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ABSTRACT. We consider the minimal boundedly-translation-invariant Segal
algebra Sp

0 (G) in the Figà-Talamanca–Herz algebra Ap(G) of a locally compact
group G. In the case that p = 2 and G is abelian this is the classical Segal al-
gebra of Feichtinger. Hence we call this the Feichtinger–Figà-Talamanca–Herz
Segal algebra of G. This space is also a Segal algebra in L1(G) and is, remark-
ably, the minimal such algebra which is closed under pointwise multiplication
by Ap(G). Even for p = 2, this result is new for non-abelian G. We place a p-
operator space structure on Sp

0 (G) based on work of Daws (M. DAWS, J. Oper-
ator Theory 63(2010), 47–83) and demonstrate the naturality of this by showing
that it satisfies all natural functorial properties: projective tensor products, re-
striction to subgroups and averaging over normal subgroups. However, due
to complications arising within the theory of p-operator spaces, we are forced
to work with weakly complete quotient maps and weakly complete surjec-
tions (a class of maps we define).
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1. PRELIMINARIES

1.1. MOTIVATION AND PLAN. In [12], Feichtinger devised for any locally com-
pact abelian group G, a Segal algebra S0(G) in L1(G) which is minimal amongst
those Segal algebras which admit uniformly bounded multiplication by charac-
ters. Taking the Fourier transform, this may be realised as the minimal Segal al-
gebra in the Fourier algebra A(Ĝ) which admits uniformly bounded translations.
Replacing Ĝ by G, for any locally compact group G, and then A(G) by certain
spaces of locally integrable functions B, Feichtinger ([11]) discussed the class of
minimal homogeneous Banach spaces Bmin. Amongst the allowable spaces dis-
cussed in [11] are the Figà-Talamanca–Herz algebras Ap(G), for 1 < p < ∞ of
[18] and, in the abelian case, [13]. In this paper we discuss Sp

0 (G) = Ap(G)min,



46 SERAP ÖZTOP AND NICO SPRONK

which we call the p-Feichtinger–Figà-Talamanca–Herz Segal algebra of G, or simply
p-Feichtinger algebra for short.

For p = 2, the theory of operator spaces may be applied to S2
0(G), as was

done by the second named author in [30]. This is particularly useful because
it gives, for two locally compact groups G and H, a projective tensor product
formula

S2
0(G)⊗̂2S2

0(H) ∼= S2
0(G× H)

where ⊗̂2 is the operator projective tensor product of Effros and Ruan [9]. This, of
course, is in line with their tensor product formula for preduals of von Neuman
algebras, and hence for Fourier algebras [9]. Losert [23] showed that, in general,
the usual projective tensor product of two Fourier algebras is not a Fourier alge-
bra.

In the general case that 1 < p < ∞, various attempts have been made to un-
derstand properties of Ap(G) via operator spaces. See [19] and [28], for example.
Following the lead of Pisier [25] and Le Merdy [21], Daws studied properties of
Ap(G) using p-operator spaces in [4]. We summarise many of Daws’s results in
Section 1.2. Daws’s work was followed by An, Lee and Ruan [1], where approx-
imation properties were studied. For p 6= 2 this theory has many features which
make it more difficult than classical operator space theory. For example, there is
a natural p-operator space dual structure, modelled on the dual operator space
structure of [2]. However, it is not, in general, the case that the natural embedding
into the second dual, κV : V → V∗∗, is a complete isometry. See the summary in
Proposition 1.1, below. Even in cases where κV is a complete isometry, it is not
clear that a map S, for which S∗ is a complete isometry, is itself is a complete quo-
tient. These facts forced Daws to express many results of his as simple isometric
results, and hence forced An, Lee and Ruan to do the same. In Section 1.3, we
make a modest augmentation to this, and devise a theory of weakly complete quo-
tient maps, to refine this theory. In particular we see that Daws’s tensor product
formula, for amenable G and H,

Ap(G)⊗̂pAp(H) ∼= Ap(G× H)

is really a weakly completely isometric formula.
Many of the issues discussed above make certain matters of even defining

the p-operator space structure on Sp
0 (G) more daunting than in the p = 2 case.

However, there is value in this exercise as it has forced us to devise much more
elementary — though harder — proofs, than were found in [30]. In many ways,
these results shed new light on the p = 2 setting. We justify this effort with our
tensor product formula in Section 3.2. Moreover, we show the naturality of this p-
operator space structure by demonstrating a restiction theorem in Section 3.3, and
an averaging theorem in Section 3.4. Whilst all of these results are obtained in the
category of p-operator spaces with completely bounded maps, we will require
notions such as weakly complete surjectivity.
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However, all these results live in the category of p-operator spaces with
morphisms of weakly completely bounded maps.

We also highlight a result which does not use operator spaces, and is new
even for p = 2 when G is non-abelian. Sp

0 (G) = Ap(G)min is the minimal Se-
gal algebra in L1(G) which admits pointwise multiplication by Ap(G). This is
Theorem 2.4.

1.2. p-OPERATOR SPACES. We use the theory of p-operator spaces as presented
by Daws [4]. We shall also use the paper of An, Lee and Ruan [1], and the thesis
of Lee [20].

Fix 1 < p < ∞ and let p′ be the conjugate index given by 1
p + 1

p′ = 1. We

let `p
n denote the usual n-dimensional `p-space. A p-operator space structure, on

a complex vector space V , is a family of norms {‖ · ‖n}∞
n=1, each on the space

Mn(V) of n× n matrices with entries in V , which satisfy

(D)
∥∥∥ [v 0

0 w

] ∥∥∥
n+m

= max{‖v‖n, ‖w‖n}

(Mp) ‖αvβ‖n 6 ‖α‖B(`p
n)
‖v‖n‖β‖B(`p

n)

where v ∈ Mn(V), w ∈ Mm(V) and α, β ∈ Mn, the scalar n× n-matrices which
we hereafter identify with B(`p

n). We will call V , endowed with a prescribed p-
operator space structure, a p-operator space.

A linear map between p-operator spaces T : V → W is called completely
bounded if the family of amplifications T(n) : Mn(V) → Mn(W), each given by
T(n)[vij] = [Tvij], is uniformly bounded, and let ‖T‖pcb = sup

n∈N
‖T(n)‖. More-

over we say that T is a complete contraction, or a complete isometry, if each T(n) is
a contraction, or, respectively, an isometry. As proved in [21], [25], given a p-
operator space V , there is a subspace E of a quotient space of some Lp-space, and
a complete isometry π : V → B(E). Here Mn(B(E)) ∼= B(`p

n ⊗p E), isometri-
cally, where ⊗p signifies that the tensor product is normed by the identification
`

p
n ⊗p E ∼= `p(n, E). Following [1], we shall say that V acts on Lp, if there is a com-

petely isometric representation of V into B(Lp(µ)) for a measure space (X, µ).
We briefly review the significant structures of p-operator spaces, as identi-

fied by Daws. If V and W are p-operator spaces, the space CBp(V ,W) of com-
pletely bounded maps between V andW is itself an operator space thanks to the
isometric identifications Mn(CBp(V ,W)) ∼= CBp(V , Mn(W)). Each bounded lin-
ear functional f in V∗ is automatically completely bounded with ‖ f ‖pcb = ‖ f ‖,
and hence we have Mn(V∗) ∼= CBp(V , Mn). We record the following vital obser-
vations ([4], Theorem 4.3 and Proposition 4.4).

PROPOSITION 1.1. (i) If S : V → W is a complete contraction, then S∗ : W∗ →
V∗ is a complete contraction.

(i) A dual p-operator space acts on Lp.
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(iii) The cannonical injection κV : V → V∗∗ is a complete contraction, and is a com-
plete isometry if and only if V acts on Lp.

Given a vector space V whose dual is a p-operator space, we let VD denote
V with the “dual" p-operator space structure, i.e. that space which makes κV :
V → V∗∗ a complete isometry.

COROLLARY 1.2. Let V and W be p-operator spaces such that W acts on Lp.
Then CBp(V ,W) = CBp(VD,W) completely isometrically.

Proof. We have for S in CBp(V ,W) that

(1.1) S = κ̂W ◦ S∗∗ ◦ κV

where the left inverse κ̂W : κW (W) → W is a complete isometry, by virtue of
(iii) in the proposition above. In other words S factors through VD = κV (V).
It follows that S : V → W is a complete contraction exactly when S : VD →
W is a complete contraction. Hence CBp(V ,W) = CBp(VD,W) isometrically.
Replacing W with Mn(W), for each n, demonstrates that this is a completely
isometric identification.

The quotient structure is of particular interest to us: if W is a closed sub-
space of V then we identify isometrically Mn(V/W) ∼= Mn(V)/Mn(W). A linear
map Q : V → W is a complete quotient map if the induced map Q̃ : V/ ker Q→W
is a complete isometry.

For convenience, we let V and W be complete. Thanks to Daws [4], we
have a p-operator projective tensor product ⊗̂p. It obeys the usual functorial
properties: commutativity: the swap map Σ : V⊗̂pW → W⊗̂pV is a complete
isometry; associativity: (V⊗̂pW)⊗̂pX = V⊗̂p

(W⊗̂pX ); duality: (V⊗̂pW)∗ ∼=
CBp(V ,W∗), completely isometrically; and projectivity: if V1 ⊂ V andW1 ⊂ W
are closed subspaces, then (V/V1)⊗̂

p
(W/W1) is a complete quotient of V⊗̂pW .

While not spelled out explicitly, the commutativity and associativity follows from
the observation ([4], Proposition 4.8) which characterises the p-projective tensor
norm as the largest p-matricial cross norm. We will have occasion to consider the
non-completed dense subspace V ⊗∧pW , which is the algebraic tensor product
of V withW , with the inherited p-operator space structure.

Given a measure space (X, µ) we let

Np(µ) = N (Lp(µ)) ∼= Lp′(µ)⊗γ Lp(µ)

denote the space of nuclear operators on Lp(µ). Here, ⊗γ denotes the projective
tensor product of Banach spaces. We note that Np(µ)∗ ∼= B(Lp(µ)), from which
Np(µ)∗ is assigned the dual operator space structure. We record the following,
whose proof is similar to aspects of Proposition 5.2 in [4] and will be omitted.

