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ABSTRACT. Given p ∈ (1, ∞), let G be a countable Powers group, and let
(G, A, α) be a separable nondegenerately representable isometric G-Lp-opera-
tor algebra. We show that if A is unital and G-simple then the reduced Lp-
operator crossed product of A by G, Fp

r (G, A, α), is simple. Furthermore, traces
on Fp

r (G, A, α) are in natural bijection with G-invariant traces on A via the
standard conditional expectation. In particular, if A has a unique normalized
trace then so does Fp

r (G, A, α). These results generalize special cases of some
results due to de la Harpe and Skanadalis in the case of C∗-algebras.
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1. INTRODUCTION

For a discrete group G, its left regular representation in l2(G) generates a
C∗-algebra C∗r (G) with a faithful trace. Such objects are interesting both in ana-
lytical and group theoretical contexts, a fact that became apparent from a result
of Powers [17] which says that the reduced group C∗-algebra of a free group with
two generators is simple and has a unique trace.

A group G is called C∗-simple if it is infinite and if its reduced group C∗-
algebra has no nontrivial ideals. Since the announcement of Powers’ result in
1975, the class of C∗-simple groups and in general simple C∗-algebras has been
considerably enlarged. For more recent examples see [1], [3], [9], [10], [12]. In-
deed, many authors applied his distinguished approach to some other groups
which sometimes led to defining new classes of C∗-simple groups. One of those
interesting classes is the class of Powers groups defined in [7], see Definition 2.5
below. These groups enjoy both combinatorial and geometrical properties. As
a first example one can think of free groups, see [8]. During recent years some
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authors, by doing modifications in the definition, have introduced new examples
of C∗-simple groups, cf. [2], [4], [10], [18].

In [11], de la Harpe and Skandalis among other results proved that the re-
duced C∗-crossed product, C∗r (G, A, α), is simple whenever G is a Powers group
and A is a unital G-simple C∗-algebra. Moreover, traces on C∗r (G, A, α) are char-
acterized in terms of traces on A.

Since the theory of crossed products has been developed, crossed products
of other algebras than C∗-algebras and von Neumann algebras have received
very little attention. But very recent efforts suggest that there is an interesting
theory behind these. Indeed, in a new approach, Dirksen, de Jeu and Wortel
in [5] defined crossed products of Banach algebras and Phillips in [15] studied
crossed products of a specific class of Banach algebras, the so-called Lp-operator
algebras. In fact, Phillips along his way to compute the K-theory of an Lp version
of Cuntz algebras, introduced crossed products of operator algebras on σ-finite
Lp-spaces by isometric actions of locally compact groups, for p ∈ [1, ∞). In his
very recent works on Lp-operator algebras, among many different results, he has
introduced some simple Lp-operator algebras. The reader may refer to [14], [15],
[16] for details.

Being interested in investigating simple Lp-operator algebras of crossed
product type we are going to generalize the main results of [11] for countable
Powers groups at Lp level.

This paper is arranged as follows. Section 2 contains some preliminaries
which are needed in the sequel. In Section 3, we state our main results. Here
we should emphasize that, because of some technical requirements, in the defi-
nition of full and reduced Lp-operator crossed products ([14], Definition 3.3), G
is assumed to be a second countable locally compact group. Hence in order to
make our discrete groups fit in with this framework we need to consider count-
able Powers groups. In [11] the Powers groups are not assumed to be countable
and there is no condition on the C∗-algebra other than it be unital. Here we will
assume that the Powers group G is countable and that the unital Lp-operator al-
gebra A is separable. It should be mentioned that A is assumed to be separable
because the results in Section 4 of [14] which we use, specially, construction of the
standard conditional expectation, are proved with this condition. So the main re-
sults of this paper, in particular for p = 2, generalize special cases of the main re-
sults in [11]. We prove that the reduced Lp-operator crossed product, Fp

r (G, A, α),
is simple whenever p ∈ (1, ∞), G is a countable Powers group, (G, A, α) is a
separable nondegenerately representable isometric G-Lp-operator algebra, and
A is unital and G-simple. Furthermore, assuming σ is any G-invariant trace on
A and E is the standard conditional expectation from Fp

r (G, A, α) to A, we show
that traces of the form σ ◦ E are the only traces on Fp

r (G, A, α). As a result for
p ∈ (1, ∞), Fp

r (G), the reduced group Lp-operator algebra of a countable Pow-
ers group G is simple with a unique normalized trace. From this we deduce Lp
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version of Powers [17]. It also generalizes a result by Paschke and Salinas ([13],
Theorem 1.1) for countable groups. Finally, it turns out that for any countable
discrete group G, neither F1

r (G) nor F1(G) is simple, as one can see from Propo-
sition 3.14 of [14].

