
J. OPERATOR THEORY
74:1(2015), 23–43

doi: 10.7900/jot.2014apr16.2027

© Copyright by THETA, 2015

OPERATOR ALGEBRAS AND REPRESENTATIONS FROM
COMMUTING SEMIGROUP ACTIONS

BENTON L. DUNCAN and JUSTIN R. PETERS

Communicated by Kenneth R. Davidson

ABSTRACT. Let S be a countable, abelian semigroup of continuous surjec-
tions on a compact metric space X. Corresponding to this dynamical system
we associate two operator algebras, the tensor algebra, and the semicrossed
product. There is a unique smallest C∗-algebra into which an operator al-
gebra is completely isometrically embedded, which is the C∗-envelope. The
C∗-envelope of the tensor algebra is a crossed product C∗-algebra. We also
study two natural classes of representations, the left regular representations
and the orbit representations. The first is Shilov, and the second has a Shilov
resolution.
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1. INTRODUCTION

Let X be a compact metric space, and S an abelian semigroup and let σ be
a map of S into the set of continuous, surjective maps of X → X, which we as-
sume to be a semigroup isomorphism. From this dynamical system (X, σ,S) we
construct two operator algebras: the tensor algebra, and the semicrossed product.

If the semigroup S is a group, then the tensor algebra and the semicrossed
product coincide with the crossed product, C(X)oσ S . Our interest is in dealing
with noninvertible dynamics, so we will assume that the semigroup S is not a
group.

Work on such problems began with single-variable dynamics [1], [16] and
many others. Work with multivariate dynamics is more recent. This paper is in a
sense a counterpoint to the important contribution of Davidson and Katsoulis [5],
in which they studied various operator algebras that could be considered multi-
variate analogues of the (single variable) semicrossed product, and developed
the dilation theory and isomorphism properties of these algebras. [9] and [10] are
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also closely related. In [6], Donsig, Katavolos and Manoussos give a precise de-
scription of the Jacobson radical of semicrossed products, where the semigroup
is Zd

+.
While the point of view of C∗-dynamical systems mostly deals with group

actions on C∗-algebras, Exel [7] and Exel and Renault [8] consider noninvertible
dynamical systems, such as local homeomorphisms on a compact space. There is
the additional feature of the transfer operator, which is not present here. Never-
theless it is interesting to compare their approach to the C∗-algebra which arises
naturally in our context as the C∗-envelope of the tensor algebra.

We begin by constructing an algebra A0 which contains operators Ss for s
an element of the semigroup S , and functions f ∈ C(X), the continuous complex
valued functions on X, subject to the covariance condition

f Ss = Ss f ◦ σs .

An element of the algebra A0 has the form ∑
s

Ss fx, where the sum is finite. We

study classes of representations of this algebra. One natural class of representa-
tions arises from the left regular representation on the Hilbert space `2(S) and
the evaluation map of functions at a point x ∈ X. These representations, denoted
by π, represent the operators Ss as isometries, and they separate the points of
A0. Completing A0 in the norm determined by these representations yields an
algebra A(X,S) which we call the left regular algebra.

Another class of representations we study we call orbit representations.
These are similar to the representations π, except they act on the orbit of a point
x ∈ X. We denote the orbit representations by ρ. While orbit representations
have been studied in the context of group actions, the semigroup setting presents
features not present when dealing with group actions. We show these represen-
tations are associated with cocycles, and indeed there is a one-to-one correspon-
dence between the orbit representations and the orbit cocycles.

We have defined two nonselfadjoint operator algebras arising from the dy-
namical system (X, σ,S). One is the tensor algebra, already mentioned. The other
is the semicrossed product. This is the completion of the A0 in the norm arising
from considering all isometric covariant representations (Definition 3.2). How-
ever we have no tools to characterize all such representations, so there is little we
can say about such algebras.

Davidson and Katsoulis [5] use the general approach of Katsura [11] and
Muhly and Solel [13] to obtain the tensor algebra and its C∗-envelope via C∗-
correspondences. Our approach to the C∗-envelope, done in [17] for the single
variable setting, yields a more tangible result, yet is only available in a restricted
context.

While the enveloping group G containing the semigroup S , is easily ob-
tained as G = S −S , there need not be any connection between the abstract group
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G and mappings on the compact metric space X. In Section 5 we construct a com-
pact metric space X̃ on which the group G acts by homeomorphisms σ̃g (g ∈ G)
and a continuous surjection p : X̃ → X which “intertwines” this group action
with the original semigroup action. Theorem 6.1 shows that the C∗-envelope of
the tensor algebra A(X,S) is identified with the C∗-crossed product C(X̃)oσ̃ G.

The description of the C∗-envelope in Theorem 6.1 also yields some infor-
mation about the left regular representations π and the (left regular) orbit repre-
sentations ρ. We are able to show that the representations π are Shilov, and that
the left regular orbit representations have a Shilov resolution.

We should comment on the relation of our results with those of [5]. They
consider actions of the free semigroup on n-generators (for fixed n ∈ N), whereas
the semigroups we consider are abelian. Even though we do not deal with spe-
cific examples of dynamical systems in this paper, it is also worth noting that
there are actions which fall within our context which are not homomorphic im-
ages of free finitely generated semigroups: in Example 5 of [18] there is an action
of the semigroup of non-negative dyadic rationals on a compact metric space X
by local homeomorphisms. We should also note that there is relatively little over-
lap of our results with [5]. Because Davidson and Katsoulis deal with finitely
many coordinates, they are able to obtain a number of dilation results. However
the example of Parrott [14] of three commuting contractions which do not admit
a unitary dilation illustrates the inherent difficulty of a general dilation theory
in our setting. What we are able to achieve, is a dilation of the commuting con-
tractions ρ(Ss) (s ∈ S) to unitaries. While there are a number of positive results
in the literature, such as the dilation results for n-tuples of doubly commuting
contractions, we are not aware that our dilation theory overlaps with other such
results.

Since this paper was written, we were given a preprint of Davidson, Fuller
and Kakariadis [3] in which they obtain another proof of our Theorem 6.1.