PROPOSITION 1.3. If Y is a non-µ-null subset of X, the Np(µ|Y) is a completely
contractively complemented subspace of Np(µ). Hence for any operator space V , the
space Np(µ|Y)⊗̂

pV identifies completely isometrically as a subspace of Np(µ)⊗̂pV .
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For a p-operator space V , structures related to infinite matrices, M∞(V), and
infinite matrices approximable by finite submatrices, K∞(V), were worked out in
[20], with details similar to Section 10.1 of [10]. For S in CBp(V ,W) we define
the amplification S(∞) : M∞(V) → M∞(W) in the obvious manner. We observe
that S is completely contractive (respectively, completely isometric) if and only if
S(∞) is contractive (respectively, isometric); and S is a complete quotient map if
and only if S(∞)|K∞(V) is a quotient map. We will call S a complete surjection when
S(∞)|K∞(V) is a surjection. An application of the open mapping theorem shows
that this is equivalent to having that the operators S(n) are uniformly bounded
below.

1.3. WEAKLY COMPLETE QUOTIENT MAPS. Various constructions that we require
will not obviously respect completely bounded maps. However, they may be for-
mulated with the help of a formally more general concept. A linear map between
p-operator spaces S : V → W will be called weakly completely bounded provided
that its adjoint S∗ :W∗ → V∗ is completely bounded. We have an obvious similar
definition of a weakly completely contractive map. Thanks to Proposition 1.1, any
complete contraction is a weakly complete contraction. We will say S is a weakly
complete quotient map if S∗ is a complete isometry. Thus a weakly complete isometry
is an injective weakly complete quotient map. It is shown in Lemma 4.6 of [4] that
a complete quotient map is a weakly complete quotient map. Due to the absence
of a Wittstock extension theorem — i.e. we do not know if B(`p

n) is injective in the
category of p-operator spaces — we do not know if a weakly complete quotient
map is a complete quotient map, even when V acts on Lp.

COROLLARY 1.4. Let V andW be p-operator spaces.
(i) IfW acts on Lp, then any weakly complete contraction S : V → W is a complete

contraction.
(ii) The map id : V → VD is a weakly complete isometry.

Proof. For (i), we use the factorisation S = κ̂W ◦ S∗∗ ◦ κV , as in (1.1). For (ii)
we observe that C = B(`p

1 ) acts on Lp and use Corollary 1.2.

In the sequel we will often use the dual operator space structure VD. Hence,
from (i) above, we will have infrequent use for weakly complete contractions in
statements of results. However, the utility of techniques in Lemma 1.5, below,
means that we shall use these frequently in our proofs. As remarked above, we
will not have the same capacity to ignore weakly complete quotient maps.

Our analysis of weakly completely bounded maps will be facilitated by

some dual matrix constructions. Let Np
n = N (`

p
n) ∼= `

p′
n ⊗γ `

p
n. We let Nn(V)

denote the space of n× n matrices with entries in V , normed by the obvious iden-
tification with V⊗̂pNp

n. If T : V → W is linear, we let Nn(T) : Nn(V) → Nn(W)
denote its amplification which is identified with T ⊗ idNp

n
. The spaces Np

∞ and
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N∞(V) are defined analogously, and so too is the map N∞(T), for completely
bounded T.

LEMMA 1.5. Let S : V → W be a linear map between operator spaces. Then the
following are equivalent:

(i) S is weakly completely bounded (respectively, a weakly complete quotient map);
(ii) there is C > 0 such that for each n in N, ‖Nn(S)‖ 6 C (respectively, Nn(S) is a

quotient map);
(iii) N∞(S) is defined and bounded (respectively, N∞(S) is a quotient map).

Moreover, the smallest value for C in (ii), above, is ‖S∗‖pcb.

Proof. We have for, each n, the dual space

(1.2) Nn(V)∗ ∼= (V⊗̂pNp
n)
∗ ∼= CBp(V ,B(`p

n)) ∼= Mn(V∗)

with respect to which we have identifications Nn(S)∗ = S∗(n). This gives us the
immediate equivalence of (i) and (ii), as well as the minimal value of C in (ii).

Proposition 1.3 shows that each Nn(V) may be realised isometrically as the

upper left corner of N∞(V). Let Nfin(V) =
∞⋃

n=1
Nn(V), which is a dense subspace

of N∞(V). Condition (ii) gives that N∞(S)|Nfin(V) is bounded by C (respectively, is
a quotient map), hence N∞(S) is defined and is bounded (respectively, a quotient
map), i.e. (ii) implies (iii). That (iii) implies (ii) is obvious.

We will say that S : V → W is a weakly complete isomorphism if S is bijective
and both S∗ and (S−1)∗ are completely bounded. We will further say that S is
a weakly complete surjection if the induced map S̃ : V/ ker S → W is a weakly
complete isomorphism. If V and W both act on Lp, then Corollary 1.4 shows
than a weakly complete isomorphism S is a complete isomorphism. However,
the difficulties experienced with dualising weakly complete quotient maps will
force us to work with weakly complete surjections, generally. The following uses
essentially the same proof as Corollary 1.2 of [30]. To conduct that proof in this
context, we merely need to observe that (1.2) holds when n = ∞, and appeal to
the infinite matrix structures described at the end of the previous section.

COROLLARY 1.6. (i) S is a weakly complete isomorphism if and only if N∞(S) is
an isomorphism.

(ii) S is a weakly complete surjection if and only if N∞(S) is surjective.

Weakly complete quotient maps play a very satisfying role with the p-ope-
rator project tensor product.

PROPOSITION 1.7. Suppose S : W → X is a weakly complete quotient map of
p-operator spaces. Then for any p-operator space V the map id⊗S extends to a weakly
complete quotient map from V⊗̂pW onto V⊗̂pX , which we again denote id⊗S. If S is
a weakly complete isometry, then so too is id⊗S.
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Proof. Under the usual dual identification, the map from CBp(V ,X ∗) to
CBp(V ,W∗) given by T 7→ S∗ ◦ T is the adjoint of id⊗S : V ⊗∧pW → V ⊗∧p X .
By assumption, S∗ is a complete isometry, hence so is T 7→ S∗ ◦ T. It follows
that id⊗S extends to a weak complete quotient map. If S is injective, then each
Nn(id⊗S) is an isometry on Nn(V ⊗∧pW), and hence extends to an isometry on
the completion.

Given a family of p-operator spaces {Vi}i∈I we put a p-operator space struc-
ture on the product by the identifications Mn(`∞-

⊕
i∈I Vi) ∼= `∞-Mn(Vi). It is

readily verified that (D) and (Mp) are satisfied.
The direct sum structure seems more subtle. We use an approach suggested

in Section 2.6 of [26]. We consider for [vkl ] = ([vi,kl ])i∈I in Mn(`1-
⊕

i∈I Vi) the
norm

‖[vij]‖n = sup
{∥∥∥∑

i∈I
[Sivi,kl ]

∥∥∥
Mn(W)

:
Si ∈ CBp(Vi,W), ‖Si‖pcb 6 1 for i ∈ I

whereW is a p-operator space

}
.

We observe that ‖[vij]‖n 6
n
∑

k,l=1
∑
i∈I
‖vi,kl‖ and hence is finite. Since both (D) and

(Mp) hold in W , we see that this family of norms is a p-operator space struc-
ture on `1-

⊕
i∈I Vi. Moreover, it is trivial to see that this space satisfies the cat-

egorical properties of a direct sum, i.e. for complete contractions Si : Vi → W ,
(vi)i∈I 7→ ∑

i∈I
Sivi is a complete contraction. In particular, we obtain an isometic

identification

(1.3) CBp

(
`1-
⊕

i∈I
Vi,W

)
∼= `∞-

⊕
i∈I
CBp(Vi,W).

By taking n× n matrices of both sides for each n, we see that this is a completely
isometric identification. In particular, (`1-

⊕
i∈I Vi)

∗ ∼= `∞-
⊕

i∈I V∗i , completely
isometrically. (We are indebted to M. Daws for pointing us this approach.)

We finally observe that Nn(`1-
⊕

i∈I Vi) ∼= `1-
⊕

i∈I Nn(Vi) weakly com-
pletely isometrically. Indeed, the dual spaces are completeley isometric by virtue
of (1.2), which gives us (1.3) withW = B(`p

n).

1.4. COMPLETELY BOUNDED MODULES AND p-OPERATOR SEGAL ALGEBRAS. Let
A be a Banach algebra which is also a p-operator space, and V be a leftA-module
which is also a p-operator space. We say that V is a (weakly) completely bounded
A-module if the module multiplication map mV : A ⊗∧p V → V is a (weakly)
completely bounded map, hence extends to a (weakly) completely bounded map
mV : A⊗̂pV → V . In particular, for each n, Nn(mV ) : Nn(A⊗̂

pV) → Nn(V) is
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bounded. Since ⊗̂p is a cross-norm, and Nmn(A⊗̂
pV) ∼= Nm(A)⊗̂

pNn(V) iso-
metrically, we use Lemma 1.5 to see that for [aij] in A and [vi′ j′ ] in Nn(V) that

‖[aijvi′ j′ ]‖Nmn(V) = ‖Nmn(mV )[aij ⊗ vi′ j′ ]‖Nmn(V)

6 ‖m∗V‖pcb‖[aij ⊗ vi′ j′ ]‖Nmn(A⊗̂pV)(1.4)

6 ‖m∗V‖pcb‖[aij]‖Nm(A)‖[vi′ j′ ]‖Nn(V).

Of course, the analogous inequality which characterises a completely bounded
A-module is well known:

(1.5) ‖[aijvi′ j′ ]‖Mnm(V) 6 ‖mV‖pcb‖[aij]‖Mn(A)‖vi′ j′ ]‖Mm(V).

We say V is a (weakly) completely contractive A-module provided ‖mV‖pcb 6 1
(‖m∗V‖pcb 6 1). There is an obvious extension of this to right and bi-modules.
We say that A is a (weakly) completely contractive Banach algebra if A is a (weakly)
completely contractive A-module over itself.

