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ABSTRACT. LetH be a Krein space with fundamental symmetry J. Along this
paper, the geometric structure of the set of J-normal projections Q is studied.
The group of J-unitary operators UJ naturally acts on Q. Each orbit of this
action turns out to be an analytic homogeneous space of UJ , and a connected
component of Q.

The relationship between Q and the set E of J-selfadjoint projections is
analized: both sets are analytic submanifolds of L(H) and there is a natural
real analytic submersion from Q onto E , namely Q 7→ QQ#.

The range of a J-normal projection is always a pseudo-regular subspace.
Then, for a fixed pseudo-regular subspace S , it is proved that the set of J-
normal projections onto S is a covering space of the subset of J-normal projec-
tions onto S with fixed regular part.
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1. INTRODUCTION

Let H be a Krein space with fundamental symmetry J. A pseudo-regular
subspace ofH is a subspace S such that S =M[+̇]S◦, whereM is a regular sub-
space ofH and S◦ is the isotropic part of S . For instance, subspaces of Pontryagin
spaces are always pseudo-regular. Pseudo-regularity appeared as a condition to
generalize results on spectral measures of definitizable operators from Pontrya-
gin spaces to general Krein spaces [15], [17]. It was also useful to extend the
Beurling–Lax theorem for shifts acting on indefinite metric spaces [6], [14].

This paper is devoted to investigating the geometric structure of the set of
J-normal projections, namely

Q = {Q ∈ L(H) : Q2 = Q, QQ# = Q#Q},
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where L(H) is the algebra of bounded linear operators acting onH and Q# stands
for the J-adjoint of Q. This class of projections is intimately related to the fam-
ily of closed pseudo-regular subspaces of H. In fact, a (closed) subspace S is
pseudo-regular if and only if S is the range of a J-normal projection. However,
the correspondence between pseudo-regular subspaces and J-normal projections
is not bijective: there can be infinitely many J-normal projections onto the same
subspace, see [19].

An operator U ∈ L(H) is J-unitary if UU# = U#U = I. The set UJ of all
J-unitary operators is a Banach–Lie group endowed with the norm topology of
L(H). It naturally acts by conjugation on the set of J-normal projections, i.e. if
U ∈ UJ and Q ∈ Q the action of U on Q is defined by U ·Q = UQU#.

In this paper, it is shown that, for each Q0 ∈ Q, the orbit UJ ·Q0 is an analytic
homogenous space of UJ . Thus, each orbit can be endowed with the quotient
topology. On the other hand, UJ · Q0 has also the topology inherited from L(H).
But it is shown that both topologies coincide. In order to obtain this result, it is
proved that the map induced by the action

(1.1) pQ0 : UJ → UJ ·Q0, pQ0(U) = UQ0U#,

has a local continuous cross section (Theorem 3.8). In [12], A. Gheondea found
several conditions equivalent to the existence of a J-unitary implementing equiv-
alence between two pseudo-regular subspaces. The above mentioned local con-
tinuous cross section allows to find a J-unitary that (locally) depends continu-
ously on the J-normal projections and implements the equivalence between their
ranges. As a consequence, it follows that the action of UJ on Q fills connected
components. Furthermore, the orbits can be characterized by means of the signa-
tures and cosignatures associated to the range of any of its projections (Proposi-
tion 3.10).

The problem of finding a local continuous cross section for the action is cen-
tral to develop the differential geometry of infinite dimensional smooth homo-
geneous spaces which arise in operator theory. Several examples can be found
in [7]. However, each example usually requires ad-hoc techniques. In particu-
lar, the existence of a section for the map given in (1.1) relies on two facts. First,
the section given in [11] for the set of projections in L(H). Second, after noticing
that the isotropic subspaces of the range and nullspace of a J-normal projection
are closed neutral companions [15], the construction of biorthogonal bases of the
sum of these subspaces for each projection in the orbit.

Concerning the smooth structure ofQ, it turns out thatQ is an analytic sub-
manifold of L(H). In particular, the same result holds for the set of J-selfadjoint
projections

E = {E ∈ L(H) : E2 = E, E# = E}.
These facts allow to understand the relationship between J-normal projections
and J-selfadjoint projections from a geometrical point of view: the map F : Q →
E defined by F(Q) = QQ# is a real analytic submersion (Theorem 4.4). This kind



ON THE GEOMETRY OF NORMAL PROJECTIONS IN KREIN SPACES 77

of results can be seen as a contribution to the differential geometry of projections,
which has been a subject of study in different settings, see e.g. [3], [4], [8], [10],
[11], [20].

The last part of this paper deals with a topological description of the set of J-
normal projections with a prescribed range. For a fixed pseudo-regular subspace
S ofH, denote by QS the set of J-normal projections with range S , that is,

QS = {Q ∈ Q : R(Q) = S}.
Unless S is regular, QS has infinitely many elements. If the isotropic part S◦ is
non trivial, each complementM in the decomposition S = M[+̇]S◦ is regular.
Thus, QS can be decomposed as the disjoint union of the decks

QS ,M = {Q ∈ QS : R(QQ#) =M},
whereM is any (regular) complement of S◦ in S . The group US of all J-unitary
operators leaving S invariant acts transitively on QS by conjugation. Moreover,
the action has the following remarkable property: the restriction to US of the
map defined in (1.1) admits a global continuous cross section (Proposition 5.5).
This is the key to prove that QS is a covering space of any of the decks QS ,M
(Theorem 5.6).

The contents of this paper are as follows. Section 2 contains notation and
preliminaries on Krein spaces. Section 3 has the construction of the continuous
local cross section for the natural action of UJ onQ. The differential structure ofQ
is developed in Section 4. Finally, Section 5 presents the covering space structure
of the J-normal projections with a prescribed range.

2. PRELIMINARIES

Let (H, 〈·, ·〉) be a complex separable Hilbert space. If K is another Hilbert
space, L(H,K) stands for the vector space of bounded linear operators from H
to K. In particular, L(H) is the algebra of bounded operators on H. If T ∈ L(H),
T∗ is the adjoint of T. The range and the nullspace of T are denoted by R(T) and
N(T), respectively. The spectrum of T is denoted by σ(T).

Throughout this paper, J is a fixed symmetry acting onH (i.e. J = J∗ = J−1),
which defines a fundamental decomposition H = H+ ⊕ H− given by H± =
N(J ∓ I). This symmetry induces a Krein space structure (H, [·, ·]), where

[ f , g] = 〈J f , g〉, f , g ∈ H.

The orthogonal projection onto H± is denoted by P±. For a detailed exposition
of the facts below, and a deeper discussion on Krein spaces see [1], [5], [9].

A vector f ∈ H is J-positive if [ f , f ] > 0. A subspace S of H is J-positive
if every nonzero vector f ∈ S is J-positive. A subspace S is called uniformly
J-positive if there is a constant c > 0 such that [ f , f ] > c‖ f ‖2 for every f ∈ S .
A J-positive (respectively uniformly J-positive) subspace is said to be maximal
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if it is not properly contained in a larger J-positive (respectively uniformly J-
positive) subspace. Similarly, one can define J-nonnegative, J-neutral, J-negative
and uniformly J-negative subspaces.

For each J-positive subspace S ofH, the angular operator K : P+(S)→ H−
is defined by K(P+ f ) = P− f . It is a contraction (‖K‖ 6 1) and its graph coincides
with S :

Gr(K) ' { f + K f : f ∈ P+(S)} = S .

Moreover, K is a uniform contraction (‖K‖ < 1) if and only if S is uniformly J-
positive. If S is maximal (in the corresponding class of subspaces) the P+(S) =
H+. Observe that the angular operator can also be defined for J-negative sub-
spaces in the obvious way.

