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ABSTRACT. Let T be a C·0-contraction on a Hilbert space H and S be a non-
trivial closed subspace of H. We prove that S is a T-invariant subspace of H
if and only if there exists a Hilbert space D and a partially isometric operator
Π : H2

D(D)→ H such that ΠMz = TΠ and that S = ran Π, or equivalently,

PS = ΠΠ∗.

As an application we completely classify the shift-invariant subspaces of an-
alytic reproducing kernel Hilbert spaces over the unit disc. Our results also
include the case of weighted Bergman spaces over the unit disk.
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INTRODUCTION

One of the most famous open problems in operator theory and function
theory is the so-called invariant subspace problem: Let T be a bounded linear op-
erator on a Hilbert spaceH. Does there exist a proper non-trivial closed subspace
S ofH such that TS ⊆ S?

A paradigm is the well-known fact, due to Beurling, Lax and Halmos (see
[5], [8], [10] and [16]), that any shift-invariant subspace of H2

E (D) is given by an
isometric, or partially isometric, image of a vector-valued Hardy space. More-
over, the isometry, or the partial isometry, can be realized as a multiplication by
an operator-valued bounded holomorphic function on D. More precisely, let S be
a non-trivial closed subspaces of H2

E (D). Then S is shift-invariant if and only if
there exists a Hilbert space E∗ such that S is the range of an isometric, or partially
isometric operator from H2

E∗(D) to H2
E (D) which intertwine the shift operators

(see [14]). Here E is a separable Hilbert space and H2
E (D) denote the E -valued
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Hardy space over the unit disc D = {z ∈ C : |z| < 1} (see [14], [16]). This result
was generalized by McCullough and Trent [12] for shift-invariant subspaces of
complete Nevanlinna–Pick kernel Hilbert spaces in one and several variables.

In this paper we extend the Beurling–Lax–Halmos theorem for shift invari-
ant subspaces of vector-valued Hardy spaces to the context of invariant sub-
spaces of arbitrary C·0-contractions. Recall that a contraction T on H (that is,
‖T f ‖ 6 ‖ f ‖ for all f ∈ H) is said to be a C·0-contraction if T∗m → 0 as m → ∞
in the strong operator topology. One of our main results, Theorem 1.2, state that:
Let S be a non-trivial closed subspace of a Hilbert space H and T ∈ B(H) be a
C·0-contraction. Then S is a T-invariant subspace of H if and only if there exists
a Hilbert space E and a partial isometry Π : H2

E (D) → H such that ΠMz = TΠ

and that S = ΠH2
E (D). This theorem will be proven in Section 2.

In Section 3 we specialize to the case of reproducing kernel Hilbert spaces,
in which T = Mz ⊗ IE∗ and H = HK ⊗ E∗. Here HK is an analytic Hilbert space
(see Definition 2.1) and E∗ is a coefficient space. In Theorem 2.3 we show that a
non-trivial closed subspace S ofHK ⊗E∗ is Mz⊗ IE∗ -invariant if and only if there
exists a Hilbert space E and a partially isometric multiplier Θ ∈ M(H2(D) ⊗
E ,HK ⊗ E∗) such that

S = ΘH2
E (D).

This classification extends the results of Ball–Bolotnikov and Olofsson in [3], [4]
and [13] on the shift-invariant subspaces of vector-valued weighted Bergman
spaces with integer weights to that of vector-valued analytic Hilbert spaces.

Our approach has two main ingredients: the Sz.-Nagy and Foias dilation
theory [16] and Hilbert module approach to operator theory [6]. However, to
avoid technical complications we speak here just of operators on Hilbert spaces
instead of Hilbert modules over function algebras.

At this point we would like to emphasize that Theorem 1.2 is a consequence
of the classical dilation result (see Theorem 1.1) . With this in mind, the main con-
tribution of this paper lies in developing a general framework of shift invariant
subspaces of analytic reproducing kernel Hilbert spaces (see Theorem 2.3).

Finally, it is worth mentioning that in the study of invariant subspaces of
bounded linear operators on Hilbert spaces we lose no generality if we restrict
our attention to the class of C·0-contractions.

NOTATIONS. (1) All Hilbert spaces considered in this paper are separable and
over C. We denote the set of natural numbers including zero by N.

(2) Let H be a Hilbert space and S be a closed subspace of H. The orthogonal
projection ofH onto S is denoted by PS .

(3) LetH1,H2 andH be Hilbert spaces. We denote by B(H1,H2) the set of all
bounded linear operators fromH1 toH2 and B(H) = B(H,H).