A first example of a completely contractive Banach algebra is CBp(V) =
CBp(V ,V) where V is a fixed p-operator space. Indeed for [Tij] in CBp(V , Mn(V))
and [Si′ j′ ] in CBp(V , Mm(V)) we have that [Tij ◦ Si′ j′ ] = [Tij]

(m) ◦ [Si′ j′ ] in the space
CBp(V , Mnm(V)) by which (1.5) is clearly satisfied. Now we embed B(Lp(µ)) into
CBp(B(Lp(µ))) by left multiplication operators, realising B(Lp(µ)) as a closed
subalgebra. It follows that B(Lp(µ)) is a completely contractive Banach algebra.
In particular, if B is a weak*-closed algebra of B(Lp(µ)), then its dual space, hence
its natural predual, is a completely contractive B-module.

Now suppose I is a left ideal in a completely contractive Banach algebraA,
equipped with a p-operator space structure by which

(SI1) I = M1(I) is a Banach space,
(SI2) the identity injection I ↪→ A is completely bounded [contractive], and
(SI3) I is a completely bounded [contractive] A-module.

Then we call I a [contractive] p-operator Segal ideal in A. Given two p-operator
Segal ideals in A, we write I 6 J provided that I ⊂ J and the inclusion map
I ↪→ J is completely bounded. Hence I is a (weakly) p-operator Segal ideal
in J . A [contractive] p-operator Segal ideal I = SA is called a [contractive] p-
operator Segal algebra in A provided that

(SA) SA is dense in A.

Suppose I and J are two p-operator Segal ideals of a completely contrac-
tive Banach algebra A, such that I ∩ J 6= {0}. We assign a p-operator space
structure on I ∩ J via the diagonal embedding into the direct product space, i.e.
u 7→ (u, u) : I ∩ J ↪→ I ⊕`∞ J . It is straightforward to check that I ∩ J is a
(weakly) Segal ideal, in this case. There is an evident analogous notion of weakly
[contractive] p-operator Segal ideals. Thanks to our choice of dual operator space
structure we shall not require it generally, but will make use of it in some proofs.
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1.5. SOME APPLICATIONS OF WEAKLY COMPLETE QUOTIENT MAPS. In Proposi-
tion 5.3 of [4], the isometric identification

(1.6) Np(µ)⊗̂pNp(ν) ∼= Np(µ× ν)

is given. This identification is one of the key points of [4]. However, it is unkown
to the authors if it is a completely isometric identification; see further discussion
in p. 938 of [1].

PROPOSITION 1.8. The identification (1.6) is a weakly complete isometry.

Proof. Let us first assume that Lp(ν) = `
p
n = Lp(γn), where γn is the n-point

counting measure. Then

(Np(µ)⊗̂pNp
n)
∗ ∼= CBp(Np(µ),B(`p

n)) ∼= Mn(Np(µ)∗)

∼= Mn(B(Lp(µ))) ∼= B(Lp(µ)⊗p `
p
n) ∼= B(Lp(µ× γn)).

Hence the isomorphism Np(µ)⊗̂pNp
n ∼= Np(µ× γn) of (1.6) is a weakly complete

isometry. By Proposition 1.7, the calculation above, and the isometric identifica-
tion (1.6), we establish isometric identifications

Np
n⊗̂

pNp(µ)⊗̂pNp(ν) ∼= Np(µ× γn)⊗̂
pNp(ν)

∼= Np(µ× γn × ν) ∼= Np(µ× ν× γn) ∼= Np
n⊗̂

pNp(µ× ν).

In other words, Nn(Np(µ)⊗̂pNp(ν)) ∼= Nn(Np(µ× ν)) isometrically for each n.
Hence by Lemma 1.5, as it applies to isometries, the identification (1.6) is one of
a weakly complete isometry.

We mildly extend some notation of [4]. If V ⊂ B(Lp(µ)) andW ⊂ B(Lp(ν))
are weak*-closed subspaces, then V⊗̄W is the weak*-closure of V ⊗ W in the
space B(Lp(µ) ⊗p Lp(ν)) ∼= B(Lp(µ × ν)). Of course, the weak*-topology on
B(Lp(µ)) is given by the identification B(Lp(µ)) ∼= Np(µ)∗.

PROPOSITION 1.9. We have that B(Lp(µ))⊗̄B(Lp(ν)) = B(Lp(µ× ν)). More-
over, if V0 ⊂ B(Lp(µ)) and W0 ⊂ B(Lp(ν)) are subspaces with respective weak*-
closures V andW , then V0 ⊗W0 is weak*-dense in V⊗̄W .

Proof. We let Πµ denote the set of all finite collections π = {F1, . . . , F|π|}
of pairwise disjoint µ-measurable sets such that 0 < µ(Fj) < ∞ for each j. It is
straightforward to verify that each operator eπ on Lp(µ) given by

eπη =
|π|

∑
j=1

∫
Fj

η dµ · 1
µ(Fj)

1Fj

is a contractive projection onto Lp(µ|π) = span{ 1
µ(Fj)

1Fj}
|π|
j=1, a space which is

isometrically isomorphic to `
p
|π|. Moreover, eπB(Lp(µ))eπ = B(Lp(µ|π)). We

write π 6 π′ in Πµ, if each set in π is the union of sets in π′; making Πµ into
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a directed set. Then, lim
π

eπ = I in the strong operator topology. Similarly we

define Πν and the associated projections on Lp(ν).
Thus if T ∈ B(Lp(µ× ν)), taking limit with the product directed set we have

lim(π,π′)(eπ ⊗ eπ′)T(eπ ⊗ eπ′) = T in the weak operator topology, and, since the
net is bounded, in the weak*-topology as well. However, for each (π, π′) we have

(eπ ⊗ eπ′)T(eπ ⊗ eπ′) ∈ B(Lp(µ|π)⊗p Lp(ν|π′))
= B(Lp(µ|π))⊗B(Lp(ν|π′)) ⊂ B(Lp(µ))⊗B(Lp(ν)).

Hence we see that T ∈ B(Lp(µ))⊗̄B(Lp(ν)).
We turn now to the subspaces V0 andW0. We observe that if T ∈ B(Lp(ν))

and ω ∈ Np(µ)⊗̂pNp(ν) with norm limit ω = lim
n→∞

ωn, where each ωn ∈ Np(µ)⊗
Np(ν), then S 7→ 〈S⊗ T, ω〉 = lim

n→∞
〈S⊗ T, ωn〉 is a norm limit of functionals as-

sociated to Np(µ), and thus itself such a functional — in particular this functional

is weak*-continuous. (See Lemma 6.1 of [4].) Thus V ⊗W0 ⊂ V0 ⊗W0
w∗

. Like-
wise V ⊗ W ⊂ V ⊗W0

w∗
. Hence V ⊗ W ⊂ V0 ⊗W0

w∗
, and thus V⊗̄W ⊂

V0 ⊗W0
w∗

. The converse inclusion is obvious.

We note that for the predual V∗ = Np(µ)/V⊥, with W∗ defined similarly,
both with either quotient or dual p-operator space structures, we have by The-
orem 6.3 of [4] that (V∗⊗̂

pW∗)∗ = V⊗̄FW . Here V⊗̄FW is a certain “Fubini"
tensor product, and contains V⊗̄W .

COROLLARY 1.10. If V ⊂ B(Lp(µ)), W ⊂ B(Lp(ν)) and X ⊂ B(Lp(ρ)) are
weak*-closed subspaces, then

(V⊗̄W)⊗̄X = V⊗̄(W⊗̄X )

in B(Lp(µ)⊗p Lp(ν)⊗p Lp(ρ)).

Proof. We merely consider V ⊗W ⊗X as a weak*-dense subset of either of
the tensor closures in question.

Let G be a locally compact group. As in the introduction, we let Ap(G)
denote the Figà-Talamanca–Herz algebra. It is well-known to have as dual space
the p-pseudo-measures

PMp(G) = span λ
p
G(G)

w∗

where λ
p
G : G → B(Lp(G)) is the left regular representation. We remark that

PMp(G) is contained in the p-convolvers

CVp(G) = {T ∈ B(Lp(G)) : Tρ
p
G(s) = ρ

p
G(s)T for s in G}

where ρ
p
G : G → B(Lp(G)) is the right regular representation.

We recall that Ap(G) is a quotient of Np(G) ∼= Lp′(G) ⊗γ Lp(G), via PG,
where

PGξ ⊗ η = 〈ξ, λ
p
G(·)η〉 = ξ ∗ η̌.
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We write Ap(G)Q when we consider the associated quotient structure ran PG.
Thanks to Lemma 4.6 of [4], the adjoint P∗G : (Ap(G)Q)

∗ ∼= PMp(G)→ B(Lp(G)),
which is simply the injection map, is a complete isometry. Hence PMp(G) admits
completely isometric p-operator space structures as (Ap(G)Q)

∗, as it does as a
subspace of B(Lp(G)). Thanks to Proposition 1.1, id : Ap(G)Q → Ap(G)D is a
complete contraction, in general; and thanks to Corollary 1.4 it is a weakly com-
plete isometry. It is known to be a complete isometry only when G is amenable
([4], Theorem 7.1).

The following provides a mild augmentation of aspects of Theorem 7.3 in
[4]. We maintain the convention of [4] of letting Ap(G) = Ap(G)D.

PROPOSITION 1.11. Let G and H be locally compact groups. The map u⊗ v 7→
u × v : Ap(G)⊗̂pAp(H) → Ap(G × H) is a weakly complete quotient map. It is
injective exactly when Ap(G)⊗̂pAp(H) is semisimple.

Proof. We note that Proposition 1.7 allows us to use the quotient operator
space structure, instead of the dual one. Consider the diagram of maps

Np(G)⊗̂pNp(H)
I //

PG⊗PH
��

Np(G× H)

PG×H

��
Ap(G)Q⊗̂

pAp(H)Q J
// Ap(G× H)Q

where I is the map from (1.6) and J(u ⊗ v) = u × v. It is easily checked, using

elementary tensors
∞
∑

i=1
(ξi ⊗ ηi)⊗

∞
∑

j=1
(ξ ′j ⊗ η′j) in Np(G)⊗Np(H), that

PG×H ◦ I = J ◦ (PG ⊗ PH) = J ◦ (PG ⊗ idNp(H)) ◦ (idNp(G)⊗PH)

and hence

ker PG ⊗Np(H), Np(G)⊗ ker PH ⊂ ker PG×H ◦ I.

