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ABSTRACT. We give an example of a uniform Frostman-Blaschke product B,
whose spectrum is a Cantor set, such that the composition operator Cg is not

closed-range on any weighted Bergman space AR, answering two questions
posed in recent papers. We include some general observations about these
Blaschke products. Using methods developed in our first example, we im-
prove upon a theorem of V.I. Vasjunin concerning the rate at which the zeros
of a uniform Frostman-Blaschke product approach the unit circle.
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1. INTRODUCTION

Let D denote the unit disk {z : |z| < 1} and let T denote its boundary {z :
|z| = 1}. Thoughout our work, A denotes normalized two-dimensional Lebesgue
measure on D and m denotes normalized Lebesgue measure on T, normalized so
that these are probability measures. We let H* denote the collection of bounded
analytic functions in D.

A Blaschke product B has the form

an] an —z

_ N
Bz)=="]] a, 1—a,z’

a,#0
where {a, } are points of the open unit disk I satisfying Y(1 — |a,|?>) < oo, which
n

is precisely what is needed for B to converge uniformly on compact subsets of D
to a function in H* with zero set {a,, },. By a theorem of O. Frostman (cf., [12])), B
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and all of its subproducts have unimodular, nontangential boundary values at a
point { € T precisely when the Frostman sum

converges. We call B a Frostman—Blaschke product if ¢p({) < oo forall { € T and a
uniform Frostman—Blaschke product if ¢p is bounded on T.

Let op denote the spectrum of B; that is, the set of accumulation points of
the zeros of B. It is clear that op is a compact subset of T. It is known that if B
is a Frostman-Blaschke product, then op is nowhere dense in T, (see Section 6 of
[20] and note that the proof holds for Frostman-Blaschke products). If p € H*®
and (D) C D, then ¥ is often referred to as an analytic self-map of D. If ¢ is an
analytic self-map of D, { € T and there exists 7 € T such that the nontangential
limit:

/ lim n=¥()
2= (—z
exists and is finite, then v is said to have an angular derivative at { and its value is
this limit; the condition above has an equivalent formulation ([26], p. 57):
lim inf 1=lp(z)] < oo.
z—( 1-— |Z‘

Evidently, in this case, the nontangential limit of ¢ at { (namely, *({)) exists and
equals 7. Another result of O. Frostman (cf., [12]) tells us that B (as above) has an
angular derivative at a point { € T precisely when the following converges:

1) () = Y L2 1ml

One reason for the interest in Frostman-Blaschke products is the following:
Let M be the space of Borel measures on T. For y € M, define the Cauchy
transform of y by
1

1—-2¢z

(Ki)(2) = [ ——=dn(@).

The set of functions

K={Ky:pyeMj}
is called the space of Cauchy transforms. Hrus¢ev and Vinogradov [15] showed
that an inner function [ is a multiplier of the space of Cauchy transforms if and
only if I is a uniform Frostman-Blaschke product.

An example of a uniform Frostman-Blaschke product can be found in [28]
or p. 130 of [9], where the authors note that such examples “are somewhat diffi-
cult to come by”. The example is the following: Let {r, } and {6, } be sequences
of real numbers with0 < r, < 1and 0 < 6,, < 1 for all n, and with

sup{en+1 :nEN}<1 and il—rn < o0
n=1

6, On
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Then the Blaschke product with zeros {r,el%} is a uniform Frostman-Blaschke
product. The authors note that given a closed nowhere dense subset L C T,
an “elaboration of the... construction” produces a uniform Frostman-Blaschke
product with zeros accumulating precisely on L; see [20] and p. 132 of [9]. A
simpler condition for checking whether or not a Blaschke product is a uniform
Frostman-Blaschke product is desirable.
One result in this direction is due to Vasjunin (see [28], and Theorem 6.6.4 of
[9] or Proposition #.2]in this paper): If B is a uniform Frostman-Blaschke product
with zeros {a, }, then ¢p € L!(m) from which it follows that

[e9)

> (1= lau|)log(1/(1 = [an])) < co.

n=1
Vasjunin has stated that it is likely that for any sequence of moduli |a,| = r, sat-
isfying this condition a uniform Frostman-Blaschke product can be constructed.
Others have conjectured differently, since there is a nontrivial margin between
requiring the boundedness of ¢ on T versus requiring ¢ € L!(m). Vasjunin
has succeeded in proving that the convergence of

[e9)

Y (1 =) log(e/ (1 — 7)) llog(log(3/ (1~ r)))] 1,

n=1
for some ¢ > 0, is a sufficient condition for the existence of a uniform Frostman—
Blaschke product with zero sequence {a, }, satisfying |a,| = r,. One of the main
results in this paper, is an improvement of Vasjunin’s theorem. In particular, we
show

THEOREM 1.1. Let {r,};_, be a nondecreasing sequence of real numbers in the
interval [0,1). In order for there to exist a uniform Frostman—Blaschke product B having
zeros {ay }5_q with |ay| = ry (for all n), it is sufficient that there exists ¢ > 0 such that
the series

[e0]
Y (1= ra)log(e/ (1= ra))[log(log(3/ (1 —ra))))*
n=1
is convergent.

