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ABSTRACT. We say that a sequence of operators (Tn) possesses hereditarily
hypercyclic subspaces along a sequence (nk) if for any subsequence (mk) ⊂
(nk), the sequence (Tmk ) possesses a hypercyclic subspace. While so far no
characterization of the existence of hypercyclic subspaces in the case of Fréchet
spaces is known, we succeed to obtain a characterization of sequences (Tn)
possessing hereditarily hypercyclic subspaces along (nk), under the assump-
tion that the sequence (Tn) satisfies the hypercyclicity criterion along (nk). We
also obtain a characterization of operators possessing a hypercyclic subspace
under the assumption that T satisfies the frequent hypercyclicity criterion.
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INTRODUCTION

Let X, Y be Fréchet spaces and L(X, Y) the space of continuous linear op-
erators from X to Y. A sequence (Tn)n>0 ⊂ L(X, Y) is said to be hypercyclic if
there exists a vector x ∈ X (also called a hypercyclic vector) such that the orbit
{Tnx : n > 0} is dense in Y. We denote by HC((Tn)) the set of hypercyclic vectors
for the sequence (Tn). An operator T ∈ L(X) is said to be hypercyclic if the se-
quence (Tn) is hypercyclic and we denote by HC(T) the set of hypercyclic vectors
for T. Given a hypercyclic operator T, one can wonder whether T possesses a lot
of hypercyclic vectors and which is the structure of HC(T). At the beginning of
the twentieth century, Birkhoff proved that if an operator T is hypercyclic, then
the set HC(T) has to be a dense Gδ set. Bourdon and Herrero [7], [11] have then
complemented this result by showing that if an operator T is hypercyclic, then
the set HC(T) ∪ {0} contains a dense infinite-dimensional subspace.

We say that (Tn)n>0 possesses a hypercyclic subspace if there is an infinite-
dimensional closed subspace in which each non-zero vector is hypercyclic. Bernal
and Montes [3] remarked in 1995 that non-trivial translation operators on the
space of entire functions possess a hypercyclic subspace, and in 1996, Montes [15]
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proved that the scalar multiples of the backward shift λB on lp (1 6 p < ∞) do not
possess any hypercyclic subspace. Therefore, one can wonder which hypercyclic
operators possess a hypercyclic subspace.

In the case of complex Banach spaces, the answer to this big question was
obtained by González, León and Montes [9] in 2000 for weakly mixing operators,
where an operator T is said to be weakly mixing if T × T is hypercyclic.

THEOREM 0.1 ([9]). Let X be a separable complex Banach space and T ∈ L(X).
If T is weakly mixing, then the following assertions are equivalent:

(i) T has a hypercyclic subspace;
(ii) there exist an increasing sequence (nk) of positive integers and an infinite-

dimensional closed subspace M0 of X such that Tnk x → 0 for all x ∈ M0;
(iii) there exist an increasing sequence (nk) of positive integers and an infinite-

dimensional closed subspace Mb of X such that sup
k
‖Tnk |Mb‖ < ∞;

(iv) the essential spectrum of T intersects the closed unit disk.

The key of the proof of this theorem is the notion of essential spectrum.
However, this notion loses almost all its properties in the case of real Banach
spaces and in the case of real or complex Fréchet spaces. Some criteria for the ex-
istence or the non-existence of hypercyclic subspaces in the case of Fréchet spaces
have been obtained by Bernal, Bonet, Grosse-Erdmann, Martínez, Peris, Peters-
son and the author [1], [5], [10], [14], [16]. Nevertheless, we do not know a com-
plete characterization of operators with hypercyclic subspaces on these spaces.

Question 1. How can we characterize operators on Fréchet spaces possessing hypercyclic
subspaces?

The goal of this paper is to introduce a new approach to this problem thanks
to the notion of operators possessing hereditarily hypercyclic subspaces and to
bring a partial answer to Question 1.

In 1999, Bés and Peris [4] showed that an operator T is weakly mixing if
and only if T is hereditarily hypercyclic, i.e. there exists an increasing sequence
(nk)k>1 such that for any subsequence (mk)k>1 ⊂ (nk)k>1, the sequence (Tmk )k>1
is hypercyclic (see [2] for an extension to sequences (Tn)). In view of this notion
of hereditary hypercyclicity, we say that a sequence (Tn) ⊂ L(X, Y) possesses
hereditarily hypercyclic subspaces if there exists a sequence (nk) such that for any
subsequence (mk) ⊂ (nk), the sequence (Tmk )k>1 possesses a hypercyclic sub-
space.

Obviously, if T possesses hereditarily hypercyclic subspaces (i.e. if the se-
quence (Tn) of iterates possesses them), then T possesses a hypercyclic subspace
and T is hereditarily hypercyclic. On the other hand, it is interesting to remark
that if X is a complex Banach space and T ∈ L(X), then we can deduce from The-
orem 0.1 and from the equivalence between hereditarily hypercyclic operators
and weakly mixing operators that T possesses hereditarily hypercyclic subspaces



HEREDITARILY HYPERCYCLIC SUBSPACES 387

if and only if T is weakly mixing and T possesses a hypercyclic subspace (Theo-
rem 1.6). We do not know if this equivalence remains true if T is an operator on
real or complex Fréchet spaces. However, it motivates us to study the sequences
of operators possessing hereditarily hypercyclic subspaces.

We say that a sequence (Tn) ⊂ L(X, Y) possesses hereditarily hypercyclic sub-
spaces along (nk) if for any subsequence (mk) ⊂ (nk), the sequence (Tmk )k>1 pos-
sesses a hypercyclic subspace. While so far no characterization of the existence
of hypercyclic subspaces in the case of Fréchet spaces is known, we succeed to
obtain a characterization of sequences (Tn) possessing hereditarily hypercyclic
subspaces along (nk), under the assumption that the sequence (Tn) satisfies the
hypercyclicity criterion along (nk) (Section 1). In particular, our approach differs
from the approach of González, León and Montes [9] by the absence of the use of
spectral theory. The proof of our characterization is given in Section 2.

