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ABSTRACT. We study the asymptotic behavior of the output states of
sequences of quantum channels. Under a natural assumption, we show that
the output set converges to a compact convex set, clarifying and substan-
tially generalizing results in S.T. Belinschi, B. Collins, I. Nechita, Invent. Math.
190(2012), 647–697. Random mixed unitary channels satisfy the assumption;
we give a formula for the asymptotic maximum output infinity norm and we
show that the minimum output entropy and the Holevo capacity have a sim-
ple relation for the complementary channels. We also give non-trivial exam-
ples of sequences Φn such that along with any other quantum channel Ξ, we
have convergence of the output set of Φn and Φn ⊗Ξ simultaneously; the case
when Ξ is entanglement breaking is investigated in details.
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INTRODUCTION

Quantum channels are of central importance in quantum information the-
ory, and in the meantime, many mathematical quantities that are associated to
quantum channels are still not very well understood. This is the case, for exam-
ple, for the maximum output infinity norm, the minimum output entropy and
Holevo capacity. These quantities as well as other important quantities turn out
to actually depend only on the image of the collection of all possible output states.
Incidentally, the output set — a compact convex subset in the set of all states —
turns out to be an interesting geometric object that has nice interpretations in the
theory of entanglement, statistics, free probability and others. However, identify-
ing the output set for a given channel turns out to be a difficult task. So, instead,
we analyze sequences of quantum channels which have nice asymptotic proper-
ties. Recently, research on random quantum channels in terms of eigenvalues has
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led to important advances in the understanding of quantum channels, in partic-
ular in relation to the problem of additivity of the minimum output entropy, see
for example [3], [4] and [13].

In this paper we elaborate an axiomatic and systematic study of properties
of sequences of quantum channels that ensure the convergence of the output set
towards a limit. It turns out that the sufficient conditions that we unveil are not
of random nature, although most of all examples available so far rely on ran-
dom constructions. The main results of this paper are Theorems 2.8 and 2.9. The
idea underlying these theorems was already available in [3], but we considerably
simplify and conceptualize the argument, and we remove all probabilistic con-
siderations from our main argument. We start with examples of deterministic
quantum channels (or projections) which fit our axiomatic framework. Then, we
treat random quantum channels and random mixed unitary channels as exam-
ples of this axiomatic approach. To do so, we rely on recent results of [9] and [19]
where the strong asymptotic freeness of Haar unitary matrices and constant ma-
trices or extension of strong convergence to polynomials with matrix coefficients
is proved.

Our paper is organised as follows. Section 1 contains definitions and re-
minders about quantum channels and quantities associated to them. Then, our
main result is stated and proved in Section 2. Then, in Section 3 our main result is
applied to the convergence of entropies. Section 4 introduces some results from
random matrix theory and free probability. A subclass of entanglement-breaking
channels is investigated in Section 5, then we discuss in Section 6 examples of our
main result: random Stinespring channels (Subsection 6.1) and random mixed
unitary channels (Subsection 6.2). Finally, in Section 7, we discuss tensor prod-
ucts of channels, and especially entanglement-breaking channels are discussed in
details.

1. QUANTUM CHANNELS AND THEIR IMAGE

1.1. NOTATION. Following the quantum information theoretic notation, we call
quantum states semidefinite positive matrices of unit trace

Dk = {A ∈ Mk : A > 0 and TrA = 1},

where we write Mk = Mk(C). A quantum channel is a completely positive and
trace preserving linear map Φ : MN → Mk. Following Stinespring’s picture [33],
we view any quantum channel Φ as an isometric embedding of CN into Ck ⊗Cn,
to which we apply the partial trace:

V : CN → Ck ⊗Cn.

That is,

(1.1) Φ = (idk ⊗ Trn) ◦ E
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where E(·) = V · V∗ is a non-unital embedding of MN in Mk ⊗ Mn. We define
the complementary channel of Φ by

Φ̃ = (Trk ⊗ idn) ◦ E.

Note that for a pure input, its outputs via Φ and Φ̃ share the same non-zero eigen-
values, but it is not the case in general for a mixed input. We also define the ad-
joint channel Φ∗, which is the adjoint of Φ with respect to the Hilbert–Schmidt
scalar product in Mk:

(1.2) Tr[Φ(X)∗Y] = Tr[X∗Φ∗(Y)].

If Φ is defined via a Stinespring dilation using an isometry V as in (1.1), then

Φ∗(Y) = V∗(Y⊗ In)V.

In quantum information language, Cn is called the environment. In this pa-
per, we are interested in a sequence of quantum channels, that we will index by
the environment n, Φn : MN → Mk. From now on, our setting is as follows:
k, n, N ∈ N are such that k is fixed and N ∈ N is any function of n ∈ N. Impor-
tantly, a quantum channel is defined, up to a unitary conjugation on the input, by
Pn = VnV∗n , which is the unit of MN embedded in Mk ⊗Mn.

Let DN be the collection of states in MN , and Dp
N ⊂ DN be the collection of

extremal (pure) states, i.e. rank-one (self-adjoint) projections. We are interested
in Ln = Φn(Dp

N), which is the image of all the pure states under the quantum
channel Φn. One can see that Ln is a compact subset of Dk, but not always convex,
although so is Kn = Φn(DN).

The task to classify all the possible sets Kn and Ln arising from this con-
struction seems to be out of reach. Instead, we focus our attention on possible
asymptotic behaviours of Kn and Ln as n→ ∞.

In Section 2, we identify some assumption with which Kn and Ln converge
to some well-described compact convex set as n→ ∞. Then, we present examples
of sequences of random projections {Pn}n∈N which satisfy this assumption with
probability one.

1.2. ENTROPIES AND CAPACITIES. We introduce three quantities associated with
quantum channels.

Firstly, the maximum output infinity norm of channel Φ is defined as

‖Φ‖1,∞ = max
ρ∈DN

‖Φ(ρ)‖∞

where 1 and ∞ represent norms used for the input and output spaces respectively.
Secondly, the minimal output entropy (MOE) of channel Φ is defined as

Smin(Φ) = min
ρ∈DN

S(Φ(ρ)).

Here, S(·) is the von Neumann entropy.
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Thirdly, the Holevo capacity (HC) of channel Φ is defined as

χ(Φ) = max
{pi ,ρi}

S(Φ(ρ̂))−∑
i

piS(Φ(ρi)).

Here, {pi}i is a probability distribution, {ρi}i ⊂ DN and ρ̂ = ∑
i

piρi. Note that

Smin(Φ̃) = Smin(Φ)

but

χ(Φ̃) 6= χ(Φ)

in general.
It is a rather direct observation that Smin and χ depend only on the output

of the channel. Therefore, for any convex set M ⊂ Dk, it is natural to define

Smin(M) = min
X∈M

S(X),(1.3)

χ(M) = max
{pi ,Xi}

S
(

∑
i

piXi

)
−∑

i
piS(Xi),(1.4)

where Xi ∈ M.
For those quantities one can think of additivity questions:

χ(Φ⊗Ω)
?
= χ(Φ) + χ(Ω),

Smin(Φ⊗Ω)
?
= Smin(Φ) + Smin(Ω),

for two quantum channels. These equalities are not true in general; additivity of
MOE was disproved by Hastings [20] and this non-additivity can be translated
to be the one for HC [30]. In terms of information theory, the additivity of HC is
important. Suppose in particular that

χ(Φ⊗r) = rχ(Φ)

for some channel Φ, then the classical capacity over this channel Φ has a one-shot
formula (in the sense that the regularization is not necessary):

lim
r→∞

1
r

χ(Φ⊗r) = χ(Φ).

