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UĞUR GÜL

Dedicated to Prof. Aydın Aytuna on the occasion of his 65th birthday

Communicated by Nikolai K. Nikolski

ABSTRACT. Let G be a locally compact abelian Hausdorff topological group
which is non-compact and whose Pontryagin dual Γ is partially ordered. Let
Γ+ ⊂ Γ be the semigroup of positive elements in Γ. The Hardy space H2(G) is
the closed subspace of L2(G) consisting of functions whose Fourier transforms
are supported on Γ+. In this paper we consider the C∗-algebra C∗(T (G) ∪
F(C( ˙Γ+))) generated by Toeplitz operators with continuous symbols on G
which vanish at infinity and Fourier multipliers with symbols which are con-
tinuous on one point compactification of Γ+ on the Hilbert–Hardy space
H2(G). We characterize the character space of this C∗-algebra using a theo-
rem of Power.
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INTRODUCTION

For a locally compact abelian Hausdorff topological group G whose Pon-
tryagin dual Γ is partially ordered, one can define the positive elements of Γ as
Γ+ = {γ ∈ Γ : γ > e}where e is the identity of the group G and the Hardy space
H2(G) as

H2(G) = { f ∈ L2(G) : f̂ (γ) = 0 ∀γ 6∈ Γ+}
where f̂ is the Fourier transform of f . It is not difficult to see that H2(G) is a
closed subspace of L2(G) and since L2(G) is a Hilbert space there is a unique
orthogonal projection P : L2(G)→ H2(G) onto H2(G).

This definition of the Hardy space H2(G) is motivated by Riesz theorem in
the classical cases when G = T i.e. when G is the unit circle, which characterizes
the Hardy class functions among f ∈ L2(T) as the space of functions whose
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negative Fourier coefficients vanish and by the Paley–Wiener theorem when G =
R, the real line, since the group Fourier transform is the Fourier series when G =
T and coincides with the Euclidean Fourier transform when G = R.

Actually the Paley–Wiener theorem is valid under more general conditions.
We have the following Paley–Wiener type theorem due to Bochner (see p. 93
of [13]):

PALEY–WIENER THEOREM. Let Π = X ⊕ iΛ be a tubular domain where Λ ⊆
Rn is a cone and X ∼= Rn. Then the Fourier transform

(0.1) F ( f )(x) =
1

(2π)n/2

∫
Rn

f (t)e−ix·tdt

maps H2(Π) isometrically onto L2(Λ∗) where Λ∗ = {y ∈ Rn : x · y > 0 ∀x ∈ Λ} is
the dual cone of Λ.

In this setup when G = R2 then H2(Π) = H2(G) according to our Hardy
space definition, with the help of the theorem above, where Π = R2 ⊕ i(R+)2 =
H2. Here H = {z ∈ C : =(z) > 0} is the upper half-plane. Note that ((R+)2)∗ =
(R+)2. The Pontryagin dual Γ of the locally compact abelian topological group
R2 with component-wise addition as the group operation is Γ = R2. When we
put the partial order (x1, y1) > (x2, y2) ⇔ x1 − x2 > 0 and y1 − y2 > 0, then
Γ+ = (R+)2. Note that this partial order is not a total order.

One can extend the theory of Toeplitz operators to this setting by defining a
Toeplitz operator with symbol φ ∈ L∞(G) as Tφ = PMφ where Mφ is the multi-
plication by φ and P is the orthogonal projection of L2 onto H2. Such a definition
was first considered by Coburn and Douglas in [2]. However the Toeplitz op-
erators considered in [2] were more general since no partial order was assumed
on the dual Γ whereas the Hardy space was defined as the space of functions
whose Fourier transforms are supported on a fixed sub-semigroup Γ0 of Γ. The
definition of Hardy space of groups whose duals are partially ordered and their
Toeplitz operators were introduced and studied by Murphy in [5] and [7]. How-
ever in these papers [5] and [7], Murphy studies the case where G is compact. In
this paper we will study the case where G is not compact. One very important
assumption that we will make is that Γ+ separates the points of G, i.e. for any
t1, t2 ∈ G satisfying t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2).