Thus by Proposition 4.10 of [4], ker PG×H ◦ I ⊃ ker PG ⊗ PH , the diagram above
commutes. Moreover, I is a weakly complete isometry, while PG ⊗ PH and PG×H
are weakly complete quotient maps, so J is necessarily a weakly complete quo-
tient map.

We observe that ⊗̂p is a cross norm on p-operator spaces which is easily
checked to dominate the injective norm, i.e. for contractive functionals f in V∗
and g in W∗, f ⊗ g in (V⊗̂pW)∗ is contractive. Hence by Theorem 2 of [31],
the spectrum of Ap(G)⊗̂pAp(H) is G × H, and J is the Gelfand map. Thus J is
injective if and only if Ap(G)⊗̂pAp(H) is semisimple.

In the proof of Theorem 7.3 of [4], it is shown that on Lp(G×H) ∼= Lp(G)⊗p

Lp(H) we have

PMp(G× H) ∼= PMp(G)⊗̄PMp(H) ⊆ PMp(G)⊗̄FPMp(H)⊆̃CVp(G× H).
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Thus when PMp(G× H) = CVp(G× H), we find that span λ
p
G(G)⊗ span λ

p
H(H)

is weak*-dense in PMp(G)⊗̄FPMp(H), whence Ap(G)⊗̂pAp(H) is semisimple.
This happens when G and H are amenable thanks to [17]. It is widely sus-
pected that PMp(G) = CVp(G) for any G, but no proof nor counterexample is
yet known.

We observe the following improvement of Theorem 7.3 in [4]. The approxi-
mation property for a group G is defined in [15].

COROLLARY 1.12. We have Ap(G)⊗̂pAp(H) ∼= Ap(G×H), weakly completely
isometrically, whenever

(i) both G and H have the approximation property; or
(ii) G is discrete and has the approximation property, and H is arbitrary.

Proof. (i) That PMp(G× H) = CVp(G× H), in this case, is shown in [3], [5].
The comments above show that the map J, from the last proposition, is injective.

(ii) The results ([1], Theorem 5.2 and Proposition 6.2) tell us that Ap(G) has
the p-operator approximation property, in this case. Since both of Ap(G) and
Ap(H) are regular and Tauberian, the assumptions of Theorem 5 of [31] are sat-
isfied, and its proof can be modified accordingly to show that Ap(G)⊗̂pAp(H) is
semisimple.

2. CONSTRUCTION OF THE p-FEICHTINGER SEGAL ALGEBRA

2.1. BASIC CONSTRUCTION. We construct the minimal translation invariant Se-
gal algebra Sp

0 (G) in Ap(G). Our construction is implicit in the general setting of
[11]. However, we strive to find the most natural p-operator space structure for
Sp

0 (G).
Let us fix, for the moment, a compactly supported p-operator Segal ideal I

in Ap(G). A typical example of such an ideal is AK
p (G) = {u ∈ Ap(G) : supp u ⊂

K}, for a fixed compact set K with non-empty interior, which admits the subspace
p-operator space structure. For any compact K of positive Haar measure, the ideal
Mp(K) from Section 3.1 below, will furnish a critical example. We define

QI : `1(G)⊗̂pI → Ap(G), QI (δs ⊗ u) = s ∗ u

where s∗u(t) = u(s−1t). We let (ran QI )Q denote this space with the opera-
tor space structure by which QI is a complete quotient map, and (ran QI )D this
space with the dual structure by which κ : (ran QI )D → (ran QI )Q

∗∗ is com-
pletely isometric. We let

Sp
0 (G) = (ran QI )D

and call it the p-Feichtinger–Figà-Talamanca–Herz Segal algebra of G, or p-Feichtinger
Segal algebra, for short.
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THEOREM 2.1. (i) Given a non-zero compactly supported contractive p-operator
Segal ideal I in Ap(G), Sp

0 (G) = (ran QI )D is a completely contractive Segal algebra
in Ap(G).

(ii) For any two non-zero compactly supported p-operator Segal ideals I and J of
Ap(G), (ran QI )D = (ran QJ )D completely isomorphically. Hence Sp

0 (G) is, up to
complete isomorphism, independent of the p-operator Segal ideal.

Proof. (i) Using Corollary 2.2 of [24] we gain an isometric identification

`1(G)⊗̂pAp(G) ∼= `1(G)⊗γ Ap(G) ∼= `1(G, Ap(G)).

We define an operator on `1(G, Ap(G)) by

T(us)s∈G = (s−1∗us)s∈G.

We observe, as above, that `1(G, Ap(G))∗ ∼= `∞(G, PMp(G))⊂̃B(`p(G, Lp(G)).
We see that the map T, above, has adjoint T∗(Xs)s∈G = (Xsλp(s−1))s∈G. Thus we
see that T is weakly completely contractive, in fact a weakly complete isometry.

We now wish to show that the module multiplication map m : Ap(G)⊗∧p
(ran QI )Q → (ran QI )D is completely contractive. For brevity we let Ap =

Ap(G), `1 = `1(G) and Sp
0 = (ran QI )Q, below. Consider the following dia-

gram of contractions, which are the obvious inclusion, “shuffle" or identification
maps, when not otherwise indicated.

Nn(Ap⊗̂
p
`1⊗̂pI) //

Nn(id⊗QI )
��

Nn(`1(G, Ap)⊗̂
pI)

Nn(T⊗id)
��

Nn(Ap⊗̂
pSp

0 ) Nn(`1(G, Ap)⊗̂
pI)

��
Nn(Ap ⊗∧p Sp

0 )
?�

OO

Nn(m)
��

Nn(`1⊗̂pAp⊗̂
pI)

Nn(id⊗mI )
��

Nn(S
p
0 ) Nn(`1⊗̂pI)

N(QI )oo

Note that mI : Ap⊗̂
pI → I is the multiplication map. Fix v = [∑m

k=1 u(k)
ij ⊗ v(k)ij ]

in Nn(Ap ⊗∧p Sp
0 ). For any ε > 0 there is ṽ = [∑m

k=1 ∑s∈G u(k)
ij ⊗ δs ⊗ v(k)ij,s ] in

Nn(Ap⊗̂
p
`1⊗̂pI) with ‖ṽ‖Nn(`1⊗̂pI) < ‖v‖Nn(ran QI ) + ε, and each v(k)ij = ∑

s∈G
s∗

v(k)ij,s . If we follow ṽ, in Nn(Ap⊗̂
p
`1⊗̂pI), along the right side of the diagram

and back to Nn(S
p
0 ), we obtain [∑m

k=1 u(k)
ij v(k)ij ] = Nn(m)(v). Hence we see that

‖Nn(m)(v)‖Nn((ran QI )Q) 6 ‖v‖Nn(Ap⊗̂p
(ran QI )Q) + ε. In other words, the map
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m : Ap(G)⊗̂pI → (ran QI )Q is weakly completely contractive. Hence by Corol-
lary 1.4, (ii) then (i), m : Ap(G)⊗̂I → (ran QI )D is completely contractive.

We also wish to note that the inclusion (ran QI )Q ↪→ Ap(G) is completely
contractive. Indeed, for any n we have an obvious contraction Nn(`1(G)⊗̂pI)→
Nn(`1(G)⊗̂pAp(G)). Moroever, this contraction takes ker Nn(QI ) into the space
ker Nn(QAp) (here, we define QAp : `1(G)⊗̂pAp(G) → Ap(G) in the obvious
way and is easily checked to be a surjective complete quotient map), and hence
induces a contraction (ran QI )Q → Ap(G) which is the inclusion map. But then
Corollary 1.4, (ii) then (i), shows that (ran QI )D ↪→ Ap(G) is a weakly complete
contraction hence a complete contraction.

(ii) First, we may assume that I 6 J . Indeed, we can find t in G for which
t ∗ I ∩ J 6= {0}. We first replace I with t ∗ I , where the latter admits a p-
operator structure by which u 7→ t ∗ u : I → t ∗ I is a complete isometry. We
then replace I by I ∩ J , where the latter has the operator space structure sug-
gested in Section 1.4, above. Thus the completely bounded injection I ↪→ J
give a completely bounded injection ι : `1(G)⊗̂pI ↪→ `1(G)⊗̂pJ . We have
that QJ ◦ ι = QI , and hence it follows that there is a completely bounded map
ι̃ : (ran QI )Q → (ran QJ )Q.

We will first check that ι̃ is weakly completely surjective. Given an element
[vij] in N∞(ran QJ ) and ε > 0, we may find

ṽ = ∑
s∈G

δs ⊗ [ṽij,s] ∈ `p(G)⊗̂pN∞(J ) ∼= N∞(`p(G)⊗̂pJ )

such that

N∞(QJ )(ṽ)= [vij] and ‖ṽ‖Nn(`p⊗̂pJ )= ∑
s∈G
‖ṽij,s]‖N∞(J )<‖[vij]‖N∞(ran QJ )+ε.

Thanks to Corollary 1.5 of [30], there are t1, . . . , tn in G and u1, . . . , un in I for

which u =
n
∑

l=1
tk∗uk satisfies uv = v for v in J . We then have

N∞(QJ )(ṽ) = N∞(QJ )
(

∑
s∈G

δs ⊗ [uṽij,s]
)

=
n

∑
k=1

N∞(QJ )
(

∑
s∈G

δstk ⊗ [uk t−1
k ∗ ṽij,s]

)
.