The proofs of the aforementioned results in the literature usually exploit the
convenient geometric properties of Hilbert spaces, and in particular that every
closed subspace has an orthogonal complement. In the present paper, the lack of
such properties is taken care of by using an argument based on duality properties
in Lp-spaces in the proof of our key result Theorem 3.3.

2. PRELIMINARIES

In this section we recall some basic definitions, examples and results mainly
from [14], in order to make this article self-contained.

Let (X,B, µ) be a measure space. For p ∈ [1, ∞], we denote by B(Lp(X, µ))
the Banach algebra of all bounded linear operators on Lp(X, µ).

An Lp-operator algebra is defined to be a Banach algebra A which is isomet-
rically isomorphic to a norm closed subalgebra of B(Lp(X, µ)) for some measure
space (X,B, µ) and p ∈ [1, ∞]. For p = 2, an L2-operator algebra A is isometri-
cally isomorphic to a norm closed (not necessarily self-adjoint) subalgebra of the
bounded operators on some Hilbert space.

Clearly, for p ∈ [1, ∞] and measure space (X,B, µ), the algebra B(Lp(X, µ))
is an Lp-operator algebra. Also if X is a locally compact Hausdorff space, then
C0(X), with its supremum norm, is an Lp-operator algebra for all p ∈ [1, ∞],
cf. Example 1.13 of [14].

DEFINITION 2.1 ([14], Definition 1.17). Let p ∈ [1, ∞], and let A be an Lp-
operator algebra.

(i) Let (X,B, µ) be a measure space. A representation of A (on Lp(X, µ)) is a
continuous homomorphism π : A → B(Lp(X, µ)). If ‖π(a)‖ 6 ‖a‖ (respectively
‖π(a)‖ = ‖a‖) for all a ∈ A, then π is called contractive (respectively isometric).

(ii) Let p 6= ∞. A representation π : A → B(Lp(X, µ)) is called separable if
Lp(X, µ) is separable.

(iii) A representation π is said to be σ-finite if µ is σ-finite.
(iv) A representation π is called nondegenerate if

π(A)(Lp(X, µ)) = span({π(a)ξ : a ∈ A and ξ ∈ Lp(X, µ)})

is dense in Lp(X, µ).
(v) We say that A is separably (nondegenerately) representable whenever it has a

separable (nondegenerate) isometric representation, and nondegenerately σ-finitely
representable if it has a nondegenerate σ-finite isometric representation.
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By Remark 1.18 of [14], if A is separably (nondegenerately) representable,
then it is σ-finitely (nondegenerately) representable and by Proposition 1.25 of
[14] if A is separable then it is separably representable.

Note that it is not required that representations of a unital algebra to be uni-
tal, but nondegenerate representations of a unital algebra are necessarily unital.

Let A be a Banach algebra and let Aut(A) denote the group of all continuous
automorphisms of A. Let G be a topological group, by an action of G on A we
mean a homomorphism g 7→ αg from G to Aut(A) such that for any a ∈ A,
the map g 7→ αg(a) from G to A is continuous. An action α is called isometric
if each αg is. If a topological group G acts on an Lp-operator algebra A, then the
triple (G, A, α) is called a G-Lp-operator algebra, and it is an isometric G-Lp-operator
algebra whenever α is isometric. A G-Lp operator algebra (G, A, α) is said to be
separable if A is separable and it is said to be nondegenerately representable, or
σ-finitely representable, whenever A has the corresponding property in the sense
of Definition 2.1.

As an example, let p ∈ [1, ∞], let X be a locally compact Hausdorff space,
and let G be a locally compact group which acts continuously on X, that is the
corresponding action (g, x) 7→ g · x is a continuous map from G× X to X. Then
C0(X) is an Lp-operator algebra and the action α of G on C0(X) defined by
αg( f )(x) = f (g−1x) for f ∈ C0(X), g ∈ G and x ∈ X, makes (G, C0(X), α)
an isometric G-Lp-operator algebra, see Example 2.4 of [14].

