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ABSTRACT. Let T and S be bounded adjointable operators on a Hilbert C*-
module E such that ker(S) is orthogonally complemented in E . We prove that
the quotient TS~ is a closed operator with orthogonally complemented graph
in E @ E if and only if ran(T*) + ran(5*) is closed. We mean here by S~! the
inverse of the restriction of S to ker(S),. This leads us to study the operators
as TS, whenever S admits the Moore-Penrose inverse St. Note that in case of
an injective Moore-Penrose invertible operator S, we have S~! = S*. Then we
present some applications of these results. Moreover, the quotients of regular
operators are also investigated in this paper.
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INTRODUCTION

A Hilbert C*-module E over a C*-algebra A is a right A-module equipped
with an A-valued inner product (-, -) and such that E is complete with respect to
the norm ||x|| := ||(x, x)||/2, see [9] for more details.

Although Hilbert C*-modules are very similar to Hilbert spaces, with C*-
algebra elements playing the role of scalars, lack of an analogue of the projection
theorem in Hilbert C*-modules causes many difficulties to obtain properties of
them parallel to Hilbert spaces [6]. For example, the whole theory of operators
on Hilbert spaces is based on the projection theorem. So in order to develop
an analogue theory for Hilbert C*-modules we consider adjointable operators
between Hilbert C*-modules E and F.

We denote the set of all A-linear operators T : E — F for which there is
amap T* : F — E such that (T(x),y) = (x,T*(y)) forallx € Eandy € F
by B(E, F). Itis easy to see that T* is A-linear and bounded; it is called the ad-
joint operator for T. The existence of the adjoint operator for T implies that T
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is bounded. So we call the elements of B(E, F) bounded adjointable operators
between Hilbert C*-modules E and F .

As for Hilbert spaces, one needs to study unbounded adjointable operators,
which are known as regular operators. Let f : D(t) C E — F be a densely defined
A-linear operator. We define a submodule D(t*) of F by

D(t") = {y € F : thereexists z € E with (t(x),y) = (x,z)(x € D(¢))}.

For y in D(t*) the element z is unique and is written z = t*(y). This defines
an A-linear operator t* : D(t*) — E satisfying (x, t*y) = (tx,y)(x € D(t),y €
D(t*)). We call a densely defined closed operator t : D(t) C E — F regular
if its adjoint t* is densely defined in F and I + t*t has dense range. We remark
here that every bounded adjointable operator from E to F is regular. Also, every
bounded regular operator between Hilbert C*-modules E and F is in B(E, F).
Let us denote the set of all regular operators from E to F by R(E, F). Note that
the orthogonal projection theorem in Hilbert spaces implies that a closed densely
defined operator on a Hilbert space is automatically regular. However, a closed
densely defined operator t in a Hilbert C*-module does not necessary have a
densely defined adjoint or ran(I + t*t) is dense, see [6] and [9] for some examples.

To each regular operator t on a Hilbert C*-module E correspond bounded
adjointable operators F; and Q satisfying the following: (I + +*t)Q? = I, Q*(I +
t*t) C I, tQ; = Fr and Qst* C F/. We shall call F; the bounded transform of
t, which is a fundamental tool for studying the theory of regular operators on
Hilbert C*-modules (see [3], [9]).

In Hilbert space setting, several papers deal with the quotients of bounded
operators, see [4], [S], [7], [8], and etc. In particular, Kaufman in [7] characterized
closed operators on a Hilbert space H as quotients AB~! of bounded operators
A and B on H such that ran(A*) 4 ran(B*) is closed. These results together with
the fact that a regular operator t on a Hilbert C*-module E can be reconstructed
from bounded adjointable operators Q; and F; by the formula t = FQ; ! mo-
tivate us to investigate the quotients TS~! of bounded adjointable operators T
and S on a Hilbert C*-module E. We prove in Theorem [1.1| that for bounded ad-
jointable operators T and S with ker(S) being orthogonally complemented, TS™!
is a closed operator with orthogonally complemented graph in E @ E if and only if
ran(S*) + ran(T*) is closed. Throughout this paper, we mean by S~ the inverse
of the restriction of S to ker(S)". Furthermore, we determine the domain of the
adjoint of TS~! when it is densely defined. Note that it follows from Theorem 9.3
and Proposition 9.5 of [9] that a closed densely defined operator t with densely
defined adjoint is regular if and only if its graph is orthogonally complemented.
This fact allows us to obtain some conditions implying the regularity of the quo-
tients of bounded adjointable operators on a Hilbert C*-module E. We should
emphasise here that the lack of the projection theorem for the closed submodules
in Hilbert C*-modules forces us to use different ideas and techniques from the
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ones in the case of Hilbert spaces to obtain our results in the context of Hilbert
C*-modules.