Additivity of MOE itself is also interesting because it measures purity of channels,
but caught more attention when Shor proved the equivalence between the two
additivity questions [30]. Moreover, a breakthrough was made by disproving
additivity of MOE [20] with a use of random matrix theory as MOE concerns
eigenvalues of matrices whereas HC depends on the geometry of output states.
By contrast, our paper sheds light on not only MOE but also HC because we
consider geometry of output states (at least, of single channels).
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2. MAIN RESULT — LINEAR ALGEBRA AND CONVEX ANALYSIS

2.1. PRELIMINARY. For a sequence of sets {Sn}n∈N we use the following stan-
dard notations of lim-inf and lim-sup:

lim
n→∞

Sn =
⋃

N∈N

⋂
n>N

Sn and lim
n→∞

Sn =
⋂

N∈N

⋃
n>N

Sn.

If S is a subset of a topological space, we denote the interior of S by S◦ and the
closure Scl. Suppose we have a convex set K in a real vector space; any line seg-
ment joining two points of K is included in K. Then, we have the following two
definitions:

(i) A point x ∈ K is an extreme point if x does not lie in any open line segment
joining two points of K.

(ii) A point x ∈ K is an exposed point if there exists a supporting hyperplane
which intersects with K only at one point.

We also use the following notation:

hull({xi}m
i=1) =

{ m

∑
i=1

λixi : λi > 0 and
m

∑
i=1

λi = 1
}

which is called the convex hull of {xi}m
i=1.

THEOREM 2.1 ([32]). Suppose we have a convex and compact set K ⊂ Rd. Then,
for any interior point of K we can choose 2d (or less) extreme points of K whose convex
hull includes the point within the interior.

THEOREM 2.2 ([34]). For any closed convex set K, the set of exposed points is
dense in the set of extreme points.

We define conditions which ensure the limiting convex set of output states.

DEFINITION 2.3. A sequence of projections Pn ⊂ Mkn is said to satisfy the
condition Cm if for all A ∈ Dk, the following m infinite sequences in n ∈ N:

(2.1) λ1(Pn(A⊗ In)Pn), . . . , λm(Pn(A⊗ In)Pn)

converge to a common limit, which we denote f (A). Here, λi(·) is the i-th largest
eigenvalue. Note that Cm =⇒ Cl for l < m.

Let (Φn) be a sequence of quantum channels associated with the sequence
of projections (Pn), that is Φn is defined by (1.1) and Pn = VnV∗n . One can then
define the function f in terms of the adjoint channels Φ∗n defined in (1.2):

PROPOSITION 2.4. Let Φ : MN → Mk be a quantum channel defined by an
isometry V : CN → Ck ⊗ Cn, and put P = VV∗. Then, for any A ∈ Dk, the non-
zero eigenvalues of the matrices P(A⊗ In)P and Φ∗(A) are identical. In particular, a
sequence of projections (Pn) satisfies condition Cm if and only if, for all A ∈ Dk, the m
largest eigenvalues of Φ∗n(A) converge to f (A).
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Proof. We have

P(A⊗ In)P = VV∗(A⊗ In)VV∗ = VΦ∗(A)V∗.

The conclusion follows from the fact that V is an isometry, hence the matrices
VΦ∗(A)V∗ and Φ∗(A) have the same non-zero eigenvalues.

Les us start by recording an obvious upper bound:

LEMMA 2.5. If a sequence of projections Pn satisfies the condition C1, then for any
sequence xn ∈ Ck ⊗Cn such that xnx∗n 6 Pn we have

lim
n→∞

Tr[Xn A] 6 f (A) ∀A ∈ Dk

where Xn = TrCn [xnx∗n].

Proof. For all n ∈ N,

Tr[Xn A]=Tr[xnx∗n(A⊗ In)]6 max
vv∗6Pn

〈v, (A⊗ In)v〉=‖Pn(A⊗ In)Pn‖∞→ f (A).

Next, we prove existence of sequence of optimal vectors:

LEMMA 2.6. If a sequence of projections Pn ⊂ Mkn satisfies the condition Cm,
then for any A ∈ Dk there exists a sequence of m-dimensional subspaces Wn ⊂ range Pn
for large enough n ∈ N such that any sequence of unit vectors xn ∈Wn satisfies

(2.2) Tr[Xn A]→ f (A) as n→ ∞.

Here, Xn = TrCn [xnx∗n].

Proof. Let vi be eigenvectors of λi in (2.1), and define Wn = span{vi : 1 6
i 6 m}. Then, for any unit vector xn ∈Wn we have

λm 6 x∗n(A⊗ In)x∗ = Tr[Xn A] 6 λ1

where the both bounds converges to f (A).

If Cm holds with large enough m with respect to k, we can have a sequence
xi in Lemma 2.6 with orthogonal property in Cn, which is useful in proving The-
orem 2.9:

LEMMA 2.7. Given two subspaces W⊂Ck⊗Cn and T⊂Cn such that dim W >
k dim T, there exists x ∈W having the following Schmidt decomposition:

x =
r

∑
i=1

√
λiei ⊗ fi.

Here, {ei} and { fi} are orthonormal in Ck and Cn respectively and moreover fi ⊥ T, for
all i = 1, . . . , r.
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Proof. Define T̃ = Ck ⊗ T. Since dim T̃ = k dim T, there exists a unit vector
x ∈ W such that x ⊥ T̃. Consider the Schmidt decomposition of x, as in the
statement, with λi > 0, for all i. For any f ∈ T, we have

〈 f , fi〉 = λ−1/2
i 〈ei ⊗ f , x〉 = 0,

since x ⊥ ei ⊗ f ∈ T̃.

If the condition C1 is satisfied we define a compact convex set:

(2.3) K = {B ∈ Dk : Tr[BA] 6 f (A) ∀A ∈ Dk}.
In the following sections, we prove that both the images of mixed input states and
pure input states converge to this convex set K. Especially, the latter statement is
interesting because the set of pure input states itself is not a convex set.

2.2. LIMITING IMAGE FOR MIXED INPUT STATES. Our first result is as follows:

THEOREM 2.8. If a sequence of projections Pn ⊂ Mkn satisfies the condition C1,
then

K◦ ⊆ lim
n→∞

Kn ⊆ lim
n→∞

Kn ⊆ K.

Here, as before, Kn is the image of all the mixed states by the quantum channels defined
by Pn.

Proof. Firstly, we show that lim
n→∞

Kn ⊆ K by showing lim
n→∞

Ln ⊆ K because

Kn = hull(Ln). For any X ∈ lim
n→∞

Ln, there exists a subsequence {nj}j such that

X ∈ Lnj . Since X is an output of the channel Pnj , there exists a unit vector xnj

which lives in the support of Pnj such that TrCnj [xnj x
∗
nj
] = X. By Lemma 2.5, we

have Tr[XA] 6 f (A), and the first inclusion follows.
Secondly, we prove that K◦ ⊆ lim

n→∞
Kn. Take X ∈ K◦. Since K is a compact

and convex set embedded into Rk2−1, writing r = 2k2 − 2, by Theorem 2.1, there
exist r extreme points of K, say, (E1, . . . , Er) such that

X ∈ (hull{E1, . . . , Er})◦.
Also, by Theorem 2.2, there exists r-tuple of exposed points of K, say, (F1, . . . , Fr)
such that

(2.4) X ∈ (hull{F1, . . . , Fr})◦.
Note that since each Fi is an exposed point of K, there exists Ai such that

Tr[Fi Ai] = f (Ai),

Tr[YAi] < f (Ai) ∀Y ∈ K \ {Fi}.(2.5)

On the other hand, by Lemma 2.6, for each Ai, there exists a sequence X(n)
i ∈

Kn such that

(2.6) Tr[X(n)
i Ai]→ f (Ai) as n→ ∞.
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We claim that X(n)
i → Fi as n → ∞. Take a converging subsequence X

(nj)

i →
G. Then, the first statement: lim

n→∞
Kn ⊆ K implies G ∈ K because K is closed.