Throughout this paper, by an ideal in an algebra we mean a (not necessarily
closed) two sided ideal. A Banach algebra A is said to be simple if {0} and A
are the only ideals of A. Let (G, A, α) be a G-Lp-operator algebra. An ideal I of
A satisfying αg(I) ⊂ I for all g ∈ G, is called a G-invariant ideal. We say that
A is G-simple if {0} and A are the only G-invariant ideals. It is clear that if A is
simple then it is G-simple. We recall that according to some texts, the definition
of simplicity (respectively G-simplicity) is that there are only trivial closed ideals
(respectively closed G-invariant ideals). These two notions coincide for unital
Banach algebras.

REMARK 2.2. Let A be a Banach algebra, let G be a locally compact group
with left Haar measure ν, and let α : G → Aut(A) be an action of G on A. Then
Cc(G, A, α), the vector space of all compactly supported continuous functions
from G to A is an associative algebra over C, when it is equipped with the twisted
convolution product defined by

(ab)(g) =
∫
G

a(h) αh(b(h−1g))dν(h)

for a, b ∈ Cc(G, A, α) and g ∈ G.

Let p ∈ [1, ∞]. Let G be a topological group, and let (G, A, α) be a G-Lp-
operator algebra. Take a measure space (X,B, µ). A covariant representation of
(G, A, α) on Lp(X, µ) is a pair (υ, π) consisting of a representation g 7→ υg from G
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to the group of invertible operators on Lp(X, µ) such that g 7→ υgξ is continuous
for all ξ ∈ Lp(X, µ), and a representation π : A → B(Lp(X, µ)) such that for all
g ∈ G and a ∈ A, we have

π(αg(a)) = υgπ(a)υ−1
g .

A covariant representation (υ, π) of (G, A, α) is contractive (respectively iso-
metric) if ‖υg‖ 6 1 for all g ∈ G and π is contractive (respectively isometric). It
is separable, σ-finite, or nondegenerate whenever π has the corresponding property.
Note that, the condition ‖υg‖ 6 1 for all g ∈ G, implies that each υg is an isometry.

Let p ∈ [1, ∞] and let A be an Lp-operator algebra. If G is a locally com-
pact group with a left Haar measure ν then any covariant representation (υ, π)
of (G, A, α) on some Lp(X, µ) leads to a representation υ n π of Cc(G, A, α) on
Lp(X, µ) defined by

(2.1) (υ n π)(a)ξ =
∫
G

(π(a(g)) υgξ dν(g)

for a ∈ Cc(G, A, α) and ξ ∈ Lp(X, µ). This integral is defined by duality, that is
for every ω in the dual space Lp(X, µ)

′
of Lp(X, µ) we should have

ω((υ n π)(a)ξ) =
∫
G

ω((π(a(g)) υgξ) dν(g).

Here we bring some parts of Lemma 2.11 of [14].

LEMMA 2.3. Let p ∈ [1, ∞). Let G be a locally compact group with left Haar
measure ν, and let (G, A, α) be an isometric G-Lp-operator algebra. Take a measure
space (X,B, µ) and let π0 : A→ B(Lp(X, µ)) be a contractive representation. Then the
following hold:

(i) There exists a unique representation υ : G → B(Lp(G× X, ν× µ)) such that for
all g, h ∈ G, x ∈ X and ξ ∈ Lp(G× X, ν× µ),

υg(ξ)(h, x) = ξ(g−1h, x),

and this υ is isometric.
(ii) There exists a unique representation π : A → B(Lp(G × X, ν× µ)) such that

for a ∈ A, h ∈ G and ξ ∈ Cc(G, Lp(X, µ)) ⊂ Lp(G× X, ν× µ) we have

(2.2) (π(a)ξ)(h) = π0(α
−1
h (a))(ξ(h)),

and this π is contractive.
If G is countable and discrete and ν is the counting measure, then according to the identi-
fication of Lp(G×X, ν× µ) with lp(G, Lp(X, µ)) as in Remark 2.10 of [14], (2.2) holds
for all ξ ∈ Lp(G× X, ν× µ).

(iii) The pair (υ, π) is covariant. Further, if π0 is nondegenerate then so is π.
(iv) If G is second countable and µ is σ-finite, then ν× µ is σ-finite.
(v) If G is second countable and Lp(X, µ) is separable, then Lp(G × X, ν × µ) is

separable.
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The covariant representation (υ, π) obtained as above is called the regular co-
variant representation of (G, A, α) associated to π0. Any representation constructed
in this way is called a regular contractive covariant representation. It is called separa-
ble, σ-finite, or nondegenerate whenever the representation π0 has the correspond-
ing property.