The Toeplitz C∗-algebra of a locally compact group is defined as

T (G) = C∗({Tφ : φ ∈ C0(G)} ∪ {I})

where C0(G) is the space of continuous functions vanishing at infinity and I is
the identity operator. In the study of this Toeplitz C∗-algebra, the most important
notions are the commutator ideal com(G) = I∗({TφTψ − TψTφ : φ, ψ ∈ C0(G)}),
the semi-commutator ideal scom(G) = I∗({Tφψ − TψTφ : φ, ψ ∈ C0(G)}) and
the symbol map Σ : C(Ġ) → T (G)/com(G), Σ(φ) = [Tφ] where Ġ is the one
point compactification of G and [Tφ] denotes the equivalence class of Tφ modulo
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com(G). It is not difficult to see that com(G) ⊆ scom(G). We start by proving the
following important result whose proof is adapted from [8]:

LEMMA 0.1. Let G be a locally compact abelian Hausdorff topological group whose
Pontryagin dual Γ is partially ordered and let Γ+ be the semigroup of positive elements
of Γ. Suppose that Γ+ separates the points of G i.e. for any t1, t2 ∈ G with t1 6= t2 there
is γ ∈ Γ+ such that γ(t1) 6= γ(t2). Let com(G) and scom(G) be the commutator and
the semi-commutator ideal of the Toeplitz C∗-algebra T (G) respectively. Then

com(G) = scom(G).

It is shown in [2] and [7] that Σ : C(Ġ)→ T (G)/com(G) is an isometry but
is not a homomorphism since it may not preserve the multiplication. However
Σ : C(Ġ) → T (G)/scom(G) is a homomorphism and combining this fact with
Lemma 0.1 above we deduce that the symbol map Σ : C(Ġ)→ T (G)/com(G) is
an isometric isomorphism which means that

M(T (G)) = Ġ

where M(A) is the character space of a C∗-algebra A.
We introduce another class of operators acting on H2(G) which are called

Fourier multipliers. These operators in the classical case G = R were introduced
in [4]. The space of Fourier multipliers is defined as

F(C(Γ̇+)) = {Dθ = F−1MθF|H2(G) : θ ∈ C(Γ̇+)}

where F : L2(G) → L2(Γ) is the Fourier transform. By Plancherel theorem it is
not difficult to see that the image F (H2(G)) of H2(G) under the Fourier trans-
form is equal to L2(Γ+). Again it is not difficult to see that F(C(Γ̇+)) is isometri-
cally isomorphic to C(Γ̇+). This means that

M(F(C(Γ̇+))) = Γ̇+.

Lastly we consider the C∗-algebra generated by T (G) and F(C(Γ̇+)) which
we denote by Ψ(C0(G), C(Γ̇+)) i.e.

Ψ(C0(G), C(Γ̇+)) = C∗(T (G) ∪ F(C(Γ̇+))).

Using a theorem of Power [9], [10], which characterizes the character space of
the C∗-algebra generated by two C∗-algebras as a certain subset of the cartesian
product of character spaces of these two C∗-algebras, we prove the following
theorem:

MAIN THEOREM. Let G be a non-compact, locally compact abelian Hausdorff
topological group whose Pontryagin dual Γ is partially ordered and let Γ+ be the semi-
group of positive elements of Γ. Suppose that Γ+ separates the points of G i.e. for any
t1, t2 ∈ G with t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2). Let

Ψ(C0(G), C(Γ̇+)) = C∗(T (G) ∪ F(C(Γ̇+)))
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be the C∗-algebra generated by Toeplitz operators and Fourier multipliers on H2(G).
Then for the character space M(Ψ) of Ψ(C0(G), C(Γ̇+)) we have

M(Ψ) ∼= (Ġ× {∞}) ∪ ({∞} × Γ̇+).

Very similar kinds of the above theorem were proven by Power in [9] and
[10] when G = Rn, however those theorems considered L2(Rn) instead of H2(Rn)
and took multiplication operators instead of Toeplitz operators. Indeed Power
proved his theorems with more general class of symbols like CVO(Rn) in place
of C0(Rn).

1. PRELIMINARIES

In this section we fix the notation that we will use throughout and recall
some preliminary facts that will be used in the sequel.

Let S be a compact Hausdorff topological space. The space of all complex
valued continuous functions on S will be denoted by C(S). For any f ∈ C(S),
‖ f ‖∞ will denote the sup-norm of f , i.e.

‖ f ‖∞ = sup{| f (s)| : s ∈ S}.

If S is a locally compact Hausdorff topological space, C0(S) will denote the space
of continuous functions f which vanish at infinity i.e. for any ε > 0 there is a
compact subset K ⊂ S such that | f (x)| < ε for all x 6∈ K. For a Banach space X,
K(X) will denote the space of all compact operators on X and B(X) will denote
the space of all bounded linear operators on X. The real line will be denoted by R,
the complex plane will be denoted by C and the unit circle group will be denoted
by T. The one point compactification of a locally compact Hausdorff topological
space S will be denoted by Ṡ. For any subset S ⊂ B(H), where H is a Hilbert
space, the C∗-algebra generated by S will be denoted by C∗(S) and for any subset
S ⊂ A where A is a C∗-algebra, the closed two-sided ideal generated by S will be
denoted by I∗(S).