Let S be a subspace ofH. The J-orthogonal subspace of S inH is defined by

S [⊥] = { f ∈ H : [ f , g] = 0 for every g ∈ S}.

The isotropic part of S is given by S◦ := S ∩ S [⊥]. In general, it is a non-trivial
subspace. A subspace S is J-non-degenerate if S ∩ S [⊥] = {0}. Otherwise, it is
a J-degenerated subspace. If T is another subspace of H, S+̇T stands for the
direct sum of the subspaces, meanwhile S [+̇]T is the J-orthogonal (direct) sum
of them.

Given T ∈ L(H), the J-adjoint operator of T is defined by T# = JT∗ J. An
operator T is J-selfadjoint if T# = T, and it is J-antihermitian if T# = −T.

2.1. THE J-UNITARY GROUP. A J-unitary operator U is a surjective isometry re-
spect to the indefinite inner product, i.e. an operator satisfying [U f , U f ] = [ f , f ]
for every f ∈ H. Observe that it is possible to find unbounded J-unitary oper-
ators in Krein spaces, see e.g. [13] and the references therein. Along this work,
only bounded J-unitary operators are considered. Then, U ∈ L(H) is J-unitary if
and only if UU# = U#U = I. The group of all (bounded) J-unitary operators is
denoted by UJ .

REMARK 2.1. Let Gl(H) denote the group of invertible operators. The group
of bounded J-unitary operators can be rewritten as

(2.1) UJ = {U ∈ Gl(H) : U∗ JU = J}.

It was mentioned in Section 23 of [21] that this set is a real Banach–Lie subgroup
of Gl(H). In fact UJ turns out to be a real algebraic subgroup of Gl(H) and, by
Theorem 7.14 of [21], UJ is a Banach–Lie group endowed with the operator norm
topology.

Its Lie algebra uJ can be identified with the subspace of J-antihermitian op-
erators, i.e.

uJ = {X ∈ L(H) : X# = −X}.
When the Hilbert space H is considered over a general field, subgroups

of Gl(H) defined as in (2.1) are not necessarily connected. However, if H is a
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complex Hilbert space, UJ is connected. This fact seems to be well-known, but
no references could be found by the authors. A proof is included below based on
the following well-known description of J-unitaries acting on Krein spaces, see
e.g. [1].

THEOREM 2.2. Let S be a maximal uniformly J-positive subspace with angular
operator K. Then, for any choice of unitary operators V+ onH+ and V− onH− the block
operator matrix U with respect to the decompositionH = H+ ⊕H− given by

U =

(
(I+ − K∗K)−1/2V+ K∗(I− − KK∗)−1/2V−
K(I+ − K∗K)−1/2V+ (I− − KK∗)−1/2V−

)
is J-unitary and transformsH+ onto S . Conversely, every J-unitary operator that maps
H+ onto S is of this form.

PROPOSITION 2.3. The Banach–Lie group UJ is (arcwise) connected.

Proof. Let U be a J-unitary operator. It is not difficult to see that UH+ is a
maximal uniformly J-positive subspace. By Theorem 2.2, U can be written in the
form

U =

(
(I+ − K∗K)−1/2V+ K∗(I− − KK∗)−1/2V−
K(I+ − K∗K)−1/2V+ (I− − KK∗)−1/2V−

)
,

where K is the angular operator of UH+. Here V+ and V− are unitary operators
on H+ and H− respectively. Then, there exist antihermitian operators X+ acting
on H+ and X− acting on H− such that V+ = eX+ and V− = eX− . Notice that
the operators of the form etX± are unitaries on H± for t ∈ R, and tK is a uniform
contraction for t ∈ [0, 1]. For each t ∈ [0, 1], the uniform contraction tK is uniquely
associated to a maximal uniformly J-positive subspace, see Corollary 1.1.2 of [1].
Therefore, by Theorem 2.2, the curve γ : [0, 1]→ L(H) given by

γ(t) =
(

(I+ − t2K∗K)−1/2etX+ tK∗(I− − t2KK∗)−1/2etX−

tK(I+ − t2K∗K)−1/2etX+ (I− − t2KK∗)−1/2etX−

)
,

takes values on UJ . Moreover, this curve is clearly continuous, and it joins γ(0) =
I with γ(1) = U. Thus, every J-unitary operator can be joined by means of a
continuous curve with the identity. Hence UJ is arcwise connected.

REMARK 2.4. The exponential map exp : uJ → UJ is given by exp(X) = eX .
It is always a local diffeomorphism. A surjectivity radius of the exponential map
can be estimated as follows:

Let U ∈ UJ such that ‖U − I‖ < 1. Consider the principal branch of the
logarithm, i.e. log : C \R− → C given by log(z) = log(|z|) + iθ, where z = |z|eiθ ,
θ ∈ (−π, π). Since every λ ∈ σ(U) satisfies |λ− 1| < 1, the logarithm of U can
be defined by the analytic functional calculus:

log(U) =
1

2πi

∫
Γ

log(z)(zI −U)−1 dz,
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where Γ is a suitable Jordan contour in the resolvent set of U surrounding σ(U).
Observe that σ((U∗)−1) = {λ−1

: λ ∈ σ(U)} is also contained in the right-
half plane. Then there exist 0 < ε < M and N > 0 such that σ(U) ∪ σ((U∗)−1) is
contained in the rectangle [ε, M]× [−N, N]. Let Γ be the border of this rectangle.
Since U ∈ UJ , it follows that JU = (U∗)−1 J and, given z ∈ C, (zI − U)−1 J =

(J(zI −U))−1 = ((zI − (U∗)−1)J)−1 = J(zI − (U∗)−1)−1. Thus,

log(U)J =
1

2πi

∫
Γ

log(z)(zI −U)−1 J dz

= J
( 1

2πi

∫
Γ

log(z)(zI − (U∗)−1)−1dz
)
= J log((U∗)−1).

Note that f (z) := log(1/z) is an analytic function in the right-half plane satisfy-
ing f (z) = − log(z). Then, log(U)J = J log((U∗)−1) = −J log(U∗)= −J log(U)∗.
Set X = log(U). By the above computation X is J-antihermitian and eX = U.
Hence, every operator U satisfying ‖U − I‖ < 1 has a logarithm in uJ .

2.2. REGULAR AND PSEUDO-REGULAR SUBSPACES. A (closed) subspace S of a
Krein space H is called regular if S [+̇]S [⊥] = H. Equivalently, S is regular if
and only if there exists a (unique) J-selfadjoint projection E such that R(E) = S
(see e.g. Chapter 1, Theorem 7.16 of [5]). Thus, the set of regular subspaces is in
bijective correspondence with the set of J-selfadjoint projections, namely,

E = {E ∈ L(H) : E2 = E, E# = E}.

The following criterion will be useful: S is a regular subspace if and only if S =
M[+̇]N , where M is a uniformly J-positive subspace and N is a uniformly J-
negative subspace (see Theorem 1.3 of [1]).

A closed subspace S of H is called pseudo-regular if there exists a regular
subspaceM such that S = S◦[+̇]M. Equivalently, S is pseudo-regular if the al-
gebraic sum S + S [⊥] is closed. In [19] it was shown that a subspace S is pseudo-
regular if and only if S is the range of a J-normal projection, i.e. there exists a
projection Q ∈ L(H) with R(Q) = S such that QQ# = Q#Q.

The following results also belong to [19]. Their statements are included in
order to make the paper self-contained.