(4) Two operators T1 ∈ B(H1) and T2 ∈ B(H2) are said to be unitarily equiv-
alent, denoted by T1

∼= T2, if there exists a unitary operator U ∈ B(H1,H2) such
that UT1 = T2U.
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(5) Let E be a Hilbert space. We will often identify H2
E (D) with H2(D) ⊗

E and Mz ∈ B(H2
E (D)) with Mz ⊗ IE ∈ B(H2(D) ⊗ E), via the unitary U ∈

B(H2
E (D), H2(D)⊗ E) where U(zmη) = zm ⊗ η and m ∈ N and η ∈ E .

1. AN INVARIANT SUBSPACE THEOREM

In this section we will present a generalization of the Beurling–Lax–Halmos
theorem to the class of C·0-contractions on Hilbert spaces.

Let T be a C·0-contraction on a Hilbert space H. A fundamental theorem of
Sz.-Nagy and Foias says that

T ∼= PQMz|Q,

where Q is a M∗z -invariant subspace of H2
D(D) for some coefficient Hilbert space

D. In the following, we state and prove a variant (cf. [7]) of this fact which is
adapted to our present purposes.

THEOREM 1.1. Let T be a C·0-contraction on a Hilbert spaceH. Then there exists
a coefficient Hilbert space D and a co-isometry ΠT : H2

D(D) → H such that TΠT =
ΠT Mz.

Proof. Let D = (IH − TT∗)1/2 and D = ranD. Since

‖zT∗‖B(H) = |z|‖T∗‖B(H) < 1,

the inverse of IH − zT∗ exists in B(H) for all z ∈ D.
Define LT : H → H2

D(D) by

(LTh)(z) := D(IH − zT∗)−1h =
∞

∑
m=0

(DT∗mh)zm (h ∈ H, z ∈ D).

Now we compute

‖LTh‖2 =
∥∥∥ ∞

∑
m=0

(DT∗mh)zm
∥∥∥2

=
∞

∑
m=0
‖DT∗mh‖2 =

∞

∑
m=0
〈TmD2T∗mh, h〉

=
∞

∑
m=0
〈Tm(IH − TT∗)T∗mh, h〉 =

∞

∑
m=0

(‖T∗mh‖2 − ‖T∗(m+1)h‖2)

= ‖h‖2 − lim
m→∞

‖T∗mh‖2,

where the last equality follows from the fact that the sum is a telescoping series.
This and the fact that lim

m→∞
T∗m = 0, in the strong operator topology, implies that

‖LTh‖ = ‖h‖ (h ∈ H).
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Thus LT is an isometry and ΠT : H2
D(D) → H defined by ΠT = L∗T is a co-

isometry. Finally, for all h ∈ H, η ∈ D and m ∈ N we have

〈ΠT(zmη), h〉H = 〈zmη, D(IH − zT∗)−1h〉H2
D(D)

=
〈

zmη, ∑
l∈N

(DT∗lh)zl
〉

H2
D(D)

= 〈η, DT∗mh〉H = 〈TmDη, h〉H,

that is,
ΠT(zmη) = TmDη.

Therefore, for each m ∈ N and η ∈ D we have

ΠT Mz(zmη) = ΠT(zm+1η) = Tm+1Dη = T(TmDη) = TΠT(zmη).

Since {zmη : m ∈ N, η ∈ D} is total in H2
D(D), it follows that

ΠT Mz = TΠT .

The proof is now complete.

Now we present the main theorem of this section.

THEOREM 1.2. Let T ∈ B(H) be a C·0-contraction and S be a non-trivial closed
subspace ofH. Then S is a T-invariant subspace ofH if and only if there exists a Hilbert
space D and a partially isometric operator Π : H2

D(D)→ H such that

ΠMz = TΠ,

and that
S = ran Π.

Proof. If S is a T-invariant subspace ofH then

(T|S )∗m = PST∗m|S = PST∗m,

shows that
‖(T|S )∗m f ‖ = ‖PST∗m f ‖ 6 ‖T∗m f ‖,

for all f ∈ S and m ∈ N. Thus T|S ∈ B(S) is a C·0-contraction. Now Theorem 1.1
implies that there exists a Hilbert space D and a co-isometric map

ΠT|S : H2
D(D)→ S ,

such that
ΠT|SMz = T|SΠT|S .

Obviously the inclusion map i : S → H is an isometry and

iT|S = Ti.

Let Π be the bounded linear map from H2
D(D) toH defined by Π = iΠT|S . Then

ΠΠ∗ = (i ΠT|S )(Π
∗
T|S i∗) = ii∗ = PS .

Therefore Π is a partial isometry and ran Π = S . Finally,

ΠMz = i ΠT|SMz = iT|SΠT|S = TiΠT|S = TΠ.
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This proves the necessary part.
To prove the sufficient part it is enough to note that ranΠ is a closed sub-

space of H and TΠ = ΠMz implies that ranΠ is a T-invariant subspace of H.
This completes the proof.