For each k, we use the infite matrix version of (1.4) to see that∥∥∥ ∑
s∈G

δstk ⊗ [uk t−1
k ∗ ṽij,s]

∥∥∥
N∞(`p⊗̂pI)

6 ∑
s∈G
‖[uk t−1

k ∗ ṽij,s]‖N∞(I)

6 C‖ul‖I ∑
s∈G
‖[ṽij,s]‖N∞(J )

< C‖ul‖I (‖[vij]‖N∞(ran QJ ) + ε)
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where C is the p-completey bounded norm of the adjoint of the multiplication
map I⊗̂pJ → I . Thus each ∑

s∈G
δstk ⊗ [uk t−1

k ∗ ṽij,s] ∈ N∞(`p(G)⊗̂pI). It follows

that that [vij] ∈ ran N∞(QI ) = N∞(ran ι̃). We then appeal to Corollary 1.6.
We have established that (ran QI )Q ∼= (ran QJ )Q weakly completely iso-

morphically. It follows from applying Corollary 1.4 to the identity map in each
direction that (ran QI )D ∼= (ran QJ )D completely isomorphically.

We show that Sp
0 (G) is, in essence, the minimal Segal algebra in Ap(G)

closed under translations. This requires no operator space properties.

THEOREM 2.2. Let SAp(G) be a Segal algebra in Ap(G) which is
(i) closed under left translations: t ∗ u ∈ SAp(G) for t in G and u in SAp(G); and

(ii) translations are bounded on G: sup
t∈G
‖t ∗ u‖SAp < ∞ for u in SAp(G).

Then SAp(G) ⊃ Sp
0 (G).

Proof. By the uniform boundedness principle, the boundedness of transla-
tions means that sup

t∈G
‖t ∗ u‖SAp 6 C‖u‖SAp for some constant C. The assump-

tion that SAp(G) is a dense ideal in Ap(G) implies that SAp(G) contains all com-
pactly supported elements in Ap(G); see Corollary 1.4 of [30]. Hence any com-
pactly supported closed ideal I of Ap(G) is contained in SAp(G). Consider
Sp

0 (G) = ran QI . Then for u = ∑
t∈G

t ∗ vt in Sp
0 (G), where ∑

t∈G
‖vt‖Ap < ∞, we

have

∑
t∈G
‖t ∗ vt‖SAp 6 C ∑

t∈G
‖vt‖SAp 6 CC′ ∑

t∈G
‖vt‖Ap < ∞

where C′ is the norm of the inclusion SAp(G) ↪→ Ap(G). Hence we see that
Sp

0 (G) ⊂ SAp(G).

Observe that we did not require the assumption that t 7→ t ∗ u : G →
SAp(G) is continuous for each u in SAp(G). For Sp

0 (G) this condition holds, as
we shall see in the next section.

2.2. THE p-FEICHTINGER ALGEBRA AS A SEGAL ALGEBRA IN L1(G). As before,
we shall always regard L1(G) as a p-operator space by assigning it the “maximal
operator space structure on Lp ”, as in [24].

A p-operator space V acting on Lp is a completely bounded G-module if there
is a unital left action of G on V , (s, v) 7→ s ∗ v, which is continuous on G for each
fixed v in V and completely bounded for each fixed s in G. Thus, if f ∈ L1(G),
then for each n, the integrated action f 7→ [ f ∗ vij] is contractive, for each [vij] in
Nn(V). Thus the Nn-amplified convolution map can be realised to factor through

Nn(L1(G)⊗̂pV) ∼= L1(G)⊗γ Nn(V)→ Nn(V)
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and hence is weakly completely contractive. Thus if V = VD, this map is com-
pletely contractive thanks to Corollary 1.4, allowing VD to be realised as a p-
operator L1(G)-module.

A Segal algebra S1(G) in L1(G) is called pseudo-symmetric if it is closed under
the group action of right translations — t · f (s) = f (st) for a suitable function f ,
t in G and a.e. s in G — and we have t 7→ t · f : G → S1(G) is continuous for f in
S1(G). We remark, in passing, that S1(G) is symmetric if, moreover, the anti-action
of convolution from the right — f ∗ t = ∆(t)t−1 · f — gives a uniformly bounded
family of operations on S1(G).

Consider the space S1Ap(G) = L1(G) ∩ Ap(G). We assign it an opera-
tor space structure by the diagonal embedding in the direct sum u 7→ (u, u) :
S1Ap(G) → (L1(G)⊕`1 Ap(G))D. Since each of these spaces has the dual opera-
tor space structure, S1Ap(G) injects completely contractively into either of L1(G)
or Ap(G). This space is obviously a completely contractive G-module, with left
translation action (s, u) 7→ s ∗ u. Hence the discussion above provides that it is
a completeley contractive L1(G)-module. It follows that S1Ap(G) is a contrac-
tive p-operator Segal algebra in L1(G). Moreover, the injection Ap(G) ↪→ L∞(G)
is completely contractive, since L∞(G) has the minimal p-operator space struc-
ture, which allows L1(G), via the predual action of multiplication by L∞(G),
to be viewed as a completely contractive Ap(G)-module. Hence, (L1(G) ⊕`1

Ap(G))D is a completely contractive Ap(G)-module with S1Ap(G) a closed sub-
module. Thus S1Ap(G) is a contractive p-operator Segal algebra in Ap(G). We
call S1Ap(G) the p-Lebesgue–Figà-Talamanca–Herz algebra on G. The case p = 2 is
studied intensely in [14].

THEOREM 2.3. (i) Sp
0 (G) is a pseudo-symmetric p-operator Segal algebra in the

convolution algebra L1(G).
(ii) Given any compactly supported p-operator Segal ideal I in Ap(G), the map Q′I :

L1(G)⊗̂pI → Sp
0 (G), Q′I ( f ⊗ u) = f ∗ u, is a completely bounded, weakly complete

surjection.

Proof. (i) It is standard that the actions of left and right translation are con-
tinuous isometries on Ap(G), hence the actions s ∗ (δt⊗u) = δt⊗ s ∗ u and s · (δt⊗
u) = δt ⊗ s · u on `1(G)⊗̂pAp(G) = `1(G)⊗γ Ap(G) ∼= `1(G, Ap(G)) are easily
seen to be continuous and completely isometric. Thus if we choose I = AK

p (G),
for a compact set K with non-empty interior, we see that Sp

0 (G) = (ran QI )D has
continuous isometric translations by G. From the discussion above, we see that
Sp

0 (G) is a completely bounded L1(G)-module.
If we let I be any compactly supported closed ideal in the pointwise algebra

S1Ap(G), then I is a contractive p-operator Segal ideal in Ap(G). Then, just as
the proof of Theorem 2.1(i), we prove that the inclusion ι : (ran QI )Q ↪→ L1(G) is
weakly completely contractive, and hence contractive as L1(G) acts on Lp.
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(ii) If we follow the proof of Corollary 2.4(ii) in [30], we find that (ran Q′I )Q =
(ran QI )Q weakly completely isomorphically.

The next result requires also no operator space structure. It is the dual result
to Theorem 2.2. It is new, even for the case of p = 2, for non-abelian G.

THEOREM 2.4. If S1(G) is any Segal algebra in L1(G) for which the pointwise
multiplication satisfies Ap(G) · S1(G) ⊂ S1(G), then S1(G) ⊃ Sp

0 (G).

Proof. Given any compact set K ⊂ G we can arrange a compactly supported
ideal I in Ap(G) which contains a function which is identically 1 on K. Hence we
can arrange such an ideal I for which I · S1(G) 6= {0}. Our assumption on S1(G)

provides that I · S1(G) ⊂ S1(G). Since Sp
0 (G) is pseudo-symmetric we have that

Sp
0 (G) ∗ (I · S1(G)) ⊂ Sp

0 (G). Indeed, if u ∈ Sp
0 (G) and f ∈ I · S1(G), then

u∗ f =
∫
G

u∗t f (t)dt

which may be regarded as a Bochner integral in Sp
0 (G), as

‖u∗ f ‖Sp
0
6 sup

t∈supp I
‖u∗t‖Sp

0

∫
supp I

| f (t)|dt < ∞.

Hence u∗ f ∈ Sp
0 (G). Also Sp

0 (G) ∗ (I · S1(G)) ⊂ Sp
0 (G) ∗ S1(G) ⊂ S1(G). Using

the fact that Sp
0 (G) contains a bounded approximate identity for L1(G), we see

that {0} 6= Sp
0 (G) ∗ (I · S1(G)). Thus we see that {0} 6= Sp

0 (G) ∗ (I · S1(G)) ⊂
Sp

0 (G) ∩ S1(G). In particular Sp
0 (G) ∩ S1(G) is a Segal algebra in Ap(G) which,

being a Segal algebra in L1(G), satisfies the conditions of Theorem 2.2. Hence
S1(G) ⊃ Sp

0 (G) ∩ S1(G) ⊃ Sp
0 (G).

3. FUNCTORIAL PROPERTIES

3.1. A SPECIAL CLASS OF IDEALS. A special class of ideals, which was defined
for p = 2 in Section 3.3 of [30], plays an even more important role for Ap(G)
when p 6= 2.

Fix a non-null closed subset K of G. We let 1K in L∞(G) denote the in-
dicator function of K, and Lp(K) = 1KLp(G). Similarly we denote Lp′(K) and
hence Np(K). Using two iterations of Proposition 1.3, we may identify Np(K)
completely isometrically as a subspace of Np(G). Let PK = PG|Np(K) and

Mp(K) = ran PK

which is obviously a suspace of Ap(G) = ran PG, though not necessarily closed.
We letMp(K)Q denote this space with the quotient p-operator space structure.

We let Vp(K) = (ker PK)
⊥ ⊂ B(Lp(K)), which is the dual space ofMp(K).

By Corollary 1.4,Mp(K)Q =Mp(K)D weakly completely isometrically. We will
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generally take the dual structure as the default p-operator space structure. We let
λK

p = 1KλG
p (·)1K : G → B(Lp(K)). We observe that if K is an open subgroup, then

Vp(K) ⊂ PMp(G) and is, in fact isomorphic to PMp(K). However, for a general
subset K, there is no reason to expect that Vp(K) is in PMp(G), nor is an algebra.

LEMMA 3.1. (i) Vp(K) is the weak*-closure of span λK
p (G).

(ii) With dual structures, the inclusionMp(K) ↪→ Ap(G) is a complete contraction.
(iii) If L is a closed subset of positive Haar measure in a locally compact group H, then
Vp(K)⊗̄Vp(L) = Vp(K× L) in B(Lp(K× L)).