Moreover, (2.6) implies that Tr[GAi] = f (Ai). Hence, the equation (2.5) implies
the above claim.

Therefore, for large enough n, we have

X ∈ hull{X(n)
i : 1 6 i 6 r} ⊂ Kn.

Here, the first inclusion follows from (2.4) and the second holds because Kn is
convex. Therefore, K◦ ⊆ lim

n→∞
Kn.

2.3. LIMITING IMAGE FOR PURE INPUT STATES. The second theorem we prove is
about the image Ln of the set of pure states.

THEOREM 2.9. If a sequence of projections Pn ⊂ Mkn satisfies the condition Cm,
with m = (2k2 − 3)k2 + 1, then

K◦ ⊆ lim
n→∞

Ln ⊆ lim
n→∞

Ln ⊆ K.

Here, as before, Ln is the image of all the pure states by the quantum channels defined
by Pn.

Proof. Since condition Cm is stronger than C1, the last inclusion follows from
the proof of Theorem 2.8 and from the fact that Ln ⊆ Kn. We shall now show that
the first inclusion holds.

Comparing this statement to the one in the proof of Theorem 2.8, we see that
the difficulty comes from the fact that Ln is not always a convex set. As before, for
a fixed X ∈ K◦, choose a set of r exposed points F1, . . . , Fr of K, with r 6 2k2 − 2
such that X ∈ (hull{F1, . . . , Fr})◦. The main idea here is to build approximating
sequences Ln 3 X(n)

i → Fi with an additional orthogonality property with respect

to Cn. More precisely, we want sequences x(n)i ∈ Ck ⊗Cn, such that

X(n)
i = TrCn [x(n)i x(n)i

∗
]→ Fi,

and their Schmidt decompositions:

(2.7) x(n)i = ∑
a

√
λ
(i,n)
a e(i,n)a ⊗ f (i,n)a

have the additional property that the families { f (i,n)a }a,i are all orthogonal to each
other for large enough n.

Taking advantage of this orthogonality condition, we claim that, for n large
enough,

hull{X(n)
i : 1 6 i 6 r} ⊂ Ln.
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Indeed, for X =
r
∑

i=1
tiX

(n)
i in the hull, the orthogonality condition implies that the

unit vector

x =
r

∑
i=1

√
tix

(n)
i ∈ rangePn

turns out to give TrCn [xx∗] = X. Then, as before, for large enough n,

X ∈ hull{X(n)
i : 1 6 i 6 r} ⊂ Ln

proving L◦ ⊆ lim
m→∞

Lm.

To finish the proof, we shall construct the approximating sequences (2.7),
inductively, for i = 1, 2, . . . , r. The first step is identical to the one in the proof
of Theorem 2.8: since Pn satisfies C1; choose a sequence x(n)1 such that X(n)

1 =

TrCn [x(n)1 x(n)1

∗
] satisfies X(n)

1 → F1. Suppose now we have constructed the first s

approximating sequences x(n)i , 1 6 i 6 s. For each n, Lemma 2.6, provides us with
an m-dimensional subspace Wn ⊂ Ck ⊗Cn of vectors verifying equation (2.2) for
A = As+1. As before, one can show that for all sequences xn ∈ Wn, the reduced
states Xn = TrCn [xnx∗n] converge to Fs+1. Define now T(n)

s = span
a,i
{ f (i,n)a } with

1 6 i 6 s, the span of all vectors f ∈ Cn appearing in the Schmidt decompositions
of the vectors x(n)1 , . . . , x(n)s (see equation (2.7)). Since dim T(n)

s 6 sk and m =

(2k2 − 2 − 1)k2 + 1 > sk2, by Lemma 2.7, one can find a sequence of vectors
x(n)s+1 ∈ Wn such that the vectors f appearing in the Schmidt decompositions are

orthogonal to T(n)
s .

To summarize, we have constructed a sequence x(n)s+1 with the following two
properties:

• the reduced states X(n)
s+1 converge to Fs+1;

• the vectors fi appearing in the SVD of x(n)s+1 are all orthogonal to T(n)
s .

In such a way, one constructs recursively a family of approximating vectors with
the required orthogonality condition.

3. ASYMPTOTIC BEHAVIOUR OF SOME ENTROPIC QUANTITIES

3.1. THE S1 → S∞ NORM. Our first result is as follows

PROPOSITION 3.1. Let (Φn)n be a sequence of channels satisfying condition C1.
Then,

‖Φn‖1,∞ → max
a∈Ck , ‖a‖2=1

f (aa∗) as n→ ∞.
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Proof. It is easy to see from the definition in (1.2) that

‖Φn‖1,∞ = ‖Φ∗n‖1,∞.

The fact that f (·) is convex and Proposition 2.4 complete the proof.

3.2. THE MINIMUM OUTPUT ENTROPY AND THE HOLEVO QUANTITY. The fol-
lowing proposition is a rather direct observation.

PROPOSITION 3.2. Let (Pn)n be a sequence of orthogonal projections satisfying
condition C1. Then, one has

lim
n→∞

Smin
p (Φn) = Smin

p (K), lim
n→∞

χ(Φn) = χ(K).

Proof. By theorem 2.8 and continuity of the von Neumann entropy, the first
statement is proved. For the second, note that Carathéodory’s theorem implies
that optimal ensemble can always consist of 2k2 + 1. Therefore, the first statement
also implies the second.

The following proposition gives a necessarily and sufficient condition for
the Holevo capacity to be written nicely:

PROPOSITION 3.3. We have

(3.1) χ(K) = log k− Smin(K),

if and only if the limiting convex set K has the property that

I
k
∈ hull (argmin S),

where X ∈ argmin S if and only if S(X) = Smin(K),

Proof. The first and second terms in (1.4) have the upper bounds respec-
tively log k and−Smin(K) for the convex set K. So, our assumption lets Φ achieve
both the bounds. The converse is obvious from this argument.

Suppose f is G-invariant for some group G and its unitary representation
{Ug}g∈G, i.e., f (Ug AU∗g ) = f (A) for all g ∈ G and A ∈ Dk. Then K is invariant
with respect to those rotations: UgKU∗g = K for all g ∈ G. This, in particular,
implies that the set of optimal points argmin S is also invariant. In addition, if the
unitary representation {Ug}g∈G is irreducible so that

∫
Ug AU∗g = I/k for all A ∈

Dk [22], then we get the formula (3.1). For example, consider the additive group
Zk ×Zk and define unitary operators, which are called discrete Weyl operators, by

(3.2) Wa,b = XaYb.