PROPOSITION 2.5. Given a projection Q ∈ L(H), Q is J-normal if and only if
there exist a projection E ∈ E and a projection P ∈ L(H) satisfying PP# = P#P = 0
such that

Q = E + P.

The projections E and P are uniquely determined by Q.

Projections P ∈ L(H) satisfying PP# = P#P = 0 were previously considered
in [15], [16], in connection with neutral dual companions. If S is a fixed (closed)
J-neutral subspace ofH, a neutral dual companion of S is another (closed) J-neutral
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subspace T ofH such thatH = S u T [⊥] holds. If T is a neutral dual companion
of S then also H = T u S [⊥] holds. So, the pair of subspaces (S , T ) is called a
neutral dual pair.

REMARK 2.6. In the proof of the above mentioned result, the projections E
and P are explicitly computed: E = QQ# and P = Q(I − Q#). Furthermore, the
decomposition for the J-normal projection I −Q is given by

I −Q = F + P#,

where F = (I − Q)(I − Q)#. From these formulas, it is easy to see that EP =
PE = EP# = P#E = 0 and FP = PF = FP# = P#F = 0.

Also, it follows that R(P + P#) = R(Q)◦+̇N(Q)◦ is a regular subspace, and
the Krein space H can be decomposed as the J-orthogonal sum of the following
three regular subspaces:

H = R(E)[u]R(P + P#)[u]R(F).

In the sequel, given a J-normal projection Q ∈ L(H), E, F and P stand for
the projections E = QQ#, P = Q(I − Q#) and F = (I − Q)(I − Q)#. If Q0 is
another J-normal projection, E0, F0 and P0 have the obvious meaning.

3. THE ORBIT OF A J-NORMAL PROJECTION

The set of J-normal projections is given by

Q = {Q ∈ L(H) : Q2 = Q, QQ# = Q#Q}.
The Banach–Lie group UJ acts smoothly on L(H) by conjugation. Clearly, the
restriction of this action gives an action of UJ on Q defined by

U ·Q = UQU#,

where U ∈ UJ , Q ∈ Q. It is worth pointing out that each orbit UJ · Q is con-
nected in the norm topology (see Proposition 2.3). For the notion of real analytic
homogeneous space in the following result see e.g. [7], [21].

PROPOSITION 3.1. Given Q0 ∈ Q, the orbit UJ · Q0 is a real analytic homoge-
neous space of UJ .

Proof. Clearly, there is a bijection from UJ · Q0 onto UJ/G, where G is the
isotropy group at Q0, i.e.

G = {U ∈ UJ : UQ0 = Q0U}.
Observe that the Lie algebra of G can be identified with

g = {X ∈ uJ : XQ0 = Q0X}.
Then, the conclusion of this proposition will follow if G is a Banach–Lie subgroup
of UJ . This last fact is equivalent to show that G is a Banach–Lie group in the norm
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topology of L(H) and g is a closed complemented subspace of uJ . In this case,
UJ/G has an analytic manifold structure endowed with the quotient topology
(see e.g. Theorem 8.19 of [21]).

Let V = exp−1(B1(I)), where B1(I) is the open unit ball around the identity
contained in UJ . Given U ∈ exp(V) ∩ G, there exists X ∈ V such that U = eX .

Notice that the logarithm X ∈ uJ , which is computed in Remark 2.4, is
unique. Indeed, if ‖U − I‖ < 1 then σ(U) ⊂ R+ i(−π, π). But in the latter set
the complex exponential is bijective, so the exponential in L(H) is also bijective
by well-known properties of the functional analytic calculus. Now recall that
X = 1

2πi

∫
Γ

log(z)(zI − U)−1dz. If the operator U belongs to G, that is UQ0 =

Q0U, then by standard arguments one can see that XQ0 = Q0X. Thus, X ∈ g.
This shows that exp(V) ∩ G ⊆ exp(V ∩ g). Since the reversed inclusion is always
trivial, it follows that exp(V) ∩ G = exp(V ∩ g). Hence G is a Banach–Lie group
in the norm topology of L(H).

Note that g is closed in uJ . To prove that g is complemented in uJ , consider
the map

(3.1) P : L(H)→ L(H), P(X) = E0XE0 + P0XP0 + P#
0 XP#

0 + F0XF0.

By the relations between the projections E0, F0, P0 and P#
0 pointed out in Re-

mark 2.6, it follows that P is a continuous projection satisfying P(uJ) ⊆ uJ . Also,
notice that Q0P(X) = E0XE0 + P0XP0 = P(X)Q0. Then, P(uJ) ⊆ g. To prove
the reversed inclusion, pick X ∈ g, i.e. X ∈ uJ and XQ0 = Q0X. Observe that X
also commutes with Q#

0. Therefore, X commutes with E0, F0, P0 and P#
0 , so that

P(X) = E0XE0 + P0XP0 + P#
0 XP#

0 + F0XF0 = (E0 + P0 + P#
0 + F0)X = X.

The latter means that X ∈ P(uJ), and consequently, P(uJ) = g.
To finish the proof, note that the map h : L(H) → uJ given by h(X) =

X−X#

2 is a continuous real projection. Therefore the map P ◦ h is a continuous real
projection onto g. Hence, g is complemented in L(H).

According to the above proposition, the orbit UJ ·Q0 has a Banach manifold
structure such that the canonical projection

pQ0 : UJ → UJ ·Q0, pQ0(U) = UQ0U#

is a real analytic submersion. This manifold structure defines on UJ ·Q0 ' UJ/G
the quotient topology. On the other hand, UJ · Q0 is endowed with the relative
topology as a subset of L(H). If one considers the identity map Id : UJ · Q0 '
UJ/G → UJ · Q0 ⊆ L(H), it is easy to see that this map is always continuous.
However, it may fail to be a homeomorphism. To see that in this setting it is
actually a homeomorphism, it will be sufficient to prove that pQ0 admits local
continuous cross sections when UJ · Q0 is endowed with the relative topology of
L(H).
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To this end, recall that in Remark 2.6, it is stated thatH can be written as the
J-orthogonal sum of three regular subspaces

H = R(E0)[+̇]R(P0 + P#
0 )[+̇]R(F0).

Let Q be another J-normal projection sufficiently close to Q0. The space H can
also be decomposed as H = R(E)[+̇]R(P + P#)[+̇]R(F). Therefore, the prob-
lem of finding a J-unitary that maps Q0 in Q can be reduced to find J-isometric
isomorphisms mapping R(E0) onto R(E), R(F0) onto R(F) and R(P0 + P#

0 ) onto
R(P + P#). It is worth pointing out that R(P0) has to be mapped onto R(P), and
obviously, the J-unitary has to depend continuously on Q.

This work is carried out in the next two subsections. The first one deals with
the case of J-selfadjoint projections, and the second subsection treats the general
case.

3.1. A LOCAL CONTINUOUS CROSS SECTION. THE J-SELFADJOINT CASE. Ob-
serve that the group UJ also acts on E by conjugation: U · E = UEU#, where
U ∈ UJ and E ∈ E .

PROPOSITION 3.2. The map pE0 : UJ → UJ · E given by pE0(U) = UE0U# has
local continuous cross sections.

Proof. In what follows, a section will be given in a neighborhood of E0; stan-
dard arguments can be applied to translate this section to other points.