2. BACKGROUND AND NOTATION

STANDING HYPOTHESIS. Throughout the paper, S will denote an abelian semi-
group with cancellation, and identity element, denoted by 0. The semigroup op-
eration will be written as addition. The intersection of all abelian groups which
contain S will be written as G = S − S .

Some of the constructions, such as the left regular representation πx, and the
orbit representation ρx, do not require the commutativity of the semigroup. The
tools we employ, such as integrating over the compact dual group Γ of the group
G = S − S , do use commutativity. For that reason, we assume commutativity of
S throughout the paper.

We assume that S acts on a compact metric space. Thus, there is a homo-
morphism, denoted by σ, from S into the semigroup of continuous, surjective
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maps of X → X. There is no loss of generality by assuming that σ is a semigroup
isomorphism (onto its image), which we will do. Furthermore, we assume that
S is not a group, for otherwise nothing new is achieved. However, it may be the
case that S contains a nontrivial group S ∩−S . The triple (X, σ,S) will be called
a dynamical system.

We will not keep repeating these assumptions in the statements of our re-
sults.

3. SEMICROSSED PRODUCTS

Let A0 be the algebra generated by C(X) together with symbols Ss, s ∈ S
and subject to the relations

f Ss = Ss f ◦ σs, s ∈ S , f ∈ C(X) and Ss+t = SsSt, s, t ∈ S .(3.1)

Thus a typical element of the algebra has the form

∑
s∈S

Ss fs

where the sum is finite.
Let Γ be the dual group of G.

DEFINITION 3.1. Define the gauge automorphism τγ (γ ∈ Γ) on A0 by

τγ

(
∑

s
Ss fs

)
= ∑

s
〈γ, s〉 Ss fs.

Define the projections Ps, s ∈ S : for F ∈ A0,

Ps(F) =
∫
Γ

τγ(F)〈−γ, s〉dγ

where dγ is Haar measure on the compact group Γ. Note we are considering the
semigroup S and the group G as discrete groups, and so Γ is a compact abelian
group.

Note that if F = ∑
s

Ss fs ∈ A0, then Ps0(F) is equal to either Ss0 fs0 or 0 if s0

is not in the sum.

DEFINITION 3.2. We say that a representation

π : A0 → B(H)

with the following properties:
(i) π(Ss) is an isometry (respectively, a contraction) in B(H) for all s ∈ S ,

(ii) π(S0) = I,
(iii) π|C(X) is a C∗-representation,

is an isometric (respectively, a contractive) covariant representation of the pair
(C(X),S).
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Observe that C(X) is embedded in A0 by the map f 7→ S0 f .
In [5] Davidson and Katsoulis consider four sets of conditions on represen-

tations. But two of those conditions do not have a direct translation into this gen-
eral context — namely, row contractive and row isometric, since our semigroup
need not be freely generated by finitely many Ss.

DEFINITION 3.3. Let C(X) oσ S denote the semicrossed product algebra;
that is, the completion of A0 with respect to the norm

‖F‖ = sup
π
‖π(F)‖

for F ∈ A0, where the supremum is over all representations π satisfying proper-
ties (i), (ii), (iii) of the Definition 3.2.

4. THE LEFT REGULAR ALGEBRA

We now define a class of representations ofA0 which will play an important
role in what follows.

Given x ∈ X and γ ∈ Γ define a representation πx,γ of A0 on the Hilbert
space `2(S) as follows: Let ξs ∈ `2(S) be given by

ξs(t) =

{
1 if t = s,
0 otherwise.

It suffices to define πx,γ( f ), f ∈ C(X), and πx,γ(St) on the vectors ξs since linear
combinations of such vectors are dense. Set

πx,γ( f )ξs = f ◦ σs(x)ξs and πx,γ(St)ξs = 〈γ, t〉ξt+s.

It is a routine calculation to verify that πx,γ respects the relations (3.1).
The adjoint is given by

πx,γ(St)
∗ξs =

{
〈γ, t〉ξu if s = t + u for some u ∈ S ,
0 otherwise,

so that πx,γ(St)∗πx,γ(St)ξs = ξs for all s ∈ S , and since the set {ξs : s ∈ S} is an
orthonormal basis for `2(S), it follows πx,γ(St)∗πx,γ(St) = I.

It is obvious that πx,γ is a ∗-representation when restricted to C(X). Thus it
is an isometric covariant representation.

REMARK 4.1. Notice that the unitary given by ξs 7→ 〈−γ, s〉ξs provides a
unitary equivalence between the representation πx,γ and πx,0 and the representa-
tions πx,0 are the semigroup analogue of the regular representations of crossed
products, coming from the one dimensional evaluation representations, as in
7.7 of [19].

LEMMA 4.2. Let F ∈ A0, F 6= 0. Then for some x ∈ X, γ ∈ Γ, πx,γ(F) 6= 0.



28 BENTON L. DUNCAN AND JUSTIN R. PETERS

Proof. By the remark it suffices to consider γ the trivial character. We write
F = ∑

s∈I
Ss fs where I is a finite subset of S , and such that fs 6= 0 for s ∈ I. Let

u ∈ S , s0 ∈ I and compute∫
Γ

πx,γ(F)ξu dγ = ∑
s∈I

∫
Γ

πx,γ(Ss fs)ξu dγ

= ∑
s∈I

∫
Γ

〈γ, s〉 fs(σu(x))ξs+udγ = fs0(σu(x))ξs+u.

We may choose x ∈ X and u ∈ S such that fs0(σu(x)) 6= 0. Thus, there is a choice
of x ∈ X and γ ∈ Γ for which πx,γ(F) 6= 0.

COROLLARY 4.3. The class of representations πx,γ, (x, γ) ∈ X × Γ, separates
the elements of A0.

DEFINITION 4.4. We define the left regular algebra A(S , X) to be the com-
pletion of A0 in the norm of the representation⊕

(x,γ)∈X×Γ

πx,γ.