Here, (a, b) ∈ Zk × Zk, and X and Y act on the canonical basis vectors {el}k
l=1 of

Ck as follows:
Xel = el+1 and Yel = exp{ 2πi

k · l}el .
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This is an irreducible unitary adjoint representation of the group Zk × Zk on Ck.
Although this argument only gives a sufficient condition, it turns out to be useful.
We have proven the following corollary.

COROLLARY 3.4. Suppose, as is in (2.3), a convex set K is defined by a function
f which is invariant with respect to the discrete Weyl operators:

(3.3) f (Wa,b A W∗a,b) = f (A) ∀A ∈ Dk, ∀(a, b) ∈ Zk ×Zk.

Then, the formula (3.1) holds.

4. FREE PROBABILITY

A ∗-non-commutative probability space is a unital ∗-algebraA endowed with a
linear map ϕ : A → C satisfying ϕ(ab) = ϕ(ba), ϕ(aa∗) > 0, ϕ(1) = 1. The map ϕ
is called a trace, and an element of A is called a non-commutative random variable.

Let A1, . . . ,Ak be subalgebras of A having the same unit as A. They are
said to be free if for all ai ∈ Aji (i = 1, . . . , k) such that ϕ(ai) = 0, one has

ϕ(a1 · · · ak) = 0

as soon as j1 6= j2, j2 6= j3, . . . , jk−1 6= jk. Collections S1, S2, . . . of random variables
are said to be ∗-free if the unital ∗-subalgebras they generate are free.

Let (a1, . . . , ak) be a k-tuple of self-adjoint random variables and let
C〈X1, . . . , Xk〉 be the free ∗-algebra of non commutative polynomials on C gen-
erated by the k self-adjoint indeterminates X1, . . . , Xk. The joint distribution of the
k-tuple (ai)

k
i=1 is the linear form

µ(a1,...,ak)
: C〈X1, . . . , Xk〉 → C

P 7→ ϕ(P(a1, . . . , ak)).

Given a k-tuple (a1, . . . , ak) of free random variables such that the distri-
bution of ai is µai , the joint distribution µ(a1,...,ak)

is uniquely determined by the
µai ’s.

Considering a sequence of k-tuples (a(n)i )k
i=1 in ∗-non-commutative proba-

bility spaces (An, ϕn), we say that it converges in distribution to the distribution of
(a1, . . . , ak) ∈ (A, ϕ) if and only if µ

(a(n)1 ,...,a(n)k )
converges point wise to µ(a1,...,ak)

.

Likewise, a sequence is said to converge strongly in distribution if and only if it
converges in distribution, and in addition, for any non-commutative polynomial
P, its operator norm converges

‖P(a(n)1 , . . . , a(n)k )‖ → ‖P(a1, . . . , ak)‖.
In this definition, we assume that the operator norm is given by the distribu-
tion, i.e.

‖P(a(n)1 , . . . , a(n)k )‖ = lim
p→∞
‖P(a(n)1 , . . . , a(n)k )‖p,
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and

(4.1) ‖P(a1, . . . , ak)‖ = lim
p→∞
‖P(a1, . . . , ak)‖p.

For the purpose of this paper, let us record two important theorems which
extend strong convergence. I.e., let (a(n)i )k

i=1 be a sequence of n × n matrices,
viewed as elements of the non-commutative probability space (Mn, n−1Tr) and
assume that it converges strongly in distribution towards a k-tuple of random
variables (a1, . . . , ak) ∈ (A, ϕ), then we have the following extension theorems.

THEOREM 4.1. Let Un be an n× n Haar distributed unitary random matrix. Then
the family

(a(n)1 , . . . , a(n)k , Un, U∗n)

almost surely converges strongly too, towards the k + 2-tuple of random variables
(a1, . . . , ak, u, u∗), where u, u∗ are unitary elements free from (a1, . . . , ak).

Historically, the convergence of distribution is due to Voiculescu, [35]. A
simpler proof was given by [8]. The strong convergence relies on [9] — it relies
heavily on preliminary works by [19] and [26].

Actually, although this is counterintuitive, Theorem 4.1 is equivalent to a
stronger statement where, in the conclusion, the non-commutative polynomial
is not taken with complex coefficients, but with any matrix coefficient of fixed
size. This follows from the “linearization lemma” as proved by Haagerup and
Thorbjørnsen [19]. We state this result below, as it will be useful to widen our
range of examples.

THEOREM 4.2. Let P be a non-commutative polynomial in k variables with coeffi-
cients in Ml(C) instead of C. Then the operator norm of P((a(n)i ))k

i=1 ∈ Ml ⊗Mn still
converges as n → ∞. The limit is obtained by taking the limit as p → ∞ of the limit as
n→ ∞ of the p-norms.

5. EXAMPLE OF NON-RANDOM PROJECTIONS

In this section we consider some elementary examples of deterministic se-
quence of projections which satisfy the condition Cm.

Let’s start with the completely depolarizing channel Φn : MN → Mk:

(5.1) Φ(ρ) = Tr[ρ] · Ik
k

.

Its adjoint channel is written as

Φ∗(σ) = Tr[σ] · IN
k

.

This immediately implies via Proposition 2.4 the following result:
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PROPOSITION 5.1. The sequence of depolarizing channels defined in (5.1) satisfies
the condition Cm for all m > 1.

Note that the above example is trivial, since the image of the channels Φn

consists of a single point, { Ik
k }, so the convergence result is obvious.

We now generalize the above example by considering a subclass of
entanglement-breaking channels. In general, any entanglement-breaking chan-
nel has the Holevo form [23]:

(5.2) Ξ(X) =
l

∑
i=1

Tr[XMi]σi

where {Mi}i are positive operators which sum up to the identity and σi are fixed
states. Note that the set of the operators {Mi}i is called positive operator valued
measure in quantum information theory and pi = Tr[XMi] constitute a probability
distribution. As the name suggests, those channels break entanglement through
measurements.

PROPOSITION 5.2. Let Φn be a sequence of entanglement-breaking channels:

Φn(ρ) =
l

∑
i=1

Tr[M(n)
i ρ]σi

where l > 0 and (σi)
l
i=1 ∈ Dl

k do not depend on n, and, for all n ∈ N, (M(n)
i )l

i=1 is a

POVM such that ‖M(n)
i ‖ = 1 for all i = 1, . . . , l. Then, the sequence of projections Pn

associated to Φn satisfies the condition Cm where

m = lim inf
n→∞

min
16i6l

dim1 M(n)
i > 1.

Here, for a given operator X, dim1 X denotes the dimension of the eigenspace correspond-
ing to the eigenvalue λ = 1 of X.

Proof. A direct computation shows that the adjoint channel of Φn is

Φ∗n(A) =
l

∑
i=1

Tr[Aσi]M
(n)
i .

First, note that the operator Φ∗n(A) has eigenvalue Tr[Aσi] with multiplicity
dim1 M(n)

i . Define now
f (A) = max

16i6l
Tr[Aσi].

It follows that Φ∗n(A) has eigenvalue f (A) with multiplicity at least

mn = min
16i6l

dim1 M(n)
i > 1.

Also, we claim that ‖Φ∗n(A)‖ = f (A):

Φ∗n(A) =
l

∑
i=1

Tr[Aσi]M
(n)
i 6

l

∑
i=1

f (A)M(n)
i = f (A)IN .
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We conclude that f (A) is the largest eigenvalue of Φ∗(A) and that it has multi-
plicity at least mn; the conclusion follows by Proposition 2.4.