We now come to define Lp-operator crossed products. For technical reasons as
mentioned in [14], Lp-operator crossed products are defined for second countable
locally compact groups. To study the theory in a more general framework we
refer to Section 3 of [5].

DEFINITION 2.4 ([14], Definition 3.3). Let p ∈ [1, ∞), let G be a second
countable locally compact group, and let (G, A, α) be an isometric G-Lp-operator
algebra which is nondegenerately σ-finitely representable. Following Defini-
tion 3.2 of [5] but with considering the family R to be as below, we define two
corresponding crossed products.

(i) Let Rp be the family of all covariant representations coming from nonde-
generate σ-finite contractive representations of A. We define an algebra semi-
norm ∆(·) on Cc(G, A, α) by

∆(a) = sup
(ν,π)∈Rp

‖ν n π(a)‖

for any a ∈ Cc(G, A, α). The full Lp-operator crossed product, Fp(G, A, α), is the
completion of Cc(G, A, α)/ ker(∆) in the norm ‖ · ‖ induced by ∆.

(ii) Consider the family Rp
r of all regular covariant representations coming

from nondegenerate σ-finite contractive representations and define an algebra
seminorm ∆r(·) on Cc(G, A, α) by

∆r(a) = sup
(ν,π)∈Rp

r

‖ν n π(a)‖

for any a ∈ Cc(G, A, α). The completion of Cc(G, A, α)/ ker(∆r) in the norm ‖ · ‖r
induced by ∆r is called the reduced Lp-operator crossed product and is denoted by
Fp

r (G, A, α).

By Lemma 3.4 of [14], Fp(G, A, α) and Fp
r (G, A, α) exist as in Definition 3.2

of [5]. Since in the above definition (G, A, α) is assumed to be an isometric nonde-
generately σ-finitely representable G-Lp-operator algebra, A has a nondegenerate
σ-finite isometric representation, see Definition 2.1(v). Thus Proposition 3.11 of
[14], implies that ∆r is actually a norm on Cc(G, A, α) and since ∆r 6 ∆, the same
is true for ∆. Hence ker(∆) and ker(∆r) are both zero, and as noted in Corol-
lary 3.12 of [14], Cc(G, A, α) can be viewed as a dense subalgebra of both crossed
products.

From the theory of C∗-crossed products we know that C∗r (G, A, α) is al-
ways a quotient of C∗(G, A, α), but for p ∈ [1, ∞) \ {2}, it is not known whether
Fp

r (G, A, α) is a quotient of Fp(G, A, α); see Question 8.1 of [14].
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If we let A = C in Definition 2.4, then the corresponding crossed prod-
ucts are called the group Lp-operator algebra and the reduced group Lp-operator alge-
bra associated to G, denoted by Fp(G) and Fp

r (G), respectively. It is known that
Fp

r (G) is isometrically isomorphic to the Banach subalgebra of B(Lp(G)) gener-
ated by the integrated form of the left regular representation of G on Lp(G), that
is the closure of the image of Λ : Cc(G) → B(Lp(G)) defined by (Λ(a)(ξ))(h) =∫
G

a(g)ξ(g−1h) dν(g), for a ∈ Cc(G), ξ ∈ Lp(G) and h ∈ G, see [6].

DEFINITION 2.5 ([7], Definition, p. 232). A group G is said to be a Powers
group if for any nonempty finite subset F ⊂ G \ {1} and any integer k > 1, there
exist a disjoint partition G = Cq D and elements h1, . . . , hk ∈ G such that:

(i) gC ∩ C = ∅ for all g ∈ F,
(ii) hjD ∩ hl D = ∅ for j, l ∈ {1, . . . , k}with j 6= l.

REMARK 2.6. The main idea of constructing Powers groups goes back to
R.T. Powers and his proof of C∗-simplicity of free groups [17], for which he used
combinatorial properties of free groups.

Some examples of Powers groups are listed below.
(i) Nonelementary torsion free Gromov-hyperbolic groups ([9], Corollary 12);

in particular, each free group Fn for n > 2. For the latter see also Step 2 in the
proof of Theorem 3 in [8].