Proof. (i) Combining the facts that PK = PG|Np(K) and Ap(G) is semisimple,
we see that λK

p (G)⊥ = ker PK, hence (span λK
p (G))⊥ = ker PK. Thus, by the

bipolar theorem, Vp(K) = span λK
p (G)

w∗
.

(ii) Since PMp(G) = span λG
p (G)

w∗
, it then follows from (i) that Vp(K) =

1KPMp(G)1K
w∗

. The map T 7→ 1KT1K : PMp(G) → Vp(K) is a complete con-
traction, and is the adjoint of the inclusionMp(K) ↪→ Ap(G). Thus by Proposi-
tion 1.1(iii), the inclusion is a complete contraction.

(iii) In B(Lp(K× L)) = B(Lp(K)⊗p Lp(L)) we have a natural identification
span λK×L

p (G) = span λK
p (G)⊗ span λL

p(H). The left hand side has weak*-closure
Vp(K × L), by (i), above. Meanwhile, it follows (i) and Proposition 1.9, that the
right hand side has weak*-closure Vp(K)⊗̄Vp(L).

We observe that (ii), above, is a generalisation of Proposition 7.2 of [4], and,
in fact, gives a simplified proof.

THEOREM 3.2. For any closed non-null subset K of G, Mp(K) is a contractive
p-operator Segal ideal in Ap(G). Moreover, suppMp(K) ⊂ K−1K, so Mp(K) is
compactly supported if K is compact.

Proof. Let WK on Lp(K× G) be given by

WKη(s, t) = η(s, st).

Then WK is an invertible isometry with inverse W−1
K η(s, t) = η(s, s−1t). Thus we

define a weak*-continuous complete isometry ΓK : B(Lp(K))→ B(Lp(K×G)) by

ΓK(T) = WK(T ⊗ I)W−1
K .

We compute, exactly as in p. 70 of [4], that for t in G we have

(3.1) ΓK(λ
K
p (t)) = λK

p (t)⊗ λG
p (t) = λK×G

p (t, t).

In particular, ΓK(Vp(K)) ⊂ Vp(K× G) = Vp(K)⊗̄PMp(G).
Let δ : Vp(K)⊗̄PMp(G) → (Mp(K)⊗̂

pAp(G))∗ denote the inclusion map,
which is weak*-continuous. Then we see for u in Ap(G) and v inMp(K) that

〈δ ◦ ΓK(λ
K
p (t)), v⊗ u〉 = 〈λK

p (t)⊗ λG
p (t), v⊗ u〉 = v(t)u(t).
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Hence the map m : Mp(K)⊗̂
pAp(G) → Mp(K) whose adjoint is m∗ = δ ◦ ΓK,

is the multiplication map. We note that in the notation of (1.1) m = κ̂Mp(K) ◦
m∗∗ ◦ κMp(K)⊗̂pAp(G) so m is completely contractive. It is shown above that the
inclusionMp(K) ↪→ Ap(G) is completely contractive.

It is a simple computation that supp ξ ∗ η̌ ⊂ K−1K for η in Lp(K) and ξ in
Lp′(K). Hence supp PKω ⊂ K−1K for ω in Np(K); thus the same holds for v in
Mp(K) = ran PK.

REMARK 3.3. It is instructive to see how to build Sp
0 (G) = ran QK where

QK = QMp(K). In fact this proof is more natural in that it exploits the structure of
Ap(G) more deeply. Also, this proof adapts readily to other situations; we shall
use this in Lemma 3.8, for example.

Using Corollary 2.2 of [24], we have an isometric identification

`1(G)⊗̂pMp(K) = `1(G)⊗γMp(K) ∼= `1(G,Mp(K)).

On the other hand, we obtain a completely isometric description of the dual space

(`1(G)⊗̂pMp(K))∗ ∼= CBp(`
1(G),Vp(K)) = B(`1(G),Vp(K))

where the last identification is furnished by Lemma 2.1 of [24]. Now the map
T 7→ (Tδt)t∈G gives the isometric identification

B(`1(G),Vp(K)) ∼= `∞(G,Vp(K))⊂̃B(`p(G, Lp(K))

where the latter inclusion is one on operator-valued multiplication operators:
(Tt)t∈G(ηt)t∈G = (Ttηt)t∈G. This identification is a complete isometry since we
have, for each n, isometries

Mn(Bp(`
1(G),Vp(K))) ∼= Bp(`

1(G), Mn(Vp(K)))
∼= `∞(G, Mn(Vp(K)) ∼= Mn(`

∞(G,Vp(K)))).

Hence, we obtain completely isometric dual space identification

(ran QK)Q
∗ = (ker QK)

⊥ ⊂ `∞(G,Vp(K))

for which the inclusion map (ker QK)
⊥ ↪→ `∞(G,Vp(K)) is the adjoint of QK :

`1(G)⊗̂pMp(K) → ran QK. In particular, (ran QK)Q = (ran QK)D weakly com-
pletely isometrically, thanks to Corollary 1.4.

We next let εK(s) = (λK
p (t−1s))t∈G in `∞(G,Vp(K)), for s ∈ G, and show

that

(3.2) (ker QK)
⊥ = span εK(G)

w∗
.

Indeed, we easily compute for each (vt)t∈G in `1(G,Mp(K)) that

〈εK(s), (vt)t∈G〉 = ∑
t∈G
〈λK

p (t
−1s), vt〉 = ∑

t∈G
t ∗ vt(s) = QK(vt)t∈G(s)
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so each εK(s) ∈ (ker QK)
⊥ and represents evaluation at s. Since Ap(G) is semisim-

ple, we have that εK(G)⊥ = ker QK, hence (span εK(G))⊥ = ker QK, and thus
(3.2) follows from the bipolar theorem.

We next observe that

(3.3) `∞(G,Vp(K)) ∼= `∞(G)⊗̄Vp(K)

in B(`p(G, Lp(K))) ∼= B(`p(G)⊗p Lp(K)). Indeed let `(G) be the space of finitely
supported functions on G, and similarly denote `(G,Vp(K)). Then `(G,Vp(K)) ∼=
`(G) ⊗ Vp(K) in B(`p(G, Lp(K))) ∼= B(`p(G) ⊗p Lp(K)). Taking weak*-closure
gives (3.3), thanks to Proposition 1.9. Thus, by additionally appealing to Corol-
lary 1.10, we have weak*-continuous completely isometric isomorphisms

`∞(G,Vp(K))⊗̄PMp(G) ∼= `∞(G)⊗̄Vp(K)⊗̄PMp(G) ∼= `∞(G,Vp(K)⊗̄PMp(G)).

We recall that ΓK is defined in (3.1). We define

∆K : `∞(G,Vp(K))→ `∞(G,Vp(K)⊗̄PMp(G)) ∼= `∞(G,Vp(K))⊗̄PMp(G)

by ∆K(Tt)t∈G = (I ⊗ λG
p (t) ΓK(Tt))t∈G

so ∆K is a weak*-continuous contraction. We observe that

∆K(εK(s)) = (I ⊗ λG
p (t) ΓK(λ

K
p (t
−1s)))t∈G

= (λK
p (t
−1s)⊗ λG

p (s))t∈G ∼= εK(s)⊗ λG
p (s)

so it follows (3.2) and Proposition 1.9 that ∆K((ker QK)
⊥) ⊂ (ker QK)

⊥⊗̄PMp(G).
Moreover, if we let δ : (ker QK)

⊥⊗̄PMp(G)→ ((ran QK)D⊗̂
pAp(G))∗ denote the

embedding, then we see for v in ran QK and u in Ap(G) that

〈δ ◦∆K(εK(s)), v⊗ u〉 = 〈δ(εK(s)⊗ λG
p (s)), v⊗ u〉 = v(s)u(s).

Hence, just as in the proof of Theorem 3.2, we see that Sp
0 (G) = (ran QK)D is an

ideal in Ap(G) with completely contractive multiplication. We remark that the
adjoint of the inclusion map ran QK ↪→ Ap(G) is

T 7→ (1KλG
p (t
−1)T1K)t∈G : PMp(G)→ (ker QK)

⊥ ⊂ `∞(G,Vp(K))

— indeed observe that this occurs on the dense subspace span λG
p (G) — and this

map is a complete contraction. Hence the injection map (ran QK)D ↪→ Ap(G) is a
complete contraction. 2

3.2. TENSOR PRODUCTS. The realisation of the tensor product formula is, per-
haps, the most significant reason to consider the operator space structure on
Sp

0 (G). In Proposition 1.11, we improved on the formula ([4], Theorem 7.3), i.e.
we acheived that Ap(G)⊗̂pAp(H) ∼= Ap(G × H) weakly isometrically when G
and H have approximation property, for example. We should not expect, at the
present time, to do better with Sp

0 (G)⊗̂pSp
0 (H).
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In Theorem 3.1 of [30], the injectivity of PM2(G) for almost connected G was
used significantly. Lacking any such property for p 6= 2, we are forced to return
to the special ideals of Section 3.1.

THEOREM 3.4. The map u ⊗ v 7→ u × v : Sp
0 (G)⊗̂pSp

0 (H) → Sp
0 (G × H)

is a weakly complete surjection. It is a bijection whenever the similarly defined map
Ap(G)⊗̂pAp(H)→ Ap(G× H) is a bijection.

Proof. We fix non-null compact subsets K in G and L in H. Consider, first,
the following commutating diagram, where all ideals Mp and all algebras Ap
have the quotient or dual operator space structure, which we know to be weakly
completely isomorphic to one another.

Np(K)⊗̂pNp(L) i //

PK⊗PL

��

v�

))

Np(K× L)
t�

''

PK×L

��

Np(G)⊗̂pNp(H)
I //

PG⊗PH

��

Np(G× H)

PG×H

��

Mp(K)⊗̂
pMp(L)

j
//

ιK⊗ιL ))

Mp(K× L)
t�

ιK×L ''
Ap(G)⊗̂pAp(H)

J
// Ap(G× H)

Here weakly complete isometries i and I are from (1.6), j and J are given on their
respective domains by u ⊗ v 7→ u × v, and ιK, ιL and ιK×L are completely con-
tractive inclusion maps. The diagonal inclusion maps on the top are complete
isometries thanks to Proposition 1.3.