In Section 3, we use the ideas of the above characterization to characterize
operators possessing a hypercyclic subspace under the assumption that T satis-
fies the frequent hypercyclicity criterion. If T satisfies the frequent hypercyclicity
criterion, then T is weakly mixing. Our assumption is thus stronger than the as-
sumption of Theorem 0.1. In return, the obtained characterization works for any
real or complex Fréchet spaces with a continuous norm and can be extended to
Fréchet spaces without continuous norm through the notion of hypercyclic sub-
spaces of type 1. This result is a partial answer to Question 1.

1. CHARACTERIZATION OF SEQUENCES POSSESSING HEREDITARILY HYPERCYCLIC
SUBSPACES

We will use the following vocabulary:

DEFINITION 1.1. Let X, Y be Fréchet spaces, (Tn) ⊂ L(X, Y) and (nk)k>1 an
increasing sequence of integers.

(i) The sequence (Tn)n>0 possesses a hypercyclic subspace along (nk) if the se-
quence (Tnk )k>1 possesses a hypercyclic subspace.

(ii) The sequence (Tn) possesses hereditarily hypercyclic subspaces along (nk) if
for any subsequence (mk) ⊂ (nk), the sequence (Tn)n>0 possesses a hypercyclic
subspace along (mk).

(iii) The sequence (Tn) possesses hereditarily hypercyclic subspaces if there ex-
ists a sequence (nk) such that (Tn) possesses hereditarily hypercyclic subspaces
along (nk).
If T ∈ L(X), the above definitions extend to T by considering the sequence
(Tn)n>0.

Obviously, if T possesses hereditarily hypercyclic subspaces, then the oper-
ator T is hereditarily hypercyclic and possesses a hypercyclic subspace. We start
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by showing that if T is an operator on a complex Banach space then the converse
is also true. We first recall the well-known hypercyclicity criterion.

THEOREM 1.2 (Hypercyclicity criterion [10]). Let X be a Fréchet space, Y a
separable Fréchet space and (Tn)n>0 ⊂ L(X, Y). If there are dense subsets X0 ⊂ X,
Y0 ⊂ Y, an increasing sequence (nk)k>1 of positive integers and maps Snk : Y0 → X,
such that for any x ∈ X0, y ∈ Y0,

(i) Tnk x → 0,
(ii) Snk y→ 0,

(iii) Tnk Snk y→ y,
then (Tn) is weakly mixing and thus hypercyclic.

In fact, if T is an operator on a Fréchet space, we have the following equiv-
alences.

THEOREM 1.3 ([4]). Let X be a separable Fréchet space and T ∈ L(X). The
following assertions are equivalent:

(i) T satisfies the hypercyclicity criterion;
(ii) T is weakly mixing;

(iii) T is hereditarily hypercyclic.

REMARK 1.4. There exist some hypercyclic operators that are not weakly
mixing [8].

On the other hand, we have at our disposal the following criterion for the
existence of hypercyclic subspaces.

THEOREM 1.5 (Criterion M0 ([5], Theorem 3.5), see also Lemma 2.3 of [1]).
Let X be a Fréchet space with a continuous norm, Y a separable Fréchet space and (Tn) ⊂
L(X, Y). If (Tn) satisfies the hypercyclicity criterion along a sequence (nk) and if there
exists an infinite-dimensional closed subspace M0 of X such that Tnk x → 0 for all x ∈
M0, then (Tn) possesses a hypercyclic subspace.

We can now prove the desired result.

THEOREM 1.6. Let X be a complex Banach space and T ∈ L(X). The operator
T possesses hereditarily hypercyclic subspaces if and only if T is weakly mixing and T
possesses a hypercyclic subspace.

Proof. If T possesses hereditarily hypercyclic subspaces then T is heredi-
tarily hypercyclic and T possesses a hypercyclic subspace. Therefore, since T is
weakly mixing if and only if T is hereditarily hypercyclic (Theorem 1.3), we de-
duce the first implication.

On the other hand, if T is weakly mixing and T possesses a hypercyclic
subspace, then we first deduce from Theorem 1.3 that there exists an increasing
sequence of integers (nk) such that T satisfies the hypercyclicity criterion along
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(nk). Therefore, since T possesses a hypercyclic subspace and T satisfies the hy-
percyclicity criterion along (nk), we deduce from the proof of Theorem 0.1 that
there exist a subsequence (mk) ⊂ (nk) and an infinite-dimensional closed sub-
space M0 such that for any x ∈ M0, Tmk x converges to 0 as k tends to infinity.
Finally, since T satisfies the hypercyclicity criterion along (nk), we get that for any
subsequence (m′k) ⊂ (mk), the sequence (Tm′k )k satisfies the hypercyclicity crite-
rion along the whole sequence (k) and we conclude that, for any subsequence
(m′k) ⊂ (mk), the sequence (Tm′k ) possesses a hypercyclic subspace by using Cri-
terion M0 (Theorem 1.5).

Concerning Fréchet spaces or real Banach spaces, we do not know whether
every weakly mixing operator with a hypercyclic subspace possesses hereditarily
hypercyclic subspaces. However, we can obtain a characterization of sequences
of operators possessing hereditarily hypercyclic subspaces along a sequence (nk).
This characterization is the main result of this paper and its proof will be given
in Section 2.

THEOREM 1.7. Let X be an infinite-dimensional Fréchet space with a continuous
norm, Y a separable Fréchet space and (Tn)n>0 ⊂ L(X, Y). If (Tn) satisfies the hyper-
cyclicity criterion along (nk), then the following assertions are equivalent:

(i) the sequence (Tn) possesses hereditarily hypercyclic subspaces along (nk);
(ii) for any subsequence (mk) ⊂ (nk), there exists an infinite-dimensional closed

subspace M ⊂ X such that for any continuous seminorm q on Y, we have

lim inf
k→∞

q(Tmk x) < ∞ for any x ∈ M;

(iii) for any subsequence (mk) ⊂ (nk), there exist an infinite-dimensional closed sub-
space M0 ⊂ X and an increasing sequence of integers k(n) such that for any continuous
seminorm q on Y, we have

lim
n→∞

inf
k(n−1)6k<k(n)

q(Tmk x) = 0 for any x ∈ M0.

In the case of Fréchet spaces without continuous norm, Theorem 1.7 and its
proof can easily be generalized to hypercyclic subspaces of type 1. A hypercyclic
subspace M ⊂ X is said to be of type 1 if there exists a continuous seminorm p
on X such that M ∩ ker p = {0}. This notion has been introduced in [13].