REMARK 5.3. The condition ‖M(n)
i ‖ = 1 ensures that the image of the chan-

nel Φn is precisely hull(σi)
l
i=1, and thus the convergence to the limiting set K is

again obvious.

6. EXAMPLES OF RANDOM PROJECTIONS

In this section we look at random projection operators and we show how
Theorem 2.8 together with Theorems 4.1 and 4.2 give interesting examples.

6.1. RANDOM STINESPRING CHANNELS. Let us first study channels coming from
random isometries. Such random channels were used by Hayden and Winter
[21] to show violations of additivity for minimum p-Rényi entropy, for 1 < p.
Following Hastings’ counterexample [20] (see the next subsection), it was shown
that they also violate additivity for the von Neumann entropy (p = 1) [2], [6],
[15], [16]. More recently, the output of these channels has been fully characterized
using free probability theory [3] and macroscopic violations (or order of 1 bit) for
the additivity of the MOE have been observed [4].

We construct the channel from the Stinespring dilation

(6.1) Φn(X) = [id⊗ Tr](VXV∗),

where V : CN → Ck ⊗Cn is a random Haar isometry. In particular, the operator
Pn = VnV∗n projects onto a random Haar N-dimensional subspace of Ck ⊗ Cn.
The asymptotic regime is as follows: we fix a parameter t ∈ (0, 1), and N is any
function of n that satisfies N ∼ tnk.

Under these circumstances, the convex set K defined in (2.3) is renamed Kk,t
and it was studied at length in [3] and [4].

PROPOSITION 6.1. Consider the free product M of the von Neumann
non-commutative probability spaces (Mk(C), tr) and (C2, tδ1 + (1 − t)δ2). The ele-
ment p = (1, 0) of C2 inM is a selfadjoint projection of trace t, free from elements in
Mk(C). For any A ∈ Mk(C), we define ft(A) = ‖pAp‖. Then, the sequence of pro-
jections Pn defining the quantum channels (6.1) satisfies condition Cm for any m, with
limiting function ft.

A proof can be deduced from the next section on mixed unitary channels.
We also refer the reader to [3], [4] for the proof of the following theorem, gathering
some of the most important properties of the set Kk,t. As an original motivation,
let us state the following theorem, in which the element with least entropy inside
Kk,t is identified.

THEOREM 6.2. The convex set Kk,t has the following properties:
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(i) It is conjugation invariant: A ∈ Kk,t ⇐⇒ UAU∗ ∈ Kk,t, for all U ∈ U (k). In
particular, one only needs the eigenvalues of a selfadjoint element in order to decide if it
belongs to Kk,t or not.

(ii) Its boundary is smooth if and only if t < k−1.
(iii) Any self-adjoint element with eigenvalues

λ = (a, b, b, . . . , b︸ ︷︷ ︸
k−1 times

),

where

a =

t + 1
k −

2t
k + 2

√
t(1−t)(k−1)

k if t + 1
k < 1,

1 if t + 1
k > 1,

and b = (1− a)/(k− 1) is a joint minimizer for all the p-Rényi entropies on Kk,t, for
all p > 1.

6.2. RANDOM MIXED UNITARY CHANNELS. In this section, we are interested in
random mixed unitary channels, namely, convex combinations of random automor-
phisms of Mn(C) (note that deterministic incarnations of these channels are also
known in the literature as “random unitary channels”; in this work, we prefer
the term “mixed”, since the unitary operators appearing in the channel are them-
selves random). After the setup, we argue that this class of channel has the prop-
erty Cm for all m. Based on this result, we identify the limiting maximum output
infinity norm of this class. This section ends with the assertion that this class
satisfies the property (3.1), which gives a simple relation between MOE and HC.

To set up our model, we recall that these channels can be written as follows

Φ̃
(w)
n,k : Mn(C)→ Mn(C) Φ̃

(w)
n,k (X) =

k

∑
i=1

wiUiXU∗i ,

and we are interested in the complementary channels; ˜̃Φ = Φ. Here, {Ui}k
i=1 are

i.i.d. n× n Haar distributed random unitary matrices and wi are positive weights
which sum up to one (we shall consider the probability vector w a parameter of
the model). Here, N = n and the corresponding isometric embedding is the block
column matrix whose i-th block is

√
wiUi. Then, the corresponding projection

P(w)
n ∈ Mn(C)⊗Mk(C) is given by

P(w)
n =

k

∑
i,j=1

√
wiwj eie∗j ⊗UiU∗j ,

where {ei} is the canonical basis of Ck. Our model of this paper corresponds to
the complementary channel of this channel Φ

(w)
n,k : Mn(C) → Mk(C), such that

the matrix entries of its output are as follows

(6.2) (Φ
(w)
n,k (X))ij =

√
wiwj Tr[UiXU∗j ].
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Firstly, we claim that these sequences of channels almost surely have prop-
erty Cm with m > 1, and moreover, the limiting function can be written explicitly
as follows. Let L(Fk) be the free group von Neumann algebra with k free genera-
tors u1, . . . , uk. Consider the algebra Mk(L(Fk)). This algebra contains Mk(C) in
a natural way, and for A ∈ Dk with respect to this inclusion, define

(6.3) fw(A) = ‖P(w)AP(w)‖,

where, for all i, j, P(w)
ij =

√wiwjuiu∗j . Then, our first claim is:

PROPOSITION 6.3. The sequence of orthogonal projections P(w)
n almost surely sat-

isfies condition Cm for all m with limiting function fw defined in (6.3).

Proof. First, notice that P(w)
n (A⊗ In)P(w)

n can be understood as polynomials
of Pn’s with coefficients in Mk. Indeed,

P(w)
n (A⊗ In)P(w)

n =
k

∑
i,j,s,t=1

√
wiwjwswt(eie∗j A ese∗t )⊗UiU∗j UsU∗t .

Hence, Theorem 4.2 implies that, for any fixed matrix A ∈ Mk, the operator norm
of P(w)

n (A⊗ In)P(w)
n converges to the operator norm of P(w)AP(w) because it fol-

lows from Theorem 4.1 that k independent random unitary matrices (U(n)
i )k

i=1
strongly converges to a k-tuple of free unitary elements (ui)

k
i=1 almost surely.

We have thus shown that, for every matrix A ∈ Dk, almost surely, ‖P(w)
n (A⊗

In)P(w)
n ‖ → fw(A). To conclude that the property C1 holds, we have to show the

above convergence simultaneously, for all A. To do this, consider a countable set
(Ai) ⊂ Dk with the property that for all A ∈ Dk and for all ε > 0, there is some
i such that ‖A− Ai‖ < ε. By taking a countable intersection of probability one
events, the convergence ‖P(w)

n (Ai ⊗ In)P(w)
n ‖ → fw(Ai) holds almost surely, for

all i > 1. Since the function f (·) is continuous from the definition, the above cho-
sen sequences of projections show the convergence ‖P(w)

n (A⊗ In)P(w)
n ‖ → fw(A)

for all matrices A ∈ Dk.
Next, we show Cm property with m > 1. Remember that the infinity norm

is defined by the limit of p-norms as in (4.1), the limiting density function yields
non-vanishing measure around the limiting infinity norm. More precisely, for any
ε > 0 there exists a ratio 0 < ηε < 1 such that the measure of the ε-neighborhood
of the infinity norm is ηε. Hence, fix A ∈ Dk and for large enough n, we have
ηε · n eigenvalues of P(w)

n (A⊗ In)P(w)
n which are 2ε-close to the limiting infinity

norm. As ε > 0 is arbitrary, for any m > 1, the largest m eigenvalues converge to
the operator norm almost surely. Again, we can prove that almost surely all the
sequences show this convergence for all A ∈ Mk. This proves Cm property with
m > 1.
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Secondly, we characterize the limiting value of the maximal output infin-
ity norm via Proposition 6.3. To do so, we recall the following result from [1],
generalizing questions that can be traced back to [24] (for a matricial coefficient
version, see [25]):

PROPOSITION 6.4 ([1], Theorems IV G and IV K). Consider an integer k > 2
and let {u1, . . . , uk} be a family of free unitary random variables and a = (a1, . . . , ak) a
scalar vector. Then,

ψ(a) :=
∥∥∥ k

∑
i=1

aiui

∥∥∥ = min
x>0

[
2x +

k

∑
i=1

(√
x2 + |ai|2 − x

)]
.

