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ABSTRACT. The aim of this article is to compare some equivalence relations
among open projections of a C∗-algebra. Such equivalences are crucial in a
decomposition scheme of C∗-algebras and is related to the Cuntz semigroups
of C∗-algebras. In particular, we show that the spatial equivalence (as studied
by H. Lin as well as by the authors) and the PZ-equivalence (as studied by
C. Peligrad and L. Zsidó as well as by E. Ortega, M. Rørdam and H. Thiel) are
different, although they look very similar and conceptually the same.

In the development, we also show that the Murray–von Neumann equiv-
alence and the Cuntz equivalence (as defined by Ortega, Rørdam and Thiel)
coincide on open projections of C0(Ω)⊗K(`2) exactly when the canonical ho-
momorphism from Cu(C0(Ω)) into Lsc(Ω;N0) is bijective. Here, Cu(C0(Ω))

is the stabilized Cuntz semigroup, and Lsc(Ω;N0) is the semigroup of lower
semicontinuous functions from Ω into N0 := {0, 1, 2, . . . , ∞}.

KEYWORDS: C∗-algebra, open projection, equivalence relation, Cuntz semigroup.

MSC (2010): 46L05, 46L35.

1. INTRODUCTION

In their seminal work [15] (see also [9], [14]), Murray and von Neumann
classified W∗-algebras into three types according to the abelianness and finiteness
properties of their projections. The finiteness of projections is defined through
an equivalence relation, the so-called Murray–von Neumann equivalence ∼Mv.
More precisely, for two projections p and q in a W∗-algebra M, we write p ∼Mv q
if there is a partial isometry u in M such that p = u∗u and q = uu∗. A projection
p is finite in M if p is not equivalent to any of its proper subprojections. One
can study a W∗-algebra by looking at the set of its projections, equipped with the
order structure as well as the Murray–von Neumann equivalence.

In a similar fashion, in order to get a nice snapshot of a C∗-algebra, one
studies its open projections under certain equivalence relations. For an example,
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classification frameworks for C∗-algebras were studied in [16] using either the so
called spatial equivalence (denoted by ∼sp) as well as the PZ-equivalence (denoted
by ∼PZ). Another example is that the PZ-equivalence was used in [18] to define
what is called the Cuntz equivalence (denoted by ∼Cu), which is related to the
Cuntz semigroups. These equivalences, however, are quite different from each
other. In this paper, we are going to discuss some relationships among them.

Recall that if A is a C∗-algebra, two open projections p and q of A are spatially
equivalent if there is a partial isometry in the bidual A∗∗ of A implementing a ∗-
isomorphism between the corresponding hereditary C∗-subalgebras her(p) and
her(q). It is the same as the existence of a partial isometry that simultaneously
implements the Murray–von Neumann equivalences of all the open subprojec-
tions of p and those of q (see Proposition 2.7 of [16]). The spatial equivalence was
studied by H. Lin in [12] as well as by the authors in [16] (note that it was called
the Cuntz equivalence in [12]).

On the other hand, p and q are PZ-equivalent if there is a partial isometry
in A∗∗ that implements an isomorphism between the corresponding right ideals
R(p) and R(q) (see Proposition 3.1(i) below). The PZ-equivalence was first intro-
duced by C. Peligrad and L. Zsidó in [20], and was studied in depth by E. Ortega,
M. Rørdam and H. Thiel in [18]. In his book ([11], 3.5.2), H. Lin also discussed a
similar notion.

Since there is a canonical bijective correspondence between right ideals and
hereditary C∗-subalgebras of a C∗-algebra, it is tempting to think that the PZ-
equivalence is the same as the spatial equivalence. In fact, a statement before
([18], Definition 3.9) seems to indicate this. In this article, we will show that, in
contrast with the above expectation, the PZ-equivalence and the spatial equiva-
lence are actually different, even for projections in a separable C∗-algebra of the
form C(Ω) ⊗ M2. We also give some interesting and hopefully useful compar-
isons of different equivalence relations on open projections.

This paper is organized as follows. After giving some preliminary and back-
ground results in Section 2, we give in Section 3 some equivalent formulations of
the PZ-equivalence and those of the spatial equivalence, which show their sim-
ilarities. Moreover, we find that one can determine the PZ-equivalence and the
Cuntz equivalence (in the sense of [18]) of open projections of a C∗-algebra A by
looking at their atomic parts in the bidual A∗∗ (Proposition 3.1(ii)).

In Section 4, we present an easier description for open projections in the
C∗-algebra C0(Ω)⊗K(`2) (Proposition 4.1). We also give some interesting appli-
cations of this description in Corollaries 4.2 and 4.3.

In Section 5, we compare equivalence relations on open projections in the
C∗-algebra C0(Ω)⊗K(`2). In particular, we show that the PZ-equivalence is dif-
ferent from the spatial equivalence for projections in C0(Ω)⊗K(`2) (or even in
C0(Ω) ⊗ M2; see Theorem 5.3). Moreover, we also show that two open projec-
tions of C0(Ω) ⊗ K(`2) are Murray–von Neumann equivalent as projections in
C0(Ω)∗∗⊗B(`2) if and only if they produce the same element in the semigroup
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Lsc(Ω;N0) of lower semicontinuous functions from Ω to the one-point compact-
ification N0 of N ∪ {0} (Proposition 5.4). Consequently, the canonical homomor-
phism from the stabilized Cuntz semigroup Cu(C0(Ω)) to Lsc(Ω;N0) is bijec-
tive if and only if the Cuntz equivalence coincides with the Murray–von Neu-
mann equivalence. We also give some interesting consequences of this bijectivity
(Corollaries 5.7 and 5.8).

2. PRELIMINARIES AND NOTATIONS

In this article, A and B are separable C∗-algebras, and K (respectively, B)
is the algebra of compact (respectively, bounded) linear operators on the separa-
ble infinite dimensional Hilbert space `2. For any ξ, η, ζ ∈ `2, we set θξ,η(ζ) :=
〈ζ, ξ〉η. We write SOT and WOT for, respectively, the strong operator topology
and the weak operator topology on the space of bounded linear operators. For ev-
ery x ∈ A and any two subsets M and N of A, we put MN := {bc : b ∈ M; c ∈ N}
and xM := {x}M.

Let {Ti}i∈I and T be, respectively, a net and an element in the set, B(H; K),
of all bounded linear operators from a Hilbert space H to another Hilbert space K.
Recall that {Ti}i∈I is SOT (respectively, WOT) converges to T if ‖Tiξ − Tξ‖ → 0
for all ξ ∈ H (respectively, 〈Tiξ − Tξ, η〉 → 0 for all ξ, η ∈ H).

Throughout this paper, Ω is a second countable locally compact Hausdorff
space. We use O(Ω) to denote the set of all open subsets of Ω. If E ⊆ Ω, we
denote by E, Int E and ∂E the closure, the interior and the boundary of E as a
subset of Ω. Moreover, χE is the indicator function of E (i.e., χE = 1 on E and
vanishes elsewhere). For U, V ∈ O(Ω), we write

V b U if V is compact and is contained in U.

Denote by N0 := N ∪ {0}, and consider N0 := N0 ∪ {∞} (respectively, N :=
N ∪ {∞}) to be the one-point compactification of the discrete space N0 (respec-
tively, N).

Let A∗∗ be the bidual of A and let κA : A → A∗∗ be the canonical embed-
ding. For simplicity, we will usually regard A as a C∗-subalgebra of A∗∗ with-
out mentioning κA if no confusion arises. We denote by σ∗ the weak-*-topology
σ(A∗∗, A∗) on A∗∗, and by za ∈ A∗∗ the central projection such that za A∗∗ is the
atomic part of A∗∗. Furthermore, Proj(A) is the set of projections in A, while
OP(A) ⊆ Proj(A∗∗) is the set of open projections of A. Recall that a projection
p ∈ A∗∗ is open if there exists an increasing net {ai}i∈I in A+ that σ∗-converges to
p. For each p ∈ OP(A), the corresponding hereditary C∗-subalgebra, right ideal
and linking algebra are given, respectively, by

her(p) := {a ∈ A : pap = a}, R(p) := {a ∈ A : pa = a}, and
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L(p) :=
(

her(p) R(p)
R(p)∗ A her(p)A

)
.

It is well-known that

her(p) = A ∩ pA∗∗p = R(p)R(p)∗ = R(p) ∩ R(p)∗,

R(p) = A ∩ pA∗∗ = her(p)A = {x ∈ A : xx∗ ∈ her(p)},
the σ∗-closure of her(p) is pA∗∗p, and the σ∗-closure of R(p) is pA∗∗. For every
a ∈ A+ \ {0}, we consider pa ∈ OP(A) to be the element defined by

pa := σ∗-limn→∞(a/‖a‖)1/n.