For any φ ∈ L∞(G) where G is a Borel space (a topological space with a
regular measure on it), Mφ will be the multiplication operator on L2(G) defined as

Mφ( f )(t) = φ(t) f (t).

For convenience, we remind the reader of the rudiments of theory of Banach al-
gebras, some basic abstract harmonic analysis and Toeplitz operators.

Let A be a Banach algebra. Then its character space M(A) is defined as

M(A) = {x ∈ A∗ : x(ab) = x(a)x(b) ∀a, b ∈ A}

where A∗ is the dual space of A. If A has identity then M(A) is a compact Haus-
dorff topological space with the weak* topology. When A is commutative M(A)
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is called the maximal ideal space of A. For a commutative Banach algebra A the
Gelfand transform Γ : A→ C(M(A)) is defined as

Γ(a)(x) = x(a).

If A is a commutative C∗-algebra with identity, then Γ is an isometric ∗-iso-
morphism between A and C(M(A)). If A is a C∗-algebra and I is a two-sided
closed ideal of A, then the quotient algebra A/I is also a C∗-algebra (see [6]). For
a Banach algebra A, we denote by com(A) the closed ideal in A generated by the
commutators {a1a2 − a2a1 : a1, a2 ∈ A}. It is an algebraic fact that the quotient
algebra A/com(A) is a commutative Banach algebra. The reader can find de-
tailed information about Banach and C∗-algebras in [6] and [12] related to what
we have reviewed so far.

On a locally compact abelian Hausdorff topological group G there is a
unique (up to multiplication by a constant) translation invariant measure λ on
G i.e. for any Borel subset E ⊂ G and for any x ∈ G,

λ(xE) = λ(E)

where xE = {xy : y ∈ E} is the translate of E by x. This measure is called the
Haar measure of G. Let L1(G) be the space of integrable functions with respect
to this measure. Then L1(G) becomes a commutative Banach algebra with multi-
plication as the convolution defined as

( f ∗ g)(t) =
∫
G

f (ts−1)g(s)dλ(s).

The Pontryagin dual Γ of G is defined to be the set of all continuous homomor-
phisms from G to the circle group T:

Γ = {γ : G → T : γ(st) = γ(s)γ(t) and γ is continuous}.

It is a well known fact that Γ is in one to one correspondence with the maximal
ideal space M(L1(G)) of L1(G) via the Fourier transform:

〈γ, f 〉 = f̂ (γ) =
∫
G

γ(t) f (t)dλ(t).

When Γ is topologized by the weak* topology coming from M(L1(G)), Γ becomes
a locally compact abelian Hausdorff topological group with point-wise multipli-
cation as the group operation:

(γ1γ2)(t) = γ1(t)γ2(t).

Let λ̃ be a fixed Haar measure on Γ. Plancherel theorem asserts that the Fourier
transform F is an isometric isomorphism of L2(G) onto L2(Γ):

F ( f )(γ) = f̂ (γ) =
∫
G

γ(t) f (t)dλ(t)
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with inverse F−1 defined as

F−1( f )(t) = f̌ (t) =
∫
Γ

γ(t) f (γ)dλ̃(γ).

Here we note that λ̃ is normalized so that the above formula for the inverse
Fourier transform holds. For detailed information on abstract harmonic analy-
sis consult [11].

A partially ordered group Γ is a group with partial order > on it satisfying
γ1 > γ2 implies γγ1 > γγ2 ∀γ ∈ Γ. This definition of the ordered group was
given in [5]. Let Γ+ = {γ ∈ Γ : γ > e} be the semi-group of positive elements of
Γ where e is the unit of the group Γ. Let G be a locally compact abelian Hausdorff
topological group and let Γ be the Pontryagin dual of G. Then the Hardy space
H2(G) is defined as

H2(G) = { f ∈ L2(G) : f̂ (γ) = 0 ∀γ 6∈ Γ+}.

The Hardy space H2(G) is a closed subspace of L2(G) and since L2(G) is a Hilbert
space, there is a unique orthogonal projection P : L2(G) → H2(G). For any
φ ∈ L∞(G) the Toeplitz operator Tφ : H2(G)→ H2(G) is defined as

Tφ = PMφ.

Toeplitz operators satisfy the following algebraic properties:

(i) Tcφ+ψ = cTφ + Tψ ∀c ∈ C, ∀φ, ψ ∈ C(Ġ),
(ii) T∗φ = Tφ ∀φ ∈ C(Ġ).