DEFINITION 1.8. Let X, Y be Fréchet spaces, (Tn) ⊂ L(X, Y) and (nk)k>1
an increasing sequence of integers. The sequence (Tn) possesses hereditarily hy-
percyclic subspaces of type 1 along (nk) if for any subsequence (mk) ⊂ (nk), the
sequence (Tmk )k>1 possesses a hypercyclic subspace of type 1.

THEOREM 1.9. Let X be an infinite-dimensional Fréchet space, Y a separable
Fréchet space and (Tn) ⊂ L(X, Y). If (Tn) satisfies the hypercyclicity criterion along
(nk), then the following assertions are equivalent:

(i) the sequence (Tn) possesses hereditarily hypercyclic subspaces of type 1 along (nk);
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(ii) for any subsequence (mk) ⊂ (nk), there exist an infinite-dimensional closed sub-
space M ⊂ X and a continuous seminorm p on X such that

(a) M ∩ ker p is of infinite codimension in M,
(b) for any continuous seminorm q on Y, we have

lim inf
k→∞

q(Tmk x) < ∞ for any x ∈ M;

(iii) for any subsequence (mk) ⊂ (nk), there exist an infinite-dimensional closed sub-
space M0 ⊂ X, a continuous seminorm p on X and an increasing sequence of integers
k(n) such that

(a) M0 ∩ ker p is of infinite codimension in M0,
(b) for any continuous seminorm q on Y, we have

lim
n→∞

inf
k(n−1)6k<k(n)

q(Tmk x) = 0 for any x ∈ M0.

Before starting the proof of Theorem 1.7, we introduce some classic results
about the notion of basic sequences.

DEFINITION 1.10. Let X be a Fréchet space. A sequence (uk)k>1 ⊂ X is basic
if for every x ∈ span{uk : k > 1}, there exists a unique sequence (αk)k>1 in K

(K = R or C) such that x =
∞
∑

k=1
αkuk.

We can easily construct a basic sequence in any infinite-dimensional closed
subspace thanks to the following two lemmas.

LEMMA 1.11 ([10], Lemma 10.39). Let X be a Fréchet space, F a finite-dimen-
sional subspace of X, p a continuous seminorm on X and ε > 0. Then there exists a
closed subspace E of finite codimension such that for any x ∈ E and y ∈ F,

p(x + y) > max
( p(x)

2 + ε
,

p(y)
1 + ε

)
.

LEMMA 1.12 ([12]). Let X be a Fréchet space with a continuous norm, (pn) an
increasing sequence of norms defining the topology of X and (εn)n>1 a sequence of posi-
tive numbers with ∏

n
(1 + εn) = K < ∞. If (uk)k>1 is a sequence of non-zero vectors in

X such that for any n > 1, for any j 6 n, for any α1, . . . , αn+1 ∈ K,

(1.1) pj

( n

∑
k=1

αkuk

)
6 (1 + εn)pj

( n+1

∑
k=1

αkuk

)
,

then this sequence is basic in (X, pn) for any n > 1 and thus in X.

REMARK 1.13. If (uk)k>1 satisfies (1.1) and p1(uk) = 1 for any k > 1, then,

for any convergent series
∞
∑

k=1
αkuk, any n > 1,

|αn| = p1(αnun) 6 p1

( n−1

∑
k=1

αkuk

)
+ p1

( n

∑
k=1

αkuk

)
6 2Kp1

( ∞

∑
k=1

αkuk

)
.
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In other words, for any convergent series
∞
∑

k=1
αkuk, the sequence (αk) is bounded.

The construction of hypercyclic subspaces will rely on the perturbation of
basic sequences.

LEMMA 1.14 ([12]). Let X be a Fréchet space with a continuous norm, (pn)n
an increasing sequence of norms defining the topology of X and (εn)n>1 a sequence of
positive numbers with ∏

n
(1 + εn) = K < ∞. Suppose that (un)n>1 is a basic sequence

in X satisfying (1.1) for the sequence (εn) and that for any n > 1, we have p1(un) = 1.
If ( fn)n>1 ⊂ X is a sequence satisfying

∞

∑
n=1

2Kpn(un − fn) < 1,

then ( fn)n>1 is a basic sequence in X equivalent to (un), i.e. for every sequence (αk)k>1

in K, the series
∞
∑

k=1
αk fk converges in X if and only if the series

∞
∑

k=1
αkuk converges in X.

2. PROOF OF THEOREM 1.7

In order to prove the equivalences of Theorem 1.7, we add the following
assertion:

(ii’) for any subsequence (mk) ⊂ (nk), there exists an infinite-dimensional closed sub-
space M ⊂ X such that for any continuous seminorm q on Y, there exists a continuous
norm p on X such that for any k0 > 0, there exist k > k0 and a closed subspace E of
finite codimension in M such that for any x ∈ E, there exists k0 6 j 6 k satisfying

q(Tmj x) 6 p(x).

We will then prove that ¬ (ii’) ⇒ ¬ (ii) ⇒ ¬ (i) and (ii’) ⇒ (iii) ⇒ (i) in
Theorem 1.7. The proof of these implications will be obtained thanks to following
three lemmas. The first two lemmas will allow us to deduce that ¬ (ii’)⇒ ¬ (ii)
and (ii’)⇒ (iii) in Theorem 1.7.

LEMMA 2.1. Let X be an infinite-dimensional Fréchet space with a continuous
norm, Y a Fréchet space, (Tn) ⊂ L(X, Y), (nk) an increasing sequence of positive in-
tegers and M an infinite-dimensional closed subspace in X. If there exists a continuous
seminorm q on Y such that for any continuous norm p on X, there exists an integer
k0 > 0 such that for any k > k0, any closed subspace E of finite codimension in M, there
exists a vector x ∈ E satisfying for any k0 6 j 6 k,

q(Tnj x) > p(x),

then there exists a vector x ∈ M such that

lim
k→∞

q(Tnk x) = ∞.
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Proof. Let q be a continuous seminorm on Y such that for any continuous
norm p on X, there exists an integer k0 > 0 such that for any k > k0, any closed
subspace E of finite codimension in M, there exists a vector x ∈ E satisfying for
any k0 6 j 6 k,

q(Tnj x) > p(x).