It is easy to see that her(pa) = aAa.
On the other hand, we say that r ∈ Proj(A∗∗) is a closed projection of A if

1− r ∈ OP(A). A closed projection r is said to be compact if there exists a ∈ A+

satisfying r 6 a 6 1 (which implies ra = r). Clearly, if A is unital, then any closed
projection is compact. Let p, q ∈ OP(A). We use p to denote the smallest closed
projection of A dominating p. As in [18], we say that p is compactly contained in q
(and is denoted by p b q) if p is compact and p 6 q. We write

• p ∼Mv q if there is u ∈ A∗∗ such that p = uu∗ and q = u∗u;
• p ∼sp q if there is u ∈ A∗∗ such that

p = uu∗, q = u∗u, u∗ her(p)u = her(q), and u her(q)u∗ = her(p);

• p ∼PZ q if there is u ∈ A∗∗ such that

p = uu∗, q = u∗u, u∗ her(p) ⊆ A, and u her(q) ⊆ A;

• p ∼Cu q if for any r b p, there exists s b q with r ∼PZ s and vice versa;

If it happens that p, q ∈ A, then we write

• p ∼A q if there is u ∈ A such that p = uu∗ and q = u∗u.

Let us state the following known facts for open projections p, q of A (see e.g.
[16] and [18]):

(F1) p ∼PZ q ⇒ p ∼sp q ⇒ p ∼Mv q (in fact, the element u satisfying the
requirement for ∼PZ will satisfy the requirement for ∼sp).

(F2) p ∼PZ q⇒ p ∼Cu q⇒ p ∼Mv q.
(F3) p ∼Mv q ⇒ p and q have the same central support, i.e., A her(p)A =

A her(q)A.
(F4) p ∼sp q⇔ there exists a partial isometry v ∈ A∗∗ satisfying

her(p) ⊆ v her(q)v∗ and her(q) ⊆ v∗ her(p)v.

(F5) p ∈ A and p ∼PZ q⇒ q ∈ A and p ∼A q (notice that u∗ = u∗p ∈ A).
(F6) p, q ∈ A and p ∼A q⇒ p ∼PZ q.

Finally, suppose that B is a hereditary C∗-subalgebra of A, and let p, q ∈
Proj(B∗∗). We have the following facts (see e.g. [16]).
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(H1) p ∈ OP(B) if and only if its canonical images in Proj(A∗∗) lies in OP(A).
(H2) If p ∈ OP(B), then A ∩ pA∗∗p = B ∩ pB∗∗p.
(H3) If p, q ∈ OP(B), then p ∼sp q as elements in OP(A) if and only if p ∼sp q as

elements in OP(B).

3. REFORMULATION OF ∼PZ AND ∼sp

By a result of H. Lin (see Theorem 9 of [10]), one knows that there is a pro-
jection p in a separable simple unital C∗-algebra A such that p ∼Mv 1 but p 6∼sp 1.
In fact, from the proof of Theorem 9 in [10], there exists u ∈ A such that uu∗ = 1,
u∗u 6 p and pAp is not isomorphic to A. As p 6 1 as well, by a well-known fact
in von Neumann algebra, one has p ∼Mv 1 (note that, the partial isometry is in
A∗∗ instead of A). On the other hand, since pAp � A, one has p 6∼sp 1.

One of the concerns in this paper is to determine whether ∼PZ coincides
with ∼sp. Let us first begin with the following easy reformulation of ∼PZ. Part
(i) of which can be regarded as an analogue of (F4) for ∼PZ. In view of this result
as well as the bijective correspondence between right ideals and hereditary C∗-
subalgebras, it seems plausible that the equivalence relations ∼PZ and ∼sp might
be the same. However, we will see in Theorem 5.3 below that it is not the case.

PROPOSITION 3.1. Let A be a C∗-algebra and let p, q ∈ OP(A). For any a ∈ A,
we set κa

A(a) := zaκA(a) (i.e. the atomic part of κA(a) in A∗∗).
(i) The following statements are equivalent:

(a) p ∼PZ q.
(b) There is a partial isometry v ∈ A∗∗ with R(p) = vR(q) and R(q) =

v∗R(p).
(c) There is a partial isometry v ∈ A∗∗ with her(p) ⊆ vR(q) and her(q) ⊆

v∗R(p).
(d) There is a partial isometry v ∈ A∗∗ with

(v∗ ⊕ 1)L(p)(v⊕ 1) = L(q) and (v⊕ 1)L(q)(v∗ ⊕ 1) = L(p).

(ii) If A is separable, then p ∼PZ q if and only if there exists w ∈ za A∗∗ satisfying

ww∗= za p, w∗w= zaq, w∗κa
A(her(p))⊆κa

A(A) and wκa
A(her(q))⊆κa

A(A).

Proof. (i) Clearly one has (b)⇒ (c) as well as (b)⇔ (d) (see (F1) and (F3)).
(a) ⇒ (b) Let v ∈ A∗∗ be a partial isometry satisfying the requirement for

p ∼PZ q. Then v∗R(p) ⊆ A ∩ qA∗∗ = R(q) as well as vR(q) ⊆ R(p). The two
equalities in statement (b) follows from p = vv∗ and q = v∗v.

(c) ⇒ (a) By statement (c), one has her(p) ⊆ vR(q)(vR(q))∗ = v her(q)v∗

and p 6 vv∗. If we set w := pv, then p = ww∗, R(p) ⊆ wR(q) and R(q) ⊆
w∗R(p). Furthermore, if u := wq, then q = u∗u (as her(q) ⊆ v∗ her(p)v) and
uu∗ = wqw∗ = pvqv∗p 6 p. On the other hand, since her(p) ⊆ w her(q)w∗, we
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see that p 6 wqw∗ and hence p = uu∗. Moreover, we have u∗ her(p) ⊆ u∗R(p) =
R(q) ⊆ A and u her(q) ⊆ A.

(ii) Let Qa : A∗∗ → A∗∗ be given by Qa(x) := zax. By Corollary 4.5.13 of
[19], Qa is injective on both OP(A) and κA(A). As A is separable, one can find
a ∈ her(p)+ with ‖a‖ = 1 and p = pa. Suppose that w ∈ za A∗∗ satisfies the condi-
tions in the statement. It is not hard to see that w∗κa

A(her(p))w = κa
A(her(q)) and

there exist unique elements b ∈ A+ and x ∈ A with κa
A(b) = w∗κa

A(a)w ∈ κa
A(A)

and κa
A(x) = w∗κa

A(a)1/2 ∈ κa
A(A). Moreover, as pb = σ∗- limn κA(b)1/n, we have

Qa(pb) = σ∗-limnκa
A(b)

1/n = σ∗-limn(w∗κa
A(a)w)1/n = w∗Qa(pa)w = Qa(q),

and hence q = pb. Furthermore, since κa
A(xx∗) = κa

A(b) and

κa
A(x∗x) = κa

A(a)1/2za pκa
A(a)1/2 = κa

A(a),

we know that a = x∗x and b = xx∗. Thus, p = pa ∼PZ pb = q by Proposition 4.3
of [18]. The converse is obvious.

Elements in OPa(A) := za OP(A) are first studied in [2], and are called q-
open projections of A. In fact, a projection p1 ∈ za A∗∗ is said to be q-open if
there is a hereditary C∗-subalgebra B ⊆ A such that the σ(za A∗∗, za A∗)-closure
of κa

A(B) equals p1 A∗∗ (see [2]), and it is not hard to check that it is equivalent to
p1 ∈ OPa(A).

Suppose that A is separable. It is easy to see that if one replaces A∗∗, R(p)
and R(q) in statements (b), (c) and (d) in Proposition 3.1(i) above with za A∗∗,
zaR(p) and zaR(q), respectively, then the resulting statements are also equivalent
to p ∼PZ q. Furthermore, by Theorem II.17 of [1] (see also Corollary 4.5.13 of [19]),
if r (respectively, s) is either an open or a closed projection of A, then r 6 s if and
only if zar 6 zas. In particular, if p1, q1 ∈ OPa(A), we say that p1 is q-compactly
contained in q1 if there exist r1 ∈ OPa(A) and a ∈ A+ such that r1 p1 = 0 and
za − r1 6 κa

A(a) 6 q1. From the above, if p, q ∈ OP(A), then za p is q-compactly
contained in zaq if and only if p is compactly contained in q. This tells us that one
can determine ∼PZ and ∼Cu by looking at the images of A and OP(A) in za A∗∗.

We do not know whether the corresponding statements of Proposition 3.1(ii)
for ∼Mv and ∼sp hold. Note that in the case when A = C0(Ω) ⊗ K, the cor-
responding statement for ∼Mv is precisely Proposition 5.4, while the lack of the
corresponding statement for ∼sp is one of the difficulty in proving Theorem 5.3.