The following corollary is a useful variation of the invariant subspace theo-
rem:

COROLLARY 1.3. Let T ∈ B(H) be a C·0-contraction and S be a non-trivial
closed subspace of H. Then S is a T-invariant subspace of H if and only if there exists
a Hilbert space D and a bounded linear operator Π : H2

D(D) → H such that ΠMz =
TΠ and

PS = ΠΠ∗.

2. ANALYTIC HILBERT SPACES

LetH be a reproducing kernel Hilbert space of E -valued holomorphic func-
tions on D such that the multiplication operator by the coordinate function, de-
noted by Mz, is bounded on H (cf. [2]). A closed subspace S of H is said to be
shift-invariant provided the product z f ∈ S whenever f ∈ S .

The most general result on shift invariant subspaces has recently been ob-
tained by Ball–Bolotnikov, and Olofsson in [3], [4] and [13]. Namely, for a given
Hilbert space E∗, a closed subspace S of the weighted Bergman space L2

a,m(D)⊗
E∗ (m > 2 and m ∈ N) is shift-invariant if and only if there exists a Hilbert space
E and a function Θ : D → B(E , E∗) such that MΘ : H2(D)⊗ E → L2

a,m(D)⊗ E∗
is a multiplier (see definition below) and S = ΘH2

E (D). Recall that the weighted
Bergman space L2

a,α(D), with α > 1, is a reproducing kernel Hilbert space corre-
sponding to the kernel

kα(z, w) =
1

(1− zw)α
(z, w ∈ D).

The purpose of this section is to extend the results of Olofsson, Ball and
Bolotnikov to a large class of reproducing kernel Hilbert spaces. Our setting is
very general and, as particular cases, we obtain new and simple proof of the
invariant subspace theorem for vector-valued weighted Bergman spaces of Ball
and Bolotnikov.

Let K : D× D → C be a positive definite function which is holomorphic
in the first variable, and anti-holomorphic in the second variable. We denote by
HK the reproducing kernel Hilbert space corresponding to the kernel K. For each
w ∈ D, we denote K(·, w) the kernel function

K(·, w)(z) = K(z, w),

for all z ∈ D.
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DEFINITION 2.1. Let HK be a reproducing kernel Hilbert space with K as
above. We say thatHK is an analytic Hilbert space if Mz onHK, defined by Mz f =
z f for all f ∈ HK, is a contraction.

It is important to note that the shift operator Mz on an analytic Hilbert space
HK is a C·0-contraction. To see this observe that

M∗z K(·, w) = wK(·, w),

for all w ∈ D. Thus for each fixed w ∈ D, we see that

‖M∗mz K(·, w)‖ = ‖wmK(·, w)‖ = |w|m‖K(·, w)‖ (m ∈ N).

As a result,
‖M∗mz K(·, w)‖ → 0,

as m → ∞. The claim now follows from the fact that {K(·, w) : w ∈ D} is a total
set inHK.

Let HK1 and HK2 be two analytic Hilbert spaces and E1 and E2 be two
Hilbert spaces. A map Θ : D→ B(E1, E2) is said to be a multiplier from HK1 ⊗ E1
toHK2 ⊗ E2 if

Θ f ∈ HK2 ⊗ E2 ( f ∈ HK1 ⊗ E1).

We denote the set of all multipliers from HK1 ⊗ E1 to HK2 ⊗ E2 by M(HK1 ⊗
E1,HK2 ⊗ E2).

The following lemma, on a characterization of intertwining operators be-
tween a vector-valued Hardy space and an analytic Hilbert space, is well-known,
which we prove for the sake of completeness.

We will denote by S the Szegö kernel on D, that is,

S(z, w) =
1

(1− zw)
(z, w ∈ D).

LEMMA 2.2. Let E1 and E2 be two Hilbert spaces and HK be an analytic Hilbert
space. Let X ∈ B(H2(D)⊗ E1,HK ⊗ E2). Then

X(Mz ⊗ IE1) = (Mz ⊗ IE2)X,

if and only if X = MΘ for some Θ ∈ M(H2(D)⊗ E1,HK ⊗ E2).

Proof. Let X ∈ B(H2(D)⊗ E1,HK ⊗ E2) and X(Mz ⊗ IE1) = (Mz ⊗ IE2)X. If
ζ ∈ E2 and w ∈ D then

(Mz⊗ IE1)
∗[X∗(K(·, w)⊗ ζ)] = X∗(Mz⊗ IE2)

∗(K(·, w)⊗ ζ) = w[X∗(K(·, w)⊗ ζ)],

that is,
X∗(K(·, w)⊗ ζ) ∈ ker(Mz ⊗ IE1 − wIH2(D)⊗E1

)∗.