The inclusion ker PG ⊗ PH ⊂ ker PG×H ◦ I is noted in the proof of Proposi-
tion 1.11. Thus we have

ker PK ⊗ PL = (ker PG ⊗ PH) ∩ (Np(K)⊗̂pNp(L))

⊂ (ker PG×H ◦ I) ∩ (Np(K)⊗̂pNp(L)) = ker PK×L ◦ i.

Thus j : Mp(K)⊗̂
pMp(L) → Mp(K × L) is a weakly complete quotient map.

Moreover, we see from this that j is injective provided that J is injective.
Now consider the diagram

`1(G)⊗̂pMp(K)⊗̂
p
`1(H)⊗̂pMp(L) S //

QK⊗QL
��

`1(G× H)⊗̂pMp(K× L)

QK×L
��

Sp
0 (G)⊗̂pSp

0 (H)
̃ // Sp

0 (G× H)
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where S = (id⊗j) ◦ (id⊗Σ⊗ id), so S is a complete quotient map, and ̃(u⊗ v) =
u × v. If we consider Sp

0 (G) = ran QK, then we know that Sp
0 (G)Q = Sp

0 (G)D
weakly completely isometrically. Since QK ⊗QL and QK×L are complete quotient
maps, and

ker QK ⊗ `1(H)⊗Mp(L), `1(G)⊗Mp(K)⊗ ker QL ⊂ ker QK×L ◦ S

it follows that ̃ is a complete quotient map in this diagram. Now if J is injective,
and thus so too is j, we note that

J ◦QK ⊗QL = QK×L ◦ S : `1(G)⊗Mp(K)⊗ `1(H)⊗Mp(L)→ Ap(G× H).

Thus, by taking closures, it follows that ker QK ⊗ QL = ker QK×L ◦ S. Hence ̃ is
injective in this case.

If we consider Sp
0 (G) = ran QI for an arbitrary compactly supported p-

operator Segal ideal, then we obtain that ̃ is a weakly complete surjection or
weakly complete isomorphism, depending on injectivity of J.

We remark that the identity operator on Ap(G)⊗Ap(H) extends to a con-
traction Ap(G) ⊗γ Ap(H) → Ap(G)⊗̂pAp(H). We cannot guarantee that this
map is injective. In the case that p = 2, we do not know if this map is injective,
unless one of the component Fourier algebras has the approximation property;
say in the case that one of G or H is abelian or compact. When p 6= 2, then even
if both G and H are abelian, we still do not know if this map is injective. In the
second case, the map is unlikely to be surjective. However, we have no proof.
If G is discrete, it is trivial to verify that Sp

0 (G) = `1(G) completely isomorphi-
cally; indeed choose I = C1{e} in the construction of Sp

0 (G). In this case we have
Sp

0 (G)⊗̂pSp
0 (H) = Sp

0 (G)⊗γ Sp
0 (H). It seems likely that this is the only situation

in which this tensor formula holds.

3.3. RESTRICTION TO SUBGROUPS. Let H be a closed subgroup of G. We briefly
recall that the restriction map u 7→ u|H : A2(G) → A2(H) is a complete quotient
map since its adjoint is a certain ∗-homomorphism PM2(H) ↪→ PM2(G), hence a
complete isometry. When p 6= 2, the fact that there is a natural complete isome-
try PMp(G) ↪→ PMp(H) is not automatic, and must be verified. Thankfully, [7]
provides a proof which is easily modifiable for our needs.

Fix a Bruhat function β on G ([27], Definition 8.1.19) and define for x in G
for a fixed Haar measure on H, q(x) =

∫
H

β(xh)∆G(h)
∆H(h) dh. Then, by (8.2.2) of [27],

there exists a quasi-invariant integral
∫

G/H
· · ·dxH, such that we have an invariant

integral on G, given for f ∈ Cc(G) by

(3.4)
∫
G

f (x)dx =
∫

G/H

∫
H

f (xh)
q(xh)

dh dxH.
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By dominated convergence, this formula will hold for any compactly supported
integrable function f .

We will use the isometry U = UG : Lp(G) → Lp(G), given by U f = f̌ 1
∆

1/p
G

which satisfies U−1 = U and UλG
p (·)U = ρG

p , where ρG is the right regular
representation given by ρG

p (s) f (t) = f (st) 1
∆G(t)1/p . Thus if CV′p(G) = {T ∈

B(Lp(G)) : TλG
p (·) = λG

p (·)T}, we have UCVp(G)U = CV′p(G). The map
T 7→ UTU : CVp(G)→ CV′p(G) is evidently a weak*-continuous complete isom-

etry for which UPMp(G)U = span ρG
p (G)

w∗
.

The following is a modification of [6] and [7]. See also the treatment in [8].
We let RH : Ap(G) → Ap(H) denote the restriction map. Its existence was first
established in [17], with a simplified proof given in [6].

THEOREM 3.5. There is a complete isometry ι : CVp(H) → CVp(G) such that
ι|PMp(H) = R∗H . In particular, RH : Ap(G) → Ap(H) is a weakly complete quotient
map.

Proof. In order to make use of (3.4) as stated, we replace CVp(G) with the
spatially isomorphic CV′p(G), and λG

p with ρG
p .

For a function ϕ on G and x in G we let ϕx(s) = ϕ(xs). Now for T in
CV′p(H) and ϕ and ψ in Cc(G), we observe that the function

x 7→
〈( ψ

q1/p′

)
x
∣∣∣

H
, T
[( ϕ

q1/p

)
x
∣∣∣

H

]〉
=
∫
H

ψ(xh)
q(xh)1/p′ T

[( ϕ

q1/p

)
x
∣∣∣

H

]
(h)dh

is constant on cosets xH, since T ∈ CV′p(H). Thus we may define ι(T) by

〈ψ, ι(T)ϕ〉 =
∫

G/H

〈( ψ

q1/p′

)
x
∣∣∣

H
, T
[( ϕ

q1/p

)
x
∣∣∣

H

]〉
dxH.

The fact that |〈ψ, ι(T)ϕ〉| 6 ‖ψ‖Lp′ (G)
‖T‖B(Lp(H))‖ϕ‖Lp(G) will follow from a

computation below. Hence ι(T) defines a bounded operator on Lp(G). Let us
consider [Tij] in Mn(CV′p(H)). We observe that for [ϕi] and [ψj] in the column
space Cc(G)n that an application of Hölder’s inequality and the usual operator
norm inequality give

|〈[ψj], ι(T)(n)[Tij][ϕi]〉| =
∣∣∣ ∫
G/H

〈[( ψj

q1/p′

)
x
∣∣∣

H

]
, [Tij]

[( ϕi

q1/p

)
x
∣∣∣

H

]〉
dxH

∣∣∣
6
( ∫

G/H

∥∥∥[( ψj

q1/p′

)
x
∣∣∣

H

]∥∥∥p′

`p′ (n,Lp′ (H))
dxH

)1/p′

( ∫
G/H

∥∥∥[Tij]
[( ϕi

q1/p

)
x
∣∣∣

H

]∥∥∥p

`p(n,Lp(H))
dxH

)1/p
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6
( n

∑
j=1

∫
G/H

∫
H

|ψj(xh)|p′

q(xh)
dh dxH

)1/p′

‖[Tij]‖Mn(B(Lp(H)))

( n

∑
i=1

∫
G/H

∫
H

|ϕi(xh)|p
q(xh)

dh dxH
)1/p

= ‖[ψj]‖`p′ (n,Lp′ (G))
‖[Tij]‖Mn(B(Lp(H)))‖[ϕi]‖`p(n,Lp(G)).

This shows that ‖ι(n)[Tij]‖Mn(B(Lp(G))) 6 ‖[Tij]‖Mn(B(Lp(G))), hence ι : CV′p(H) →
B(Lp(G)) is a complete contraction.

From this point, the proof in pp. 73–75 of [7] or of Section 7.3, Theorem 2
in [8] can be followed nearly verbatim, with [ψj] and [ϕi] in Cc(G)n replacing
ψ and ϕ, and the norms from `p′(n, Lp′(G)) and `p(n, Lp(G)) on these respec-
tive columns in place of usual scalar norms; and T in CV′p(H) playing the role of
ρG

p (µ) (which is denoted λ
p
G(µ) by that author). Hence we have that ι : CV′p(H)→

B(Lp(G)) is a complete isometry.
It is shown in Section 7.1 Theorem 13 of [8] that ι(T) ∈ CV′p(G).
Accepting differences between our notation and theirs, it is shown in both

[6] and Section 7.8, Theorem 4 of [8] that R∗H = ι|UHPMp(H)UH
(·). Thus it follows

from Lemma 1.5 that RH : Ap(G) → Ap(H) is a weakly complete quotient map,
with either quotient or, thanks to Corollary 1.4, dual operator space structure. It
follows from the factorisation RH = κ̂Ap(H) ◦ (ι(UH ·UH))

∗∗ ◦ κAp(G) that RH is a
complete contraction (with dual operator space structure).

To get the “left” version, as in our statement of theorem, we simply replace
ι by UG ι(UH ·UH)UG.

Unfortunately, we cannot determine if RH : Ap(G) → Ap(H) is a complete
quotient map, even when both groups are amenable.

The class of ideals Mp(K) of Section 3.1 will play a special role in obtain-
ing a restriction theorem on the p-Feichtinger algebra. We let (Mp(K)|H)Q de-
noteMp(K)|H with the operator space making this space a complete quotient of
Mp(K) via RH . We then place onMp(K)|H the dual operator space structure, i.e.
Mp(K)|H = (Mp(K)|H)D.

LEMMA 3.6. Let K be a nonnull closed set in G. Then we have a weakly complete
isometry (Mp(K)|H)Q = (Mp(K)H)D. Moreover, Mp(K)|H = (Mp(K)|H)D is a
contractive operator Segal ideal in Ap(H).