We seek to construct a vector x ∈ M such that

lim
k→∞

q(Tnk x) = ∞.

The idea of the construction of this vector x is similar to the construction given in
Theorem 1.13 of [14]. (Our hypotheses are in fact the minimal conditions so that
the proof of Theorem 1.13 in [14] works.)

Let (pn)n>1 be an increasing sequence of norms inducing the topology of X.
For each continuous norm n3 pn, there exists an integer kn > 1 such that for any
k > kn, any closed subspace E of finite codimension in M, there exists a vector
x ∈ E satisfying for any kn 6 j 6 k,

q(Tnj x) > n3 pn(x).

Without loss of generality, we can assume that the sequence (kn)n>1 is increasing.
We can then construct recursively a sequence (en)n>0 ⊂ M with e0 = 0 such that
for any n > 1, we have

(i) pn(en) = 1/n2;
(ii) for any kn 6 j < kn+1, q(Tnj en) > n3 pn(en) = n;

(iii) for any j < kn+1, Tnj en ∈
⋂

k6n−1
Lk,j, where Lk,j is the closed subspace of

finite codimension given by Lemma 1.11 for Fk,j = span(Tnj e0, . . . , Tnj ek), q and
ε > 0.

We then let x :=
∞
∑

n=1
en so that x ∈ M and for any n > 1, any kn 6 j < kn+1,

q(Tnj x) = q
( ∞

∑
ν=1

Tnj eν

)
>

1
1 + ε

q
( n

∑
ν=1

Tnj eν

)
(because

∞

∑
ν=n+1

Tnj eν ∈ Ln,j)

>
1

(1 + ε)(2 + ε)
q(Tnj en) (because Tnj en ∈ Ln−1,j)

>
n

(1 + ε)(2 + ε)
.

LEMMA 2.2. Let X be an infinite-dimensional Fréchet space with a continuous
norm, Y a separable Fréchet space and Tn : X → Y a sequence of operators satisfying the
hypercyclicity criterion along (nk). Let M be an infinite-dimensional closed subspace of
X. If for any continuous seminorm q on Y, there exists a continuous norm p on X such
that for any k0 > 0, there exist k > k0 and a closed subspace E of finite codimension in
M such that for any x ∈ E, there exists k0 6 j 6 k satisfying

q(Tnj x) 6 p(x),
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then there exist an infinite-dimensional closed subspace M0 ⊂ X and an increasing
sequence of integers k(n) such that for any continuous seminorm q on Y, we have

lim
n→∞

inf
k(n−1)6k<k(n)

q(Tnk x) = 0 for any x ∈ M0.

Proof. Let (qn) be an increasing sequence of seminorms inducing the topol-
ogy of Y. There exists by hypothesis a sequence (pn) of norms on X such that
for any n > 1, any k0 > 0, there exist k > k0 and a closed subspace E of finite
codimension in M such that for any x ∈ E, there exists k0 6 l 6 k satisfying

qn(Tnl x) 6 pn(x).

Without loss of generality, we can assume that the sequence (pn) is an increasing
sequence inducing the topology of X.

Let X0 be a dense subset of X given by the hypercyclicity criterion for (nk)

and (εn)n>1 a sequence of positive numbers such that
∞
∏

n=1
(1 + εn) 6 2. We con-

struct recursively a sequence (En)n of closed subspaces of finite codimension in
M, a basic sequence (un)n>1 ⊂ M, a basic sequence ( fn)n>1 ⊂ X0 equivalent to
(un)n>1, an increasing sequence of positive integers (k(n))n>1 with k(1) = 1 and
a sequence of integers (ln) such that for any n > 1,

(i) for any x ∈ En, any k 6 n, there exists k(n) 6 l 6 k(n) + ln such that

qk(Tnl x) 6 pk(x);

(ii) un ∈
⋂

k6n
Ek and p1(un) = 1;

(iii) for any m 6 n− 1, any α1, . . . , αn ∈ K,

pm

( n−1

∑
k=1

αkuk

)
6 (1 + εn−1)pm

( n

∑
k=1

αkuk

)
(n > 2).

(iv) pn(un − fn) < 1/2n+2;
(v) for any m 6 n, any k(m) 6 l 6 k(m) + lm,

qm(Tnl ( fn − un)) 6
1

2m+n ;

(vi) k(n + 1) > k(n) + ln;
(vii) for any m 6 n, any l > k(n + 1),

qn+1(Tnl fm) 6
1

2m+n+1 .

We start by explaining the base case of this construction by induction. We know
by hypothesis that there exist an integer l1 > 0 and a closed subspace E1 of finite
codimension in M such that for any x ∈ E1, there exists k(1) 6 l 6 k(1) + l1
satisfying

q1(Tnl x) 6 p1(x).
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We choose u1 ∈ E1 such that p1(u1) = 1 and we choose f1 ∈ X0 close enough to
u1 so that (iv) and (v) are satisfied. Finally, we choose k(2) > k(1) + l1 sufficiently
large so that (vii) is satisfied.

Suppose that we have already fixed the elements E1, . . . , En−1, u1, . . . , un−1,
f1, . . . , fn−1, l1, . . . , ln−1 and k(1), . . . , k(n). By hypothesis, for any m 6 n, there
exists ln,m > 0 and a closed subspace En,m of finite codimension in M such that
for any x ∈ En,m, there exists k(n) 6 l 6 k(n) + ln,m satisfying

qm(Tnl x) 6 pm(x).

We let En =
n⋂

m=1
En,m and ln = max

16m6n
ln,m. We select un ∈

⋂
k6n

Ek such that

p1(un) = 1 and for any m 6 n− 1, any α1, . . . , αn ∈ K,

pm

( n−1

∑
k=1

αkuk

)
6 (1 + εn)pm

( n

∑
k=1

αkuk

)
.

Such a choice is possible thanks to Lemma 1.11. We then choose fn ∈ X0 close
enough to un so that (iv) and (v) are satisfied. We finish by fixing k(n + 1) >
k(n) + ln sufficiently large so that (vii) is satisfied.

By Lemma 1.12 and Lemma 1.14, the sequences (un)n>1 and ( fn)n>1 are
equivalent basic sequences. We let M0 := span{ fn : n > 1} and we show that for
any x ∈ M0, any k > 1,

(2.1) lim
n→∞

inf
k(n)6l6k(n)+ln

qk(Tnl x) = 0.