(ii) Certain amalgamated free products ([7], Proposition 10).
(iii) Nonsolvable subgroups of PSL(2,R) ([7], Proposition 5).
(iv) Any lattice G in PSL(n,C), n = 2, 3 ([7], Proposition 13).

Since 1985 when de la Harpe introduced Powers groups, many results have
been obtained for these groups. Here we quote some of the more well-known
ones. Powers groups are C∗-simple ([7], Proposition 3), they are also icc ([7],
Proposition 1(a)). We recall that a group G is called an icc group if it is infinite
and if all its conjugacy classes distinct from {1} are infinite. Furthermore, they are
not amenable ([7], Proposition 1), and they do not even have nontrivial amenable
normal subgroup ([13], Proposition 1.6). For more details on the properties of
Powers groups see [7], [8], [9].

3. THE MAIN RESULTS

In this section we present the main results regarding the simplicity and char-
acterizing traces for reduced Lp-operator crossed products by countable Powers
groups, for p ∈ (1, ∞). We generalize the main results of de la Harpe and Skan-
dalis in [11] in certain cases. In this section we follow the outline used in Powers
[17]. However, in the absence of convenient properties of Hilbert spaces, the ar-
gument of our key result, Theorem 3.3, is based on the duality between Lp- and
Lq-spaces.
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Throughout this section, we assume that A is a separable unital Lp-operator
algebra on some σ-finite measure space, that p, q ∈ (1, ∞) are conjugate ex-
ponents, and that G is a countable discrete group with identity element e and
counting measure ν. The unit element of A is denoted by 1A and the norm of
Fp

r (G, A, α) will be denoted by ‖ · ‖r.
For g ∈ G, let ug be the characteristic function of {g} as a member of

Cc(G, A, α). It is easy to see that ue is the unit element of Cc(G, A, α). We may
embed G canonically into Cc(G, A, α) via the injective group homomorphism
g 7→ ug from G to the group of invertible elements of Cc(G, A, α) and we have
ug
−1 = ug−1 for all g ∈ G.

Using Remark 4.6 of [14], when it is necessary, we will identify A as a subal-
gebra of Fp

r (G, A, α) by considering the isometric homomorphism a 7→ aue. Note
that Fp

r (G, A, α) is a unital Banach algebra with unit element 1Aue which will be
identified with 1A.

We begin with a lemma.

LEMMA 3.1. Let p, q ∈ (1, ∞), let k ∈ N and let λ1, λ2, . . . , λk, γ1, γ2, . . . , γk ∈

R be positive numbers such that
k
∑

i=1
λ

p
i 6 1 and

k
∑

i=1
γ

q
i 6 1. Then

k

∑
i=1

λi 6 k1/q and
k

∑
i=1

λiγi 6 1.

The proof is immediate from Hölder’s inequality.
We need the following proposition in the proof of Theorem 3.3. For a ∈

Cc(G, A, α) and g ∈ G, a(g) will be denoted by ag.

PROPOSITION 3.2 ([14], Proposition 4.8, Proposition 4.9(1)). Let p ∈ [1, ∞),
let G be a countable discrete group, and let (G, A, α) be a separable nondegenerately
representable isometric G-Lp-operator algebra. Then associated to each element g ∈ G,
there is a linear map Eg : Fp

r (G, A, α)→ A with ‖Eg‖ 6 1 such that if

a = ∑
g∈G

agug ∈ Cc(G, A, α)

then Eg(a) = ag. Further, if a ∈ Fp
r (G, A, α) with Eg(a) = 0 for each g ∈ G, then

a = 0.

Under the same assumptions as in Proposition 3.2, the bounded linear map
E : Fp

r (G, A, α)→ A defined by

E
(

∑
g∈G

agug

)
= ae

for ∑
g∈G

agug ∈ Cc(G, A, α), is called the standard conditional expectation from

Fp
r (G, A, α) to A. See Section 4 of [14] for more on this concept.

The next theorem has a key role in the proof of the main results.
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THEOREM 3.3. Let p ∈ (1, ∞), let G be a countable Powers group, and let
(G, A, α) be a separable nondegenerately representable isometric G-Lp-operator algebra.
Let a ∈ Fp

r (G, A, α), and let ε > 0. Then there exist k ∈ N and h1, h2, . . . , hk ∈ G such
that the averaging operator T : Fp

r (G, A, α)→ Fp
r (G, A, α), defined by

T(b) =
1
k

k

∑
j=1

uhj
bu−1

hj
,

satisfies ‖T(a− E(a))‖r < ε.