Moreover,

min
‖a‖1=1

ψ(a) =
2
√

k− 1
k

, max
‖a‖2=1

ψ(a) =
2
√

k− 1√
k

,

with both extrema being achieved on “flat” vectors, i.e. vectors with |ai| = const.

REMARK 6.5. In [1], the minimum in the formula for ψ is taken over all val-
ues x > 0, but one can show, by considering the derivative of the above function
at x = 0, that the minimum is achieved at a strictly positive value x > 0 for k > 3.

Let us introduce the following notation: for a given vector b ∈ Ck, let

(6.4) ψ∗(b) = sup
‖a‖2=1

ψ(a · b),

where (a · b)i = aibi. From the result above, we have that

ψ∗((1, . . . , 1︸ ︷︷ ︸
k times

)) =
2
√

k− 1√
k

.

Next, from this proposition, we can show the following results:

THEOREM 6.6. For k > 3,
(i) The function fw defined in (6.3) satisfies

max
A∈Dk , rk A=1

fw(A) = ψ∗(
√

w),

where
√

w ∈ `2 is the vector with coordinates (
√

w)j =
√wj. The general formula for

ψ∗(
√

w) is described in the Appendix, Proposition A.1.

(ii) This implies that, with probability one, ‖Φ(w)
n,k ‖1,∞ converges to ψ∗(

√
w)2 as

n→ ∞.
(iii) In the particular case of the flat distribution w = wflat = (1/k, . . . , 1/k), we have

ψ∗(
√

wflat) = ψ(wflat) =
2
√

k− 1
k

, lim
n→∞

‖Φ(wflat)
n,k ‖1,∞ =

4(k− 1)
k2 .
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Proof. Since A ∈ Dk is a pure state, it can be written as A = aa∗ for some
unit vector a = (a1, . . . , ak) ∈ Ck. Then, since we work in C∗-algebra,

fw(A) = ‖P(w)aa∗P(w)‖Mk(L(Fk))
= ‖P(w)a‖2

`2(L(Fk))

=
k

∑
i=1
‖[P(w)a]i‖2

L(Fk)
=

k

∑
i=1

∥∥∥√wiui

k

∑
j=1

√
wj āju∗j

∥∥∥2

=
k

∑
i=1

wi

∥∥∥ k

∑
j=1

aj
√

wjuj

∥∥∥2
=
∥∥∥ k

∑
j=1

aj
√

wjuj

∥∥∥2
= ψ(a ·

√
w)2.

Taking the supremum over all a ∈ Ck with ‖a‖2 = 1 proves the first claim. The
second one is a consequence of Proposition 3.1 and the third is shown by Propo-
sition 6.4.

REMARK 6.7. Note that the function fw is not “spectral”, i.e. it does not
depend only on the spectrum of its input, as it is the case for the function ft from
Proposition 6.1. Indeed, notice that, with the choice of the unit vectors

a(1) = (1, 0, . . . , 0), a(2) = ( 1√
k
, 1√

k
, . . . , 1√

k
),

one has

1 = fw(a(1)(a(1))∗) 6= fw(a(2)(a(2))∗) =
2
√

k− 1√
k

,

although the matrices Ai = aia∗i are isospectral.

Thirdly, we claim that, in the limit, the minimum output entropy and the
Holevo capacity of the channel (4.2) identify each other:

THEOREM 6.8. The convex set K for Φ
(w)
n has the property (3.1).

Proof. Take the Weyl operators Wa,b as defined in (3.2) and calculate

(6.5) ‖Pn(Wa,b AW∗a,b⊗In)Pn‖∞ =‖(
√

A⊗In) (W∗a,b⊗ In)Pn(Wa,b⊗ In)︸ ︷︷ ︸
(?)

(
√

A⊗In)‖∞

while we have

(?) = (W∗a,b ⊗ In)
( k

∑
s,t=1

√
wswt ese∗t ⊗UsU∗t

)
(Wa,b ⊗ In)

=
k

∑
s,t=1

√
wswt exp{ 2πi

n b(t− s)}es−ae∗t−a ⊗UsU∗t

=
k

∑
s,t=1

√
wswtes−ae∗t−a ⊗ (exp{−bs 2πi

k }Us)(exp{−bt 2πi
k }Ut)

∗.
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This implies that (W∗a,b ⊗ In)Pn(Wa,b ⊗ In) have the same law for all (a, b) ∈ Zk ×
Zk because {U}k

i=1 are i.i.d. with respect to the Haar measure. Therefore, (3.3) is
true and then Corollary 3.4 completes the proof.

7. IMAGE OF TENSOR PRODUCT OF CHANNELS

In this section, we investigate the image of tensor products of two channels.
Section 7.1 describes general theory when one channel has a nice asymptotic be-
havior and the other is fixed. In Section 7.2, we consider cases where the fixed
channel is entanglement-breaking.

7.1. TENSOR WITH ANY FINITE DIMENSIONAL QUANTUM CHANNEL. Our setting
is as follows. Let Ψn be a quantum channel obtained from Pn a sequence of pro-
jections in Mk ⊗Mn of rank N = N(n) , namely,

Ψn : MN → Mk.

Then,

THEOREM 7.1. If the family (Pn, Eij ⊗ In : i, j ∈ {1, . . . , k}) converges strongly
as in the definition of Section 4 then, for any quantum channel Ξ : Mp → Mq, there
exists a convex body K in Dkq such that

Ξ⊗Ψn(DpN)→ K

as in the sense of Theorem 2.9.

REMARK 7.2. In this setting, existence of the limiting convex set of output
states of the tensor products depends only on the asymptotic behavior of Ψn.

Proof. First, we choose m ∈ N such that there exists a projection P of rank p
on Mq ⊗ Mm which is associated to Ξ. This construction can be made uniquely
up to an isometry.

Next, it follows from Theorem 4.2 that the fact that (Pn, Eij ⊗ In : i, j ∈
{1, . . . , k}) converges strongly as n→ ∞ implies also that

(Pn ⊗ P, Ei1 j1 ⊗ 1n ⊗ Ei2 j2 : i1, j1 ∈ {1, . . . , k}, i2, j2 ∈ {1, . . . , qm})

converges strongly. This strong convergence implies that for any A ∈ Mk ⊗Mq,
the sequence Pn ⊗ PA ⊗ 1nmPn ⊗ P satisfies the condition Cl (see Definition 2.3)
for any l. Note that in the above equation, we viewed A⊗ 1nm as an element of
Mk ⊗Mn ⊗Mq ⊗Mn.

