

where

e = [ lew Use) P dAE) " E2 [(Use, 1) P ler(z) P dA(:)

1
- [0 B A = (1 [ x>

Thus, going back to (£.7),

1Bo()lle I1FI2 > (Tge1 0 . £) 2 el TV f ) > 4(k1+2) (TWOF,f).

This proves the second inequality in (2). &

It would be interesting to know how sharp are the bounds in (4.2) except for
absolute multiplicative constants when k tends to infinity, especially the upper
bound.
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REMARK 4.3. Observe that by and the subsequent inequality, we also
showed that

C L .
Gy 1B e < 1B (T o < T,

and that the last formula of the proof says that 4(k + Z)Tlg )( ) = T( ) as positive
operators.

Suppose that u is a complex measure on D such that its Variation |p| is Car-
leson. By (2.6) with measures instead of functions, we see that HT H < ||T H

forallk > 0, so T( ) € £(A?). Tt is worth noticing that the converse does not hold,
since there are fmlte measures y such that T, is bounded but |u| is not Carleson.
The next result was proved in Corollary 2.5 of [11] for k = 0. In particular, it

shows that whena € L®, T[Sk) is a limit of classical Toeplitz operators.

COROLLARY 4.4. Let y be a finite measure on D such that |u| is a Carleson mea-

sure and k > 0 be an integer. Then
(k)
TBH(T;“)_)TP‘ when n—oo.

Proof. Decomposing y = 1 + ipiz, where each y; is a real measure, and
using Jordan decomposition with both 1 and >, we can assume without loss of
generality that u > 0. By Lemma 4.1 of [12], if Q € £(A?) satisfies ITsg,q)ll < C
where C is independent of n, then TBn(Qi> Q. So, we need to prove the above

inequality for Q = T(k). By Propositions 2.5and and (2.4),
k—1)

_x (k) ( k1) _ 7®)
Tt =T, zt0 )—AT B = D KTy, )+ (k+2) Ty  =2(k+ 1) Ty .

Since By, (p) dA is a Carleson measure satisfying
1BoBi(#)lleo = [ BuBo () lleo < [|Bo(p) oo,

using (4.2) in the above equality gives || T H < 4%(k + 3)3||Bo(#) || o, which

BBy (T
does not depend onn. 1

It is well known that for a positive measure y on D, the condition of being
a vanishing Carleson measure is equivalent to By(y)(z) — 0 when |z| — 1, and
also to the compactness of T}, (see pp. 112-115 of [13], also Proposition 3 of [7]).

We aim to prove the same result for T,Ek) when k is any nonnegative integer.

LEMMA 4.5. If f, € A? is a sequence that tends weakly to 0 then {f,, Uyer)—0
uniformly for w in compact sets of D.

Proof. By the Banach-Steinhaus theorem (see p. 44 of [8]) the norms || f||
are uniformly bounded and by Lemma 4.3 of [10] the function w — Uyey is uni-
formly continuous on compact sets. Thus, the Cauchy-Schwarz inequality shows
that the scalar functions F,(w) = (fu, Uwek) are equicontinuous on compact sets.
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Since by hypothesis F,—0 pointwise, Ascoli’s theorem (see p. 394 of [8]) implies
that F,, —0 uniformly on compact sets. 1

LEMMA 4.6. Ifa € L* has compact support then T,Ek) is compact.

Proof. Let fy,gn € A? be sequences such that f, tends weakly to 0 and
llgn|l < 1. Then

(TS o, 80)| < llalleo A(suppa) sup |(fu, Uner) (Uaek gn)],

w Esuppa

where the last factor tends to 0 by the previous lemma, since |(Uyek, gn)| < 1. 1

THEOREM 4.7. Let u be a positive finite measure on ID. Then Tf,k> is compact if
and only if u is a vanishing Carleson measure.

Proof. Suppose that p is a vanishing Carleson measure and let 0 < r < 1.
By Remark [4.3]

) * (k) (k)
0< Ty <4(k+ 2)TBo(y) =4(k+2) [TerBo(u) + TXD\rDBO(V)]'

By Lemma4.6| the first operator in the sum is compact, and by Engli’s result ([5],
Theorem 1),

I T(k)

XD\rDBo(y)H < Ixp\vpBo(#)le—0  when r—1.