We do not know whether this condition is necessary. The techniques de-
veloped to prove this theorem can be adapted to prove Theorem below; a
theorem motivated by questions from both function theory and operator theory.

From a function-theoretic viewpoint, there has long been interest in so-
called prime or indecomposable polynomials; that is, polynomials that cannot be
written as the composition of two nontrivial polynomials (e.g., Ritt’s paper [22]).
Ritt also discussed prime rational functions and others have studied decomposi-
tions of Blaschke products (see [8], [10], [14], [16], and [27]). In [14], the authors
asked if a uniform Frostman-Blaschke product could be a composition of two
infinite Blaschke products. In [8], the authors showed that a Frostman-Blaschke
product could be written as a composition of two infinite Blaschke products. This
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did not answer the question in [14], however, as it is much more difficult to con-
struct uniform Frostman-Blaschke products. Instead, the question was answered
in [6], where an infinite uniform Frostman-Blaschke product B was constructed
so that B o B is a uniform Frostman-Blaschke product. In this paper, the construc-
tion we use to prove Theorem [1.I| and Theorem [1.2| below, is necessarily more
complicated that the one used in [6].

Whether or not a composition operator has closed range on classical func-
tion spaces is a question of broad interest (in addition to [1I] and [3], which mo-
tivated this work, we mention [17] and [30]). We are interested in the classical
weighted Bergman spaces setting, where the Bergman spaces are defined as fol-
lows. For any real number &« > —1, let A, denote the probability measure on D
given by dA, = c,(1 — |z|?)*dA, where ¢, = & + 1. Forsucha and 1 < p < oo,
let A} denote the collection of functions f analytic in I such that

1flha = [ IR dAu(z) < o,
D

Since A} is a closed subspace of LP(A,), it forms a Banach space with respect to
the norm || - ||5«. If ¢ is an analytic self-map of D, then Cy(f) := f o ¢ defines a
bounded composition operator on AF; cf., Theorem 11.6 of [29].

Results in [1]], [3] tempt one to believe that the composition operator Cp has
closed range whenever B is a uniform Frostman-Blaschke product (see Section [3]
for a more detailed explanation). However, this is not the case and is our first
result:

THEOREM 1.2. There exists a uniform Frostman—Blaschke product B such that the
composition operator Cg fails to have closed range on AL (independent of p and w).

Indeed, we construct a uniform Frostman-Blaschke product B, with spec-
trum a Cantor set, such that Cp is not closed-range on any of the A spaces, thus
proving Theorem This example also answers affirmatively a related ques-
tion, namely, Question 3.12 of [3]: Let F C T be a Cantor set. Does there ex-
ist a Blaschke product B with o C F such that Cp is not closed-range on AZ?
As we show in Lemma our examples are also “extreme” in the sense that
slight changes in the location of a single zero of the Blaschke product change the
“closed-range” behavior of the corresponding composition operator.

2. PRELIMINARIES

A function f € H® has well-defined, nontangential boundary values f*({)
for m-a.e. ¢ € T; cf., [11]] or [13]. Of particular interest to us are the inner functions,
members of H® that have unimodular, nontangential boundary values a.e. [m].
If f is an inner function, then f = S, B, where S, is a singular inner function and
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B is a Blaschke product. The symbol u denotes a finite, positive Borel measure on
T that is singular with respect to m and S, is given by:

Su(z) == exp { T/ a0}

Our results are primarily concerned with uniform Frostman-Blaschke prod-
ucts and composition operators in the Bergman space setting with such Blaschke
products as symbols. We recall the necessary background for the motivation here.

In what follows, for 0 < & < 1 and an analytic self-map ¥ of I, let (2, :=

z €D: 1E@J(Z7§‘2 > e}. Extending results in [3], [4], and [5], it is shown in
[1], [2] that if ¢ is a nonconstant analytic self-map of I, then Cy is closed-range
on A} (independent of p and a) precisely when there exist constants ¢, ¢ and s,

0 < ¢,¢,s <1, such that G, := ¢((2;) satisfies the reverse Carleson condition:

A(GeND(z,5)) =2 cA(D(z,s)) forallzinDj;

Z—w

where D(z,s) := {w eD: |2
about z € D and, as before, A is normalized Lebesgue measure on D. (See [18]
and [19] for related work.)

With this background, we can now explain the motivation for our construc-
tion in detail.

< s} is the pseudohyperbolic disk of radius s

LEMMA 2.1. If ¢ is an analytic self-map of D and Cy, is closed-range on any AR-
space, then there is a compact set K C T such that ¢ has an angular derivative (and hence
a nontangential limit) at every point of K, and ¢*(K) = T.

Proof. If { € K:=TN(2, then by the Julia-Carathéodory theorem (cf., p. 57
of [18]),  has an angular derivative at { that is bounded in modulus by % In
particular, ¢ has a nontangential limit at {. Thus, we may extend 1 to all of (2,
defining it on K to be 1*. With this in hand, Remark 2.6 of [3] tells us that ¢ is
continuous on ;. If G, satisfies the reverse Carleson condition, then any point
¢ € T is a limit point of G, and hence we can find a sequence {z,}, in (2, that
converges to a point ¢ in K such that { = nlgr;o Y(zn). By the continuity of ¢ on

0, we then have { = Pp*(&). So, if G, satisfies the reverse Carleson condition,
then p*(K) =T.