Finally, the proof then follows from Theorem 2.9.

We want to point out that it remains difficult to analyze the limiting outputs
sets K of Theorem 7.1 in general. For example, even in the simple case where Ξ is
the identity map, we are unable to describe the collection of limiting output sets.
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7.2. TENSOR WITH ENTANGLEMENT BREAKING CHANNEL. It seems difficult in
general to compute K explicitly in the tensor product case. However, when Ξ is
an entanglement-breaking channel of certain type, we can write down the image
explicitly. In this section, channels tensored with entanglement-breaking chan-
nels are fixed and we do not use the asymptotic behavior to get results, in the
first place.

Let us start with an interesting example among entanglement-breaking
channels, which is called pinching map:

Ξ : Ml → Ml

[mi,j]
l
i,j=1 7→ [δi,jmi,j]

l
i,j=1

where mi,j is the (i, j)-element of square matrices.

PROPOSITION 7.3. Let Ξ : Ml → Ml be the pinching map. Then the image
KΞ⊗Ψ can be described as follows:

K̃ = {a1KΨ ⊕ · · · ⊕ alKΨ; (ai) ∈ ∆ l}.
Proof. This follows directly from the fact that the image of SlN under Ξ⊗ 1N

is exactly {a1SN ⊕ · · · ⊕ alSN , (ai) ∈ ∆ l}. This can be readily seen by double
inclusion.

This has an immediate corollary:

COROLLARY 7.4. Let Ψn be a sequence of quantum channels obeying the hypothe-
ses of Theorem 2.8 (or Theorem 2.9). Then, for any integer l, the conclusion of Theo-
rem 2.8 (or Theorem 2.9) still holds true for Ψ⊕l

n , where K is replaced by K⊕l .

The images of entanglement-breaking channels are described as follows:

LEMMA 7.5. For an entanglement-breaking channel Ξ defined in (5.2). Then,
KΞ = Ξ(Sp) is written as

KΞ =
{ l

∑
i=1

piσi : (pi) ∈ ∆Ξ

}
.

Here, we denote possible probability distributions by channel Ξ by ∆Ξ.

A straightforward application of Lemma 7.5 implies:

LEMMA 7.6. Suppose we have two quantum channels Ξ and Ψ. Let Ξ be an
entanglement-breaking channel defined in (5.2). Then, the set of images of all the states
via Ξ⊗Ψ is given by

(7.1) KΞ⊗Ψ = hull
{ l

∑
i=1

σi ⊗Ψ(BMT
i B∗) : B ∈ MN,p with Tr[BB∗] = 1

}
.
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Proof. Let the input spaces of Ξ and Ψ be Cp and CN , respectively. Take a
bipartite vector b in CN ⊗Cp and calculate as follows:

(Ξ⊗Ψ)(bb∗) =
l

∑
i=1

σi ⊗Ψ(BMT
i B∗)

where we used the canonical isomorphism CN ⊗ Cp 3 b ↔ B ∈ MN,p(C). In-
deed,

TrCl [bb∗(Mi ⊗ IN)] = BMT
i B∗.

Then, we define

(7.2) KΞ ⊗ KΨ

such that ⊗ in the formula yields the smallest convex set which contains all the
simple tensors. It is easy to see that (7.2) ⊆ (7.1):

KΞ ⊗ KΨ ⊆ KΞ⊗Ψ.

These two sets turn out to be identical under some assumption:

THEOREM 7.7. Suppose we have two quantum channels Ξ and Ψ. Let Ξ be an
entanglement-breaking channel defined in (5.2) such that ‖Mi‖∞ =1 for 16 i6 l. Then:

KΞ⊗Ψ = KΞ ⊗ KΨ.

Proof. We show KΞ ⊗ KΨ ⊇ KΞ⊗Ψ. This is true if for all B there exist {rk} ∈
∆d, {p(k)i }i ∈ ∆Ξ, ρ(k) ∈ S such that

(7.3)
d

∑
k=1

rk

( l

∑
i=1

p(k)i σi ⊗Ψ(ρ(k))
)
=

l

∑
i=1

σi ⊗Ψ(BMT
i B∗)

and this is true if

∑
k

rk p(k)i ρ(k) = BMT
i B∗ ∀i ∈ {1, . . . , l}.

This can be written, by abusing notations, as

(7.4) P · Γ =


p(1)1 . . . p(d)1

...
. . .

...
p(1)l . . . p(d)l


γ(1)

...
γ(d)

 =

BMT
1 B∗
...

BMT
l B∗


with γ(k) = rkρ(k). Since each Mi has an eigenvalue 1, ∆Ξ = ∆ l . Hence we set
d = l and

P = Il ; γ(k) = BMT
k B∗.

Entanglement breaking channels having POVM operators of unit operator
norm have been investigated in [18] in relation to the convex geometry of the
output of quantum channels.
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We think that the above condition ∆Ξ = ∆ l should be close to a necessary
condition too. We set d = l and think whether each block of

P−1 ×

MT
1

...
MT

l


is positive or not. Suppose we have chosen P as

λI + (1− λ)ψψ∗.

Here, 0 < λ 6 1 and ψ = (1/
√

l)(1, . . . , 1)T. Set

Q = I − P = (1− λ)(I − ψψ∗).

Then,

P−1 = (I −Q)−1 =
∞

∑
i=0

Qi =
1
λ
(I − ψψ∗).

However then this always gives a non-positive block. Indeed, the i-th block,
rescaled, will be

Mi −
1
l

l

∑
j=1

Mj = Mi −
1
l

I

and one of them should be non-positive.

Appendix A. THE OPTIMIZATION PROBLEM FOR RANDOM MIXED UNITARY CHANNELS

In this technical appendix, we provide the details of the proof for the opti-
mization problem appearing in Theorem 6.6. Let us recall it here, for the conve-
nience of the reader. Let Sk−1

C be the unit sphere of Ck and define

g : Sk−1
C × (0, ∞)→ R(A.1)

(a, x) 7→ (2− k)x +
k

∑
i=1

√
x2 + |ai|2wi(A.2)

where k > 2 is an integer parameter and (w1, . . . , wk) is a strictly positive proba-
bility vector: wi > 0 and ∑

i
wi = 1. Since only the absolute values |ai|2 appear in

the above formula, we shall assume, without loss of generality, that the numbers
ai are real and satisfy ∑

i
a2

i = 1.

In what follows, we prove the following result:

PROPOSITION A.1. Let g be the function defined in (A.1), but on Sk−1
R × (0, ∞)

as is described above. Then
(i) We have the formula:

(A.3) ψ∗(
√

w) = max
J∈J

h(J).
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Here, remember that ψ∗(
√

w) = max
a∈Sk−1

min
x>0

g(a, x) defined in (6.4). In the above for-

mula, J is a collections of subsets of [k] = {1, . . . , k}, defined as

(A.4) J =
{

J ⊂ [k] : min
j∈J

wj > γ|#J − 2|
}

elements of which we call valid subsets. Also, the function h(·) is defined on J as

h(J) =
√

β− γ(#J − 2)2

where β and γ are

(A.5) β = ∑
j∈J

wj
1
γ
= ∑

j∈J

1
wj

.