The proofs of these properties are the same as in the classical case where
G = T (or G = R) and can be found in [3].

The Toeplitz C∗-algebra T (G) is defined to be the C∗-algebra generated by
continuous symbols on G:

T (G) = C∗({Tφ : φ ∈ C0(G)} ∪ {I})

where I is the identity operator and C0(G) is the space of continuous functions
which vanish at infinity:

C0(G) = { f : G → C : f is continuous and ∀ε > 0 ∃K ⊂⊂ G| f (t)| < ε ∀t 6∈ K}

where K ⊂⊂ G denotes a compact subset of G. Actually one has

T (G) = C∗({Tφ : φ ∈ C(Ġ)})

where Ġ is the one-point compactification of G. In the case where G is compact
one has G = Ġ and the most prototypical concrete example of this case is G = T.
This case was analyzed by Coburn in [1]. The famous result of Coburn asserts
that for any T ∈ T (T) there are unique K ∈ K(H2(T)) and φ ∈ C(T) such
that T = Tφ + K. Hence the quotient algebra T (T)/K(H2(T)) modulo the com-
pact operators is isometrically isomorphic to C(T). The two sided closed ∗-ideal
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com(G) generated by the commutators is called the commutator ideal of T (G):

com(G) = I∗({TφTψ − TψTφ : φ, ψ ∈ C(Ġ)})

and the semi-commutator ideal scom(G) is defined as

scom(G) = I∗({Tφψ − TψTφ : φ, ψ ∈ C(Ġ)}).

The symbol map Σ : C(Ġ)→ T (G)/com(G) is defined as

Σ(φ) = [Tφ]

where [·] denotes the equivalence class modulo com(G). In [2] and [5] it is shown
that Σ is an isometry. The symbol map Σ also preserves the ∗-operation however
is not a homomorphism i.e. does not preserve multiplication. But if com(G) =
scom(G) then it is an isometric isomorphism. We will show under certain condi-
tions that com(G) = scom(G).

We introduce another class of operators which we call the Fourier multipliers.
This class of operators in the case G = R was introduced in [4] and proved to be
useful in calculating the essential spectra of a class of composition operators. The
Fourier multiplier Dθ : H2(G)→ H2(G) with symbol θ ∈ C(Γ̇+) is defined as

Dθ( f )(t) = (F−1MθF ( f ))(t).

The most prototypical example of a Fourier multiplier is a convolution operator
with kernel k ∈ L1(G):

(Tk f )(t) =
∫
G

k(ts−1) f (s)dλ(s).

It is not difficult to see that actually Tk = Dk̂ where k̂ denotes the Fourier trans-
form of k. The set of all Fourier multipliers F(C(Γ̇+)) defined as

F(C(Γ̇+)) = {Dθ : θ ∈ C(Γ̇+)}

is a commutative C∗-algebra since the map D : C(Γ̇+) → F(C(Γ̇+)) defined as
D(θ) = Dθ is an isometric ∗-isomorphism.

Lastly we consider the C∗-algebra generated by Toeplitz operators and
Fourier multipliers. Let Ψ(C0(G), C(Γ̇)) be the C∗-algebra

Ψ(C0(G), C(Γ̇)) = C∗(T (G) ∪ F(C(Γ̇+)))

generated by Toeplitz operators with continuous symbols and continuous Fourier
multipliers. The main result of this paper is a characterization of the character
space M(Ψ) of Ψ(C0(G), C(Γ̇)). We know that

M(F(C(Γ̇+))) ∼= Γ̇+,

under certain conditions we have scom(G) = com(G) and this implies that

M(T (G)) ∼= Ġ.
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We will use the following theorem due to Power [9], [10] in identifying the
character space of Ψ(C0(G), C(Γ̇+)):

POWER’S THEOREM. Let C1, C2 be C∗-subalgebras of B(H) with identity, where
H is a separable Hilbert space, such that M(Ci) 6= ∅, where M(Ci) is the space of multi-
plicative linear functionals of Ci, i = 1, 2 and let C be the C∗-algebra that they generate.
Then for the commutative C∗-algebra C̃ = C/com(C) we have M(C̃) = P(C1, C2) ⊂
M(C1)×M(C2), where P(C1, C2) is defined to be the set of points (x1, x2) ∈ M(C1)×
M(C2) satisfying the condition: Given 0 6 a1 6 1, 0 6 a2 6 1, a1 ∈ C1, a2 ∈ C2,

xi(ai) = 1 with i = 1, 2 ⇒ ‖a1a2‖ = 1.