REMARK 4.5. The representations πx,γ, initially defined on the algebra A0,
admit a unique extension to the left regular algebra A(S , X). The extended rep-
resentations will also be denoted πx,γ.

REMARK 4.6. In light of Remark 4.1, the norm on A(S , X) could be defined
using the subclass of representations πx,0.

NOTATION 4.7. We will write πx for πx,0. In other words, if γ is the trivial
character 0, we will omit the 0.

Let F ∈ A(S , X), ‖F‖ = 1, and suppose that for all u ∈ S , Pu(F) = 0. Now
there are x ∈ X, and unit vectors ξ, η ∈ `2(S) for which

|(πx(F)ξ, η)| > 1
2
‖F‖.

Here we are making use of Remark 4.6, that it is sufficient to consider the repre-
sentations πx. Hence there exist s, t ∈ S such that

ε := |(πx(F)ξs, ξt)| > 0.

Let G ∈ A0 be such that ‖F− G‖ < δ, where 0 < δ < ε
2 . Then

|(πx(G)ξs, ξt)| > |(πx(F)ξs, ξt)| − ‖F− G‖ > ε− δ >
ε

2
.

Express G = ∑
u

Su fu. Now |(πx(G)ξs, ξt)| > 0 implies for u = t− s ∈ S , fu 6= 0.

Thus for u = t− s we have

Pu(G− F) = Pu(G) = Su fu.
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Now
|(πx(G)ξs, ξt)| = | fu(σs(x))| > ε

2
,

so that ‖Pu(G)‖ > ε
2 . On the other hand,

‖Pu(G)‖ = ‖Pu(F− G)‖ 6 ‖F− G‖ < ε

2
.

We have shown the following:

PROPOSITION 4.8. If F is a nonzero element of A(S , X) then there exists u ∈ S
such that Pu(F) 6= 0.

4.1. ORBIT REPRESENTATIONS. Next we define another class of representations
of A0, which we call orbit representations. Fix x ∈ X and let S(x) denote the
orbit of x, namely, S(x) = {σs(x) : s ∈ S}.

DEFINITION 4.9. A function µ : S ×S(x)→ C is an orbit cocycle if it satisfies:
(i) For each t ∈ S any y ∈ S(x)

∑
σt(yj)=σt(y)

|µ(t, yj)|2 6 1.

(ii) (cocycle condition) For each s, t ∈ S , and y ∈ S(x)

µ(s + t, y) = µ(t, y) µ(s, σt(y)).

We may also write µx to emphasize the dependence on the point x ∈ X.

We will define the orbit representations ρx,µ of the algebra A0 on `2(S(x)).
Let ξy be the function

ξy(w) =

{
1 if w = y,
0 otherwise.

Define, for f ∈ C(X), y ∈ S(x)

ρx,µ( f )ξy = f (y)ξy and ρx,µ(St)ξy = µ(t, y)ξσt(y).

Let ξ = ∑ aiξyj be a unit vector in `2(S(x)) such that σt(yj) = σt(y) for all j.

ρx,µ(St)ξ =
(

∑ ajµ(t, yj)
)

ξσt(y).

Hence

‖ρx,µ(St)ξ‖2 =
∣∣∣∑ ajµ(t, yj)

∣∣∣2 6
(

∑ |aj|2
)(

∑ |µ(t, yj)|2
)

.

Since ξ is a unit vector, ∑ |aj|2 = 1. Hence, if ρx,µ(St) is to be contractive, we must
have that ∑ |µ(t, yj)|2 6 1. On the other hand, let us note that this condition is
sufficient for ρx,µ(St) to be contractive. Consider the dense set of vectors which
are linear combinations of vectors ξ of the above form. Say η = ∑ bkξk, where for
each k, ρx,µ(St)ξk is a multiple of ξuk for some uk ∈ S , where the uk are distinct
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elements of S , the ξk are unit vectors, and ∑ |bk|2 = 1. Then by the above we
have that

‖ρx,µ(St)η‖2 =
∥∥∥∑ ρx,µ(St)bkξk

∥∥∥2
6
∥∥∥∑ bjξuk

∥∥∥2
6 1.

Additionally we have, for s, t ∈ S and y ∈ S(x)

ρx,µ(Ss+t)ξy = ρx,µ(SsSt)ξy = ρx,µ(Ss)ρx,µ(St)ξy

= ρx,µ(Ss)µ(t, y)ξσt(y)=µ(t, y)µ(s, σt(y))ξσs+t(y)=µ(s + t, y)ξσs+t(y).

To conclude that ρx,µ is a representation, we need ρx,µ( f Ss) = ρx,µ(Ss f ◦
σs), s ∈ S , f ∈ C(X). But that is a routine calculation.

We summarize this as

COROLLARY 4.10. Orbit representations are contractive covariant representati-
ons. Furthermore, there is a one-to-one correspondence between orbit representations and
orbit cocycles.

REMARK 4.11. Let µ be an orbit cocycle, and γ ∈ Γ. Then γµ is also an orbit
cocycle. That is, γµ(t, y) = 〈γ, t〉µ(t, y).

To address the question of what can be said about the existence of orbit
cocycles we need a definition from [18].

DEFINITION 4.12. A cocycle for a dynamical system (X, σ,S) is a map ω :
S × X → R such that:

(i) ω(s, x) > 0 for all s ∈ S , x ∈ X;
(ii) for each y ∈ X, t ∈ S , ∑

σt(x)=y
ω(t, x) = 1;

(iii) for each t ∈ S , the map x → ω(t, x) is continuous;
(iv) for each s, t ∈ S and x ∈ X, ω satisfies the cocycle identity

ω(s + t, x) = ω(s, x)ω(t, σs(x)).

If the dynamical system (X, σ,S) admits a cocycle, then given x ∈ X one
can define an orbit cocycle µx by letting µx(t, y) =

√
ω(t, σt(y)), for t ∈ S and y

in the orbit of x.