It will be useful to recall some facts on the geometry of projections in L(H),
see [11]. The set of projections in L(H), namely

Q = {Q ∈ L(H) : Q2 = Q},

is a smooth homogeneous space of the group Gl(H). Its tangent space at Q ∈ Q
can be identified with

TQQ = {X ∈ L(H) : XQ + QX = X},

which are co-diagonal operators with respect to Q, i.e. co-diagonal block-operator
matrices according to the decomposition H = R(Q)u N(Q). For a fixed projec-
tion Q0 ∈ Q, the exponential map

exp : TQ0Q→ {GQ0G−1 : G ∈ Gl(H)}, exp(X) = eXQ0e−X ,

is a local diffeomorphism at Q0. Therefore, there is a positive radius r (depending
on Q0) such that the map {Q ∈ Q : ‖Q−Q0‖ < r} → TQ0Q given by Q 7→ XQ is
smooth and satisfies

eXQ Q0e−XQ = Q.

Taking into account the facts stated above for the projection E0 ∈ E , given a
suitable radius r, it is possible to define a continuous map

(3.2) s : {E ∈ E : ‖E− E0‖ < r} → Gl(H), s(E) = eXE .
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If this map takes values in UJ , it will clearly be the required continuous local cross
section for pE0 . The following argument to show that s(E) ∈ UJ is borrowed and
adapted from Proposition 4.4 of [3]. It is useful to change from projections to
symmetries via the map E 7→ RE = 2E− I. Since eXE E0e−XE = E, it follows that
eXE RE0e−XE = RE. Next, notice that an operator is co-diagonal with respect to
E0 if and only if it anticommutes with RE0 . This implies that RE0e−2XE = RE =

e2XE RE0 and

(e2XE)# = (RERE0)
# = RE0 RE = e−2XE = (e2XE)−1.

Then, e2XE ∈ UJ . Shrinking the radius r if it is necessary, one gets that ‖e2XE −
I‖ < 1. By Remark 2.4, it follows that 2XE ∈ uJ , and consequently, XE ∈ uJ .
Hence eXE ∈ UJ and the proof is completed.

3.2. A LOCAL CONTINUOUS CROSS SECTION. THE GENERAL CASE. Given a neu-
tral dual pair (S , T ) in H, in the next lemma a pair of biorthogonal bases for S
and T are constructed. This result was known for finite-dimensional subspaces
([5], Lemma 1.31), but it is original for the general case.

LEMMA 3.3. If (S , T ) is a a neutral dual pair in H, then for any orthonormal
basis {sn}n>1 of S (in the Hilbert space sense) there exists a Riesz basis {tn}n>1 of T
such that

[si, tj] = δij, i, j > 1.

Proof. Let P ∈ L(H) be the projection onto S along T [⊥]. Then, P# is the
projection onto T along S [⊥]. For a fixed orthonormal basis {sn}n>1 of S , define
tn = P# Jsn ∈ T , n > 1. Hence, given i, j > 1,

[si, tj] = [si, P# Jsj] = [Psi, Jsj] = [si, Jsj] = 〈si, sj〉 = δij.

To prove that {tn}n>1 is a Riesz basis, observe that T = P# J|S : S → T is a
(continuous) surjective operator since

T(S) = P#(J(S) + N(P#)) = R(P#) = T .

On the other hand, if f ∈ N(T) then J f ∈ S [⊥] = J(S⊥). It follows that f ∈
S⊥ ∩ S . Thus, T is injective. Hence, {tn}n>1 is the image of an orthonormal basis
by an invertible operator, i.e. it is a Riesz basis.

If Q is a J-normal projection, notice that the subspaces R(Q)◦ and N(Q)◦

form a neutral dual pair.

LEMMA 3.4. Let Q, Q0 ∈ L(H) be J-normal projections. Assume that the isotropic
parts of their ranges have the same dimension. Then, there is a continuous J-isometric
isomorphism

V : R(Q0)
◦+̇N(Q0)

◦ → R(Q)◦+̇N(Q)◦,

satisfying V(R(Q0)
◦) = R(Q)◦ and V(N(Q0)

◦) = N(Q)◦.
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Proof. According to Lemma 3.3, for fixed orthonormal bases {s0
n}n>1 and

{sn}n>1 of R(Q0)
◦ and R(Q)◦, there exist Riesz bases {t0

n}n>1 and {tn}n>1 of
N(Q0)

◦ and N(Q)◦, respectively, such that [s0
i , t0

j ] = [si, tj] = δij.
Next, consider the operator V : R(Q0)

◦+̇N(Q0)
◦→R(Q)◦+̇N(Q)◦ given by

V
(

∑
n

αns0
n + ∑

m
βmt0

m

)
= ∑

n
αnsn + ∑

m
βmtm.

Since V maps the (Riesz) basis {s0
n}n>1 ∪ {t0

n}n>1 onto the (Riesz) basis {sn}n>1 ∪
{tn}n>1, it follows that it is a continuous operator.

Moreover, V is a J-isometry by construction: due to the J-biorthogonality of
the bases, it follows that[
V
(

∑
n

αns0
n + ∑

m
βmt0

m

)
, V
(

∑
n

αns0
n + ∑

m
βmt0

m

)]
=
[
∑
n

αnsn + ∑
m

βmtm, ∑
n

αnsn + ∑
m

βmtm

]
= 2 ∑

n,m
Re(αnβm[sn, tm])

=2 ∑
n

Re(αnβn) =
[
∑
n

αns0
n + ∑

m
βmt0

m, ∑
n

αns0
n + ∑

m
βmt0

m

]
,

where in the second equality, it is taken into account that ∑
n

αnsn ∈ R(Q)◦ and

∑
m

βmtm ∈ N(Q)◦, and in the last equality, it is used that ∑
n

αns0
n ∈ R(Q0)

◦ and

∑
m

βmt0
m ∈ N(Q0)

◦. Hence, V is a J-isometric isomorphism.

The next step is to show that the above J-isometric isomorphism V depends
continuously on Q. Some basic facts on the geometry of the unitary group and
the space of selfadjoint projections will be needed. Let U be the unitary group of
L(H), and P be the manifold of selfadjoint projections, i.e.

P = {P ∈ L(H) : P = P2, P = P∗}.
The natural action of U on P given by U · P = UPU∗ has local continuous cross
sections. Although this fact was pointed out in Remark 3.2 of [10], in the follow-
ing lemma a short proof is included for the sake of completeness. The main idea
is adapted from a similar context in Proposition 2.2 of [4].

LEMMA 3.5. If P0 ∈ P the map U → P , given by U 7→ UP0U∗, has local
continuous cross sections.

Proof. Consider the open set

V = {P ∈ P : ‖P− P0‖ < 1}.
For P ∈ V , set S = PP0 + (I− P)(I− P0). Then it is well-known that ‖S− I‖ < 1.
Thus, S is invertible. The unitary part of S given by U = |S∗|−1S is a continuous
function of P. Notice that SS∗P = PSS∗, which implies that |S∗|P = P|S∗| and
P|S∗|−1 = |S∗|−1P. Therefore, PU = P|S∗|−1S = |S∗|−1PS = |S∗|−1SP0 = UP0,
i.e. UP0U∗ = P. Hence U = U(P) is a continuous local cross section.



86 EDUARDO CHIUMIENTO, ALEJANDRA MAESTRIPIERI AND FRANCISCO MARTÍNEZ PERÍA

It will be also useful to state here a well-known result on projections.

LEMMA 3.6 ([18], Chapter I). Let E1, E2 ∈ L(H) be projections. If PR(E1)
and

PR(E2)
are the orthogonal projections onto their ranges, respectively, then

‖PR(E1)
− PR(E2)

‖ 6 ‖E1 − E2‖.

Now, given a fixed J-normal projection Q0 ∈ L(H), consider the following
neighborhood of Q0:

VQ0 =
{

Q ∈ Q : ‖Q−Q0‖ <
1

2(1 + ‖Q0‖)

}
.