Theorem enables us to study the quotients TS, where T and S are
bounded adjointable operators on a Hilbert C*-module E such that S has the
Moore-Penrose inverse ST. Theorem [1.2]states that TS" is a closed operator with
orthogonally complemented graph in E @ E if ran(5*) 4+ ran(T*) is closed. Let us
recall that the Moore-Penrose inverse of S can be an unbounded regular opera-
tor. An interesting consequence of this theorem is that we get a condition under
which Ts is a closed operator with orthogonally complemented graph where T
is a bounded adjointable operator and s is a regular operator with closed range.
Moreover, as an other application of Theorem 1.2l we improve Theorem 1 of [7] by
giving a characterization of closed densely defined operators on a Hilbert space
H in terms of TST where T and S are bounded adjointable operators on H.

Next we turn to the quotients ts~! of regular operators t and s on a Hilbert
C*-module E. Using the concept of the bounded transform of a regular operator
together with our main result in the quotient of bounded adjointable operators,
we show that for regular operators t and s on E with ker(s) being orthogonally
complemented in E and D(s) C D(t), ts~! is a closed operator with orthogonally
complemented graph in E & E whenever ran(s*) + ran((tQs)*) is closed in E.
Then we consider the quotients ts" when t and s are regular operators on a Hilbert
C*-module E with s admitting the Moore-Penrose inverse s'. Recall that a regular
operator t' acting on a Hilbert C*-module E is called the Moore-Penrose inverse
of regular operator t on E if tt7t = t, tTt" = 1, (#t1)* =ttt and (tt)* = t1¢.

Let us recall here some basic facts concerning the Moore-Penrose inverse of
a regular operator from [3] which are useful in obtaining our results in this paper.

PROPOSITION 0.1. Let t be a regular operator on a Hilbert C*-module E. Then
(i) t and t* have unique Moore—Penrose inverses t' and ', respectively which are

the adjoint to each other if and only if E = ker(t) @ ran(t*) and E = ker(t*) & ran(t);
(i) t has a bounded adjointable Moore-Penrose inverse t' if and only if t has closed
range.
Suppose t has the Moore~Penrose inverse t then
(iii) D(t") = ran(t) @ ker(+*) and t' (t(x1 4+ x2) + x3) = x1if x; € D(t) Nran(+*),
xy € ker(t) and x3 € ker(t*);
(iii) ker(t") = ker(t*) and ran(t") = D(t) Nran(t*).
We end this section with the following proposition in which we collect some

basic properties of bounded adjointable operators and regular operators from [2],
[31, [9] and [10].

PROPOSITION 0.2. Let T € B(E,F)andt € R(E, F). Then we have the following
statements:

(i) ran(Q;) = D(t) and Qy, F; € B(E).
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(ii) ran(T) is closed if and only if ran(T*) is closed.

(iii) If ran(T) is closed then ran(T) and ker(T) are orthogonally complemented in F
and E, respectively. In this case, ran(T)* = ker(T*) and ker(T)* = ran(T*).

(iv) ran(T) is closed if and and only if ran(TT*) is closed. In this case, ran(T) =
ran(TT*).

(v) F = F+, ran(t) = ran(F;) and ker(t) = ker(F;).

1. QUOTIENTS OF OPERATORS

We will study quotients of adjointable operators on a Hilbert C*-module
E. Let us begin with studying TS~!, where T and S are bounded adjointable
operators on E.

THEOREM 1.1. Let T and S be bounded adjointable operators on a Hilbert C*-
module E such that ker(S) is orthogonally complemented in E. Then TS~ is a closed
densely defined operator with orthogonally complemented graph in E @ E if and only if
ran(S*) + ran(T*) is closed. Moreover, if ran(S) is dense then r is densely defined and
D(r*) = {x € E; T*(x) € ran(S*) & ker(S*)}.

Proof. Putr = TS™!. Then one can see that
G(r) ={(x, TS (x));x € D(S™1)} = {(S(x), T(x)) : x € ker(S)"}.