In the following, we give some reformulations of ∼sp, which are the ana-
logues of both Proposition 3.1(i) and Proposition 3.3 of [18]. Let us first set some
notations. Let Ã be the subalgebra of the multiplier algebra M(A) generated by
A and 1. We put

HA := {x ∈ A∗∗ : xÃx∗ ⊆ A, x∗ Ãx ⊆ A}.

It is easy to see that

(3.1) HA = {x ∈ A∗∗ : xAx∗ ⊆ A, x∗Ax ⊆ A} ∩ {x ∈ A∗∗ : xx∗ ∈ A, x∗x ∈ A}.
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Clearly, when A is unital, HA coincides with the first set on the right hand side
of the above equation. However, it can be shown by examples that neither of
the two sets on the right hand side equals HA. Furthermore, if A is the unital
C∗-algebra of convergent complex sequences (identified with c0 ⊕C), then HA =
{((αn)n∈N, α∞) ∈ `∞ ⊕C : |αn| → |α∞|}, which is not a vector subspace of A∗∗.
The reason for the introduction of the set HA is its relation with ∼sp as stated in
the following proposition. Part (i) of this proposition and its argument highlight
the difference between ∼PZ and ∼sp: the right ideal corresponding to u her(q)u∗

is A ∩ uŘ(q) instead of uR(q). However, one cannot use it to conclude that ∼PZ
and ∼sp are different since the choice for u is not unique.

PROPOSITION 3.2. Let A be a C∗-algebra and p, q ∈ OP(A). Set

Ř(p) := {x ∈ A∗∗ : xÃx∗ ∈ her(p)}.

(i) p ∼sp q if and only if there is a partial isometry v ∈ A∗∗ such that Ř(p) = vŘ(q)
and Ř(q) = v∗Ř(p), which is equivalent to her(p) ⊆ v her(q)HA and her(q) ⊆
v∗ her(p)HA.

(ii) If x ∈ HA, then px∗x ∼sp pxx∗ .
(iii) If p ∼sp q and p = pa for some a ∈ A+, there is x ∈ HA such that a = x∗x and

q = pxx∗ .

Proof. (i) Suppose that u ∈ A∗∗ is a partial isometry satisfying the require-
ment for p ∼sp q. For any y ∈ Ř(q) and b ∈ Ã, one has yby∗ ∈ her(q) =

u∗ her(p)u, and so uy ∈ Ř(p) and y = u∗uy ∈ u∗Ř(p) (observe that y ∈ qA∗∗

as yy∗ ∈ her(q)). Similarly, Ř(p) ⊆ uŘ(q), and hence Ř(p) = uŘ(q) as well as
Ř(q) = u∗Ř(p). Conversely, suppose that v ∈ A∗∗ satisfying Ř(p) ⊆ vŘ(q) and
Ř(q) ⊆ v∗Ř(p). For each x ∈ her(p)+ ⊆ Ř(p), there exists y ∈ Ř(q) with x1/2 =
vy, and hence x = vyy∗v∗ ∈ v her(q)v∗. Consequently, her(p) ⊆ v her(q)v∗.
Similarly, her(q) ⊆ v∗ her(p)v and (F4) gives p ∼sp q.

Next, we show that p ∼sp q implies the two inclusions in the second half of
the statement. In fact, if u is as above, then

her(p) = her(p) her(p) ⊆ u her(q) her(q)u∗ her(p) ⊆ u her(q)HA

(it is easy to see that her(q)u∗ her(p) ⊆ HA). Similarly, her(q) ⊆ u∗ her(p)HA.
Conversely, if v ∈ A∗∗ is a partial isometry with her(p) ⊆ v her(q)HA and
her(q) ⊆ v∗ her(p)HA, then the argument above tells us that p ∼sp q (since
her(q)HA ⊆ Ř(q)).

(ii) Let a := x∗x and b := xx∗. Suppose that x = ua1/2 is the polar decom-
position of x in A∗∗. As pa = u∗u and pb = uu∗, one has

u her(pa)u∗ = ua3/2 Aa3/2u∗ = xx∗xAx∗xx∗ ⊆ xx∗Axx∗ = her(pb)

⊆ xAx∗ = ua1/2 Aa1/2u∗ = u her(pa)u∗.

Similarly, u∗ her(pb)u = her(pa).
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(iii) Without loss of generality, we may assume that ‖a‖ = 1 (notice that
if p = 0, then so is q). Suppose that u ∈ A∗∗ is a partial isometry satisfying
the requirement for p ∼sp q. Set b := u∗au ∈ her(q) and x := u∗a1/2. Then
x∗x = a ∈ A, xx∗ = b ∈ A and pb = q (as in Proposition 3.3 of [18]). Moreover,
xAx∗ = u∗a1/2 Aa1/2u ⊆ her(q) ⊆ A. Finally, as ux = a1/2 = ub1/2u∗, we have
x = b1/2u∗ and x∗Ax = ub1/2 Ab1/2u∗ ⊆ u her(q)u∗ ⊆ A. Now, (3.1) tells us that
x ∈ HA.

4. q-OPEN AND q-COMPACT PROJECTIONS OF C0(Ω)⊗K

In this section, we look at the case when A = C0(Ω)⊗K. Note that za A∗∗ ∼=
`∞(Ω;B). For a projection q in A∗∗, we write qa := zaq for its atomic part. Then
qa(ω) ∈ Proj(B), for any ω ∈ Ω. Denote by

Γ
q
k := {ω ∈ Ω : rankqa(ω) = k} (k ∈ N0).

Let us first describe the set

OPa(A) := {pa : p ∈ OP(A)} ⊆ `∞(Ω;B)
of q-open projections. This description could be known to experts but since it is
not stated explicitly anywhere, we present its details here. Notice that the only
place in this section where the second countability of Ω is needed is to apply the
materials in Section 5.G of [4]. Thus, ([4], 5.20) seems to indicate that the second
countable assumption on Ω can be dropped for the results in this section.

PROPOSITION 4.1. Let A = C0(Ω)⊗ K. For any h : Ω → Proj(B), one has
h ∈ OPa(A) if and only if for any ω∞ ∈ Ω, the map ω 7→ h(ω)h(ω∞) is continuous
at ω∞ with respect to SOT on B.

Proof. ⇒ If p ∈ OP(A) and {ai}i∈I is an increasing net in A+ that σ∗-
converges to p, then 〈ai(ω)ξ, ξ〉 ↑ 〈pa(ω)ξ, ξ〉 for any ω ∈ Ω and ξ ∈ `2. This
shows that the map ω 7→ 〈pa(ω)ξ, ξ〉 is lower semicontinuous. Hence, if {ωj}j∈J
is a net in Ω converging to ω∞, we have

(4.1) ‖pa(ω∞)ξ‖2 6 lim inf ‖pa(ωj)ξ‖2 (ξ ∈ `2).

Consequently, for any ζ ∈ pa(ω∞)(`2) and ε > 0, there exists j0 ∈ J with

‖ζ‖2 6 ‖pa(ωj)ζ‖2 + ε (j > j0),

i.e. ‖ζ − pa(ωj)ζ‖2 = ‖ζ‖2 − ‖pa(ωj)ζ‖2 → 0. In other words,

pa(ωj)pa(ω∞)
SOT−→ pa(ω∞).

⇐ It suffices to verify that h is strongly lsc in the sense of Section 5.G in [4]
(see the discussion in p. 980 of [4]). In other words, we are required to show that
h satisfies conditions (i), (ii) and (iii) in 5.19 of [4]. Notice that the first two condi-
tions automatically hold because h(Ω) ⊆ Proj(B). Moreover, by the argument of
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5.19 of [4], subjected to our projection-valued function h, we only need to show
the following weaker version of condition (iii):

For any ε > 0 and K ∈ K with 0 6 K 6 h(ω∞), there is a neigh-
bourhood U of ω∞ satisfying

(4.2) K 6 h(ω) + ε (ω ∈ U).

Now, assume that 0 6 K 6 h(ω∞). One can find an orthonormal subset {ηk}k∈N

in the range of the projection h(ω∞) such that K =
∞
∑

k=1
λkθηk ,ηk for a null sequence

{λk}k∈N of positive real numbers. Since λk → 0, there is N ∈ N with 0 6 λk < ε
2

whenever k > N. By the hypothesis, we have a neighbourhood U of ω∞ such
that

‖h(ω)ηk − ηk‖ <
ε

8N
(ω ∈ U; k = 1, 2, . . . , N).