Proof. Since λG
p (h) = ι(λH

p (h)), for h in H, we have that

ker(RH |Mp(K))
⊥ = 1K ι(PMp(H))1K

w∗

a space we hereafter denote by VH
p (K). Hence (Mp(K)|H)∗ ∼= VH

p (K), and it
follows from Corollary 1.4 that (Mp(K)H)Q = (Mp(K)H)D weakly completely
isometrically.
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The proof of Lemma 3.1 shows that VH
p (K × G) = VH

p (K)⊗̄ι(PMp(H)) in
B(Lp(G× G)) = B(Lp(G)⊗p Lp(G)). Moreover, substituting h in H for t in (3.1)
we see that ΓK(ι(PMp(H))) ⊂ VH

p (K)⊗̄ι(PMp(H)). A straightforward adaptation
of the proof of Theorem 3.2 shows thatMp(K)|H = (Mp(K)|H)D is a contractive
operator Segal ideal in Ap(H).

Not knowing that RH : Ap(G) → Ap(H) is a complete surjection, we can
hardly expect to do better for Sp

0 (G).

THEOREM 3.7. The restriction map RH : Sp
0 (G) → Sp

0 (H) is a weakly complete
surjection.

Proof. The first part of the proof of Theorem 3.3 in [30] can be adapted di-
rectly to show that RH(S

p
0 (G)) ⊂ Sp

0 (H). Thus it remains to show that RH is
a weakly complete surjection. We consider the Segal ideals Mp(K) of Ap(G)
and Mp(K)|H of Ap(H), from the lemma above. In particular RH : Mp(K) →
Mp(K)|H is a weakly complete quotient map. Thus, he following diagram com-
mutes, and has surjective top row and right column.

N∞(`1(H)⊗̂pMp(K))
N∞(id⊗RH) //

N∞(QK |`1(H)⊗̂pMp(K)
)

��

N∞(`1(H)⊗̂pMp(K)|H)

N∞(QMp(K)|H )

��
N∞(Sp

0 (G))
N∞(RH) // N∞(Sp

0 (H))

Hence the bottom row is surjective, and we appeal to Corollary 1.6 to see that
RH : Sp

0 (G)→ Sp
0 (H) is weakly completely surjective.

3.4. AVERAGING OVER SUBGROUPS. Given a closed normal subgroup N of G,
we consider the averaging map τN : Cc(G) → Cc(G/N) given by τN f (sN) =∫
N

f (sn)dn. With appropriate scaling of Haar measures, τN extends to a homo-

morphic quotient map from L1(G) to L1(G/N). We wish to study the effect of τN
on Sp

0 (G). We first require the following result which will play a role similar to
that of Proposition 3.5 of [30].

LEMMA 3.8. Let K be a non-null closed subset of G. Then Mp(K) is a com-
pletely contractive Ap(G/N)-module under pointwise product, i.e. the product uv(s) =
u(s)v(sN) for u inMp(K) and v in Ap(G/N).

Proof. This is a simple modification of the proof of Remark 3.3. Indeed, we
replace WK in that proof by WG/N

K on Lp(K× G/N), given by

WG/N
K η(s, tN) = η(s, stN)

and then replace ΓK with ΓG/N
K : B(Lp(K))→ B(Lp(K× G/N)), given by

ΓG/N
K (T) = WG/N

K (T ⊗ I)(WG/N
K )−1.
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The rest of the proof holds verbatim.

We now get an analogue of Theorem 3.6 in [30]. The neccessity to consider
only weakly completely bounded maps will arise in various aspects of the proof
below.

THEOREM 3.9. We have that τN(S
p
0 (G)) ⊂ Sp

0 (H) and τN : Sp
0 (G)→ Sp

0 (H) is
a weakly complete surjection.

Proof. The proof is essentially that of Theorem 3.6 in [30]. Unfortunately, in
order to highlight the aspects which require modification, we are forced to revisit
nearly every aspect of that proof. We do, however, take liberty to omit some com-
putational details which are simple modifications of those in the aforementioned
proof.

First, we fix a non-null compact set K and show that the map τN :Mp(K)→
Ap(G/N) is completely bounded.

We show that τN(Mp(K)) ⊂ Ap(G/N). To see this we have that

‖τN‖B(Lp′ (K),Lp′ (G/N))
6 inf

{
sup
s∈G

τN(|ϕ|p)(sN)1/p : ϕ ∈ Cc(G), ϕ|K = 1
}
< ∞.

Of course, this estimate makes sense with roles of p and p′ interchanged. Moti-
vated by the computation in p. 187 of [22] which shows that for compactly sup-
ported integrable η we have τN(η̌) = [∆G/NτN(∆̌Gη)]∨, we define θN : Lp(K)→
Lp(G/N) by θN( f ) = ∆G/NτN(∆̌G f ). Then indeed θN admits the claimed codo-
main with

‖τN‖B(Lp(K),Lp(G/N) 6 sup
s∈K

∆G/N(sN) sup
t∈K

∆G(t−1)‖τN‖B(Lp(K),Lp(G/N) < ∞.

Hence if ξ ∈ Lp′(K) and η ∈ Lp(K) we have that

τN(ξ ∗ η̌) = τN(ξ) ∗ τN(η̌) = τN(ξ) ∗ [θN(η)]
∨ ∈ Ap(G/N)

and it follows that τN(Mp(K)) ⊂ Ap(G/N). Moreover, the support, in G/N, of
τN(Mp(K)) is contained in the image of K−1K, and is thus compact.

We now want to see that τN : Mp(K) → Ap(G/N) is indeed completely
bounded. We first observe that with the column space structure Lp(G)c, and row
space structure Lp′(G)r of [21], we have a weakly completely isometric identifi-
cation

Np(G) = Lp′(G)r⊗̂
pLp(G)c

thanks to Proposition 2.4 and Corollary 2.5 of [1]. Moreover, Proposition 2.4 of
[1] shows that τN : Lp′(K)r → Lp′(G/N)r and θN : Lp(K)c → Lp(G/N)c are
completely bounded, and hence

τN ⊗ θN : Lp′(K)r⊗̂
pLp(K)c → Lp′(G/N)r⊗̂

pLp(G/N)c
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is completely bounded, and thus forms a weakly completely bounded map τN ⊗
θN : Np(K)→ Np(G/N). Hence we consider the following commuting diagram:

Np(K)
τN⊗θN //

PK
��

Np(G/N)

PG/N
��

Mp(K) τN
// Ap(G/N)

Since the top arrow is a weakly complete isometry, and the down arrows are both
(weakly) complete quotient maps, we see that the bottom arrow must be a weakly
complete contraction.

We now place on τN(Mp(K)) the operator space structure which makes
τN : Mp(K) → τN(Mp(K)) a complete quotient map, hence a weakly complete
quotient map. We wish to see that, in this capacity, τN(Mp(K)) is a weakly con-
tractive p-operator Segal ideal in Ap(G/N).

First, let πN : G → G/N be the quotient map. We observe that for u in
Ap(G/N) and v inMp(K) we have

τN(v)(sN)u(sN) =
∫
N

v(sn)u ◦ πN(sn)dn = τN(v u ◦ πN)(sN)

so τN(v)u = τN(v u ◦ πN) ∈ τN(Mp(K)), as u ◦ πN v ∈ Mp(K). Now consider
the following commuting diagram where m is the completely contractive multi-
plication map promised by Lemma 3.8 and m̃ is the multiplication map promised
above:

Mp(K)⊗∧p Ap(G/N)
m //

τN⊗id
��

Mp(K)

τN

��
τN(Mp(K))⊗∧p Ap(G/N)

m̃
// τN(Mp(K))

Since the top arrow is a complete contraction, and the down arrows are weakly
complete quotient maps, the bottom arrow must be a complete contraction as
well, hence extends to τN(Mp(K))⊗̂

pAp(G/N).
From Theorem 2.3(ii) we have that the map Q′Mp(K)

: L1(G)⊗̂pMp(K) →
Sp

0 (G) is a weakly complete surjection. Similarly, appealing also to the fact that
τN(Mp(K)) is a compactly supported weakly p-operator Segal ideal in Ap(G/N),
we have that Q′

τN(Mp(K))
: L1(G/N)⊗̂p

τN(Mp(K)) → Sp
0 (G/N) is a weakly

complete surjection.
The following diagram commutes, where the down arrows are weakly com-

plete surjections by virtue of Theorem 2.3(ii), and, additionally, the fact that
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τN(Mp(K)) is a compactly supported weakly p-operator Segal ideal in Ap(G/N):

L1(G)⊗̂pMp(K)
τN⊗τN //

Q′Mp(K)
��

L1(G/N)⊗̂p
τN(Mp(K))

Q′
τN (Mp(K))
��

Sp
0 (G)

τN
// Sp

0 (G/N)

Since the top arrow is a complete quotient map, hence a weakly complete surjec-
tion, and the down arrows are weakly complete surjections, the same must hold
of the bottom arrow.

4. DISCUSSION

4.1. ON CONTAINMENT RELATIONS. Let 1 < q < p 6 2 or 2 6 p < q < ∞.
If G is amenable, then Ap(G) ⊂ Aq(G) contractively. See Theorem C of [17] or
Remark, p. 392 of [29]. Thus we have AK

p (G) ⊂ AK
q (G) contractively (these ideals

are defined in Section 2.1), and hence it follows that Sp
0 (G) ⊂ Sq

0(G), boundedly.
Since Lp(G) is, isomorphically, a quotient of a subspace of a Lq-space, the

algebra PMp(G) can be endowed with a q-operator space structure, and thus so
can Ap(G). Hence, is the inclusion Ap(G) ⊂ Aq(G) completely bounded?

If the answer to the above question is true, even in the weakly complete
sense, then the adjoint gives a completely bounded map PMq(G) → PMp(G).
Thus, in the notation of the proof of Remark 3.3 we should be able to prove that
there is a completely bounded map `∞(G,Vq(G))→ `∞(G,Vp(G)), which, when
restricted to (ker QK)

⊥, is the adjoint of the inclusion Sp
0 (G) ↪→ Sq

0(G). Hence we
would see that the latter inclusion is weakly completely bounded.

4.2. FOURIER TRANSFORM. Let G be abelian with dual group Ĝ. In [12] it is
shown that S2

0(G) ∼= S2
0(Ĝ), via the Fourier transform F. Suppose p 6= 2. Is

there a meaningful intrinsic characterisation of F(Sp
0 (G)) as a subspace of A2(Ĝ)?
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