The proof of this theorem can be found in [10]. Power’s theorem will give
the character space M(Ψ) of Ψ(C0(G), C(Γ̇)) as a certain subset of the cartesian
product Ġ× Γ̇+.

2. THE CHARACTER SPACE OF Ψ(C0(G), C(Γ̇))

In this section we will concentrate on the C∗-algebra Ψ(C0(G), C(Γ̇)). But
before that we will identify the character space M(T (G)) of T (G) under certain
conditions. The condition that we will pose on G is that Γ+ separates the points
of G i.e. for any t1, t2 ∈ G with t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2).
Under this condition we show that scom(G) = com(G) and this implies that
M(T (G)) ∼= Ġ. Hence we begin by proving the following lemma whose proof is
adapted from the proof of Theorem 2.2 of [8]:

PROPOSITION 2.1. Let G be a locally compact abelian Hausdorff topological group
whose Pontryagin dual Γ is partially ordered and let Γ+ be the semigroup of positive
elements of Γ. Suppose that Γ+ separates the points of G i.e. for any t1, t2 ∈ G with
t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2). Let com(G) and scom(G) be the
commutator and the semi-commutator ideal of the Toeplitz C∗-algebra T (G) respectively.
Then

com(G) = scom(G).

Proof. It is trivial that com(G) ⊆ scom(G) hence we need to show that
scom(G) ⊆ com(G):

Let B = {φ ∈ C0(G) : TφTψ − Tφψ ∈ com(G)} then B is a self-adjoint
subalgebra of C0(G): Let ψ ∈ B then since

TφTψ − Tφψ = (TψTφ − TφTψ)
∗ + (TφTψ − Tφψ)

∗

we have (TψTφ − TφTψ)∗ ∈ com(G), (TφTψ − Tφψ)
∗ ∈ com(G) and hence TφTψ −

Tφψ ∈ com(G) ∀φ ∈ C(Ġ). This implies that ψ ∈ B. It is clear that ψ1, ψ2 ∈ B
implies that ψ1 + ψ2 ∈ B. Let us check that ψ1ψ2 ∈ B: We have

TφTψ1ψ2 −Tφψ1ψ2 = Tφ(Tψ1ψ2 −Tψ1 Tψ2)+ (TφTψ1 −Tφψ1)Tψ2 +(Tφψ1 Tψ2 −Tφψ1ψ2).
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Since ψ1 ∈ B and com(G) is an ideal we have Tφ(Tψ1ψ2 − Tψ1 Tψ2) ∈ com(G),
(TφTψ1 − Tφψ1)Tψ2 ∈ com(G) and (Tφψ1 Tψ2 − Tφψ1ψ2) ∈ com(G) which implies
that TφTψ1ψ2 − Tφψ1ψ2 ∈ com(G) ∀φ ∈ C0(G). So we have ψ1ψ2 ∈ B. Now we
need to show that B separates the points of G to conclude the proof since in that
case B is closed and by Stone–Weierstrass theorem we will have B = C0(G): Now
let A(G) = {ψ ∈ C0(G) : ψ f ∈ H2(G) ∀ f ∈ H2(G)}. Clearly A(G) ⊆ B, hence
if we show that A(G) separates the points of G we are done. For any k ∈ L1(Γ+)
consider

ǩ(t) =
∫

Γ+

k(γ)γ(t)dλ̃(γ)

then since for any f ∈ H2(G) we have

F (ǩ f ) = k ∗ f̂

the Fourier transform of ǩ f will be supported in Γ+. This implies that ǩ ∈ A(G).
Since Γ+ separates the points of G, {ǩ : k ∈ L1(Γ+)} also separates the points
of G and hence A(G) separates the points of G. This implies that B separates the
points of G. This proves our lemma.

We have the following corollary of Proposition 2.1:

COROLLARY 2.2. Let G be a locally compact abelian Hausdorff topological group
whose Pontryagin dual Γ is partially ordered and let Γ+ be the semigroup of positive
elements of Γ. Suppose that Γ+ separates the points of G i.e. for any t1, t2 ∈ G with
t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2). Let T (G) be the Toeplitz C∗-algebra
with symbols in C(Ġ) acting on H2(G). Then we have

M(T (G)) ∼= Ġ.

Proof. The symbol map Σ : C(Ġ) → T (G)/com(G), Σ(φ) = [Tφ] is an
isometry that preserves the ∗-operation and Σ : C(Ġ) → T (G)/scom(G) is mul-
tiplicative. Since com(G) = scom(G), Σ is an isometric isomorphism. Since
characters kill the commutators we have

M(T (G)) = M(T (G)/com(G)) ∼= M(C(Ġ)) = Ġ.