Then, define a map V : VQ0 → L(H) such that V(Q) is a J-isometric isomorphism
between R(Q0)

◦ + N(Q0)
◦ and R(Q0)

◦ + N(Q0)
◦ as follows:

Given Q ∈ VQ0 , it is easy to see that ‖Q‖ < ‖Q0‖ + 1. Recall that P =

Q(I −Q#) and P0 = Q0(I −Q#
0), then

(3.3) ‖P− P0‖ 6 ‖Q−Q0‖+ ‖QQ# −Q0Q#
0‖ 6 2(1 + ‖Q0‖)‖Q−Q0‖ < 1.

According to Lemma 3.6, it follows that

(3.4) ‖PR(Q)◦ − PR(Q0)◦‖ 6 ‖P− P0‖ < 1.

By Lemma 3.5, there exists a unitary operator U = U(PR(Q)◦), which depends
continuously on PR(Q)◦ , and satisfies UPR(Q0)◦U

∗ = PR(Q)◦ . In particular, this
implies that dim R(Q)◦ = dim R(Q0)

◦.
Moreover, for a fixed orthonormal basis {s0

n}n>1 of R(Q0)
◦, this U ∈ U gives

a procedure to choose an orthonormal basis of R(Q)◦: set sn,Q = Us0
n for every

n > 1.
According to Lemma 3.3, there are Riesz bases {tn,Q}n>1 and {t0

n}n>1 of
N(Q)◦ and N(Q0)

◦, respectively, such that [s0
n, t0

m] = [sn,Q, tm,Q] = δnm. Ap-
plying Lemma 3.4, one can construct a J-isometric isomorphism V(Q) between
R(Q0)

◦+̇N(Q0)
◦ and R(Q)◦+̇N(Q)◦. In fact, it will be useful to extend this linear

operator toH, i.e.

V(Q) f :=

∑
n

αnsn,Q + ∑
m

βmtm,Q if f = ∑
n

αns0
n + ∑

m
βmt0

m,

0 if f ∈ (R(Q0)
◦+̇N(Q0)

◦)[⊥].

LEMMA 3.7. The map V : VQ0 → L(H) defined above is continuous.

Proof. Let {Qk}k>1 be a sequence in VQ0 . Assume that ‖Qk − Q‖ → 0 for
some Q ∈ VQ0 . Let Uk = U(PR(Qk)◦) be the unitary associated with Pk = Qk(I −
Q#

k) defined after (3.4). Analogously, let U and P be the the corresponding unitary
and projection associated with Q.

Pick a vector f = ∑
n

αns0
n + ∑

m
βmt0

m ∈ R(Q0)
◦+̇N(Q0)

◦, where {s0
n}n>1 is an

orthonormal basis of R(Q0)
◦ and {t0

n}n>1 is the Riesz basis of N(Q0)
◦ given by

Lemma 3.3.
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In order to prove the continuity of the map V, note that

‖(V(Qk)−V(Q)) f ‖ =
∥∥∥∑

n
αn(sn,Qk − sn,Q) + ∑

m
βm(tm,Qk − tm,Q)

∥∥∥
=
∥∥∥∑

n
αn(Uk −U)s0

n + ∑
m

βm(P#
k − P#)Js0

m

∥∥∥
6 ‖Uk −U‖

∥∥∥∑
n

αns0
n

∥∥∥+ ‖P#
k − P#‖

∥∥∥∑
m

βms0
m

∥∥∥
6 ‖Uk −U‖‖ f ‖+ C‖Pk − P‖‖ f ‖,

for a suitable C = c1c2 > 0, because∥∥∥∑
n

βns0
n

∥∥∥ =
(

∑
n
|βn|2

)1/2
6 c1

∥∥∥∑
n

βnt0
n

∥∥∥ 6 c1c2‖ f ‖,

where c1 is a constant related to the Riesz basicity of {t0
n}n>1 and c2 is the norm

of the projection onto N(Q0)
◦ along R(Q0)

◦.
Therefore,

‖V(Qk)−V(Q)‖ 6 ‖Uk −U‖+ C‖Pk − P‖.
From (3.3) one gets that ‖Pk − P‖ → 0, so it remains to show that ‖Uk −U‖ → 0.
Lemma 3.6 implies that ‖PR(Qk)◦ − PR(Q)◦‖ → 0 and the map given by PR(Q) 7→
U(PR(Q)) is continuous, so that ‖Uk −U‖ → 0.

Now the main result of this section follows. In particular, when J = I
one recovers the connected components of the Grassmann manifold of a Hilbert
space; this topological result can also be deduced from the submanifold structure
proved in [20]. See also the section constructed in [11].

THEOREM 3.8. Let Q0 ∈ Q, then the map pQ0 : UJ → UJ ·Q0 given by

pQ0(U) = UQ0U#,

has local continuous cross sections. In particular, the quotient topology and the topology
inherited from L(H) are equivalent in UJ ·Q0.

Proof. Recall that E0 = Q0Q#
0 and F0 = (I − Q0)(I − Q0)

#. By Propo-
sition 3.2, there is a continuous section s1 of the map pE0(U) = UE0U#. By
the same method one can construct another continuous section s2 of the map
pF0(U) = UF0U#. In fact, these sections are defined in open balls of radii rE0 and
rF0 , respectively, contained in E . Set

rQ0 = min
{ rE0

1 + 2‖Q0‖
,

rF0

1 + 2‖Q0‖
,

1
1 + 2‖Q0‖

}
.

Recall that V(Q) is a continuous function of Q by Lemma 3.7. Moreover, it sat-
isfies V(Q)P0V(Q)# = P. Then the map s : {Q ∈ Q : ‖Q− Q0‖ < rQ0} → UJ
defined by

s(Q) = Es1(E)E0 + Fs2(F)F0 + (P + P#)V(Q)(P0 + P#
0 ),



88 EDUARDO CHIUMIENTO, ALEJANDRA MAESTRIPIERI AND FRANCISCO MARTÍNEZ PERÍA

is the required continuous section for pQ0 . To show that s(Q) ∈ UJ for Q ∈ Q
with ‖Q− Q0‖ < rQ0 , observe that s(Q) can be alternatively written as s(Q) =

s1(E)E0 + s2(F)F0 + V(Q)(P0 + P#
0 ) or s(Q) = Es1(E) + Fs2(F) + (P + P#)V(Q).

Recall that the identity map Id : UJ · Q0 ' UJ/G → UJ · Q0 ⊆ L(H) is
continuous by definition of the quotient topology. On the other hand, the exis-
tence of local continuous cross sections implies that pQ0 is an open map, and con-
sequently, Id is a homeomorphism. This proves the equivalence between both
topologies.

3.3. CONNECTED COMPONENTS OF Q. It is necessary to recall some terminology
used in [12]. Let S be a pseudo-regular subspace of H. So, there exists a regular
subspaceM such that S =M[+̇]S◦. Consider a decomposition

S = S◦[u]M+[+̇]M−,

whereM+ is a uniformly J-positive subspace,M− is a uniformly J-negative sub-
space and M = M+[+̇]M−. Then, the numbers κ+(S) = dimM+, κ−(S) =
dimM− and κ0(S) = dimS◦ are called the positive, negative and isotropic signa-
tures of S , respectively. It has been shown that these numbers do not depend on
the particular decomposition considered (see e.g. Chapter 1, Theorem 6.7 of [5]).
If S is pseudo-regular then so is S [⊥], and the positive and negative cosignatures of
S are defined as cκ+(S) := κ+(S [⊥]) and cκ−(S) := κ−(S [⊥]).