Proof. First we take a ∈ Cc(G, A, α) with E(a) = 0. That is, there exist n ∈ N,
g1, g2, . . . , gn ∈ G \ {1} and nonzero elements ag1 , ag2 , . . . , agn ∈ A such that

a =
n
∑

i=1
agi ugi . Let ‖ · ‖1 be the restriction of the L1 norm to Cc(G, A, α). We may

assume that a 6= 0. Choose k ∈ N such that

k−1 + k−1/p + k−1/q <
ε

2‖a‖1
.

Put F = {g1, . . . , gn}. Since G is a Powers group, for this F and k there exists a
partition {C, D} of G and h1, . . . , hk in G which satisfy Definition 2.5.

Let π0 be an arbitrary nondegenerate σ-finite contractive representation of
A on Lp(X, µ) for some measure space (X,B, µ) and let (υ, π) be the regular co-
variant representation associated to π0.

Let χS denote the characteristic function of S ⊂ G × X. For each j ∈
{1, . . . , k}, define the idempotent operator

ej : Lp(G× X, ν× µ) → Lp(G× X, ν× µ)

ξ 7→ χ
(hj D)×X · ξ

then

e∗j : Lq(G× X, ν× µ) → Lq(G× X, ν× µ)

η 7→ χ
(hj D)×X · η

is the adjoint operator of ej.
Let ξ ∈ Lp(G× X, ν× µ) and η ∈ Lq(G× X, ν× µ) satisfy ‖ξ‖p = ‖η‖q =

1, so

k

∑
j=1
‖ejξ‖

p
p 6 ‖ξ‖p

p = 1 and
k

∑
j=1
‖e∗j η‖q

q 6 ‖η‖
q
q = 1.

Define the averaging operator T : Fp
r (G, A, α)→ Fp

r (G, A, α) by

T(b) =
1
k

k

∑
j=1

uhj
bu−1

hj
.
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By Lemma 4.13 of [14] for each g ∈ G, the left and right multiplication operators
by ug are isometries on Fp

r (G, A, α), thus ‖T‖ 6 1. Consider the representation
υ n π of Cc(G, A, α) as given in equation (2.1). For each g ∈ G we have

(T(a))(g) =
1
k

k

∑
j=1

αhj
(ah−1

j ghj
).

Therefore for the given ξ ∈ Lp(G× X, ν× µ) we get

((υ n π)T(a))ξ = ∑
g∈G

π(T(a)(g))υgξ = ∑
g∈G

π
(1

k

k

∑
j=1

αhj
(ah−1

j ghj
)
)

υgξ .

Since the support of a is the set {g1, . . . , gn} it follows that

((υ n π)T(a))ξ =
1
k

k

∑
j=1

n

∑
i=1

π(αhj
(agi ))υhjgih

−1
j

ξ .

Using Hölder’s inequality we then have

|〈(υ n π)T(a)ξ, η〉|

=
∣∣∣〈1

k

k

∑
j=1

n

∑
i=1

(π(αhj
(agi )) υhjgih

−1
j
) ξ, η

〉∣∣∣
=
∣∣∣〈1

k

k

∑
j=1

n

∑
i=1

(π(αhj
(agi ))υhjgih

−1
j
)(ej + (1− ej))ξ, (e∗j + (1− e∗j ))η

〉∣∣∣
6

1
k

k

∑
j=1

n

∑
i=1
|〈π(αhj

(agi ))υhjgihj
−1(ej + (1− ej))ξ, (e∗j + (1− e∗j ))η〉|

6
1
k

k

∑
j=1

n

∑
i=1

(‖π(αhj
(agi ))‖ (‖ejξ‖p · ‖e∗j η‖q + ‖(1− ej)ξ‖p · ‖e∗j η‖q

+ ‖ejξ‖p · ‖(1− e∗j )η‖q) + |〈π(αhj
(agi ))υhjgih

−1
j
(1− ej)ξ, (1− e∗j )η〉|).