Thus, for any ξ ∈ `2 and ω ∈ U, we have〈 N

∑
k=1

θηk ,ηk ξ, ξ
〉

6
N

∑
k=1

(
|〈ξ, h(ω)ηk〉|+ |〈ξ, (ηk − h(ω)ηk)〉|

)2

6
〈

h(ω)
( N

∑
k=1

θηk ,ηk

)
h(ω)ξ, ξ

〉
+

N

∑
k=1

2‖ξ‖2‖h(ω)ηk − ηk‖+ ‖ξ‖2‖h(ω)ηk − ηk‖2

6 〈h(ω)ξ, ξ〉+ ε

2
‖ξ‖2.

Consequently, as λk 6 1 (k ∈ N), we have

K−
∞

∑
k=N+1

λkθηk ,ηk 6
N

∑
k=1

θηk ,ηk 6 h(ω) +
ε

2

and (4.2) holds (since {ηk}k∈N is an orthonormal set and λk <
ε
2 for k > N).

Let p ∈ OP(C0(Ω) ⊗ K), and let {ωj}j∈J be a net in Ω that converges to
ω∞ ∈ Ω.

(O1) If rank pa(ω∞) = ∞, then rank pa(ωj) → ∞; if rank pa(ω∞) < ∞, then
rank pa(ω∞) 6 rank pa(ωj) eventually.

Indeed, assume on the contrary that there exist k ∈ N and a subsequence
{ωjn}n∈N satisfying rank pa(ωjn) 6 k < rank pa(ω∞) (n ∈ N). If {ξ1, . . . , ξk+1} is
an orthonormal subset in pa(ω∞)(`2), then Relation (4.1) gives j0 ∈ J such that
〈pa(ωj)ξi, ξi〉 > 1− (2k + 2)−1 for any i = 1, . . . , k + 1 and j > j0. By expanding
{ξ1, . . . , ξk+1} to an orthonormal basis of `2, we arrive at the contradiction that
rank pa(ωjn) > k + 1

2 when n is so large that jn > j0.
(O2)

⋃
k>n

Γ
p

k ∪ Γ
p

∞ ∈ O(Ω) for any n ∈ N because of (O1).
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(O3) (1− pa)(ωj) − (1− pa)(ωj)(1− pa)(ω∞)
SOT−→ 0 by Proposition 4.1. This

property is actually equivalent to 1− pa being q-closed.

COROLLARY 4.2. Let r be a compact projection of A = C0(Ω)⊗K. Suppose that
{ωj}j∈J is a net in Ω converging to ω∞ ∈ Ω.

(i) ‖ra(ωj)− ra(ωj)ra(ω∞)‖ → 0.
(ii) rankra(ωj) 6 rankra(ω∞) for large enough j.

(iii) rankra(ω) < ∞ (ω ∈ Ω) and
⋃

k>n
Γr

k is a compact subset of Ω (n ∈ N).

(iv) There is n0 ∈ N such that rankr(ω) 6 n0 (ω ∈ Ω).
(v) ra|Γr

n is norm-continuous for each n ∈ N.

Proof. Consider a ∈ A+ to be an element satisfying ra 6 zaa 6 1. Set
rj := ra(ωj) and aj := a(ωj) for j ∈ J ∪ {∞}.
(i) By (O3), one has rj − rjr∞

SOT−→ 0. As {‖rj − rjr∞‖}j∈J is bounded, the SOT-
convergence implies ‖(rj − rjr∞)y‖ → 0 for any y ∈ K. Since rjaj = rj (j ∈
J ∪ {∞}) and ‖aj − a∞‖ → 0, we see that

‖rj − rjr∞aj‖ 6 ‖(rj − rjr∞)(aj − a∞)‖+ ‖(rj − rjr∞)a∞‖ → 0,

and ‖r∞aj − r∞‖ = ‖r∞aj − r∞a∞‖ → 0. Thus, the conclusion follows.
(ii) Suppose that the statement is not true. By passing to a subnet if neces-

sary, we may assume that rankrj >n0 := rankr∞ for all j∈ J. Let {ξ(1)j , . . . , ξ
(n0+1)
j }

be an orthonormal subset of rj(`
2) (j ∈ J). Define ζ

(1)
j := r∞(ξ

(1)
j ) and put

ζ
(l)
j := r∞(ξ

(l)
j ) − ∆

(l)
j (r∞(ξ

(l)
j )) for l = 2, . . . , n0 + 1, where ∆

(l)
j is the orthog-

onal projection onto the subspace spanned by {r∞(ξ
(1)
j ), . . . , r∞(ξ

(l−1)
j )}. Since

‖rj − r∞rj‖ → 0 (because of part (i)), for each ε > 0, one can find jε ∈ J such that
if j > jε and η ∈ rj(`

2), one has ‖η − r∞η‖ < ε‖η‖. Thus,

‖ζ(1)j − ξ
(1)
j ‖ < ε and ‖ζ(1)j ‖ > 1− ε (j > jε).

Hence, ‖ζ(1)j ‖ > 0 when ε is small enough. Moreover, as

ζ
(2)
j = r∞(ξ

(2)
j )−

〈ζ(1)j , r∞(ξ
(2)
j )〉

‖ζ(1)j ‖2
ζ
(1)
j = r∞(ξ

(2)
j )−

〈r∞(ξ
(1)
j )− ξ

(1)
j , ξ

(2)
j 〉

‖ζ(1)j ‖2
ζ
(1)
j

(because 〈ξ(1)j , ξ
(2)
j 〉 = 0), one has ‖ζ(2)j − ξ

(2)
j ‖ < ε + ε

1−ε and ‖ζ(2)j ‖ > 1− ε−
ε

1−ε if j > jε. Again, ‖ζ(2)j ‖ > 0 when ε is small enough and the linear span of

{r∞(ξ
(1)
j ), r∞(ξ

(2)
j )} equals that of {ζ(1)j , ζ

(2)
j }. Similarly, ‖ζ(3)j − ξ

(3)
j ‖ < ε+ ε

1−ε +
ε+ε/(1−ε)

1−ε−ε/(1−ε)
and ‖ζ(3)j ‖ > 1− ε − ε

1−ε −
ε+ε/(1−ε)

1−ε−ε/(1−ε)
if j > jε. Inductively, when



COMPARISONS OF EQUIVALENCE RELATIONS ON OPEN PROJECTIONS 111

ε is small enough, the subset {ζ(1)j , . . . , ζ
(n0+1)
j } (for j > jε) consists of non-zero

orthogonal elements in r∞(`2) which is a contradiction.
(iii) Since a(ω) is compact (ω ∈ Ω), we have Γr

∞ = ∅. Moreover, part (ii)
tells us that

⋃
k>n

Γr
k is a closed subset of Ω for n ∈ N. Finally, as a(ω) 6 1

2 whenever

ω is outside some compact set K, we see that
⋃

n∈N
Γr

n ⊆ K.

(iv) Suppose on the contrary that there is a strictly increasing sequence
{nk}k∈N in N such that each Γr

nk
contains an element γk. By part (iii), one can

find a subnet of {γk}k∈N that converges to some γ0 in K with rank ra(γ0) < ∞.
But this will then contradict part (ii).

(v) Suppose that ω∞, ωj ∈ Γr
n for all j ∈ J. Let {ξ(1)j , . . . , ξ

(n)
j } be an or-

thonormal basis of rj(`
2), and {ζ(1)j , . . . , ζ

(n)
j } ⊆ r∞(`2) be the elements con-

structed from {ξ(1)j , . . . , ξ
(n)
j } as in the proof of part (ii). When j is large enough,

the argument of part (ii) implies that η
(l)
j :=

ζ
(l)
j

‖ζ(l)j ‖
(l = 1, . . . , n) is well-defined

and so {η(1)
j , . . . , η

(n)
j } is an orthonormal basis of r∞(`2). Moreover, the argu-

ment of part (ii) tells us that ‖ζ(l)j − ξ
(l)
j ‖ → 0 (l = 1, . . . , n). Consequently, the

projection rj =
n
∑

l=1
θ

ξ
(l)
j ,ξ(l)j

will norm converge to r∞ =
n
∑

l=1
θ

η
(l)
j ,η(l)j

.

Observe that the second countability assumption of Ω is not actually re-
quired in Corollary 4.2 (since the part of Proposition 4.1 that is used in the proof
do not require the second countability). Moreover, by the argument of part (ii),
one may realise part (i) as saying that the net of subspaces {ra(ωj)(`

2)}j∈I is
“asymptotically contained” in ra(ω∞)(`2). In the simple situation as in Exam-
ple 4.4(iv) below, the compactness of r is actually equivalent to the condition in
part (i) as well as part (iii) above.

COROLLARY 4.3. Let A = C0(Ω)⊗K, and let p ∈ OP(A). Set

Ω0 :=
⋃

n∈N0

IntΓ
p

n .