EXAMPLE 4.13. [18] considers abelian semigroup actions on a compact met-
ric space by continuous, surjective, locallly injective maps. Proposition 2 of [18]
gives necessary and sufficient conditions for a Zk

+ actions to admit a cocycle, and
Example 5 of [18] is an action of the non-negative dyadic rationals on a compact
metric space by local homeomorphisms which admits a cocycle.

4.2. LEFT REGULAR ORBIT REPRESENTATIONS. We would like to establish the ex-
istence of a class of orbit cocycles which we will call left regular orbit cocycles. To
do this, we need to impose a restriction on the dynamical system (X, σ,S). If a
point x ∈ X has the property that for each y in the orbit of x, {t ∈ S : σt(x) = y}
is finite, we will say that x has the finite stability property. In case S is a group G,



OPERATOR ALGEBRAS AND REPRESENTATIONS FROM COMMUTING SEMIGROUPS ACTIONS 31

this is equivalent to saying that the stability subroup Gx is finite. However, in our
case, card{t ∈ S : σt(x) = y} could depend on the point y, and indeed, these
cardinalities need not be bounded.

EXAMPLE 4.14. Let Z+ = N ∪ {0} and S = {(m, n) ∈ (Z+)2 : 0 6 m 6 n}.
S is an abelian semigroup under coordinatewise addition. Let X1 be a copy of
−N ∪ {0}, and X2 a copy of the integers, both with the discrete topology. These
copies are chosen so that X1, X2 are disjoint. Let X = X1 ∪ X2 ∪ {x∞}, with the
one point compactification topology. Then X is metrizable.

Let S act on X as follows: x∞ will be fixed under all σm,n. For x ∈ X1, define

σm,n(x) =

{
x + m if x + m 6 0,
0 otherwise,

and for x ∈ X2, let σm,n(x) = x + n. Then each map σm,n is surjective, and con-
tinuous in the one point compactification topology. None is a homeomorphism,
except for σ0,0, the identity.

Now if x ∈ X2, then x has the finite stability property. Indeed, let y be in the
orbit of x, so y = x + k for some non-negative integer k. Then σt(x) = y if and
only if t = (m, k) for some m, 0 6 m 6 k. This is finite for each such y, but there
is no upper bound on the cardinalities.

Let us see how the two classes of representations πx,γ and ρx,µ are related
by constructing a special cocycle µ.

Fix a point x ∈ X which has the finite stability property . Define an equiva-
lence relation ∼ on the semigroup S by s ∼ t if σs(x) = σt(x), and let [s] denote
an equivalence class. Define a map q : S → S(x) by q(s) = σs(x). Then q is a
one-to-one surjective map of the set of equivalence classes S/ ∼ to the orbit S(x).

Let H0
0 be the subspace of all (finite) linear combinations η = ∑ asξs for

which ∑ asξq(s) = 0. Note that any such sum is the sum of elements ∑ asξq(s) for
which the s appearing in the sum belong to the same equivalence class, and the
sum of the coefficients ∑ as = 0.

For y in the orbit of x, letH(y) = span{ξt : σt(x) = y}. By the finite stability
property of x, this subspace is finite dimensional, hence equal to its closure in
`2(S). Then `2(S) = {

⊕
y∈S(x)H(y)}−.

Let H0(y) = H0
0 ∩ H(y). This is precisely the codimension one subspace

consisting of all linear combinations ∑ atξt where ξt ∈ H(y) and ∑ at = 0. Since
the subspace is finite dimensional, it is closed inH(y).

LEMMA 4.15. The linear space H0
0 is invariant under the maps πx,γ( f ), f ∈

C(X), and under πx,γ(St), t ∈ S . Hence the closure of H0
0, which we denote by H0, is

invariant under πx,γ(F), for F ∈ A0, γ ∈ Γ.

Proof. Let f ∈ C(X) and η ∈ H0
0. It is enough to show that the subspace

H0(y), y ∈ S(x) is mapped to itself under πx,γ( f ). So we may assume η ∈ H0(y),
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η = ∑ ajξsj where ∑ aj = 0. Then

πx,γ( f )η = ∑ f (σsj(x))ajξsj = ∑ f (y)ajξsj ∈ H0(y).

Now πx,γ(St) does not map the subspaceH0(y) to itself, but mapsH0(y) to
someH0(y′). For t ∈ S ,

πx,γ(St)η = ∑〈γ, t〉ajξt+sj ∈ H
0
0

because if sj belong to the same equivalence class, then so do the elements sj + t,
since

σsj+t(x) = σt ◦ σsj(x) = σt(σs(x))

where [sj] = [s] for all j.

LEMMA 4.16. H0 ∩H(y) = H0(y).

Proof. We can writeH0
0 as the algebraic direct sum of the finite dimensional,

orthogonal subspaces H0(y) as y runs through S(x). The closure of H0
0, H0, is

thus the `2 direct sum of these orthogonal subspaces.

REMARK 4.17. If H(y) were not finite dimensional, then H0(y) is dense in
H(y). In that case,H0 ⊃ H(y) and the conclusion of the lemma fails.

Let Q denote the orthogonal projection of `2(S) onto the subspace H0. Let
H1 = Q⊥(`2(S)). Observe that for any basis vector ξt ∈ `2(S), Q⊥ξt 6= 0. In-
deed, if Q⊥ξt = 0, then ξt ∈ H0 and in fact ξt ∈ H0(y) where y = σt(x). But if
H0(y) contained one basis vector, it would then contain all basis vectors in H(y)
and henceH0(y) would coincide withH(y), which is not the case.

SinceH0 is invariant, we can define the representation π0
x,γ to be the restric-

tion of πx,γ to the subspace H0. The subspace H1 need not be invariant, but we
can define the representation π1

x,γ by

π1
x,γ(F) = Q⊥πx,γ(F)|H1.

Note that Q⊥ξs 6= 0 for all s ∈ S .
For simplicity of notation, if γ = 1 is the trivial character, write πx,1 =

πx, π1
x,1 = π1

x.