For fixed i ∈ {1, . . . , n} and j ∈ {1, . . . , k} we have

〈π(αhj
(agi ))υhjgih

−1
j
(1− ej)ξ, (1− e∗j )η〉

=
∫

G×X

(π(αhj
(agi ))υhjgih

−1
j
(1− ej)ξ)(h, x) · ((1− e∗j )η)(h, x) d(ν× µ).
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Now by applying Lemma 2.3(i)–(ii), for each h ∈ G and x ∈ X we have

(π(αhj
(agi ))υhjgih

−1
j
(1− ej)ξ)(h, x)

= ((π(αhj
(agi ))υhjgih

−1
j
(1− ej)ξ)(h))(x)

= (π0(αh−1hj
(agi ))(υhjgih

−1
j
(1− ej)ξ(h)))(x)

= (π0(αh−1hj
(agi ))(χ(hj D)c×X · ξ)(hjg−1

i h−1
j h))(x).

We can now exploit the properties of the Powers group G, as follows. If h /∈ hjD
then h−1

j h ∈ C. Therefore g−1
i h−1

j h /∈ C and hence this element belongs to D. It

follows that hjg−1
i h−1

j h ∈ hjD, so for all h /∈ hjD

(π(αhj
(agi ))(υhjgih

−1
j
(1− ej)ξ))(h, x) = 0,

and we arrive at

〈(π(αhj
(agi ))υhjgih

−1
j
(1− ej))ξ, (1− e∗j )η〉 = 0.

Therefore by Lemma 3.1

|〈(υ n π)T(a)ξ, η〉| 6 1
k
‖a‖1

k

∑
j=1

(‖ejξ‖p · ‖e∗j η‖q + ‖e∗j η‖q + ‖ejξ‖p)

6
1
k
‖a‖1(1 + k1/p + k1/q)

= ‖a‖1(k−1 + k−1/q + k−1/p) <
ε

2
.

Since ξ ∈ Lp(G × X, ν× µ) and η ∈ Lq(G × X, ν× µ) are arbitrary elements of
norm 1, it follows that the norm of (υnπ)T(a), as an element of B(Lp(X×G, µ×
ν)), does not exceed ε/2. Since (υ, π) varies arbitrarily among all regular covari-
ant representations coming from nondegenerate σ-finite contractive representa-
tions of A, it follows from the definition of the reduced crossed product norm
that

‖T(a)‖r 6
ε

2
< ε .

Next, suppose that a ∈ Cc(G, A, α) is arbitrary. Applying the previous step
to the element a− E(a), we may find an averaging operator T such that

‖T(a− E(a))‖r < ε .

Finally, let a ∈ Fp
r (G, A, α). By density of Cc(G, A, α) in Fp

r (G, A, α), there
exists b ∈ Cc(G, A, α) such that ‖a− b‖r < ε/3. Now by applying the first step,
we may find an averaging operator T such that

‖T(b− E(b))‖r <
ε

3
.
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Since ‖T‖ 6 1 and ‖E‖ 6 1, we then have

‖T(a− E(a))‖r 6 ‖T(a)− T(b)‖r + ‖T(b− E(b))‖r + ‖T(E(b))− T(E(a))‖r < ε .

This completes the proof.

We recall that a (normalized) trace on a unital Banach algebra A is a bounded
linear functional τ on A (of norm 1 satisfying τ(1) = 1) such that τ(ab) = τ(ba)
for all a, b ∈ A. Normalized traces on a unital C∗-algebra are exactly the tracial
states.

DEFINITION 3.4. Let p ∈ [1, ∞], and let (G, A, α) be a G-Lp-operator algebra.
A (normalized) trace on A is said to be G-invariant if it satisfies τ(αg(a)) = τ(a)
for all a ∈ A.

In the next step we are going to characterize traces on Fp
r (G, A, α). Clearly,

σ ◦ E is always a trace on the reduced Lp-crossed product whenever σ is a G-
invariant trace on A. We will show that this is the only possible form for a trace
on Fp

r (G, A, α).

THEOREM 3.5. Let p ∈ (1, ∞), let G be a countable Powers group, and let
(G, A, α) be a separable nondegenerately representable isometric G-Lp-operator algebra.
Then each (normalized) trace of Fp

r (G, A, α) is of the form σ ◦ E, where σ is a G-invariant
(normalized) trace on A. In particular, if A has a unique normalized trace then so does
Fp

r (G, A, α).

Proof. Let τ be a trace on Fp
r (G, A, α), let a ∈ Fp

r (G, A, α), and let ε > 0 be
given. By Theorem 3.3 there exist k ∈ N and h1, h2, . . . , hk ∈ G such that∥∥∥1

k

k

∑
j=1

uhj
(a− E(a))u−1

hj

∥∥∥
r
< ε.