This will conclude the proof because for any n > 1, [k(n), k(n)+ ln] ⊂ [k(n), k(n+
1)[ and (qk) is an increasing sequence of seminorms inducing the topology of Y.

Let x =
∞
∑

n=1
αn fn ∈ M0. Since for any n > 1, p1(un) = 1 and (un)n>1 is

equivalent to ( fn)n>1, we know that the sequence (αn)n>1 is bounded by some
constant K (Remark 1.13). Let k > 1. For any n > k, any k(n) 6 l 6 k(n) + ln, we
deduce from (v) and (vii) that

qk(Tnl x) = qk

(
Tnl

( ∞

∑
m=1

αm fm

))
6 ∑

m<n
|αm|qn(Tnl fm)+qk

(
Tnl

(
∑

m>n
αmum

))
+ ∑

m>n
|αm|qn(Tnl ( fm − um))

6 ∑
m<n

K
1

2n+m + qk

(
Tnl

(
∑

m>n
αmum

))
+ ∑

m>n
K

1
2n+m

6
K
2n + qk

(
Tnl

(
∑

m>n
αmum

))
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and as ∑
m>n

αmum ∈ En, we deduce from (i) that

inf
k(n)6l6k(n)+ln

qk(Tnl x)6
K
2n + inf

k(n)6l6k(n)+ln
qk

(
Tnl

(
∑

m>n
αmum

))
6

K
2n +pk

(
∑

m>n
αmum

)
−−−→
n→∞

0.

We conclude that (2.1) is satisfied.

The following technical lemma will be used to prove that (iii)⇒ (i) in The-
orem 1.7.

LEMMA 2.3. Let X be an infinite-dimensional Fréchet space with a continuous
norm, Y a separable Fréchet space and (Tn) ⊂ L(X, Y). Let (pn) be an increasing
sequence of norms inducing the topology of X and (qn) an increasing sequence of semi-
norms inducing the topology of Y. Let (yi)i>1 be a dense sequence in Y. If (Tn) satisfies
the hypercyclicity criterion along (nk), then there exists a subsequence (mk) ⊂ (nk) such
that for any i 6 k < j, there exists x ∈ X such that:

(i) pk(x) < 1/2k;
(ii) for any l ∈ [k, j[ , qk(Tml x− yi) < 1/2k+1;

(iii) for any l /∈ [k, j[ , ql(Tml x) < 1/2k+l+1.

Proof. Let X0 (respectively Y0) be the dense subset in X (respectively Y)
and (Snk ) the sequence of maps given by the hypercyclicity criterion along (nk).
We start by proving the existence of a subsequence (ml) ⊂ (nk) and a family
(xi,l)i6l ⊂ X0 such that for any i 6 l,

(a) pl(xi,l) < 1/2l+1;
(b) ql(Tml xi,l − yi) < 1/2l+2;
(c) for any k < l, qk(Tmk xi,l) < 1/2k+l+2;
(d) for any j 6 k < l, ql(Tml xj,k) < 1/2k+l+2.

Suppose that mk and xj,k ∈ X0 have already been chosen for any j 6 k 6 l − 1.
We first remark that if we choose ml ∈ (nk)k>1 sufficiently large, then for any
j 6 k < l,

ql(Tml xj,k) <
1

2k+l+2 .

On the other hand, if ml ∈ (nk)k>1 is sufficiently large, then for any i 6 l we can
find a vector xi,l ∈ X0 satisfying (a), (b) and (c). Indeed, if we consider y′i ∈ Y0

such that ql(y′i − yi) < 1/2l+3, there exists an integer m such that if ml > m with
ml ∈ (nk)k>1, then for any k < l,

pl(Sml y
′
i) <

1
2l+1 , ql(Tml Sml y

′
i − y′i) <

1
2l+3 and qk(Tmk Sml y

′
i) <

1
2k+l+2 .

It then suffices to consider xi,l ∈ X0 sufficiently close to Sml y
′
i.

We remark that it follows from (c) and (d) that for any i 6 l′, any l 6= l′,

(2.2) ql(Tml xi,l′) <
1

2l+l′+2 .
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We now prove that for any i 6 k < j, there exists x ∈ X such that (1), (2) and (3)

hold. Let i 6 k < j and x :=
j−1
∑

l=k
xi,l . We have

(1) pk(x) 6
j−1
∑

l=k
pl(xi,l) <

j−1
∑

l=k
1/2l+1 < 1/2k (by (a));

(2) for any l ∈ [k, j[ ,

qk(Tml x− yi) 6 ql(Tml xi,l − yi) + ∑
l′∈[k,j[\{l}

ql(Tml xi,l′)

<
1

2l+2 + ∑
l′∈[k,j[\{l}

1
2l+l′+2 <

1
2k+1 (by (b) and (2.2));

(3) for any l /∈ [k, j[ ,

ql(Tml x) 6
j−1

∑
l′=k

ql(Tml xi,l′) <
j−1

∑
l′=k

1
2l+l′+2 <

1
2k+l+1 (by (2.2)).

PROOF OF THEOREM 1.7. ¬ (ii)⇒ ¬ (i) By hypothesis, there exists a subsequence
(mk) ⊂ (nk) such that for any infinite-dimensional closed subspace M ⊂ X, there
exist a vector x ∈ M and a continuous seminorm q on Y such that

lim
k→∞

q(Tmk x) = ∞.

We deduce that the sequence (Tn) does not possess any hypercyclic subspace
along (mk) and thus that the sequence (Tn) does not possess hereditarily hyper-
cyclic subspaces along (nk).

¬ (ii’)⇒ ¬ (ii) This implication directly follows from Lemma 2.1.
(ii’) ⇒ (iii) Since (Tn) satisfies the hypercyclicity criterion along (nk), the

sequence (Tn) satisfies the hypercyclicity criterion along any subsequence of (nk).
We can then deduce the implication (ii’)⇒ (iii) from Lemma 2.2.