PROPOSITION 3.9 ([12], Proposition 4.6). Let S and T be two pseudo-regular
subspaces ofH. The following statements are equivalent:

(i) S and T are J-unitarily equivalent, i.e. there exists U ∈ UJ such that U(S) = T ;
(ii) S is J-isometrically isomorphic to T and S [⊥] is J-isometrically isomorphic to

T [⊥];
(iii) κ+(S) = κ+(T ), κ−(S) = κ−(T ), cκ+(S) = cκ+(T ), cκ−(S) = cκ−(T )

and κ0(S) = κ0(T ).
With the latter result at hand, it is now straightforward to give a spatial

characterization of the orbits. Moreover, the orbits are the connected components
of Q.

PROPOSITION 3.10. Let Q0, Q ∈ Q. The following assertions are equivalent:
(i) Q ∈ UJ ·Q0.

(ii) R(Q) and R(Q0) have the same (three) signatures and the same (two) cosigna-
tures.
Moreover, the connected component of Q0 in Q coincides with UJ ·Q0.

Proof. If Q ∈ Q then R(Q) = R(Q)◦[u]M and N(Q) = N(Q)◦[u]N ,
where M and N are regular subspaces. Then, it is easy to see that R(Q)[⊥] =
R(Q)◦[u]N and

cκ±(R(Q)) = κ±(R(Q)[⊥]) = κ±(N(Q)).
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Hence, the equivalence between (i) and (ii) follows from applying Proposition 3.9
to the ranges of two J-normal projections.

Let CQ0 be the connected component of Q0. Recall that UJ is connected
(Proposition 2.3). Therefore UJ · Q0 is connected. Hence UJ · Q0 ⊆ CQ0 . In order
to show the converse inclusion, note that the map

Q 7→ (κ+(R(Q)), cκ+(R(Q)), κ−(R(Q)), cκ−(R(Q)), κ0(R(Q)))

is continuous. In fact, if ‖Q−Q0‖ < rQ0 , where rQ0 is defined in the proof of The-
orem 3.8, then there is an operator U ∈ UJ such that Q = UQ0U#. According to
the equivalence (i)–(ii), it follows that the five indices must coincide. This proves
that the above map is continuous. Since it takes values on a discrete set, the map
has to be constant on CQ0 . Now if Q ∈ CQ0 , then the five indices associated to Q
are equal to those of Q0. Hence there exists a J-unitary such that Q = UQ0U#.

The connected components of E can be obtained as a particular case of the
above result.

COROLLARY 3.11. Let E0, E ∈ E . The following assertions are equivalent:
(i) E ∈ UJ · E0.

(ii) R(E) and R(E0) have the same (two) signatures and the same (two) cosignatures.
Moreover, the connected component of E0 in E coincides with UJ · E0.

4. DIFFERENTIAL STRUCTURE OF Q

The following is a well-known criterion to determine if a proper subset of a
manifold is indeed a submanifold, see Proposition 8.7 of [21].

PROPOSITION 4.1. Consider two Banach manifolds M and N. Suppose that g :
M→ N is an analytic inmersion and a homeomorphism onto N′ = g(M). Then N′ is a
submanifold of N and the mapping g : M→ N′ is bianalytic.

This criterion will be used to show that Q is a submanifold of L(H). Note
that one can restrict to the connected components ofQ given by the orbits UJ ·Q0,
Q0 ∈ Q. By Proposition 3.1, UJ ·Q0 has a manifold structure compatible with the
quotient topology. Moreover, the map pQ0 is an analytic submersion with this
manifold structure. Equivalently, pQ0 admits local analytic cross sections (see
Corollary 8.3 of [21]). Note that the following diagram commutes

UJ
pQ0 //

p̃Q0   

UJ ·Q0

i
��

' UJ/G

L(H)
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where i is the inclusion map and p̃Q0(U) = UQ0U#. The map p̃Q0 is clearly
analytic because it consists in multiplication and inversion in L(H). The inclusion
map can be locally written as i = p̃Q0 ◦ s, where s is a analytic section of pQ0 .
Hence, i is analytic.

To prove that i is an inmersion (i.e. its differential map is injective and has
complemented range), notice that the range of the differential at Q ∈ UJ · Q0 of i
is precisely the tangent space TQ(UJ · Q0). The latter is computed as derivatives
of smooth curves in the orbit, and it is given by

TQ(UJ ·Q0) = {XQ−QX : X ∈ uJ}.

On the other hand, it was shown that the quotient and the inherited topologies
coincide in the orbits (Theorem 3.8). Hence, to see that UJ · Q0 is a submanifold
of L(H) it is sufficient to find a complement of TQ0(UJ ·Q0) in L(H).

To this end, if Q0 ∈ Q consider again the decompositions

Q0 = E0 + P0 and I −Q0 = F0 + P#
0 ,

given in Proposition 2.5. Let XQ0 − Q0X be a tangent vector of the orbit UJ ·
Q0 at the point Q0. Since X# = −X and E0 = E#

0, the J-selfadjoint and the J-
antihermitian parts of XQ0 −Q0X are given by

XE0 − E0X +
1
2
(X(P0 + P#

0 )− (P0 + P#
0 )X), and

1
2i
(X(P0 − P#

0 )− (P0 − P#
0 )X),

respectively. Clearly, TQ0(UJ ·Q0) will be complemented in L(H) if

Ls :=
{

XE0 − E0X +
1
2
(X(P0 + P#

0 )− (P0 + P#
0 )X) : X# = −X

}
is complemented in the subspace of J-selfadjoint operators iuJ and

La := {X(P0 − P#
0 )− (P0 − P#

0 )X : X# = −X}

is complemented in uJ .

LEMMA 4.2. Ls is complemented in iuJ .

Proof. Set S1 = R(E0), S2 = R(P0 + P#
0 ) and S3 = R(F0) and consider the

J-orthogonal decomposition H = S1[u]S2[u]S3. If a J-antihermitian operator X
is represented as a block-operator matrix according to this decomposition: X11 X12 X13 S1

X = −X#
12 X22 X23 S2

−X#
13 −X#

23 X33 S3

,
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then an operator in the subspace Ls is represented as

XE0 − E0X +
1
2
(X(P0 + P#

0 )− (P0 + P#
0 )X) =

 0 − 1
2 X12 − 1

2 X13
− 1

2 X#
12 0 − 1

2 X23
− 1

2 X#
13 − 1

2 X#
23 0

 .

Therefore, the subspace Ls can be described with three parameters as

Ls =


 0 A B

A# 0 C
B# C# 0

 : A ∈ L(S2,S1), B ∈ L(S3,S1), C ∈ L(S3,S1)

 .

From this representation, it is easy to see that Ls is complemented in the subspace
of J-selfadjoint operators. In fact, a complement is given by the subspace of J-
selfadjoint operators which are block-diagonal according to the decomposition
considered above.

As in the previous result, the main idea in the proof of the following lemma
is to find an alternative description of La by means of 3× 3 block-operator matri-
ces. However, the decomposition will be given in terms of different projections.

LEMMA 4.3. La is complemented in uJ .

Proof. Set A0 = P0− P#
0 . Note that A2

0 = P0 + P#
0 and A3

0 = A0. In particular,
A2

0 is a J-selfadjoint projection. Now set

R0 =
1
2
(A2

0 + A0).

From the properties of A0, it follows that

R2
0 =

1
4
(A4

0 + 2A3
0 + A2

0) =
1
4
(2A2

0 + 2A0) = R0,

hence R0 is a projection. Then R#
0 is also a projection. Taking into account that

A#
0 = −A0, one gets R0 + R#

0 = A2
0. Further useful relations between these pro-

jections are the following:

A0R0 = R0, R0 A0 = R0, −R#
0 A0 = R#

0, −A0R#
0 = R#

0.