By the tracial property of τ, we then have

|τ(a)− τ(E(a))| = |τ(a− E(a))| =
∣∣∣τ(1

k

k

∑
j=1

uhj
(a− E(a))u−1

hj

)∣∣∣ 6 ‖τ‖ε.

Hence τ(a− E(a)) = 0. Put σ = τ|A , then

τ(a) = τ(E(a)) = τ|A(E(a)) = σ ◦ E(a),

and σ is a G-invariant trace on A.

The next lemma inspired by Lemma 9 of [11] will help us to obtain a gener-
alization of Powers’ idea as a main result of this article.

LEMMA 3.6. Let G be a countable discrete group, let (G, A, α) be a separable non-
degenerately representable isometric G-Lp-operator algebra and let A be G-simple. If I
is a nonzero ideal of Fp

r (G, A, α), then there exists a nonzero element a ∈ I such that
E(a) = 1A.
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Proof. First we show that there is an element b ∈ I with E(b) 6= 0. To this
end, consider a nonzero element c ∈ I. By Proposition 3.2, there exists g ∈ G
such that Eg(c) 6= 0. Since Cc(G, A, α) is dense in Fp

r (G, A, α) we may choose a
sequence {cn} ⊂ Cc(G, A, α) such that lim

n
cn = c. Continuity of Eg implies that

lim
n

Eg(cn) = Eg(c). On the other hand, Eg(cn) = E(cnug−1) and thus

E(cug−1) = lim
n

E(cnug−1) = lim
n

Eg(cn) = Eg(c).

Clearly cug−1 ∈ I. So for b = cug−1 ∈ I we have E(b) 6= 0. Define J to be the
ideal of A generated by {αg(E(b)) : g ∈ G}. It follows from G-simplicity of A
that J = A. Hence there are m ∈ N, g1, . . . , gm ∈ G and a1, . . . , am, b1, . . . , bm ∈ A
such that

m

∑
i=1

aiαgi (E(b))bi = 1A.

Take a =
m
∑

i=1
aiugi b ug−1

i
bi ∈ I. It is easy to see that

E(a) =
m

∑
i=1

aiαgi (E(b))bi = 1A

and we are done.

Now we are ready to prove the main result of this paper, that is a sufficient
condition for simplicity of Fp

r (G, A, α).

THEOREM 3.7. Let p ∈ (1, ∞), let G be a countable Powers group, and let
(G, A, α) be a separable nondegenerately representable isometric G-Lp-operator algebra
such that A is G-simple. Then Fp

r (G, A, α) is simple.

Proof. Let I be a nonzero ideal in Fp
r (G, A, α). By Lemma 3.6 there exists

a ∈ I such that E(a) = 1A. Applying Lemma 3.3 to a− E(a) and ε = 1/2 shows
that there exist k ∈ N and h1, . . . , hk ∈ G such that∥∥∥1

k

k

∑
j=1

uhj
au−1

hj
− 1A

∥∥∥
r
=
∥∥∥1

k

k

∑
j=1

uhj
(a− E(a))u−1

hj

∥∥∥
r
<

1
2

.

Consequently, I contains an invertible element (1/k)
k
∑

j=1
uhj

au−1
hj

. Therefore I =

Fp
r (G, A, α). This shows that Fp

r (G, A, α) is simple.

As a consequence, for p ∈ (1, ∞), Fp
r (G), the reduced group Lp-operator

algebra of a countable Powers group G is simple with a unique normalized trace
which is a generalization of [17]. The following result is a generalization of a
result by Paschke and Salinas ([13], Theorem 1.1) in the case of countable groups.

COROLLARY 3.8. Let p ∈ (1, ∞), and let G be the free product of two countable
groups, not both of order 2, then Fp

r (G) is simple with a unique normalized trace.
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REMARK 3.9. Let G be a countable discrete group. By Proposition 3.14 of
[14] for p = 1, the Banach algebras l1(G), F1

r (G) and F1(G) are isometrically
isomorphic. Take the trivial homomorphism φ : G → C. We then get an induced
homomorphism φ̃ : l1(G) → C whose kernel is a nontrivial ideal. As a result,
none of the reduced and full group L1-operator algebras of a countable discrete
group is simple.

REMARK 3.10. The hypothesis that A is unital is essential in Theorem 3.7,
indeed the example mentioned in the last part of [11] shows that Theorem 3.7
does not hold for nonunital Lp-operator algebras even for p = 2.
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