(i) If n ∈ N and {ωj}j∈J is a net in Ω converging to ω∞ ∈ Γ
p

n , then for large enough
j ∈ J, one can find a rank n subprojection Qj of pa(ωj) such that ‖Qj − pa(ω∞)‖ → 0.

(ii) For a fixed ω∞ ∈ Ω0, the map ω 7→ pa(ω)pa(ω∞) is norm-continuous at ω∞,
and the restriction pa|Γp

n
is a norm-continuous function.

(iii)) pa|Ω0 = pa|Ω0 and χΩ0 · pa = pa
0 for a unique p0 ∈ OP(A).

(iv) If Γ
p

∞ \ IntΓ
p

∞ is a nowhere dense subset of Ω, then Ω0 ∪ IntΓ
p

∞ is dense in Ω.
(v) If Γ

p
∞ = ∅, then p = p0, where p0 ∈ OP(A) is as in part (iii).
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(vi) If p0 ∈ OP(A) is as in part (iii), then p is compact if and only if Γ
p

∞ = ∅ and p0
is compact.

Proof. (i) Consider {ξ(1), . . . , ξ(n)} to be an orthonormal basis of pa(ω∞)(`2).
For each j ∈ J, we set pj := pa(ωj), ξ

(1)
j := pj(ξ

(1)) and ξ
(k)
j := pj(ξ

(k)) −

∆
(k)
j (pj(ξ

(k))), where k ∈ {2, . . . , n} and ∆
(k)
j is the projection onto the subspace

spanned by {pj(ξ
(1)), . . . , pj(ξ

(k−1))}. Since pj pa(ω∞)
SOT−→ pa(ω∞) (by Proposi-

tion 4.1), for any ε > 0, there is jε ∈ J such that

‖pj(ξ
(k))− ξ(k)‖ < ε (k = 1, . . . , n; j > jε).

Now, using a similar argument as that for Corollary 4.2(ii), we know that ‖ξ(k)j −

ξ(k)‖ → 0 for k ∈ {1, . . . , n}. Thus, η
(k)
j :=

ξ
(k)
j

‖ξ(k)j ‖
(k = 1, . . . , n) is well-defined

for large enough j ∈ J and they form an orthonormal subset of pj(`
2) such that

η
(k)
j

‖·‖−→ ξ(k) (k = 1, . . . , n). Consequently, Qj :=
n
∑

k=1
θ

η
(k)
j ,η(k)j

will norm converge

to pa(ω∞) =
n
∑

k=1
θξ(k),ξ(k) .

(ii) The first conclusion follows from Proposition 4.1 and the fact rankpa(ω∞)
< ∞. The second conclusion follows directly from part (i).

(iii) By part (ii), we know that pa|Ω0 is norm-continuous. It is clear that
h := χΩ0 · pa satisfies the condition in Proposition 4.1, and h = za p0 for a unique
p0 ∈ OP(A). On the other hand, if we set

f (ω) :=

{
pa(ω) if ω ∈ Ω0,
id`2 otherwise,

then part (ii) and (O3) tell us that f is a q-closed projection. As pa 6 f , we know
that h 6 pa 6 pa 6 f , which gives the assertion that pa|Ω0 = pa|Ω0 .

(iv) Assume on the contrary that there is a non-empty element U in O(Ω)

disjoint from Ω0 ∪ IntΓ
p

∞. Let us first construct the following decreasing sequence
of sets:

Λ0 := Ω and Λn :=
⋃

k>n

Γ
p

k ∪ Γ
p

∞ (n ∈ N).

Then Λk ∈ O(Ω) (see (O2)) and Γ
p

k = Λk \ Λk+1 (k ∈ N0). Thus, Int Γ
p

k =

Λk \Λk+1 and ∂Λk = Λk \Λk. We claim that

IntΓ
p

∞ ∪Ω0 = IntΓ
p

∞ ∪
⋃

k∈N0

Λk \Λk+1 = Ω \
(
(Γ

p
∞ \ IntΓ

p
∞) ∪

⋃
n∈N

∂Λn

)
.

Indeed, the first equality is clear. Let x be an element in the disjoint union⋃
k∈N0

Λk \Λk+1. Then x ∈ Λk but x /∈ Λk+1 for a unique k ∈ N0. Thus, x /∈ Γ
p

∞ ⊆
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⋂
l∈N0

Λl . Moreover, if there exists l ∈ N such that x ∈ ∂Λl = Λl \Λl ⊆ Λl , then l 6

k, which gives a contradiction that x /∈ Λk (because x /∈ Λl). On the other hand, let
x ∈ Int Γ

p
∞. Then x ∈ Λn and hence x /∈ ∂Λn = Λn \Λn, for all n ∈ N. These give

one of the inclusions. Conversely, suppose that x /∈ (Γ
p

∞ \ IntΓ
p

∞) ∪ ⋃
n∈N

(Λn \Λn).

If x ∈ Γ
p

∞, then x ∈ Int Γ
p

∞. If x /∈ Γ
p

∞, there is a smallest k ∈ N such that x /∈ Λk,
which implies that x /∈ Λk. Thus, x ∈ Λk−1 \ Λk. These establish the other
inclusion.

From the claim above, we know that Γ
p

∞ \ IntΓ
p

∞ ∪
⋃

n∈N
∂Λn contains U. As

Γ
p

∞ \ Int Γ
p

∞ is nowhere dense and each ∂Λn is a closed subset of Ω, we see that
there exists n0 ∈ N with ∂Λn0 having non-empty interior (notice that Ω is a Baire
space) which contradicts the fact that Λn0 ∈ O(Ω).

(v) Since p0 6 p, we have p0 6 p, and part (iii) tells us that

(4.3) pa|Ω0 = pa
0|Ω0 = pa|Ω0 .

On the other hand, let ω∞ ∈ Ω \Ω0. By part (iv), Ω0 is dense in Ω and we have a
net {ωj}j∈J in Ω0 that converges to ω∞. By part (i), we may assume that for any
j ∈ J, there is a rank n subprojection Qj of pa(ωj) such that ‖Qj − pa(ω∞)‖ →
0. On the other hand, (O3) and (4.3) tells us that pa(ωj)pa

0(ω∞) − pa(ωj)
SOT−→

0. Consequently, {Qj pa
0(ω∞) − Qj}j∈J will both SOT-converge to 0 and norm-

converge to pa(ω∞)pa
0(ω∞)− pa(ω∞). This implies that pa(ω∞) 6 pa

0(ω∞), and
one has p 6 p0. As p0 is closed, we see that p 6 p0.

(vi) This follows directly from part (v) and Corollary 4.2(iii).

If r is a closed projection, ω∞ ∈ Ω with rank(1− r)a(ω∞) < ∞ and {ωi}i∈I
is a net in Ω converging to ω∞, the same reasoning for Corollary 4.3(ii) also im-
plies that ‖ra(ωj)− ra(ωj)ra(ω∞)‖ → 0. However, one has rank(1− r)a(ω∞) =
∞ when r is compact (by Corollary 4.2(iii)), and the conclusion of Corollary 4.2(i)
does not follow from Corollary 4.3(ii).

Corollary 4.3(v) tells us that if rank pa(ω) < ∞ for all ω ∈ Ω, then pa

coincides with the “q-closure” of pa|Ω0 .

EXAMPLE 4.4. LetN be the one point compactification ofN. Set B := C(N)⊗
K as well as D := C(N) ⊗ M2. It is well-known that B∗∗ ∼= `∞(N;B) and
D∗∗ ∼= `∞(N; M2).

(i) As D is canonically a hereditary C∗-subalgebra of B, Proposition 4.1 and
(H1) implies that a map p : N→ Proj(M2) belongs to OP(D) if and only if one of
the following is satisfied:

(a) p(∞) = p(k) = idC2 for large enough k;
(b) rankp(∞) = 1, rankp(k) > 1 eventually and if {p(k) : rankp(k) = 1}

is infinite, then it is a sequence that converges to p(∞);
(c) p(∞) = 0.
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By direct verifications, for any p, q ∈ OP(D), one has p ∼Mv q if and only if
p ∼PZ q.

(ii) For any p ∈ OP(D), the description (O3) for closed projections tells us that
one of the following holds:

(a) If {k ∈ N : p(k) = idC2} is infinite, then p(∞) = idC2 .
(b) If p(k)→ p(∞), then p(∞) = p(∞).
(c) If p(∞) = 0, rank p(k) 6 1 eventually and {p(k) : rank p(k) = 1}

forms an infinite sequence that converges to some q, then p(∞) = q.
(d) If p(∞) = 0, rank p(k) 6 1 eventually and {p(k) : rank p(k) = 1}

forms an infinite non-Cauchy sequence, then p(∞) = idC2 .
As (ii)(a)–(ii)(d) exhaust all the possibilities of closures of open projections

of D, we know, from (O3), that a closed projection r of D is not the closure of
any open projection if and only if r(∞) = idC2 , rank r(k) 6 1 eventually, and
either r(k) = 0 eventually or {r(k) : rankr(k) = 1} forms an infinite convergent
sequence.