Set T1 = R(R0), T2 = R(R#
0) and T3 = R(I − A2

0). Hence the space H can be
decomposed asH = T1 u T2 u T3. Next, suppose that X = −X# is represented as X11 X12 X13 T1

X = X21 X22 X23 T2

X31 X32 X33 T3

.



92 EDUARDO CHIUMIENTO, ALEJANDRA MAESTRIPIERI AND FRANCISCO MARTÍNEZ PERÍA

From the properties of the projections R0, R#
0 and I − A2

0, it is possible to consider
only five parameters to represent X as a block operator-matrix, that is

X =

 X11 X12 X13
−X#

12 −X#
11 X23

−X#
23 −X#

13 X33

 ,

where X#
33 = −X33. On the other hand, the operator XA0 − A0X ∈ La is repre-

sented as

XA0 − A0X =

 0 2X12 X13
−2X#

12 0 X23
−X#

23 −X#
13 0

 .

Therefore,

La =


 0 A B
−A# 0 C
−C# −B# 0

 : A ∈ L(T2, T1), B ∈ L(T3, T1), C ∈ L(T3, T2)

 .

Now the subspace La can be easily complemented in uJ as follows:

uJ = La ⊕


 Y 0 0

0 −Y# 0
0 0 Z

 : Y ∈ L(T1), Z ∈ L(T3), Z = −Z#

 .

The main facts on the differential structure ofQ and E are collected in the follow-
ing result.

THEOREM 4.4. The following assertions hold:
(i) Q is an analytic submanifold of L(H).

(ii) E is an analytic submanifold of L(H).
(iii) The map F : Q → E , F(Q) = QQ#, is a real analytic submersion.

Proof. (i) The assumptions in the criterion stated in Proposition 4.1 are veri-
fied in each connected component ofQ. Indeed, it has been shown in Theorem 3.8
that the quotient topology of UJ · Q0 coincides with the topology inherited from
L(H). In addition, the tangent space TQ0(UJ · Q0) is complemented in L(H) by
Lemmas 4.2 and 4.3. But this says that the range of the differential map of the
inclusion UJ ·Q0 ↪→ L(H) is complemented in L(H). So, the proof is completed.

(ii) It is analogous to the proof of (i).
(iii) It suffices to prove the statement for a connected component UJ · Q0 of

Q and a connected component UJ · E0 of E , where E0 = Q0Q#
0. According to

Proposition 4.1, the identity map UJ ·Q0 ' UJ/G → UJ ·Q0 ⊆ L(H) is bianalytic.
Thus, if one considers the submanifold structure in UJ · Q0, then the map pQ0 is
also an analytic submersion. Analogously, the map pE0 is an analytic submersion
when this orbit has the submanifold structure.
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Next note that the following diagram commutes

UJ
pQ0 //

pE0   

UJ ·Q0

F
��
UJ · E0

Since pQ0 is a surjective analytic submersion and pE0 is an analytic submersion, it
is a well-known fact that F turns out to be an analytic submersion (see for instance
Corollary 8.4 of [21]).

5. COVERING SPACE STRUCTURE OF QS

For a fixed pseudo-regular subspace S , consider the set of J-normal projec-
tions onto S , i.e.

QS = {Q ∈ Q : R(Q) = S}.
Clearly, the group UJ does not leave QS invariant. In order to find a suitable
group acting on QS , one can restrict to the subgroup of UJ given by

US = {U ∈ UJ : U(S) = S}.

It is easy to see that if U ∈ US then U(S [⊥]) = S [⊥] and U(S◦) = S◦.
As before, the action of US on QS is defined by U · Q = UQU#, where

U ∈ US and Q ∈ QS .
The following result was proved in Proposition 3.1 of [12]. Below there is

another proof with an explicit construction of the J-isometric isomorphism. This
formula will be helpful later. Along this section, when T1, T2 are two (closed)
subspaces of S such that T1+̇T2 = S , the projection in L(S) with range T1 and
nullspace T2 is denoted by PT1//T2 .

LEMMA 5.1. Let S be a pseudo-regular subspace ofH. IfM1,M2 are two regular
subspaces such that S =M1[+̇]S◦ =M2[+̇]S◦, then (PM2//S◦)|M1 : M1 →M2
is a J-isometric isomorphism.

Proof. Set W = (PM2//S◦)|M1 ∈ L(M1,M2). Let f ∈ M1 such that W f =
0. Then, f ∈ S◦ ∩M1 = {0}. Thus, W is one-to-one. To show that W is surjective,
pick g ∈ M2. Then g = fM1 + fS◦ , where fM1 ∈ M1 and fS◦ ∈ S◦. Therefore
g = PM2//S◦g = PM2//S◦ fM1 . Hence g = W fM1 .

Finally, notice that W is a J-isometric isomorphism. Indeed, given f , g ∈
M1, suppose that f = fM2 + fS◦ and g = gM2 + gS◦ . Since fS◦ , gS◦ ∈ S◦, it
follows that

[W f , Wg] = [ fM2 , gM2 ] = [ f , g].

Hence W is J-isometric.
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The next result shows that, given Q0 ∈ QS , any other Q ∈ QS can be
written as Q = UQ0U# for a suitable U ∈ US .

PROPOSITION 5.2. The group US acts transitively on QS .

Proof. If Q, Q0 ∈ QS , consider the usual associated projections E, F, P and
E0, F0, P0. According to Remark 2.6,H can be decomposed as

H = R(E)[u]R(P + P#)[u]R(F) = R(E0)[u]R(P0 + P#
0 )[u]R(F0).

Notice that R(P) = R(P0) = S◦. Then, by Lemma 3.4, there exists a J-isometric
isomorphism

V : R(P0 + P#
0 )→ R(P + P#),

which can be defined as the identity operator on S◦. On the other hand, by
Lemma 5.1, there is a J-isometric isomorphism W : R(E0)→ R(E).

It only remains to show that the ranges of F and F0 are J-isometrically iso-
morphic. To this end, note that S [⊥] is also a pseudo-regular subspace. Moreover,
it follows that S [⊥] = R(Q)[⊥] = N(Q#) = R(I −Q#) = R(F + P) = R(F)[u]S◦.
Similarly, one can see that S [⊥] = R(F0)[+̇]S◦. Therefore, R(F) and R(F0) are two
different regular complements of S◦ in S [⊥]. As in the previous paragraph, there
is a J-isometric isomorphism W ′ : R(F0)→ R(F).

Finally, define U : H → H by U( f + g + h) = W f + Vg + W ′h, where
f ∈ R(E0), g ∈ R(P0 + P#

0 ) and h ∈ R(F0). It is easy to see that U ∈ US and, by
construction, UQ0U# = Q.

Given a pseudo-regular subspace S of H, consider the family of regular
complements of S◦ in S :

F = {M is a regular subspace ofH : S =M[+̇]S◦}.

It is not difficult to see that QS can be rewritten as the following disjoint union

QS =
⋃
M∈F

QS ,M,

where QS ,M = {Q ∈ QS : R(QQ#) = M}, see Lemma 6.4 of [19]. For each
M ∈ F , it is natural to consider the subgroup UM,S◦ of US defined by

UM,S◦ = {U ∈ UJ : U(M) =M, U(S◦) = S◦}.

Clearly, UM,S◦ acts on QS ,M by conjugation. Furthermore,

PROPOSITION 5.3. The group UM,S◦ acts transitively on QS ,M.