(iii)⇒ (i) We remark that it suffices to prove that if (Tn) satisfies the hyper-
cyclicity criterion along (nk) and if for any subsequence (mk) ⊂ (nk), there exist
an infinite-dimensional closed subspace M0 ⊂ X and an increasing sequence of
integers k(n) such that for any continuous seminorm q on Y, we have

lim
n→∞

inf
k(n−1)6k<k(n)

q(Tmk x) = 0 for any x ∈ M0,

then (Tn) possesses a hypercyclic subspace along (nk). To this end, we will work
with a special subsequence (mk) ⊂ (nk) given by the Lemma 2.3.

Let (pn) be an increasing sequence of norms inducing the topology of X
and (qn) an increasing sequence of seminorms inducing the topology of Y. Let
(yi)i>1 be a dense sequence in Y and (mk) the subsequence given by Lemma 2.3.
By hypothesis, there then exists an infinite-dimensional closed subspace M0 ⊂ X
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and an increasing sequence (k(n))n such that for any continuous seminorm q on
Y, we have

lim
n→∞

inf
k(n−1)6k<k(n)

q(Tmk x) = 0 for any x ∈ M0.

Let (un) be a basic sequence in M0 given by Lemma 1.12 for K = 2 such that
p1(un) = 1 for any n > 1. Let N the set of positive integers and φ be an injective
function from N×N to N such that for any n, j > 1, we have φ(n, j) > n + j + 2
and such that for any n > 1, (φ(n, j))j is increasing. We remark that for any
(n, j) 6= (m, i), the intervals [k(φ(n, j)), k(φ(n, j) + 1)[ and [k(φ(m, i)), k(φ(m, i) +
1)[ are disjoint. Thanks to the properties of the sequence (mk), we can then select,
for any n, j > 1, a vector xn,j ∈ X such that:

(a) pk(φ(n,j))(xn,j) < 1/2k(φ(n,j));
(b) for any l ∈ [k(φ(n, j)), k(φ(n, j) + 1)[ ,

qk(φ(n,j))(Tml xn,j − yj) <
1

2k(φ(n,j))+1
;

(c) for any l /∈ [k(φ(n, j)), k(φ(n, j) + 1)[ ,

ql(Tml xn,j) <
1

2k(φ(n,j))+l+1
.

For any n, j > 1, since φ(n, j) > n + j + 2 and k(·) is increasing, we know
that k(φ(n, j)) > n + j + 2 and thus by definition of xn,j that

pn+j(xn,j) <
1

2n+j+2 .

We deduce that each element fn := un +
∞
∑

j=1
xn,j is well-defined. Moreover, the

sequence ( fn) is a basic sequence equivalent to (un) because

∑
n>1

4pn( fn − un) 6 ∑
n>1

∑
j>1

4pn(xn,j) < ∑
n>1

∑
j>1

4
1

2n+j+2 = 1 (Lemma 1.14).

We let M f = span{ fn : n > 1} and we show that M f is a hypercyclic subspace
along (mk) and thus a hypercyclic subspace along (nk).

We first show that for any i, n > 1, any k(φ(n, i)) 6 l < k(φ(n, i) + 1)

(2.3) qi(Tml ( fn − un)− yi) 6
1
2i .
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Indeed, for any i, n > 1, any k(φ(n, i)) 6 l < k(φ(n, i) + 1), we have

qi(Tml ( fn − un)− yi) 6 ∑
j 6=i

qk(φ(n,i))(Tml xn,j) + qk(φ(n,i))(Tml xn,i − yi)

6 ∑
j 6=i

ql(Tml xn,j) + qk(φ(n,i))(Tml xn,i − yi)

< ∑
j 6=i

1
2k(φ(n,j))+l+1

+
1

2k(φ(n,i))+1
6

1
2l+n +

1
2n+i+1 6

1
2i .

We also remark that for any i > 1, for any n 6= m, for any k(φ(n, i)) 6 l <
k(φ(n, i) + 1)

(2.4) qi(Tml ( fm − um)) <
1

2i+m

because

qi(Tml ( fm − um)) 6 ∑
j>1

qk(φ(n,i))(Tml xm,j) 6 ∑
j>1

ql(Tml xm,j)

< ∑
j>1

1
2k(φ(m,j))+l+1

6
1

2l+m 6
1

2i+m .

Let x = ∑
m>1

αm fm ∈ M f \{0}. There exists n > 1 such that αn 6= 0 and

without loss of generality, we can suppose that αn = 1. Moreover, we know that
the sequence (αm)m is bounded by some constant K (Remark 1.13). Therefore, for
any k 6 i, any k(φ(n, i)) 6 l < k(φ(n, i) + 1),

qk

(
Tml

(
∑

m>1
αm fm

)
− yi

)
6 qk

(
Tml

(
∑

m>1
αmum

))
+ qk(Tml ( fn − un)− yi) + ∑

m 6=n
Kqk(Tml ( fm − um))

6 qk

(
Tml

(
∑
m

αmum

))
+ qi(Tml ( fn − un)− yi) + ∑

m 6=n
Kqi(Tml ( fm − um))

6 qk

(
Tml

(
∑
m

αmum

))
+

1
2i + ∑

m 6=n

K
2i+m (by (2.3) and (2.4))

6 qk

(
Tml

(
∑
m

αmum

))
+

1
2i +

K
2i .

Since ∑
m

αmum ∈ M0, we know that for any k > 1, there exists an increasing

sequence (li)i>1 such that k(φ(n, i)) 6 li < k(φ(n, i) + 1) and qk

(
Tmli

(
∑
m

αmum

))
tends to 0 as i tends to infinity. Therefore, we deduce that qk(Tmli

x− yi) converges
to 0 as i tends to ∞ and thus that x is hypercyclic along the sequence (mk). This
concludes the proof of Theorem 1.7.
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3. CHARACTERIZATION OF THE EXISTENCE OF HYPERCYCLIC SUBSPACES FOR OPERATORS
SATISFYING THE FREQUENT HYPERCYCLICITY CRITERION

By using the ideas of Theorem 1.7, we can obtain a characterization of op-
erators T with a hypercyclic subspace under the assumption that T satisfies the
frequent hypercyclicity criterion.