(iii) Set f (k)n :=

{
0 if k 6 n(n− 1)/2 or k > n(n + 1)/2,
1 if n(n− 1)/2 < k 6 n(n + 1)/2.

Let rn be the diag-

onal matrix with diagonal ( f (1)n , f (2)n , . . .), considered as a projection in B. Then

rank rn = n and rn
SOT−→ 0. Thus, r := ((rn)n∈N, 0) is a closed projection of B by

(O3). Note, however, that as Γr
k = {k} (k ∈ N) and Γr

∞ = ∅, the set
⋃

k>1
Γr

k ∪ Γr
∞ is

not closed in N (c.f. the contrast with (O2) and Corollary 4.2(iii)).
(iv) If r ∈ Proj(B∗∗), then r is compact if and only if

rankr(k) < ∞ (k ∈ N) and ‖r(k)− r(k)r(∞)‖ → 0.

In fact, we only need to establish the sufficiency in view of Corollary 4.2(i). Sup-
pose that r satisfies the two conditions as displayed. By (O3), we know that r is
a closed projection. Set a(k) := rk + (1− rk)r∞(1− rk) ∈ K+, where rk := r(k)
(k ∈ N). Since

rk + (1− rk)r∞(1− rk) = r∞ + rk − rkr∞ + (rkr∞ − rk)rk + rk − r∞rk,

we see that ‖a(k) − a(∞)‖ 6 3‖rk − rkr∞‖ → 0. Thus, a ∈ B+ and ra = r as
required.

5. COMPARISON OF EQUIVALENCE RELATIONS ON OP(C0(Ω)⊗K)

In this section, we compare some equivalence relations on OP(C0(Ω;K)).
Before we present our first lemma in this section, let us set some notations. Let
n ∈ N and Cn be the n-dimensional Hilbert space (we identify C∞ with `2 in
the canonical way). Suppose that In is the set of isometries in B(Cn; `2), Pn is
the set of rank n projections in B, and Un is the set of unitaries in B(Cn). In the
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following, we will equip In, Pn and Un with the WOT, which coincides with the
corresponding SOT.

Define a map Fn : In → Pn by

Fn(T) := TT∗ (T ∈ In).

It is not hard to check that Fn is continuous when n < ∞. We will see in the
following lemma that Fn is a Borel map (for n ∈ N) and it has a Borel right
inverse (i.e. a Borel map ψn : Pn → In satisfying Fn ◦ ψn = idPn ). This lemma
could be a known fact, but we do not find it explicitly stated in the literature. We
give a proof here for completeness.

LEMMA 5.1. Let n ∈ N.
(i) We equip B with the WOT and consider Gn : In × In → B to be the map given

by (S, T) 7→ ST∗. If n < ∞, then Gn is continuous. Moreover, G∞ is Borel.
(ii) There exists a Borel right inverse ψn : Pn → In for Fn.

Proof. Let {ς(l)}l∈N be an orthonormal basis for `2. For a fixed k ∈ N, we
consider the projection ek from `2 onto the linear span of {ς(l), . . . , ς(k)}.

(i) The first claim is clear. For the second claim, we note first of all, that
(S, T) 7→ ST∗ek is a continuous map from I∞ × I∞ to B (recall that WOT coin-
cides with SOT on I∞). Thus, for any ξ, η ∈ `2, the map (S, T) 7→ 〈T∗ekξ, S∗ekη〉 is
continuous, which implies that (S, T) 7→ 〈ST∗ξ, η〉 is Borel, because 〈T∗ξ, S∗η〉 =
lim
k→∞
〈T∗ekξ, S∗ekη〉.

(ii) Consider the continuous action γ of Un on In given by γU(T) := TU∗

(U ∈ Un; T ∈ In). Clearly, {F−1
n (P) : P ∈ Pn} coincides with the set of γ-orbits.

These give a bijection F̂n : In/γ→ Pn.
Case 1. n < ∞.
The proof of Corollary 4.3(i) tells us that if {Pj}j∈N is a sequence in Pn that

converges to P ∈ Pn with respects to WOT and {ξ(1), . . . , ξ(n)} is an orthonor-
mal basis of P(`2), then for large enough j, one can find an orthonormal basis
{ξ(1)j , . . . , ξ

(n)
j } of Pj(`

2) such that ‖ξ(k)j − ξ(k)‖ → 0 for all k = 1, . . . , n. This

shows that F̂−1
n : Pn → In/γ is continuous. Note that Un is a separable compact

metrizable group, In is a Polish space under the norm topology (which coincides
with WOT as n < ∞) and the stabilizer subgroup of Un for each T ∈ In is triv-
ial. It then follows from Theorem 2.9 of [8] that there is a Borel cross section
ϕn : In/γ→ In and we may take ψn := ϕn ◦ F̂−1

n .
Case 2. n = ∞.
As in the finite dimensional case, we first show that F̂−1

∞ is continuous.
Suppose that {Pj}j∈N is a sequence in P∞ that SOT-converges to P ∈ P∞. Con-
sider {ξ(k)}k∈N to be an orthonormal basis for P(`2). As in the proof of Corol-
lary 4.3(i), for each j ∈ N, we set ξ

(1)
j := Pj(ξ

(1)) as well as ξ
(k)
j := Pj(ξ

(k)) −

∆
(k)
j (Pj(ξ

(k))), where k > 2 and ∆
(k)
j is the projection onto the subspace spanned
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by {Pj(ξ
(1)), . . . , Pj(ξ

(k−1))}. By the SOT-convergence, for each m ∈ N, one can

find a positive integer jm > jm−1 (with j0 := 1) such that {ξ(1)j , . . . , ξ
(m)
j } is a set

of non-zero orthogonal vectors whenever j > jm.
Suppose that i ∈ N. Then jmi 6 i < jmi+1 for some mi ∈ N0, and we

consider {η(l)
i }l∈N to be an orthonormal basis for Pi(`

2) such that η
(l)
i =

ξ
(l)
i

‖ξ(l)i ‖
for

l = 1, . . . , mi. The SOT-convergence implies that ‖η(l)
i − ξ(l)‖ → 0 for every l ∈ N.

We denote by Qi the projection onto the subspace spanned by {η(1)
i , . . . , η

(mi)
i }

and define Ri, Si ∈ B by

Ri(ς
(l)) :=

{
η
(l)
i if l 6 mi,

0 if l > mi,
and Si(ς

(l)) :=

{
0 if l 6 mi,

η
(l)
i if l > mi.

Then Ri + Si ∈ I∞, RiR∗i = Qi and F∞(Ri + Si) = Pi. It is easy to see that Qi
SOT−→

P and {Ri}i∈N will WOT-converge to the isometry R defined by R(ς(l)) := ξ(l)

(l ∈ N). On the other hand, since SiS∗i = Pi −Qi
WOT−→ 0, we have S∗i

SOT−→ 0 and so

Si
WOT−→ 0. Now, {Ri + Si}i∈N is a sequence in I∞ that WOT-converges to R with

F∞(R) = P. Consequently, F̂−1
∞ is continuous as required.

Secondly, it is well-known that the closed unit ball, B1, of B is a Polish space
under SOT. Thus, P∞ ⊆ B1 is second countable (recall again that WOT coin-
cides with SOT on P∞) and I∞ (being SOT-closed in B1) is a Polish space. As
F̂∞ is a bijective Borel map (since F∞ is a Borel map by part (i)), we know that
I∞/γ is countably separated under the quotient Borel structure. Furthermore, by
Lemme 4 of [7], U∞ is a Polish group under SOT. One may then apply the main
theorem of [6] to obtain a Borel transversal X ⊆ I∞ for γ. Now, the argument in
Theorem 5.2 of [13] (see also (12)⇒ (13) of Theorem 2.9 in [8]) tells us that there is
a Borel cross section ϕ∞ from the quotient Borel space I∞/γ to I∞. On the other
hand, the argument in Theorem 5.1 of [13] (see also (7) ⇒ (6) of Theorem 2.9
in [8]) tells us that the quotient topology of I∞/γ generates the quotient Borel
structure. Therefore, ψ∞ := ϕ∞ ◦ F̂−1

∞ is a Borel map from P∞ to I∞ satisfying
the requirement.

LEMMA 5.2. Let M(Ω;B) be the set of all bounded Borel maps from Ω to B,
when B is equipped with WOT. If p, q ∈ OP(C0(Ω)⊗K) satisfying Γ

p
n = Γ

q
n (n ∈ N),

there is u ∈ M(Ω;B) with

uu∗ = pa and u∗u = qa.