DEFINITION 4.18. Fix x ∈ X which has the finite stability property. Define
an orbit cocycle µ by setting, for y ∈ S(x), t ∈ S ,

µ(t, y) =
‖π1

x(St)Q⊥ξu‖
‖Q⊥ξu‖

=
‖Q⊥ξt+u‖
‖Q⊥ξu‖

if y = σu(x). This is well-defined, for if y = σu′(x), then Q⊥ξu = Q⊥ξu′ . We call
µ the left regular orbit cocycle.

LEMMA 4.19. µ satisfies the two conditions of Definition 4.9, and hence is an orbit
cocycle. Furthermore, µ(s, y) 6= 0 for all s ∈ S and y ∈ S(x).
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Proof. Let s, t ∈ S and y ∈ S(x), y = σu(x). Then

µ(t, y) µ(s, σt(y)) =
‖Q⊥ξt+u‖
‖Q⊥ξu‖

‖Q⊥ξs+t+u‖
‖Q⊥ξt+u‖

=
‖Q⊥ξs+t+u‖
‖Q⊥ξu‖

= µ(s + t, y),

verifying the cocycle identity.
Suppose uj, j = 1, . . . , n are elements of S such that if yj = σuj(x) ∈ S(x)

are distinct, and σt(yj) = σt(y), 1 6 j 6 n, where y = y1 = σu(x) and u = u1.
The vectors Uj =

1
‖Q⊥ξuj‖

Q⊥ξuj are mutually orthogonal unit vectors, and

ξ = ∑ ajUj is a unit vector if aj ∈ C satisfy
n
∑

j=1
|aj|2 = 1. Now

π1
x(St)ξ =

(
∑

aj

‖Q⊥ξuj‖

)
Q⊥ξt+u =

(
∑ aj

‖Q⊥ξt+u‖
‖Q⊥ξuj‖

) 1
‖Q⊥ξt+u‖

Q⊥ξt+u.

Since π1
x(St) is contractive, ‖π1

x(St)ξ‖ 6 1. Hence, the scalar
∣∣∣∑ aj

‖Q⊥ξt+u‖
‖Q⊥ξuj‖

∣∣∣ 6 1,

for all choices of aj such that
n
∑

j=1
|aj|2 = 1. By Cauchy–Schwarz, this implies that

∑
(‖Q⊥ξt+u‖
‖Q⊥ξuj‖

)2
6 1.

In other words,

∑
j

µ(t, yj)
2 6 1.

Finally, µ is never zero since Q⊥ξs 6= 0 for all s ∈ S .

With µ the left regular orbit cocycle, define W : `2(S(x)) → H1 as follows:
if y ∈ S(x), say y = σs(x), set Wξy = 1

‖Q⊥ξs‖
Q⊥ξs. Then W maps an orthonormal

basis of `2(S(x)) onto an orthonormal basis ofH1. We compute

W∗π1
x,γ(St)Wξy = W∗π1

x,γ(St)
1

‖Q⊥ξs‖
Q⊥ξs = 〈γ, t〉 1

‖Q⊥ξs‖
W∗Q⊥ξt+s

= 〈γ, t〉 ‖Q
⊥ξt+s‖
‖Q⊥ξs‖

W∗
1

‖Q⊥ξt+s‖
ξt+s = ρx,γµ(St)ξσt(y).

Also, a straightforward calculation shows that W∗π1
x,γ( f )Wξy = ρx,γµ( f )ξy. This

proves

COROLLARY 4.20. W∗π1
x,γ(F)W = ρx,γµ(F), where F ∈ A0, γ ∈ Γ, and µ is

the left regular orbit cocycle. Thus,

‖ρx,γµ(F)‖ 6 ‖πx,γ(F)‖.
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5. EXTENSIONS OF SEMIGROUP DYNAMICAL SYSTEMS

DEFINITION 5.1. Given a dynamical system (X, σ,S) we say that the dy-
namical system (Y, β,S) is an extension of (X, σ,S) if there is a continuous sur-
jection p : Y → X such that the diagram

Y
βs−−−−→ Y

p
y p

y
X σs−−−−→ X

commutes for every s ∈ S . We call p the extension map of (Y, β,S) over (X, σ,S).
We say that an extension (Y, β,S) is a homeomorphism extension of (X, σ,S)

if the maps βs are homeomorphisms for all s ∈ S . We now provide a procedure
for producing a canonical homeomorphism extension of (X, σ,S).

Let G = S − S be the group generated by the abelian semigroup S . (Recall
that S is a semigroup with cancellation.) Define a partial order on G by h < g if
g− h ∈ S . Let Xg = X for all g ∈ G. If g− h = u ∈ S let σu map Xg → Xh. Then
the commutativity conditions for an inverse system are satisfied, so the inverse
limit (or projective limit) of the inverse system exists. Denote the inverse limit
by X̃.

PROPOSITION 5.2. X̃ = {(xg)g∈G ∈ ΠXg : xh = σu(xg) for all h < g ∈ G,
with u = g− h}.

The proof is Proposition 16-6.4 of [2].
We now show that there is a homeomorphism σ̃t, for each t ∈ S . Let σ̃t be the

map σ̃t((xg)g∈G) = (σt(xs))s∈G , and let p : X̃ → X be the map p((xs)s∈G) = x0
(where 0 is the identity of G.)

PROPOSITION 5.3. (X̃, σ̃,S) is a dynamical system for which the σ̃t are homeo-
morphisms, for all t ∈ S . Furthermore, the diagram

X̃
σ̃t−−−−→ X̃

p
y p

y
X

σt−−−−→ X
commutes, so that (X̃, σ̃,S) is a homeomorphism extension of (X, σ,S).

Proof. We first see that σ̃t is surjective. Indeed, let ((yg)g∈G) ∈ X̃, and set
xg = yg+t. Then (xg)g∈G ∈ X̃, and σ̃t((xg)g∈G) = (yg)g∈G .

To show injectivity suppose

(xg)g∈G , (x′g)g∈G ∈ X̃ and σ̃t((xg)g∈G) = σ̃t((x′g)g∈G).