In [9] Power calls a C∗-algebra C ⊂ B(K) inner with respect to a closed
subspace H ⊂ K of a Hilbert space K if C is generated by T ∈ B(K) which leave
H invariant i.e. C = C∗({T|H : T ∈ A}) for some A ⊂ B(K) such that T(H) ⊂ H
∀T ∈ A. Power proves that if C ⊂ B(K) is inner then com(C) = scom(C) where
com(C) ⊂ T (C) is defined as com(C) = I∗({(PTPS− PSPT)|H : T, S ∈ C} and
scom(C) ⊂ T (C) is defined as scom(C) = I∗({(PTPS − PTS)|H : T, S ∈ C})
where P : K → H is the orthogonal projection. Here T (C) = C∗({PT|H : T ∈
C}) ⊂ B(H). In the Toeplitz operator theory setting Power’s result gives that
if C ⊂ L∞(T), which is also interpreted as C ⊂ B(L2(T)) via the identification
f → M f where M f (h)(eiθ) = f (eiθ)h(eiθ) is the multiplication operator, is inner
with respect to H2(T) then com(C) = scom(C) where com(C) ⊂ T (C) is defined



542 UĞUR GÜL

as com(C) = I∗({Tc1 Tc2 − Tc2 Tc1 : c1, c2 ∈ C}) and scom(C) ⊂ T (C) is defined
as scom(C) = I∗({Tc1 Tc2 − Tc2c1 : c1, c2 ∈ C}). It was proved earlier by Douglas
[3] that C(T) and L∞(T) are inner with respect to H2(T) in the sense of Power.
The question whether C0(G) and L∞(G) are inner with respect to H2(G) in our
abstract group context in the sense of Power is another issue that we will not take
up here.

We will need the following small observation in proving our main theorem:

LEMMA 2.3. Let G be a locally compact, non-compact, abelian Hausdorff topolog-
ical group and let K1, K2 ⊂ G be two non-empty compact subsets of G. Then there is
t0 ∈ G such that K1 ∩ (t0K2) = ∅ where t0K2 = {t0t : t ∈ K2}.

Proof. Since G is non-compact and locally compact there is a one-point com-
pactification Ġ of G. Hence there is a point at infinity ∞ ∈ Ġ such that ∞ 6∈ G. As-
sume that the lemma does not hold i.e. there are two non-empty compact subsets
K1, K2 ⊂ G such that K1 ∩ (tK2) 6= ∅ for all t ∈ G. Now take a net {tα}α∈I ⊂ G
such that lim

α∈I
tα = ∞. Since ∀α ∈ I we have K1 ∩ (tαK2) 6= ∅, there are xα ∈ K1

and yα ∈ K2 such that xα = tαyα. Since K1 and K2 are compact there are x0 ∈ K1,
y0 ∈ K2 and sub-nets xα1 ∈ K1, yα2 ∈ K2 such that lim xα1 = x0 and lim yα2 = y0.
One can further find a common sub-net index set I0 ⊂ I such that lim

β∈I0
xβ = x0

and lim
β∈I0

yβ = y0. Since xβ = tβyβ which implies that tβ = xβy−1
β , lim

β∈I0
tβ = ∞

and multiplication is continuous this implies that

x0y−1
0 = lim

β∈I0
xβy−1

β = lim
β∈I0

tβ = ∞.

Since x0y−1
0 ∈ K1K−1

2 this implies that ∞ ∈ K1K−1
2 . Since K1K−1

2 is a compact
subset of G and ∞ is outside any compact subset of G, this gives a contradiction.
This contradiction proves the lemma.

Now we will show the following lemma which will shorten the proof of
our main theorem. The proof of the following lemma is adapted from an idea of
Power in p. 482 of [9]:

LEMMA 2.4. Let G be a locally compact abelian Hausdorff topological group with
Pontryagin dual Γ. Let φ ∈ C0(G) and θ ∈ C0(Γ) each have compact supports. Then
Dθ Mφ is a compact operator on L2(G) where Dθ = F−1MθF .

Proof. Let K1 ⊂ G and K2 ⊂ Γ be compact supports of φ and θ respectively.
Then for any f ∈ L2(G) we have

(Dθ Mφ f )(t) =
∫
K2

γ(t)θ(γ)
( ∫

K1

γ(τ)φ(τ) f (τ)dλ(τ)
)

dλ̃(γ)

=
∫
K1

(
φ(τ)

∫
K2

γ(tτ−1)θ(γ)dλ̃(γ)
)

f (τ)dλ(τ) =
∫
K1

k(t, τ) f (τ)dλ(τ)



C∗ -ALGEBRA GENERATED BY TOEPLITZ OPERATORS AND FOURIER MULTIPLIERS 543

where
k(t, τ) = φ(τ)

∫
K2

γ(tτ−1)θ(γ)dλ̃(γ).