Proof. By inequality (4.1), we know that for any ξ ∈ `2, the function ω 7→
〈paξ, ξ〉 is lower semi-continuous and hence Borel. Thus, the polarization identity
tells us that ω 7→ 〈paξ, η〉 is a Borel function for any ξ, η ∈ `2. Consequently,
pa, qa ∈ M(Ω;B).
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Notice also that pa(Γ
p

n ), qa(Γ
q
n ) ⊆ Pn (n ∈ N). Let ψn : Pn → In be the Borel

right inverse of Fn as given by Lemma 5.1(ii). Define

un(ω) := ψn(pa(ω))ψn(qa(ω))∗ (ω ∈ Γ
p

n ).

Lemma 5.1(i) tells us that un is a bounded Borel map from Γ
p

n to B such that
unu∗n = pa|Γp

n
and u∗nun = qa|Γp

n
. Now, we may define u ∈ M(Ω;B) by setting

u(ω) := un(ω) whenever ω ∈ Γ
p

n , and u(ω) = 0 whenever ω ∈ Γ
p

0 .

We let M be a maximal family of mutually singular continuous Radon mea-
sures on Ω of norm 1. As in p. 434 of [5] (see also Section 5.G of [4]), there is a
canonical ∗-isomorphism C0(Ω)∗∗ ∼= `∞(Ω)⊕`∞

⊕
µ∈M

L∞(Ω, µ) and thus, we can

identify

(5.1) (C0(Ω)⊗K)∗∗ = C0(Ω)∗∗⊗B ∼= `∞(Ω;B)⊕`∞
⊕

µ∈M
L∞((Ω, µ);B)

such that the canonical embedding κC0(Ω)⊗K is the one given by the canonical
map from C0(Ω) ⊗ K to `∞(Ω;B) and those from C0(Ω) ⊗ K to L∞((Ω, µ);B)
(µ ∈M).

For every µ ∈ M, we consider Φµ : M(Ω;B) → L∞((Ω, µ);B) to be the
canonical ∗-homomorphism and set

(5.2) Φ(w) := w + ∑
µ∈M

Φµ(w) (w ∈ M(Ω;B)).

It is easy to see that

(5.3) Φ(κa
C0(Ω)⊗K(a)) = κC0(Ω)⊗K(a) (a ∈ C0(Ω)⊗K).

Now, we can produce an example showing that ∼sp is different from ∼PZ
on Proj(C(Ω)⊗K) for a compact Hausdorff space Ω with dim Ω = 2. Notices
that in order to obtain this counter example, we only need the easier case of n <

∞ in Lemma 5.1(ii) (since Γ
p

∞ = Γ
q
∞ = ∅ for the two open projections p and q

considered in the proof of Theorem 5.3).

THEOREM 5.3. There exists p, q ∈ Proj(C(CP1) ⊗ K) such that p ∼sp q but
p �PZ q.

Proof. Let A := C(CP1;K) and B := C(CP1; M2). By fixing an embedding
of M2 as a hereditary C∗-subalgebra of K, one can regard B as a hereditary C∗-
subalgebra of A. Moreover, we identify S3 with {ξ ∈ C2 : ‖ξ‖ = 1} and consider
Λ : S3 → CP1 to be the canonical quotient map. Define p, q : CP1 → M2 ⊆ K by
setting

p(Λ(ξ)) := θξ,ξ and q(Λ(ξ)) := θη0,η0 (ξ ∈ S3),

where η0 ∈ S3 is a fixed vector. Clearly, p is the canonical continuous map from
CP1 to Proj(M2). Thus, p, q ∈ Proj(A).
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Lemma 5.2 gives an element u ∈ M(CP1;B) satisfying uu∗ = pa and u∗u =
qa (as rank p(ω) = 1 = rank q(ω) for all ω ∈ Ω). For any x ∈ her(p) = pBp =
pAp and ω ∈ CP1, one has x(ω) = λ(ω)p(ω) for some λ(ω) ∈ C. By taking the
trace on M2, we know that λ is continuous on CP1. Since

(u∗xu)(ω) = λ(ω)q(ω) (ω ∈ CP1),

we conclude that u∗κa
A(x)u ∈ κa

A(her(q)). Similarly, we have uκa
A(her(q))u∗ ⊆

κa
A(her(p)).

Suppose that Φ : M(CP1;B) → A∗∗ is the map given by (5.1) and (5.2).
Then (5.3) tells us that κA(b) = Φ(κa

A(b)) (b ∈ B), which gives

Φ(u)∗κA(her(p))Φ(u) ⊆ κA(her(q))

and
Φ(u)κA(her(q))Φ(u)∗ ⊆ κA(her(p)).

Consequently, p ∼sp q as elements in OP(A).
Suppose on the contrary that p ∼PZ q as elements in OP(A). By (F5),

there is v ∈ A with p = vv∗ and q = v∗v. As p, q ∈ B, we know that actu-
ally v ∈ B. Let ξ(ω) ∈ S3 satisfying v(ω) = θη0,ξ(ω) and p(ω) = θξ(ω),ξ(ω).
Since v ∈ C(CP1; M2), we see that ξ : CP1 → S3 is a continuous map satisfying
Λ ◦ ξ = idCP1 . However, this is impossible because the second homology group
H2(CP1) = Z, while H2(S3) = (0).

Note that in Theorem 5.3 we also have p ∼sp q as elements in OP(B) (be-
cause of (H3)). On the other hand, the obstruction for p ∼PZ q in the above is the
fact that there is no continuous right inverse of the map Λ : S3 → CP1, although
there always exists a Borel right inverse due to Lemma 5.1(ii). In Corollary 5.7(ii)
below, we will see that the existence of such a continuous right inverse ties up
very closely with the PZ-equivalence.

In the following, we will give more comparisons among∼Mv,∼Cu,∼PZ and
∼sp. These comparisons are related to the stabilized Cuntz semigroup of C0(Ω).
Let us first recall from Section 6.1 of [18] that one may consider the stabilized
Cuntz semigroup of a separable C∗-algebra B as the set

Cu(B) = OP(B⊗K)/ ∼Cu

equipped with the canonical semigroup structure.
From now on, we set A := C0(Ω)⊗K.
For any p ∈ OP(A), we obtain, from (O2), that the function ω 7→ rankpa(ω)

is lower semicontinuous. This gives a map Θ̂ : OP(A) → Lsc(Ω;N0) (the set of
lower semicontinuous functions from Ω to N0) satisfying

Θ̂(p)(ω) := rank pa(ω) (p ∈ OP(A); ω ∈ Ω).(5.4)

If p, q ∈ OP(A) with p ∼Cu q, then p ∼Mv q which clearly implies Θ̂(p) = Θ̂(q).
Thus, we obtain a map Θ : Cu(C0(Ω))→ Lsc(Ω,N0). The following proposition
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could be known to experts. It tells us that Θ̂(p) = Θ̂(q) is actually equivalent to
p ∼Mv q.

PROPOSITION 5.4. Suppose that A = C0(Ω) ⊗ K. If p, q ∈ OP(A), then
p ∼Mv q if and only if there exists v ∈ `∞(Ω;B) such that vv∗ = pa and v∗v = qa (or
equivalently, rank pa(ω) = rankqa(ω) for any ω ∈ Ω).

Proof. It suffices to verify that p ∼Mv q if such a v can be found. For any
n ∈ N, the existence of v implies that Γ

p
n = Γ

q
n . By Lemma 5.2, one can find

u ∈ M(Ω;B) satisfying

uu∗ = pa and u∗u = qa.

Let Φ : M(Ω,B) → A∗∗ be the map given by (5.1) and (5.2). As A is
separable, there exists b ∈ A+ with {κA(b)1/n}n∈N being σ∗-converging to p. For
any f ∈ K∗+, one has f (b1/n(ω)) ↑ f (pa(ω)) (ω ∈ Ω). Therefore, the monotone
convergence theorem gives∫

Ω

f (b1/n(ω))dµ(ω)→
∫
Ω

f (pa(ω))dµ(ω) (µ ∈M).

This shows that for any µ ∈ M, the sequence {Φµ(κa
A(b))

1/n}n∈N will weak-∗-
converge to Φµ(pa). Since the isomorphism in (5.1) is normal, we see from (5.3)
that {κA(b)1/n}n∈N σ∗-converges to Φ(pa). Similarly, q = Φ(qa). Thus, we have
Φ(u)Φ(u)∗ = p and Φ(u)∗Φ(u) = q as required.