Then for all g ∈ G, xg−t = x′g−t. Hence (xg)g∈G = (x′g)g ∈ G.
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COROLLARY 5.4. G acts as a group of homeomorphisms on X̃.

Proof. Let g ∈ G. Since S − S = G, g can be written as s− t, for s, t ∈ S .
Define

σ̃g = σ̃s ◦ σ̃−1
t .

We show this is well defined. If also g = s′ − t′, then s + t′ = s′ + t. Hence,
σ̃s+t′ = σ̃s′+t. From this we obtain σ̃s ◦ σ̃−1

t = σ̃s′ ◦ σ̃−1
t′ .

Our next goal is to show that the extension (X̃, σ̃,S) is a minimal extension
of (X, σ,S) in a sense we will make precise.

LEMMA 5.5. If σt is a homeomorphism for all t ∈ S , then the map p : X̃ → X is
a homeomorphism. Hence the dynamical systems (X, σ,S) and (X̃, σ̃,S) are conjugate.

Proof. We need only show that the map p is injective, since by Definition 5.1
it is a continuous surjection. So assume that p((xs)s∈S ) = p((ys)s∈S ). In partic-
ular x0 = y0. Now since σt is a homeomorphism we have that xs = σ−1

s (x0) =
σ−1

s (y0) = ys and hence p is injective. That the systems are conjugate follows
from the commutative diagram for the notion of extension.

DEFINITION 5.6. Consider an extension (Y, β,S) of (X, σ,S) via an exten-
sion map r. We say that an extension (Z, ϕ,S) of (X, σ,S) lies between (Y, β,S)
and (X, σs,S) if the following diagram

Y
βt−−−−→ Y

p
y p

y
Z

ϕt−−−−→ Z

q
y q

y
X

σt−−−−→ X
commutes for all t ∈ S , and q ◦ p = r, where p and q are the extension maps as in
the diagram.

We say the extension (Y, β,S) of (X, σ,S) via an extension map r is a homeo-
morphism extension if the maps βt, t ∈ S are homeomorphisms, for t ∈ S . Finally,
we call a homeomorphism extension (Y, β,S) of (X, σ,S) minimal if for any dy-
namical system (Z, ϕ,S) that lies between the two systems as in the diagram,
the extension map p is a homeomorphism, and hence (Y, β,S) and (Z, ϕ,S) are
conjugate systems.

We refer to the homeomorphism extension (X̃, σ,S) of (X, σ,S) as the canon-
ical homeomorphism extension.

LEMMA 5.7. The canonical homeomorphism extension of (X, σ,S) is a minimal
extension.
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Proof. Assume that we have the following commutative diagram

X̃
σ̃t−−−−→ X̃

p
y p

y
Z

ϕt−−−−→ Z

q
y q

y
X

σt−−−−→ X
where σ̃t and ϕt are homeomorphisms for every t and p and q are surjections with
q ◦ p((xs)s∈S ) = x0. By the preceding lemma we know that Z̃ and Z are conjugate
and hence we will show that Z̃ and X̃ are conjugate.

For notational purposes we will interchange the notations x = (xs)s∈S for
an element of X̃ as necessary. We define a map Γ : X̃ → Z̃ by Γ((xs)s∈S ) =
(ϕ−1

s (p(x)))s∈S . The map Γ is clearly continuous. On the other hand notice that
ϕt(ϕ−1

s+t(p(x))) = ϕ−1
s (p(x)) and hence Γ(x) ∈ Z̃.

Now if (ys)s∈S ∈ Z̃ then there exists x ∈ X̃ such that p(x) = y0 since p is
surjective. Also ys = ϕ−1

s (y0) and hence Γ(x) = (ys)s∈S and hence Γ is onto.
To see that Γ is one-to-one consider the map Π : Z̃ → X̃ given by

Π((ys)s∈S ) = (q(ys))s∈S .

Notice that ϕt(q(ys+t)) = q(ϕt(ys+t)) = q(ys) and so the map Π does map into
X̃. Now we see that

Π ◦ Γ(x) = (q(ϕ−1
s (p(x))))s∈S = (q(p ◦ σ̃s

−1(x)))s∈S

= (q ◦ p((xt+s)t∈S ))s∈S = (xs)s∈S = x.

It follows that Γ is one-to-one and hence Γ is a homeomorphism. The conjugacy
follows immediately from the commutative diagram.

The next theorem now follows immediately.

THEOREM 5.8. The dynamical system (X, σ,S) has a minimal homeomorphism
extension, which is unique up to conjugacy.

5.1. DUALIZING THE CANONICAL HOMEOMORPHISM EXTENSION. LetA=C(X),
and αs be the endomorphism αs( f ) = f ◦ σs, s ∈ S , f ∈ C(X). Define a partial
order on S by t � s if there exists u ∈ S such that t = u + s. Now the diagram

A αs−−−−→ A

αt

y αu

y
A A

commutes, so we can form the inductive system (A, αs) with respect to the order
� . Let Ã = lim−→(As, αs) where As = A for all s, and let ιs be the canonical
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embeddings of A → Ã. Thus we have the commutative diagram

A αs−−−−→ A

ιt+s

y ιt

y
Ã Ã

.

Now we define α̃s : Ã → Ã as follows: if ã ∈ Ã there exists a t ∈ S and
a ∈ A such that ã = ιt(a). Define

α̃s(ã) = ιt(αs(a)).

This is well defined by the commutativity of the diagrams. Since αs, s ∈ S , is
linear and injective, the same is true for α̃s. We show α̃s is invertible.

Let ã ∈ Ã be given; say ã = ιt(a) for some t ∈ S , a ∈ A. We can assume
t � s, say t = u + s for some u ∈ S . Then

ã = ιt(a) = ιu ◦ αs(b)

for some b ∈ A. Thus, ã = α̃s(b̃) where b̃ = ιu(b).
Now the mappings αs, ιt, (s, t ∈ S) are isometric and ∗-maps (i.e. αs(a) =

αs(a) ) hence Ã is the direct limit of C∗-algebras, so that the completion of Ã
is a commutative C∗-algebra, C(Z). The automorphisms α̃s are isometric on Ã,
hence extend to automorphisms, also denoted α̃s, of C(Z). Thus, by the Banach–
Stone theorem, there is a homeomorphism ϕs of Z such that α̃s( f ) = f ◦ ϕs, f ∈
C(Z), s ∈ S .