This and the fact that ker(Mz − wIH2(D))
∗ = 〈S(·, w)〉 readily implies that

X∗(K(·, w)⊗ ζ) = S(·, w)⊗ X(w)ζ (w ∈ D, ζ ∈ E2),
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for some linear map X(w) : E2 → E1. Moreover,

‖X(w)ζ‖E1 =
1

‖S(·, w)‖H2(D)
‖X∗(K(·, w)⊗ ζ)‖H2(D)⊗E1

6
‖K(·, w)‖HK

‖S(·, w)‖H2(D)
‖X‖‖ζ‖E2 ,

for all w ∈ D and ζ ∈ E2. Therefore X(w) is bounded and Θ(w) := X(w)∗ ∈
B(E1, E2) for each w ∈ D. Thus

X∗(K(·, w)⊗ ζ) = S(·, w)⊗Θ(w)∗ζ (w ∈ D, ζ ∈ E2).

In order to prove that Θ(w) is holomorphic we compute

〈Θ(w)η, ζ〉E2 = 〈η, Θ(w)∗ζ〉E1 = 〈S(·, 0)⊗ η,S(·, w)⊗Θ(w)∗ζ〉H2(D)⊗E1

= 〈X(S(·, 0)⊗ η), K(·, w)⊗ ζ〉HK⊗E2 (η ∈ E1, ζ ∈ E2).

Since w 7→ K(·, w) is anti-holomorphic, we conclude that w 7→ Θ(w) is holomor-
phic. Hence Θ ∈ M(H2(D)⊗ E1,HK ⊗ E2) and X = MΘ.

Conversely, let Θ ∈ M(H2(D) ⊗ E1,HK ⊗ E2). For f ∈ H2(D) ⊗ E1 and
w ∈ D this implies that

(zΘ f )(w) = wΘ(w) f (w) = Θ(w)w f (w) = (Θz f )(w).

So MΘ intertwines the multiplication operators which completes the proof.

Now we are ready for the main theorem of this section.

THEOREM 2.3. LetHK be an analytic Hilbert space and E∗ be a Hilbert space. Let
S be a non-trivial closed subspace ofHK ⊗E∗. Then S is (Mz⊗ IE∗)-invariant subspace
ofHK⊗E∗ if and only if there exists a Hilbert space E and a partially isometric multiplier
Θ ∈ M(H2(D)⊗ E ,HK ⊗ E∗) such that

S = Θ(H2(D)⊗ E).
Proof. By Theorem 1.2, there exists a partial isometry Π : H2(D) ⊗ E →

HK ⊗ E∗ such that Π(Mz ⊗ IE ) = (Mz ⊗ IE∗)Π. Consequently, by Lemma 2.2 we
have that Π = MΘ for some Θ ∈ M(H2(D)⊗ E1,HK2 ⊗ E2).

The converse part is trivial. This completes the proof.

In the present context, we restate Corollary 1.3 as follows:

COROLLARY 2.4. Let HK be an analytic Hilbert space and S be a non-trivial
closed subspace ofHK ⊗ E∗ for some coefficient Hilbert space E∗. Then S is (Mz ⊗ IE∗)-
invariant subspace ofHK⊗E∗ if and only if there exists a Hilbert space E and a multiplier
Θ ∈ M(H2(D)⊗ E ,HK ⊗ E∗) such that

PS = MΘ M∗Θ.

For each α > 1, the weighted Bergman space L2
a,α(D) satisfies the conditions

of Theorem 2.3. In particular, Theorem 2.3 includes the result by Ball and Bolot-
nikov [3] for weighted Bergman spaces with integer weights as special cases.
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3. CONCLUDING REMARKS

A bounded linear operator T on a Hilbert space H is said to have the wan-
dering subspace property ifH is generated by the subspaceWT := H	 TH, that is,

H = [WT ] = span{TmWT : m ∈ N}.

In that case we say thatWT is a wandering subspace for T.
An important consequence of the Beurling theorem [5] states that: given a

non-trivial closed shift invariant subspace S of H2(D), the subspace WMz |S =

S 	 zS is a wandering subspace for Mz|S . The same conclusion holds for the
Bergman space [1] and the weighted Bergman space with weight α = 3 [15] but
for α > 3, the issue is more subtle (see [9], [11]). In particular, partially isometric
representations of Mz-invariant subspaces of analytic Hilbert spaces seem to be
a natural generalization of the Beurling theorem concerning the shift invariant
subspaces of the Hardy space H2(D).

Finally, it is worth stressing that the main results of this paper are closely
related to the issue of factorizations of reproducing kernels. As future work we
plan to extend our approach to several variables and address issues such as fac-
torizations of kernel functions and containment of shift-invariant subspaces of
analytic Hilbert spaces over general domains in Cn.
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