Proof. The same proof of Proposition 5.2 works in this case. Indeed, the
J-unitary U constructed in that proof leaves M invariant whenever Q, Q0 ∈
QS ,M.
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In the next result a continuous selection from F to QS is constructed. The
set F is endowed with the topology defined by the metric

d(M,N ) = ‖EM − EN ‖,
where EM denotes the (unique) J-selfadjoint projection ontoM; meanwhile QS
is considered with the topology inherited from L(H).

LEMMA 5.4. There exists a continuous map g : F → QS such that g(M) ∈
QS ,M.

Proof. LetM be a regular subspace of H such that S =M[+̇]S◦. Consider
the following orthogonal decompositionH = S◦ ⊕ (S 	S◦)⊕S⊥. According to
Theorem 6.9 of [19], a J-normal projection Q belongs toQS ,M if and only if Q can
be written as

Q =

 I 0 A + (Re(Bc∗bra∗)− 1
2 (BdB∗ + ar∗b3ra∗))a + B + ar∗(c + b)

0 I b−1c + r
0 0 0

 ,

where r = PS	S◦EM|J(S◦) ∈ L(S⊥,S 	 S◦), A = −A∗ ∈ L(S◦) and B ∈
L(S⊥,S◦) satisfies J(S◦) ⊆ N(B). Here the lowercase letters a, b, c and d come
from the decomposition of the fundamental symmetry

J =

 0 0 a
0 b c
a∗ c∗ d

 .

Clearly, r : F → L(S⊥,S 	 S◦) given by r(M) = PS	S◦EM|J(S◦) is a continuous
function by the definition of the metric inF . To construct the required continuous
selection, it is possible to set A = B = 0 in the above decomposition. Therefore,
the map

g : F → QS defined by g(M) =

 I 0 − 1
2 ar∗b3ra∗a + ar∗(c + br)

0 I b−1c + r
0 0 0

 ,

satisfies g(M) ∈ QS ,M. The continuity of g follows from that of r.

The map defined locally in Lemma 3.7 can be defined globally in QS . This
allows to prove the existence of a global section for the restriction of pQ0 to US .

PROPOSITION 5.5. Let Q0 be a projection in QS . Then, the map

pQ0 : US → QS , pQ0(U) = UQ0U#,

has a global continuous cross section.

Proof. First recall that H = R(Ei)[u]R(Fi)[u]R(Pi + P#
i ) for i = 1, 2 and

consider U : QS ×QS → US defined by

U(Q1, Q2) = PR(E2)//S◦E1 + PR(F2)//S◦F1 + V(Q2)V(Q1)
#(P1 + P#

1 ).
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The map U is a J-isometric isomorphism restricted to each of these three pairs
of subspaces. In fact, the map R(E1) → R(E2) given by f 7→ PR(E2)//S◦ f is a J-
isometric isomorphism by Lemma 5.1. Similarly, one can see that R(F1)→ R(F2)
given by f 7→ PR(F2)//S◦ f is also a J-isometric isomorphism. Also, by Lemma 3.4,
V(Q2)V(Q1)

# is a J-isometric isomorphism from R(P1 + P#
1 ) onto R(P2 + P#

2 ).
Hence U(Q1, Q2) is a J-unitary. Moreover, it is the identity operator in S◦, and it
leaves S invariant. Hence the operator U(Q1, Q2) belongs to US . In addition, by
Lemma 5.1 and Lemma 3.4 it follows that

U(Q1, Q2)Q1U(Q1, Q2)
# = Q2.

Note that Ei = QiQ#
i , Fi = (I −Qi)(I −Qi)

# and Pi = Qi(I −Q#
i ) are continuous

functions of Qi for i = 1, 2. On the other hand, the continuity of V(Qi), i =
1, 2, and consequently, the continuity of V(Q2)V(Q1)

#, is proved in Lemma 3.4.
To show that U is a continuous map, it remains to prove that the maps QS →
L(S) given by Q 7→ PR(E)//S◦ and QS → L(S [⊥]) given by Q 7→ PR(F)//S◦ are
continuous.

Let {Qk}k>1 be a sequence inQS such that ‖Qk −Q‖ → 0. Again recall that
E = QQ# is a continuous function of Q. Thus, by Lemma 3.6 one finds that

‖PR(Ek)
− PR(E)‖ 6 ‖Ek − E‖ → 0.

Applying the formula proved in Lemma 3.1 of [2], the projection PR(E)//S◦ can
be rewritten as

PR(E)//S◦ = PR(E)(PR(E) + PS◦)−1.

Notice that this formula is a continuous function of the orthogonal projection
PR(E). Hence it follows that ‖PR(Ek)//S◦ − PR(E)//S◦‖ → 0. The proof of the
continuity of Q 7→ PR(F)//S◦ is similar.

Therefore, the map s : QS → US defined by s(Q) = U(Q0, Q) is a global
continuous cross section of pQ0(U) = UQ0U#.

In the next result s stands for the global section considered in Proposi-
tion 5.5, and g is the continuous selection defined in Lemma 5.4.

THEOREM 5.6. Let S be a pseudo-regular subspace andM0 be a regular subspace
such that S = M0[u]S◦. Let Q0 be a fixed projection in QS ,M0 . Consider the map
r : QS → QS ,M0 defined by

r(Q) = s(g(M))#Qs(g(M)),

whenever Q ∈ QS ,M. Then r is a covering map.
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The map r has an alternative expression. By Lemma 5.3 there exists U ∈
UM,S◦ such that Q = Ug(M)U#. Therefore, note that

r(Q) = s(g(M))#Ug(M)U#s(g(M))

= s(g(M))#Us(g(M))Q0s(g(M))#U#s(g(M))

= Ads(g(M))(U)Q0(Ads(g(M))(U))#,(5.1)

where AdU : L(H) → L(H) is defined by AdU(X) = U#XU, for U ∈ UJ and
X ∈ L(H). This expression does not depend on the choice of U ∈ UM,S◦ .

Proof. It has been previously noted thatQS is the disjoint union of the decks
QS ,M withM ∈ F . Then, for any Q ∈ QS there exists a uniqueM ∈ F such
that Q ∈ QS ,M. Thus, r is well defined.

Next notice that r is a surjective map. For this purpose it is helpful to use
the alternative expression of r. Suppose that

g(M) = EM + P and I − g(M) = F + P#.

Note that V = s(g(M)) satisfies V(M0) = M, V(R(F0)) = R(F), V(S◦) =
S◦ and V(R(P#

0 )) = R(P#). From this latter fact, it is not difficult to see that
AdV(UM,S◦) = UM0,S◦ . According to Lemma 5.3 the group UM0,S◦ transitively
acts on QS ,M0 , and consequently, r turns out to be surjective.

Observe that there is a continuous inverse of the restriction of r to QS ,M,
which is given by

f := (r|QS ,M)−1 : QS ,M0 → QS ,M, f (Q) = s(g(M))Qs(g(M))#.

Since s is a continuous map by Proposition 5.5, it follows that f is continuous. To
show that f is actually the inverse of r|QS ,M , observe that if Q ∈ QS ,M,

( f ◦ r)(Q) = f (s(g(M))#Qs(g(M)))

= s(g(M))s(g(M))#Qs(g(M))s(g(M))# = Q.

Also, f (Q) ∈ QS ,M and

(r ◦ f )(Q) = r(s(g(M))Qs(g(M))#) =

= s(g(M))#s(g(M))Qs(g(M))#s(g(M)) = Q.

The map g is continuous by Lemma 5.4, meanwhile the map s is continuous by
Proposition 5.5. Thus, r is clearly a continuous map. This completes the proof.
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