Thus, T]Sk) is compact. Conversely, suppose now that T}(lk)

BO(T;(,k) )(w)—0 when |w|—1, which together with (4.5) says that there are z; € D
and 0 < r < 1 such that

is compact. Then

#(D(@w(zg),r))—1 when |w|—1.

If V C Dis such that D\ V is compact, the same holds for the set { ¢y (zx) : w €
V'}, for any fixed z; € D. Therefore ji(D(v,7))—1 when |v|—1, which together
with Lemma4.T| gives

#(D(v,r))
ID(,7)]

Then y is a vanishing Carleson measure by pp. 111-114 of [13] .

—0 as|v =1

5. EXAMPLE OF BAD BEHAVIOUR

As far as I know there is no accurate estimate for ||T,| when a € L% is
arbitrary, which obviously remains true for HT,J(k) || when k > 1. It would be

interesting to know if at least ||T§k) || is majorized by ||T,||, or more generally, if
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for some given k > 1, there exists a positive constant C;, depending only on k such
that

(5.1) ITE) < cITO 4+ 1TE D)) foralla e L.

By Theorem {4.2| this is certainly the case when a > 0 or when a d A is replaced by
any Carleson measure. Unfortunately (5.1) does not hold for any k > 1, as the
example that we construct next will show.

LEMMA 5.1. Fora € L* and £ > O there are constants cy, . . ., c; depending only
on { such that
T8 = o AOT, 4 - - - + ¢, A'T,.
Proof. By the second formula of Lemma
(=1 1

0 _ w0, v
=T +AmX::0(m+1)(m+2)

T ™+ 1Y 1),
This proves the lemma for £ = 1 and assuming inductively that it holds for Tu(m>
withm =1,...,¢ — 1, it also shows that it holds for Ty). ]

COROLLARY 5.2. Forallk > 0and a € L™ there is Cy, > 0 such that

") ko
YT < G Y AT
/=0 =0

The proof of Lemma 5.1|clearly shows that both the lemma and its corollary
hold if adA is replaced by any finite measure y such that T;(,k) is bounded for
every k > 0. In particular, they hold when |y| is a Carleson measure.

Let k > 1 and suppose that holds. This, together with imply the

first of the following inequalities
k=1, k=1
1A < Ci(k) YT < Co(k) Y |A'T,|| foralla € L,
(=0 (=0

for some Cj (k) > 0, where the second inequality comes from the corollary. Thus,
the next example disproves (5.1).

EXAMPLE 5.3. We claim that if k > 1 there is no positive constant Cy such
that
k=1
AT, || < Cx Y. |A'T,|| foralla € L.
/=0
For j > Orecall that E; = ¢; ® ¢, and we write E; = 0if j < 0. An iteration of (2.5)
shows that A’ Ej is a linear combination of E]', lrees E]'Jrg in such a way that there

are positive constants ¢, and C; independent of j with c,(j 4+ 1)%¢ < ||K€Ej|| <
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Co(j + 1)25 for all £ > 0. In particular, if 0 < ¢ < k, there are constants ¢ and C
depending only on k such that

c(j+1)* < |AE| <C(j+1)* V£=0,...,kand j>0.
By Theorem 4.3 of [12], Tp,(g,) — Ej when n — co. Hence, Proposition the

commutativity of B, and 4, and the previous comments yield

=T

Al _
ATg, () = Ta B (AE;)

i
(B (E}) — A'Ej asn — oo.

Therefore for each pair of integers k, j > 0 we can choose n = n(k, j) large enough
so that

c . ~ .
S+ 1)%¢ < HAfTBH(Ej)H <2C(j+1)% ve=0,...,k

Taking a; := (j+ 1)"%B,(E;) € L*, the above inequalities show that,

k_ZlHZZT I <zci Vo« 20 hile S < | AT, |
o T T T G T ()2 -1 2= K

for all j > 1. Taking j — oo shows our claim.
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