Now consider∫
G

∫
G

|k(t, τ)|2dλ(t)dλ(τ)=
∫
G

∫
G

∣∣∣φ(τ) ∫
K2

γ(tτ−1)θ(γ)dλ̃(γ)
∣∣∣2dλ(t)dλ(τ)

6 ‖φ‖2
∞

∫
K1

∫
G

|θ̌(tτ−1)|2dλ(t)dλ(τ)= ‖φ‖2
∞

∫
K1

‖θ̌‖2dλ(τ)

= ‖φ‖2
∞

∫
K1

‖θ‖2dλ(τ) = ‖φ‖2
∞‖θ‖2λ(K1) < ∞.

This implies that Dθ Mφ is Hilbert–Schmidt and hence compact.

Now we are ready to prove our main theorem as follows:

MAIN THEOREM. Let G be a non-compact, locally compact abelian Hausdorff
topological group whose Pontryagin dual Γ is partially ordered and let Γ+ be the semi-
group of positive elements of Γ. Suppose that Γ+ separates the points of G i.e. for any
t1, t2 ∈ G with t1 6= t2 there is γ ∈ Γ+ such that γ(t1) 6= γ(t2). Let

Ψ(C0(G), C(Γ̇+)) = C∗(T (G) ∪ F(C(Γ̇+)))

be the C∗-algebra generated by Toeplitz operators and Fourier multipliers on H2(G).
Then for the character space M(Ψ) of Ψ(C0(G), C(Γ̇+)) we have

M(Ψ) ∼= (Ġ× {∞}) ∪ ({∞} × Γ̇+).

Proof. We will use Power’s theorem. In the setup of Power’s theorem C1 =
T (G) and C2 = F(C(Γ̇+)). By Corollary 2.2 we have M(C1) = Ġ and we have
M(C2) = Γ̇+. So we need to determine (t, γ) ∈ Ġ× Γ̇+ satisfying for 0 6 φ, θ 6
1, φ(t) = θ(γ) = 1 implies ‖TφDθ‖ = 1.

Let (t, γ) ∈ G × Γ+. Let φ ∈ C(Ġ), θ ∈ C(Γ̇+) such that 0 6 φ, θ 6 1 and
φ(t) = θ(γ) = 1. Let us also assume that θ and φ have compact supports. Let
θ̃ ∈ C(Γ̇) such that 0 6 θ̃ 6 1, θ̃ has compact support and θ̃|C( ˙Γ+) = θ. Since

‖TφDθ‖ 6 ‖MφD
θ̃
‖L2(G)

it suffices to show that ‖MφD
θ̃
‖L2(G) < 1. We will also assume that φ(s) < 1

∀s ∈ G − {t}. Since (MφD
θ̃
)∗ = D

θ̃
Mφ and D

θ̃
Mφ is compact by Lemma 2.4,

MφD
θ̃

is also compact. Hence MφD
θ̃
(MφD

θ̃
)∗ = MφD2

θ̃
Mφ is a compact self-

adjoint operator on L2(G) and this implies that ‖MφD2
θ̃

Mφ‖ = µ where µ is the
largest eigenvalue of MφD2

θ̃
Mφ. Let f ∈ L2(G) be the corresponding eigenvector

such that ‖ f ‖2 = 1, then we have

µ = ‖µ f ‖2 = ‖(MφD2
θ̃

Mφ f )‖2 < ‖D2
θ̃

Mφ f ‖2 6 1
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since φ(s) < 1 ∀s ∈ G − {t}. This implies that ‖D
θ̃
Mφ‖2 = ‖MφD2

θ̃
Mφ‖ < 1.

This means that (t, γ) 6∈ M(Ψ) ∀(t, γ) ∈ G× Γ+. So if (t, γ) ∈ M(Ψ) then either
t = ∞ or γ = ∞.

Now let t ∈ Ġ and γ = ∞. Let φ ∈ C(Ġ) and θ ∈ C(Γ̇+) such that 0 6 φ, θ 6
1 and φ(t) = θ(∞) = 1. Observe that P = DχΓ+

where χΓ+ is the characteristic
function of Γ+. So we have DθTφ = Dθ DχΓ+

Mφ = DχΓ+
Dθ Mφ = Dθ Mφ. Since

F is unitary we have

‖Dθ Mφ‖H2(G) = ‖FDθ MφF−1‖L2(Γ+) = ‖MθFMφF−1‖L2(Γ+).