REMARK 5.5. The authors are grateful to the referee for communicating to
them a shorter proof for the above proposition using a result in [18]. With that
proof, one can bypass Lemma 5.1(ii), whose argument is lengthy and complicated
(note that the case when n < ∞ of Lemma 5.1(ii) is still needed for Theorem 5.3).
However, since we think that the fact stated in Lemma 5.1(ii) could be interesting
to some people, we decided to keep our proof. Nevertheless, for the benefit of
the reader, we include the outline of the proof from the referee in the following.

Since A is separable, there exist a, b ∈ A+ such that p = σ∗-limn κA(a)1/n

and q = σ∗-limn κA(b)1/n, respectively. Suppose that rank pa(ω) = rank qa(ω)
(ω ∈ Ω). For any lower semi-continuous tracial weight τ on A, there is a finite
Radon measure µ on Ω such that τ is given by the integration with respect to µ

composing with the trace on B(`2). If τ̃ is the normal extension of τ to A∗∗, then
dτ(a) = τ̃(pa) =

∫
Ω

rank pa(ω)dµ(ω) and a similar relation holds for dτ(b). Thus,

the above assumption implies that dτ(a) = dτ(b) and Theorem 5.8 of [18] gives
p ∼Mv q as required.

THEOREM 5.6. Let Θ : Cu(C0(Ω))→ Lsc(Ω,N0) be the map induced by (5.4).
(i) Θ is surjective.

(ii) Θ is injective if and only if ∼Mv coincides with ∼Cu on OP(C0(Ω)⊗K).
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Proof. (i) We first fix an orthonormal basis {ς(k)}k∈N for `2 and consider

elements in B as infinite matrices. Let e0 := 0, e∞ := id`2 , and en :=
n
∑

k=1
θς(k),ς(k)

(n ∈ N). Suppose that f ∈ Lsc(Ω,N0). For any ω ∈ Ω, we set

h f ,ς(ω) = en whenever f (ω) = n.

Since for any ω0 ∈ Ω, the map ω 7→ min{ f (ω), f (ω0)} is continuous at ω0,
we see that h f ,ς ∈ OPa(C0(Ω) ⊗ K) (by Proposition 4.1) and the surjectivity is
obtained.

(ii) Notice that Θ̂(p) = Θ̂(q) if and only if pa is Murray–von Neumann
equivalent to qa in `∞(Ω;B), which in turn is equivalent to p ∼Mv q due to Propo-
sition 5.4. This gives the conclusion.

COROLLARY 5.7. Define

OPs(C0(Ω)⊗K) := {p ∈ OP(C0(Ω)⊗K) : Γ
p

∞ = ∅ and Γ
p

n ∈ O(Ω), ∀n ∈ N}.

(i) Suppose that Θ : Cu(C0(Ω)) → Lsc(Ω,N0) is injective. Let U ∈ O(Ω),
n ∈ N and h : U → Pn be a norm-continuous map. If V ∈ O(Ω) such that V b U,
there is a norm-continuous map ϕ : V → In satisfying ϕϕ∗ = h|V , i.e., ϕ(v)ϕ(v)∗ =
h(v), ∀v ∈ V.

(ii) ∼PZ coincides with ∼Mv on OPs(C0(Ω) ⊗ K) if and only if for any n ∈ N,
U ∈ O(Ω) and norm-continuous map h : U → Pn, there is a norm-continuous map
ψ : U → In satisfying ψψ∗ = h.

Proof. Let ς(k) and ek be as in the proof of Theorem 5.6 (k ∈ N) and e0 := 0.
(i) Let us first extend h to a function from Ω to Proj(B) by setting h(Ω \U) =

{0}. Then Proposition 4.1 produces a unique element p ∈ OP(A) with h = pa.
Similarly, if we set g ≡ en on U and g ≡ 0 on Ω \U, then g = qa for a unique
q ∈ OP(A). The same argument also tells us that there exist r, s ∈ OP(A) with
ra = χV · h and sa = χV · g. By multiplying h and g with a continuous function
from Ω to [0, 1] that takes the value 1 on V and vanishes outside U, we obtain
r b p and s b q (see the discussion following Proposition 3.1). The injectivity of
Θ and Theorem 5.6(ii) tell us that p ∼Cu q. Thus, r ∼PZ s1 for an open projection
s1 b q. As rank ra = rank sa

1, we deduce that s1 = s. Let u ∈ `∞(Ω;B) ∼= za A∗∗

be an element satisfying the condition in Proposition 3.1(ii) for r ∼PZ s such that
uu∗ = r and u∗u = s. Then uu∗|V = h|V and u∗u|V = g|V . Define ϕ : V → In by

ϕ(ω)(λ1, . . . , λn) := u(ω)
( n

∑
i=1

λiς
(i)
)

(ω ∈ V; λ1, . . . , λn ∈ C)

(notice that u∗(ω)u(ω) = en). Now, pick any ω0 ∈ V and any open neighbour-
hood W of ω0 with W b V. By multiplying g with a continuous function from Ω

to [0, 1] that takes the value 1 on W and vanishes outside V, we obtain b ∈ her(s)+
such that κa

A(b)|W = g|W . As uκa
A(b) ∈ κa

A(A) and u|W = uκa
A(b)|W , one knows

that u|W is norm-continuous at ω0. Hence, ϕ is norm-continuous at ω0.
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(ii) The argument of the “only if part” is similar to, but easier than, that
of part (i). For the “if part”, let us suppose that p, q ∈ OPs(A) with p ∼Mv q.
Then Γ

p
n = Γ

q
n (n ∈ N0). Consider r ∈ OPs(A) with ra(ω) = en for all ω ∈

Γ
p

n and n ∈ N0 (whose existence is ensured by Proposition 4.1). If n ∈ N, we
define hn := pa|Γp

n
. By Corollary 4.3(ii), hn is norm-continuous and the hypothesis

produces a norm-continuous map ψn : Γ
p

n → In with ψnψ∗n = hn. Now, define
u ∈ `∞(Ω;B) by

u(ω)
( ∞

∑
k=1

λkς(k)
)

:=

{
ψn(ω)(λ1, . . . , λn) if ω ∈ Γ

p
n ,

0 if ω ∈ Γ
p

0 .

Then u|Γp
n

is norm-continuous for every n ∈ N0, and we have uu∗ = pa as well as

u∗u = ra. Suppose that f ∈ her(p). Note that {Γp
n }n∈N is a disjoint sequence in

O(Ω) and

‖ f (ωj)‖ → ‖ f (ω0)‖ = ‖pa(ω0) f (ω0)‖ = 0

whenever {ωj}j∈J is a net in Ω converging to ω0 ∈ Γ
p

0 . It follows u∗κa
A( f ) ∈

κa
A(A). Similarly, we have uκa

A(her(r)) ⊆ κa
A(A), which implies that p ∼PZ r,

because of Proposition 3.1(ii). A similar argument also shows that q ∼PZ r.

COROLLARY 5.8. If dim Ω 6 1 and A = C0(Ω)⊗K, then∼Mv, ∼PZ, ∼sp and
∼Cu coincide with each other on OP(A).

Proof. It suffices to show that ∼Mv coincides with ∼PZ on OP(A). Note that
since dim Ω 6 1, the topological stable rank of C0(Ω) is 1, and so is A (by Theo-
rem 6.4 of [17]). Thus, Section 6.2 of [18] tells us that ∼Cu coincides with ∼PZ on
OP(A). Now, this corollary follows from Theorem 3.4 of [3] and Theorem 5.6(ii)
(note that although the result in [3] was stated for the case of dim Ω = 1, it actu-
ally holds for dim Ω = 0 as well, by using exactly the same argument).

The fact that Theorem 3.4 of [3] holds for the case when dim Ω = 0 was com-
municated to us by the referee. Our original proof involves a separate lengthy
argument for this case.

REMARK 5.9. (i) The proof of Theorem 5.3 tells us that the conclusion of
Corollary 5.7(i) does not hold when Ω = CP1.

(ii) Suppose that ∼PZ coincides with ∼Mv on OPs(C0(Ω) ⊗ K). For any
p ∈ OP(C0(Ω) ⊗ K), we obtain from Corollary 5.7(ii) and Corollary 4.3(iii) a
norm continuous map ψ : Ω0 →

⋃
n∈N0

In such that ψψ∗ = pa|Ω0 . Notice also that

if Γ
p

∞ = ∅, then Corollary 4.3(iv) says that Ω0 is dense in Ω.

By Theorems 1.1 and 1.3 of [21] and Theorem 5.6, we have the following
result.
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COROLLARY 5.10. The equivalence relations ∼Cu and ∼Mv coincide on the set
OP(C0(Ω)⊗K) if and only if dim Ω 6 2 and the Cěch cohomology Ȟ2(K;Z) vanishes
for any compact subset K ⊆ Ω.
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