Let j be the embedding C(X) 7→ C(X̃) given by j( f ) = f ◦ p where p :
X̃ → X is the canonical map. Now for s ∈ S let βs : A → C(X̃) be the map
βs( f ) = j( f ) ◦ σ̃−s. Then the diagram

A αu−−−−→ A

βs

y βs+u

y
C(X̃) C(X̃)

commutes. Thus, by properties of direct limits, there is a star homomorphism
Ψ : Ã → C(X̃). Since the maps βs are isometric, so is Ψ, hence Ψ extends to a
map (also denoted Ψ) of C(Z)→ C(X̃).

Now the embedding C(Z) → C(X̃) yields a map p : X̃ → Z as follows: let
x̃ be a pure state on C(X̃), which we identify with a point of X̃. Restricting x̃|C(Z)
yields a pure state of C(Z), which is canonically identified with a point of Z.

We observe that the diagram

X̃ σ̃s−−−−→ X̃

p
y p

y
Z

ϕs−−−−→ Z
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commutes. By the minimal extension property of X̃ (cf. Lemma 5.7), p is a home-
omorphism. Thus, C(X̃) is the (completion of) the direct limit of the directed
system (C(X), αs).

6. THE C∗-ENVELOPE

THEOREM 6.1. The C∗-envelope of the left regular algebra A(X,S) is the crossed
product C(X̃)oα̃ G.

Proof. Define representations π̃x̂,γ for x ∈ X and γ ∈ Γ of the crossed prod-
uct C(X̃)oα̃ G as follows. Let x̂ be the subset p−1(x) ⊂ X̃, where p is the map
X̃ → X given in Definition 5.3. The Hilbert space is `2(G(x̂)), where G(x̂) denotes
the union of the orbits G(x̃) for x̃ ∈ x̂. If Ug is the unitary element in the crossed
product associated with the homeomorphism σ̃g, the representation is given by

π̃x̂,γ(Ug)ξ x̃ = 〈γ, g〉ξσ̃(x̃)

where ξ x̃ is the function in `2(G(x̂)) which is 1 at x̃ and zero elsewhere. And for
f̃ ∈ C(X̃), π̃x̂,γ( f̃ )ξ x̃ = f̃ (x̃)ξ x̃.

Since the direct sum of the representations f̃ → f̃ |x̂ (that is, the restriction
of f̃ to the subset x̂ ⊂ X̃) of C(X̃) is faithful, it follows that the supremum of the
norms of the representations π̃x̂,γ is faithful on the crossed product, since G is
abelian, hence amenable (cf. 7.7.5 of [19]). Indeed, this holds even if γ is taken to
be the trivial character.

Since C(X) is embedded in C(X̃) by the map j( f ) = f ◦ p, it follows that
π̃x̂,γ(j( f ))ξỹ = f (y)ξỹ for ỹ ∈ S(x̃) with p(ỹ) = y ∈ X, since j( f ) is constant on
the subset ŷ ⊂ X̃, and that constant is f (y).

Let F ∈ A0, say F = ∑ Ss fs (where the sum if finite), let F̃ = ∑ Us j( fs). Then
we have that

‖π̃x̂,γ(F̃)‖ = ‖πx,γ(F)‖.
It follows that equality holds for F ∈ A(X,S) and hence that the embedding of
the left regular algebra A(X,S) into the crossed product is completely isometric.
We will also denote this embedding by j, which is consistent if we view C(X) as
a subalgebra of A(X,S) and C(X̃) as a subalgebra of the crossed product.

To complete the proof, suppose B is the C∗-envelope of A(X,S), and let k :
A(X,S) → B be the completely isometric embedding. Then there is a surjective
C∗-homomorphism Φ : C(X̃)oα̃ G → B such that the diagram

A(X,S) j−−−−→ C(X̃)oα̃ G

id

y Φ

y
A(X,S) k−−−−→ B
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commutes. It remains to show that Φ is an isomorphism. Suppose, to the con-
trary, there is an element H ∈ ker(Φ). We may suppose H has norm 1. H can

be approximated by an element G with ‖G− H‖ < 1
4 , where G =

n
∑

i=1
Ugi hi with

hi ∈ C(X̃).
From Section 5.1 there exist fi ∈ C(X) such that ‖j( fi)− hi‖ < 1

4n , 1 6 i 6 n.
Thus if F = ∑ Ugi j( fi), then ‖F− G‖ < 1

4 .
Now express gi = si − ti, where si, ti ∈ S , 1 6 i 6 n. Let U = Ut1 · · ·Utn =

Ut1+···+tn . Then FU ∈ j(A(X,S)), and since U is unitary in the crossed product,
‖FU‖ = ‖F‖.

Now ‖H − F‖ < 1
2 , so that ‖Ψ(H − F)‖ < 1

2 . Since ‖H‖ = 1, this implies
‖F‖ = ‖FU‖ > 1

2 . Hence,

‖Ψ(HU − FU)‖ 6 ‖Ψ(H − F)‖‖Ψ(U)‖ 6 ‖Ψ(H − F)‖ < 1
2

whereas, since Ψ(H) = 0,

‖Ψ(HU − FU)‖ = ‖Ψ(FU)‖ > 1
2

since, by the defining property of the C∗-envelope, Ψ is completely isometric on
j(A(X,S)). This contradiction shows that the kernel of Ψ is trivial, and so the
crossed product is the C∗-envelope.

COROLLARY 6.2. Given x ∈ X, γ ∈ Γ,
(i) The semigroup πx,γ(Ss) (s ∈ S) of commuting isometries dilates to a commuting

semigroup of unitaries.
(ii) Assume x has the finite stability property. Then semigroup ρx,γ(Ss) (s ∈ S) of

commuting contractions dilates to a commuting semigroup of unitaries.