Note that J contains all subsets with cardinality less than or equal to 3.
(ii) The function h(·) is well-defined on on 2[k] and non-decreasing with respect to the

canonical partial order. As a result, if the full set J = [k] is valid, i.e. min
j∈[k]

wj > γ0(k− 2)

with γ−1
0 =

k
∑

j=1
w−1

j , then the optimum is
√

1− γ0(k− 2)2. In particular, when wi is

the flat distribution, wi = 1/k, we get ai = 1/k and the optimum is 2
√

k− 1/k.

Proof. Let us start by giving an outline of the proof. First, we notice that the
minimization problem in x is convex, hence a unique minimum exists. Moreover,
this minimum Xa depends smoothly on a and thus we are left with a smooth
maximization problem in a ∈ Sk−1

R . Next, we use Lagrange multipliers to solve
this problem, and we find a set of critical points indexed by subsets J ⊂ [k] =
{1, . . . , k}, where the coordinates ai are non-zero. Not all subsets J yield critical
points and one has to take a maximum over the set of valid subsets J to con-
clude. Finally, we show monotonic property of the function h(·) with respect to
the partial order in 2[k].

Step 1. Let us start by noticing that, at fixed a, the function x 7→ g(a, x) is
convex, so it admits a unique minimum Xa ∈ [0, ∞). Since ∂g/∂x is negative at
x = 0, we have Xa > 0 (see also Remark 6.5). The value Xa is defined by the
following implicit equation

∂g
∂x
|x=Xa = 0,

which is equivalent to F(a, Xa) = 0, for

(A.6) F(a, x) =
∂g
∂x

= 2− k +
k

∑
i=1

x√
x2 + a2

i wi

.

It follows from the implicit function theorem that the map a 7→ Xa is C1 because

∂F
∂x

=
k

∑
i=1

[ 1
(x2 + a2

i wi)1/2
− x2

(x2 + a2
i wi)3/2

]
=

k

∑
i=1

a2
i wi

(x2 + a2
i w2

i )
1/2
6= 0.
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Step 2. Now we want to solve

max
a∈Sk−1

R

g(a, Xa)

by introducing the Lagrange multiplier functional

G(a, λ) = g(a, Xa)−
λ

2

k

∑
i=1

a2
i = (2− k)Xa +

k

∑
i=1

√
X2

a + a2
i wi −

λ

2

k

∑
i=1

a2
i .

The criticality condition, the normalization for a and the restriction of Xa trans-
late to

∀j ∈ [k],
∂Xa

∂aj

(
2− k +

k

∑
i=1

Xa√
X2

a + a2
i wi

)
+

ajwj√
X2

a + a2
j wj

− λaj = 0,(A.7)

k

∑
i=1

a2
i = 1,(A.8)

F(a, Xa) = 0.(A.9)

Below, we get candidates for the solutions for this system of equations.
Firstly, (A.7) and (A.9) imply that

∀j ∈ [k],
ajwj√

X2
a + a2

j wj

= λaj.

Let us now introduce the index sets I = {i : ai = 0} and J = [k] \ I. Then, for
j ∈ J we have

wj = λ
√

X2
a + a2

j wj .

This implies two equations: (A.9) gives

0 = 2− k + #I + λXa ∑
j∈J

1
wj

or #J − 2 =
λXa

γ

and, squaring the both sides yields

a2
j =

wj

λ2 −
X2

a
wj

=
1

λ2

(
wj −

(λXa)2

wj

)
=

1
λ2

(
wj −

γ2(#J − 2)2

wj

)
.

Secondly, with (A.8), we have

1 = ∑
j∈J

a2
i =

1
λ2

(
β− (λXa)2

γ

)
=

1
λ2 (β− γ(#J − 2)2).

This leads to

(A.10) a2
j =

1
β− γ(#J − 2)2 ·

(
wj −

γ2(#J − 2)2

wj

)
.
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Also,

Xa =
γ(#J − 2)
|λ| =

γ(#J − 2)√
β− γ(#J − 2)2

.

Thirdly, for those candidates the function g(·, ·) can be simplified:

g(a, Xa) = (2− #J)Xa + ∑
j∈J

√
X2

a + a2
j wj = (2− #J)Xa +

β

λ

= − γ(#J − 2)2√
β− γ(#J − 2)2

+
β√

β− γ(#J − 2)2
=
√

β− γ(#J − 2)2.

Since this function only depends on set J, we redefine this function to be h(J) as
in the statement of theorem.

Step 3. So far, we get a set of candidates for solutions, but we get the actual
solutions, and hence the precise set of critical points, by thinking positivity issues
for a2

j with j ∈ J. The inequality between the harmonic and the arithmetic means,
applied for {wj}j∈J reads

(A.11)
#J

∑j∈J 1/wj
6

∑j∈J wj

#J

hence we have that (#J)2γ 6 β for all choices of J. This implies that the first factor
in (A.10) is always strictly positive, except for #J = 1, when it is zero. Hence,
looking into the second factor in (A.10), the condition that a2

j > 0 for all j ∈ J is
equivalent to the condition that J is a valid subset, as in (A.4) with respect to those
candidates in (A.10). Therefore, maximizing h(J) over J gives the maximum of
g(a, Xa) under the normalization condition on a.

Note that when #J = 1, 2 the condition for J to be valid, min
j∈J

wj > γ|#J − 2|

is trivially satisfied. When #J = 3, the condition reads

3− 2
minj∈J wj

6
1
γ
=

1
w1

+
1

w2
+

1
w3

which is also always fulfilled. Thus, every subset J with #J 6 3 is valid.
Step 4. The mean inequality (A.11) implies also that the quantity h(J) is well

defined for all subsets J ⊂ [k], even if J is not valid. Let us show next h is an
increasing function of J with the canonical partial order. To this end, consider
a subset J, an element s /∈ J and put J′ = J ∪ {s}. With p = #J, we have the
following sequence of equivalent inequalities

h(J)2 6 h(J′)2,

β− γ(p− 2)2 6 β′ − γ′(p− 1)2,

− (p− 2)2

1/γ
6 ws −

(p− 1)2

1/γ + 1/ws
,
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−(p− 2)2
( 1

γ
+

1
ws

)
6

ws

γ

( 1
γ
+

1
ws

)
− (p− 1)2

γ
,

1
γ

(2(p− 2)
ws

− 1
γ

)
6

(p− 2)2

w2
s

,

where the last one is true by the inequality:
√

ab 6 (a + b)/2 for a, b > 0. In
particular, we conclude that if J = [k] is valid, then

max
J∈J

h(J) = h([k]) =
√

1− γ0(k− 2)2.

As an illustration of the above result, let us consider the case k = 4 and

wr = [r, 1−r
3 , 1−r

3 , 1−r
3 ]

with r ∈ (0, 1
4 ). For J = {1, 2, 3, 4} to be valid, one must have r > 2c. By direct

computation, one finds c = r(1− r)/(8r + 1), thus J = [4] is valid if and only
if r ∈ (0, 1/10). We conclude that, for r > 1/10, the optimum is h([4]) = (2r +
1)/
√

8r + 1.
Let us now study the other regime, where r < 1/10. There are only two

distinct choices for J with #J = 3: J1 = {1, 2, 3} and J2 = {2, 3, 4}, both valid since
they have cardinality 3. One computes directly

h(J1) =

√
2√
3

2r + 1√
5r + 1

<
2
√

2
3

√
1− r = h(J2).

We conclude that

ψ∗(
√

wr) =

{
2r+1√
8r+1

if r > 1
10 ,

2
√

2
3

√
1− r if r < 1

10 .
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