Define V : ker(S)* — E® E by V(x) = (S(x), T(x)). So V is a bounded ad-
jointable operator with ran(V) = G(r). Proposition [0.2] yields that G(r) is or-
thogonally complemented in E & E if and only if ran(V) is closed. Also, note

that ran(V*V) = ran(S*S+ T*T). Let L = (S T ), soran(L) = (ran(S*) +

0 0
ran(T*)) @ {0} and we have
«  (S*S+T*T 0
= (FSTT 9.

The above argument together with this observation that by Proposition (0.2| the
closedness of ran(L*L) is equivalent to the closedness of ran(V*) and so to the
closedness of ran(V) imply that G(r) = ran(V) is closed if and only if ran(S*) +
ran(T*) is closed, as desired.
Clearly r is a densely defined operator if ran(S) is dense. Note that G(r*) =

(VG(r))* where V(x,y) = (—y,x). So (x,y) € G(r*) if

(2 y), (=T(2),5(2))) = (=T"(x) + 57 (y), 2)
for all z € ker(S)™. This shows that

D(r*) ={x € E;T*(x) € ran(S*) @ ker(S)},

which completes the proof. 1
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The above theorem leads us to deduce the following proposition.

THEOREM 1.2. Suppose T and S are bounded adjointable operators on a Hilbert
C*-module E with S admitting the Moore—Penrose inverse ST. Then TS is a closed
densely defined operator with orthogonally complemented graph in E @ E if and only if
ran(S*) + ran(T*) is closed.

Proof. We can compute

G(TS") = {(x,TS"(x)) : x € D(S")}
{(S(x)+y,T(x)) :xeKer(S)L,yeKer(S*)}
{(S(x), T(x)); x € Ker(S)*} & {(y,0);y € ker(5*)}

G(TS™) @ {(y,0);y € ker(5*)}.

X

(1.1)

Let’s define V : ker(S)* @ ker(S*) — E® Eby V(x,y) = (S(x) +y, T(x)). Then
Vis bounded ad]ointable operator with ran(V) = G(TS"). Hence applying The-
orem. to (T1) yields that ran(V) = G(TS") is closed and so it is orthogonally
complemented in E @ E if and only if ran(S*) 4+ ran(T*) is closed. &

As a consequence of the above theorem, we can obtain the following corol-
lary.

COROLLARY 1.3. Let s be a regular operator on a Hilbert C*-module E with closed
range and T be a bounded adjointable operator on E. Then Ts is a closed operator with
orthogonally complemented graph in E & E if and only if ran(T*) 4 ran(Qs+ P) is closed,
where P is the orthogonal projection onto ker(s*)=*.

Proof. Since we assume that s has closed range, s is a bounded adjointable
operator. Also note thats = (s*)" so by Proposition[1.2Ts = T(s")" is a closed op-
erator with orthogonally complemented graph if ran(s*") + ran(T*) = ker(s*)* N
D(s*) +ran(T*) is closed. Observe that an easy computation shows that D(s*) =
ran(Qs+) and ker(s*) = ker(Fs+) imply ker(s*)~ N D(s*) = ran(Qs+P), where P
is the orthogonal projection onto ker(s*)*. Now this observation completes the
proof. 1

Next, we show that every regular operator on a Hilbert C*-module E can be
represented as a quotient TS~! where S and T are the same as Theorem First,
we need the following lemma.

LEMMA 1.4. Assume t is a reqular operator on E. Then
(i) Q¢ is injective;
(ii) ran(Q;) + ran(t*) = E.
Proof. (i) Recall from (9.4) of [9] that (1 + t*t)Q% = I so Q; is injective.
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To prove (ii), let V : E® E — E @ E be defined by

(B Qs
v=(% %)

soran(V) = (ran(F;) +ran(Q;)) @ {0}. Notice that

. (FR+Qf 0y _ (I 0
v = ( 0 0/ \0 0/
Thus ran(VV*) = E @ {0} is closed. Now by Proposition [0.2] we get ran(V) =
E & {0}, which shows (ii). 1

COROLLARY 1.5. Let t be a regular operator on E. Then t has a representation
as a TS~ for an injective bounded adjointable operator S with dense range and bounded
adjointable operator T such that ran(S*) + ran(T*) is closed in E.

We remark here that an operator of the form TS~! where T and S satisfy
conditions of Corollary [1.5]is not necessarily regular. To see this, let T be an injec-
tive bounded adjointable operator with dense range. A simple calculation shows
that D((T~1)*) = ran(T*). Thus if T* does not have dense range then T~! is
not regular, however T~ ! is a closed densely defined operator with orthogonally
complemented graph.