DEFINITION 3.1 (Frequent hypercyclicity criterion, [6]). Let X be a Fréchet
space, Y a separable Fréchet space and (Tn)n>0 ⊂ L(X, Y). We say that (Tn)
satisfies the frequent hypercyclicity criterion if there are a dense subset Y0 of Y
and maps Sn : Y0 → X such that, for each y ∈ Y0,

(i)
k
∑

n=0
TkSk−ny converges unconditionally in Y, uniformly in k ∈ Z+,

(ii)
∞
∑

n=0
TkSk+ny converges unconditionally in Y, uniformly in k ∈ Z+,

(iii)
∞
∑

n=0
Sny converges unconditionally in X,

(iv) TnSny→ y,
where Z+ is the set of non-negative integers.

REMARK 3.2. A collection of series
∞
∑

n=0
xn,k, k ∈ I, is said to be uncondition-

ally convergent uniformly in k ∈ I if for any ε > 0, there exists N > 0 such that
for any k ∈ I, any finite set F ⊂ [N, ∞[ ,∥∥∥ ∑

n∈F
xk,n

∥∥∥ < ε.

REMARK 3.3. If T ∈ L(X) satisfies the frequent hypercyclicity criterion,
then T satisfies the hypercyclicity criterion along the whole sequence (n).

The characterization that we obtain can be stated as follows.

THEOREM 3.4. Let X be an infinite-dimensional separable Fréchet space with a
continuous norm and T ∈ L(X). If T satisfies the frequent hypercyclicity criterion, then
the following assertions are equivalent:

(i) the operator T possesses a hypercyclic subspace;
(ii) there exists an infinite-dimensional closed subspace M ⊂ X such that for any

continuous seminorm p on X, we have

lim inf
k→∞

p(Tkx) < ∞ for any x ∈ M;

(iii) there exist an infinite-dimensional closed subspace M0 ⊂ X and an increasing
sequence of integers k(n) such that for any continuous seminorm p on X, we have

lim
n→∞

inf
k(n−1)6k<k(n)

p(Tkx) = 0 for any x ∈ M0.
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Proof. As for the proof of Theorem 1.7, we consider the following interme-
diate assertion:

(ii’) there exists an infinite-dimensional closed subspace M ⊂ X such that for any
continuous seminorm q on X, there exists a continuous norm p on X such that for any
k0 > 0, there exist k > k0 and a closed subspace E of finite codimension in M such that
for any x ∈ E, there exists k0 6 j 6 k satisfying

q(T jx) 6 p(x).

We know that ¬ (ii)⇒ ¬ (i) and in view of Lemma 2.1 and Lemma 2.2, we
deduce that ¬ (ii’)⇒ ¬ (ii) and (ii’)⇒ (iii). It remains to prove that (iii)⇒ (i).

(iii)⇒ (i) Let (pn) be an increasing sequence of norms inducing the topology
of X. Let Y0 ⊂ X be the dense subset and Sn the maps given by the frequent
hypercyclicity criterion. Let (yj)j>1 be a dense sequence in Y0.

By hypothesis, there exist an infinite-dimensional closed subspace M0 and
an increasing sequence (k(n))n such that for any continuous seminorm p on X,
we have

lim
n→∞

inf
k(n−1)6k<k(n)

p(Tkx) = 0 for any x ∈ M0.

Let (un) be a basic sequence in M0 given by Lemma 1.12 for K = 2 such that
p1(un) = 1 for any n > 1. Let ψ be a function from N to N× N× N such that
for any n, j, N > 1, #{l ∈ N : ψ(l) = (n, j, N)} = ∞. We construct an increasing
sequence (nl)l>1 such that for any l > 1, if ψ(l) = (n, j, N), then

(a) k(nl + 1) + N 6 k(nl+1),
(b) for any k > k(nl), pl+j(TkSkyj − yj) < 1/2l+j+1,

and the vector xl :=
K
∑

i=0
Sk(nl)+iNyj, where

K = max{i > 0 : k(nl) + iN ∈ [k(nl), k(nl + 1) + N[},
satisfies

(c) pl+n(xl) < 1/2l+2,
(d) for any l′ 6= l, if ψ(l′) = (n′, j′, N′), then for any k ∈ [k(nl′), k(nl′ + 1)+ N′[ ,

pl+j′(T
kxl) <

1
2l+l′+n′+j′ .

If ψ(1) = (n, j, N), we start by choosing n1 sufficiently large so that p1+n(x1) <
1/23 and for any k > k(n1), p1+j(TkSkyj − yj) < 1/22+j. This is possible be-

cause
∞
∑

n=0
Snyj converges unconditionally in X and TkSkyj tends to yj as k tends

to infinity. If we now suppose that n1, . . . , nl are fixed, we can choose nl+1 suf-
ficiently large so that (a), (b) and (c) are satisfied and so that for any l′ 6 l, if
ψ(l′) = (n′, j′, N′), then for any k ∈ [k(nl′), k(nl′ + 1) + N′[ ,

(3.1) pl+1+j′(T
kxl+1) <

1
2l+1+l′+n′+j′
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and if ψ(l + 1) = (n, j, N), then for any k ∈ [k(nl+1), k(nl+1 + 1) + N[ ,

(3.2) pl′+j(T
kxl′) <

1
2l′+l+1+n+j .

Indeed, if nl+1 is sufficiently large, we know that (b) is satisfied because TkSkyj
tends to yj as k tends to infinity, and that inequalities (c) and (3.1) are satisfied

because the series
∞
∑

n=0
Snyj converges unconditionally and thus xl is as small as

desired. Finally, (3.2) is satisfied if nl+1 is sufficiently large because for any k > 0,

any j′ > 1, the series
k
∑

n=0
TkSk−nyj′ converges unconditionally in X. Indeed, for

any l′ 6 l, any k > k(nl+1), if ψ(l′) = (n′, j′, N′), we have

Tkxl′ = ∑
i∈F

TkSk−iyj′ with F ⊂ [k(nl+1)− k(nl′)− K′N′, ∞[.

Let An = {l > 1 : ψ(l) = (n, ∗, ∗)}. We let fn := un + ∑
l∈An

xl , which

clearly converges thanks to (c). Moreover, the sequence ( fn) is a basic sequence
equivalent to (un) because

∞

∑
n=1

4pn( fn − un) 6
∞

∑
n=1

∑
l∈An

4pn(xl) <
∞

∑
n=1

∑
l∈An

4
2l+2 = 1 (Lemma 1.14).