THEOREM 6.3. There is a completely contractive representation Π : C(X) oσ

S → A(X,S).
Proof. Let F ∈ A0. The norm of F as an element of the semicrossed prod-

uct C(X)oσ S is given as the supremum over all representations ‖π(F)‖ which
satisfy the three properties of Definition 3.2. The norm of F as an element of the
left regular algebra A(X,S) is given as the supremum over a subset of these rep-
resentations. Since the semicrossed product is the completion of A0 in the larger
norm, for F ∈ A(X,S), we may take

Π(F) =
⊕

(x,γ)∈X×Γ

πx,γ(F).

This yields a contractive map of the semicrossed product into A(X,S).
To see the map is completely contractive, the proof of Theorem 6.1 shows

that the representation πx,γ(F) is unitarily equivalent to the restriction of π̃x̂,γ(F)
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to an invariant subspace. Since this is a C∗-representation, it is completely con-
tractive, and the same is true of the direct sum of such representations. Thus the
map Π is completely contractive.

REMARK 6.4. If the map Π is not completely isometric, then it would be
interesting to have examples of representations π for which the norm ‖π(F)‖ is
not dominated by the norm of F in A(X,S). Conceivably such representations
could be orbit representations for which the associated orbit cocycle is not the left
regular orbit cocycle. Of course, the existence of such cocycles will depend on the
semigroup S . For, say if S = N, then the semicrossed product norm and the left
regular norm coincide. More generally, what condition on the dynamical system
S is needed to insure that the two norms are different?

Recall the maps Ps : A(X,S) → A(X,S) defined in Section 3. Now, with
abuse of notation, we define the conditional expectation P0 on C(X̃)oα̃ G. In the
same way it was defined on A0, by

P0(F) =
∫
Γ

τγ(F)dγ

where now τγ acts on the group G.
Note that P0 maps onto the subalgebra C(X̃)U0. If we regard A(X,S) as a

subalgebra of its C∗-envelope, then the map P0 of Section 3 coincides with the
restriction of this map P0 to A(X,S).

PROPOSITION 6.5. P0 is a faithful, completely contractive conditional expectation
of A(S , X)→ C(X).

Proof. For F ∈ A0, F = ∑ Ss fs (finite sum), P0(F) = f0 where S0 = I. So it
is evident that

P0( f F) = f P0(F) = P0(F f )

for any f ∈ C(X).
We see that for F ∈ A0 as above,

P0(F∗F) = ∑ | fs|2

and in particular,

(6.1) P0(F∗F) > | fs|2 = Ps(F)∗Ps(F)

for any s. So, by continuity of P0 and density of A0, it follows that (6.1) holds for
F ∈ A(S , X).

Now suppose F ∈ A(S , X) and P0(F∗F) = 0. Then it follows that Ps(F) = 0
for all s ∈ S . So, by Proposition 4.8, F = 0.

The map F ∈ A(X,S)→ τγ(F) is completely isometric. As P0 is the average
of completely isometric maps, it is completely contractive.
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COROLLARY 6.6. There is a completely contractive conditional expectation

C(X)oσ S → C(X).

Proof. By Theorem 6.3 the map Π of C(X)oσ S onto A(X,S) is completely
contractive, and by Proposition 6.5 the conditional expectation of A(X,S) onto
C(X) is completely contractive. The conditional expectation on the semicrossed
product is the composition of the two maps.

6.1. SHILOV MODULES.

DEFINITION 6.7. Let A be an operator algebra, π : A → B(H) a repre-
sentation. Then π is said to be a Shilov representation if there is a representation
Π of the C∗-envelope C∗(A) in a Hilbert space K containing H as a subspace,
so that (viewing A as a subalgebra of C∗(A)), π(F) is the restriction of Π(F) to
H, for all F ∈ A. [12] expresses this in the language of modules: H is isomorphic
to a submodule of K viewed as an A-module.

A Hilbert moduleH is said to have a Shilov resolution if there is a short exact
sequence of Amodules

0→ K0 → K
Φ→ H → 0

where K0 and K are Shilov modules.

LetH0, π1
x,γ, H1, π1

x,γ be the Hilbert spaces and representations introduced
prior to Definition 4.18. While these were initially defined as representations of
A0, they are uniquely extendible to representations of A = A(X,S), and it is
this context we consider them here. Following [12], we employ the language of
Hilbert modules.

For the remainder of this section let us fix x ∈ X which has the finite stability
property, and γ ∈ Γ. View H0 as an A module via the representation π0

x,γ, H1

as an A module via the representation π1
x,γ, and `2(S) as an A module via the

representation πx,γ.

THEOREM 6.8. (i) `2(S) is a Shilov module;
(ii)H1 has a Shilov resolution

0→ H0 → `2(S)
Q⊥→ H1 → 0.

Proof. (i) Theorem 6.1 shows that for F ∈ A, πx,γ(F) is unitarily equivalent
to the restriction of the representation π̃x̂,γ(F) of the C∗-envelope to an invariant
subspace.

(ii) Since πx,γ is a Shilov representation of A, so is its restriction to an in-
variant subspace. Thus H0 is a Shilov module. Since H1 is the quotient space
`2(S)/H0, it has a Shilov resolution as given in (ii).

Again fixing x ∈ X and γ ∈ Γ, and let µ = µx be the left regular orbit
cocycle, and ρx,γµ the associated representation of the orbit space `2(S(x)), which
we view as an A(X,S) module via this representation.
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COROLLARY 6.9. As a left A-module, the orbit Hilbert space `2(S(x)) has a
Shilov resolution.

Proof. This follows from Corollary 4.20 in which it is shown that ρx,γµ is
unitarily equivalent to π1

x,γ.

REMARK 6.10. For x ∈ X as above, the family of commuting contractions
{ρx,γ(St) : t ∈ S} dilates to a commuting family {πx,γ(St) : t ∈ S} of isome-
tries, which in turn has an extension to a commuting family of unitaries acting
on `2(G).
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