Since θ(∞) = 1 we have ∀ε > 0, ∃γ0 ∈ Γ+ such that 1− ε 6 θ(γ) 6 1 ∀γ > γ0.
Consider the operator Sγ0 : L2(Γ+) → L2(Γ+) defined as (Sγ0 f )(γ) = f (γ−1

0 γ),
then Sγ0 is an isometry. Observe that

(F−1Sγ0 f )(t) = (Šγ0 f )(t) =
∫

Γ+

γ(t) f (γ−1
0 γ)dλ̃(γ)

=
∫

Γ+

γ0(t)u(t) f (u)dλ̃(u) = γ0(t) f̌ (t) = (Mγ0 f̌ )(t).

Hence we have Sγ0 = FMγ0F−1 which implies that

Sγ0(FMφF−1) = (FMφF−1)Sγ0 .

Now let f ∈ L2(Γ+) such that ‖(FMφF−1) f ‖2 > 1− ε and ‖ f ‖2 = 1 then for
g = FMφF−1 f we have

‖MθSγ0 g‖2 > (1− ε)2

since Sγ0 g is supported on {γ : γ > γ0}, θ(γ) > 1− ε ∀γ > γ0 and ‖Sγ0 g‖2 >
1− ε. Since Sγ0 g = (FMφF−1)Sγ0 f we have

‖(MθFMγ0F−1)(Sγ0 f )‖2 > (1− ε)2.

Since Sγ0 is an isometry we have ‖Sγ0 f ‖2 = 1 and this implies that

‖MθFMφF−1‖ > (1− ε)2

∀ε > 0. Therefore we have ‖MθFMφF−1‖ = ‖DθTφ‖ = 1. Hence (t, ∞) ∈ M(Ψ)

∀t ∈ Ġ.
Now let γ ∈ Γ̇+ and t = ∞. Let φ ∈ C(Ġ) and θ ∈ C(Γ̇+) such that

0 6 φ, θ 6 1 and φ(∞) = θ(γ) = 1. Since φ(∞) = 1, for any ε > 0 there is a
compact subset K1 ⊂ G such that 1− ε 6 φ(t) 6 1 ∀t 6∈ K1. Let θ̃ = χΓ+θ. Then
we have

DθTφ = Dθ DχΓ+
Mφ = DχΓ+ θ Mφ = D

θ̃
Mφ.

Let ε > 0 be given. Let g ∈ H2(G) so that ‖g‖2 = 1 and ‖D
θ̃
g‖2 > 1− ε. Let

K2 ⊂ G be a compact subset of G so that( ∫
K2

|g(t)|2dλ(t)
)1/2

> 1− ε.
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By Lemma 2.3 we have t0 ∈ G such that K1 ∩ (t0K2) = ∅. Let (St0 g)(t) = g(tt−1
0 )

then
( ∫

t0K2

|St0 g(t)|2dλ(t)
)1/2

=
( ∫

K2

|g(t)|2dλ(t)
)1/2

> 1 − ε and this implies

that
‖St0 g−MφSt0 g‖2 6 2ε.

We observe that St0 = F−1Mt̂0
F where t̂0 : Γ → C defined as t̂0(γ) = γ(t0). This

implies that St0 is unitary and we have D
θ̃
St0 = St0 D

θ̃
. Since ‖D

θ̃
‖ = 1 we have

‖D
θ̃
St0 g− D

θ̃
MφSt0 g‖2 6 2ε.

Since St0 is unitary for f = St0 g we have ‖ f ‖2 = 1 and D
θ̃
St0 = St0 D

θ̃
together

with ‖D
θ̃
g‖2 > 1− ε implies that

‖D
θ̃
Mφ f ‖2 > 1− 3ε.

Since ε > 0 is arbitrary we have ‖D
θ̃
Mφ‖ = ‖DθTφ‖ = 1. Therefore we have

(∞, γ) ∈ M(Ψ), ∀γ ∈ Γ̇+. Our theorem is thus proven.

3. FURTHER PROBLEMS

At this stage it is natural to think about extending our result to Toeplitz
operators which are of a more general class, for instance to CVO(G) where

CVO(G) =
{

f ∈ BC(G) : lim
g→∞

(sup{| f (gh)− f (g)| : h ∈ K}) = 0
}

is the algebra of functions of vanishing oscillation on G where K ⊂ G is a compact
neighbourhood of e ∈ G such that λ(K) = 1 and BC(G) is the algebra of all
bounded continuous functions on G.
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