It follows from Proposition |0.1{that Q; ! = Qf for every regular operator .
Hence t can be written as TST where T and S are the same as in Proposition
By this observation, we can rephrase Theorem 1 of [7] to obtain the following
characterization of closed densely defined operators on a Hilbert space.

COROLLARY 1.6. Suppose r is an operator on a Hilbert space H then the following
statements are equivalent:
(i) v is a closed densely defined operator;
(ii) r can be written as ABY for bounded operators A and B on H such that ran(A*) +
ran(B*)is closed.

Now, we pass to investigating the quotient ts~! of regular operators t and
s on a Hilbert C*-module E such that ker(s) is orthogonally complemented in E.
To this end, we first need to recall the following two lemmas from [I]]. We bring
the proofs for the reader’s convenience.

LEMMA 1.7. Suppose S : E — F is bounded A-linear operator between Hilbert
C*-modules E and F such that D(S*) is dense in F. Then S is a bounded adjointable
operator.

Proof. We need to verify that D(S*) = F. Let y € F, choose the sequence
{yn} in D(5*) which converges to y € F in norm. We then have

15" (yn) = S (ym) |l = sup{l[(x, S"(yn — ym)) l; x € E; [|x[| <1}
= sup{[[(5(x), yn —ym)|l; x € E; [[x]| <1} < [SIH|yn — ymll
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Thus {S*(yx)} is Cauchy so that S*(y,) — z for some z € E. It follows that
(S(x),y) = lim(S(x),y,) = im(x, S*(yn)) = (x,z), forallx € E.
So we have shown thaty € D(S*).

LEMMA 1.8. Let t : D(t) C F — F be a regular operator and let T : E — F be a
bounded adjointable operator between Hilbert C*-modules E and F. If D(tT) = E then
tT is bounded adjointable.

Proof. Since t is closed and T is bounded the operator T has to be closed.
A simple calculation shows D(t*) C D((tT)*), so D((tT)*) is dense in F. Since
we assume that D(tT) = E, operator tT has to be a bounded operator on E by
general Banach space properties of linear operators. It follows from Lemma
that tT is bounded adjointable. 1

We are now in the position to obtain our main result on the quotients of
regular operators on a Hilbert C*-module.

THEOREM 1.9. Suppose that t and s are reqular operators on a Hilbert C*-module
E such that ker(s) is orthogonally complemented in E and D(s) C D(t). Then r =
ts~1 is a closed operator with orthogonally complemented graph in E & E if ran(s*) +
ran((tQs)*) is closed.

Proof. Note that ker(s) = {Qs(x) : x € ker(s)} since ker(s) = ker(F;). So
we have ker(s)* N D(s) = {Qs(x) : x € ker(s)'}. Therefore we can get
G(r) = {(s(x),t(x)) : x € ker(s)* N D(s)} = {(Fs(x),tQs(x)) : x € ker(s)*}.

Since ran(Qs) = D(s) and D(s) C D(t), Lemmall.8)implies that tQs is a bounded
adjointable operator. Therefore a similar argument given in the proof of
yields that G(r) is closed and orthogonally complemented in E & E if ran((F;)*) +
ran((tQs)*) = ran(s*) + ran((¢tQ;)*) is closed in E. 1

We end the paper with the following proposition which is an analogue of

Theorem|[1.2]in the context of regular operators on a Hilbert C*-module.

PROPOSITION 1.10. Let t and s be regular operator such that D(s*) C D(t) and
s has the Moore~Penrose inverse s*. Then ts is a closed operator with orthogonally
complemented graph in E & E if ran(s*) + ran(tQs)*) is closed.

Proof. We can compute
G(ts") = {(x,ts"(x)) : x € D(s")}
= {(s(x) +y,t(x)) : x € ker(s)L N D(s),y € ker(s*)}
= {(s(x),t(x));x € ker(st)ND(s)} @ {(y,0);y € ker(s*)}
=G(ts ) @ {(y,0);y € ker(s*)}.
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Now employ Theoremto conclude the closedness of G(fs~1) and so the closed-
ness of G(ts*). Also, the above computation shows that

G(ts") = {(sQs(x) +v,tQs(x)); x € ker(s)*,y € ker(s*}.

Define V : ker(s)* @ ker(s*) — E@® E by V(x,y) = (Fs(x) +vy,tQs(x)). Hence
V is a bounded adjointable operator and ran(V) = G(ts') is closed and so is
orthogonally complemented in E @ E, which completes the proof. &
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