We let M f = span{ fn : n > 1} and we show that M f is a hypercyclic subspace.

We deduce from (b) that if ψ(l) = (n, j, N) and thus xl =
K
∑

i=0
Sk(nl)+iNyj then

for any i > 0, if k(nl) + iN ∈ [k(nl), k(nl + 1) + N[ , we have

pj(Tk(nl)+iN xl − yj)

6 pj(Tk(nl)+iNSk(nl)+iNyj−yj)+pj

(
∑

06i′6K,i′ 6=i
Tk(nl)+iNSk(nl)+i′Nyj

)
6

1
2l+j+1 + δ(j, N)

where δ(j, N) = sup
{

pj

(
∑

i′∈F,i′ 6=i
Tk+iNSk+i′Nyj

)
: k > 0, F ⊂ Z+ finite

}
and

thanks to conditions (i) and (ii) of the frequent hypercyclicity criterion, we know
that for any j > 1,

(3.3) δ(j, N) −−−→
N→∞

0.

Therefore, for any n, j, N > 1, if ψ(l) = (n, j, N) and the integer k(nl)+ iN ∈
[k(nl), k(nl + 1) + N[ , we have

(3.4) pj(Tk(nl)+iN( fn − un)− yj) 6
1

2l+j + δ(j, N)
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because

pj(Tk(nl)+iN( fn − un)− yj) 6 ∑
l′∈An\{l}

pl′+j(T
k(nl)+iN xl′) + pj(Tk(nl)+iN xl − yj)

6 ∑
l′ 6=l

1
2l′+l+n+j +

1
2l+j+1 + δ(j, N) (by (d))

6
1

2l+j + δ(j, N).

We also remark that for any l > 1 with ψ(l) = (n, j, N), for any m 6= n, for any
k(nl) 6 k < k(nl + 1) + N, we have

(3.5) pj(Tk( fm − um)) <
1

2l+j+m

because

pj(Tk( fm − um)) 6 ∑
l′∈Am

pj(Tkxl′) 6 ∑
l′ 6=l

pl′+j(T
kxl′)

<
∞

∑
l′=1

1
2l+l′+j+m (by (d))

6
1

2l+j+m .

Let x = ∑
m>1

αm fm ∈ M f \{0}. There exists n > 1 such that αn 6= 0 and

without loss of generality, we can suppose that αn = 1. Moreover, we know that
the sequence (αm)m is bounded by some constant K (Remark 1.13). Therefore, for
any j, N > 1, if ψ(l) = (n, j, N) and if k(nl) + iN ∈ [k(nl), k(nl + 1) + N[ , we
have

pj

(
Tk(nl)+iN

(
∑
m

αm fm

)
− yj

)
6 pj

(
Tk(nl)+iN

(
∑
m

αmum

))
+ pj(Tk(nl)+iN( fn − un)− yj)

+ ∑
m 6=n

Kpj(Tk(nl)+iN( fm − um))

6 pj

(
Tk(nl)+iN

(
∑
m

αmum

))
+

1
2l+j +δ(j, N)+ ∑

m 6=n

K
2l+j+m (by (3.4) and (3.5))

6 pj

(
Tk(nl)+iN

(
∑
m

αmum

))
+

1
2l+j + δ(j, N) +

K
2l+j .

By continuity of T, for any j, N > 1, there exists mj,N > 1 and C > 0 such
that for any k 6 N

pj(Tkx) 6 Cpmj,N (x) for any x ∈ X.
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Since ∑
m

αmum ∈ M0, we know that for any j, N > 1, there exists an increasing

sequence (kl)l>1 such that kl ∈ [k(nl), k(nl + 1)[ and pmj,N

(
Tkl
(

∑
m

αmum

))
tends

to 0 as l tends to infinity. Let il > 1 such that kl ∈ [k(nl) + (il − 1)N, k(nl) + il N[ .
We have k(nl) + il N ∈ [k(nl), k(nl + 1) + N[ and thus for any l > 1, if ψ(l) =
(n, j, N),

pj

(
Tk(nl)+il N

(
∑
m

αm fm

)
− yj

)
6 pj

(
Tk(nl)+il N

(
∑
m

αmum

))
+

K + 1
2l+j + δ(j, N)

6 Cpmj,N

(
Tkl
(

∑
m

αmum

))
+

K + 1
2l+j + δ(j, N) −−→

l→∞
δ(j, N).

We deduce that for any x ∈ M f \{0}, any ε > 0, any j, N > 1, there exist l > 1
and i > 1 such that

pj(Tk(nl)+iN x− yj) 6 δ(j, N) + ε.
In view of (3.3), we therefore conclude that x is hypercyclic.

We can generalize this result to hypercyclic subspaces of type 1 as follows.

THEOREM 3.5. Let X be an infinite-dimensional separable Fréchet space and T ∈
L(X). If T satisfies the frequent hypercyclicity criterion, then the following assertions are
equivalent:

(i) the operator T possesses a hypercyclic subspace of type 1;
(ii) there exist an infinite-dimensional closed subspace M ⊂ X and a continuous

seminorm p on X such that:
(a) M ∩ ker p is of infinite codimension in M,
(b) for any continuous seminorm q on X, we have

lim inf
k→∞

q(Tkx) < ∞ for any x ∈ M;

(iii) there exist an infinite-dimensional closed subspace M0 ⊂ X, an increasing se-
quence of integers k(n) and a continuous seminorm p on X such that:

(a) M0 ∩ ker p is of infinite codimension in M0,
(b) for any continuous seminorm q on X, we have

lim
n→∞

inf
k(n−1)6k6k(n)

q(Tkx) = 0 for any x ∈ M0.

In conclusion, we have obtained a characterization of sequences of opera-
tors (Tn) possessing hereditarily hypercyclic subspaces of type 1 under the as-
sumption that (Tn) satisfies the hypercyclicity criterion and a characterization of
operators with hypercyclic subspaces of type 1 in the case of operators satisfying
the frequent hypercyclicity criterion. In view of the characterization of operators
possessing hereditarily hypercyclic subspaces, it would be interesting to know
whether there exists an operator T on some Fréchet space such that T possesses
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a hypercyclic subspace but T does not possess hereditarily hypercyclic subspaces
and if such an operator can be weakly mixing.
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