As we shall see below, if the image under B of an interval I C T\ op is an
interval of length greater than 27 radians, then Cp is closed-range on all of the
A spaces (see [3]). By a compactness argument the condition B*(T \ cg) = T
is alone sufficient for Cp to be closed-range on all of these spaces. Moreover,
any Frostman-Blaschke product B must map various components of T \ o onto
intervals of length arbitrarily close to 27t; c.f., Proposition 2.6 of [1] (and [2]). For
this reason the authors of [I] and [3] were lead to the point of conjecture that
every Frostman-Blaschke product B gives rise to a composition operator Cp that
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is closed-range on all of the A} spaces. In Section 3 we will prove Theorem
which answers this question in the negative.

In concert with [3], if ¢ is an inner function with factorization BS,, we let
oy be the compact subset of T consisting of the support of y along with the set
op. If I is a component of T \ ¢y, then 1(I) is a connected subset of T and (by
Lemmas 3.1 and 3.2 of [3])) the argument of 1(e'?) increases as 6 increases, for e’
in I. Let arg(y({)) be a continuous representation of the argument of 1({), as
ranges through I (thus the values of arg(-) might range through all of R) and let
w = sup{|arg(y({)) —arg(y(l'))| : {, ¢’ € I}. Under these circumstances we say
that ¢ wraps I through w radians.

With B and /i as above (see (1.1)), any component I of T \ 0 is wrapped in
the image of B through

(2.1) /hB(C) dm({) radians;
1

see Lemma 3.1 of [3]. With this notation behind us, we now turn to our claim
that if B wraps I through more than 27t radians, then Cp has closed range on A,
independent of p and «.

If B wraps I through more than 27 radians, then there is a closed subarc |
of I that B wraps through more than 27 radians. Since B is analytic in a neigh-
borhood of |, there exists r, 0 < r < 1, and a positive constant M such that
|B'(t0)| < M, whenever { € ] and r < t < 1. Therefore, since B is unimodular on
J, we find that

1
1—[B(s¢) < [B(Z) — B(sQ)| < / |B'(t)| dt < M(1—s),

whenever r < s < 1. Consequently, {s{ : { € Jandr <s < 1} C Q, provided
e < ﬁ Since B wraps | through more than 27t radians, the image of {s( :
¢ € Jand r < s < 1} under B contains an annulus of the form {w : ¢ < |w| < 1};
where 0 < ¢ < 1. Therefore, G, satisfies the reverse Carleson condition, if ¢ is
sufficiently small. So, we find that if B wraps I through more than 27t radians,
then Cp has closed range on A}, independent of p and a. It follows quite easily
that if op has an isolated point, then Cp is closed-range on all of these spaces;
cf., Corollary 3.6 of [3]. By a compactness argument and an elaboration of the
discussion above, the condition: B*(T \ cg) = T, is alone sulfficient for Cp to
be closed-range on all of these spaces. In Proposition 2.6 of [1]] it was observed
that an infinite Frostman—Blaschke product B has the property that for any point
lo € op and any § > 0, there are component(s) of T \ op that are arbitrarily
near to (o that are wrapped by B through more than 27r — § radians. This was
the motivation behind Question 2.7 of [1], which we answer in Theorem by
showing that it is not the case that every Frostman-Blaschke product B gives rise
to a composition operator Cp that is closed-range on all Af spaces.
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Turning to our construction we note that the Blaschke product that does
the job for us is in a class of inner functions introduced by R. Berman in [7],
having the form: B(z) = M(log(S,(z))), where S, is a singular inner function
and M(v) := Z’H . Berman’s work served as the motivation for our first example.

Once we construct our Blaschke product B, it has the curious property that
any movement of a single zero of B, deletion of a zero of B or the addition of a
zero to B, creates a new uniform Frostman-Blaschke product B; that maps the
complement of its spectrum onto the unit circle, (see Lemma[2.2). Therefore By,
although a simple modification of B, satisfies: Cp, is closed range on all of the
weighted Bergman spaces. Thus, the uniform Frostman-Blaschke products we
construct are extremal in nature in that they reach to the edge of what is possible.

LEMMA 2.2. Let B be a Frostman—Blaschke product such that Cp does not have
closed range on AL. If By is obtained from B by deleting a zero of B, by adding a zero to
B, or by moving a single zero of B, then Cp, has closed range on Ak, for all p and «.

A sketch of a proof of this lemma was given in [[1]], after the proof of Propo-
sition 2.6. We give a more detailed explanation in what follows.

Proof. Since Cp does not have closed range on A}, B is an infinite Blaschke
product whose (nonempty) spectum has no isolated points; c.f., our discussion
above. And since B is a Frostman-Blaschke product, we conclude that o3 is
a nowhere dense, perfect (uncountable) subset of T. Also (by our discussion
above), since Cp does not have closed range on A%, we have: B*(T \ ) # T. In-
deed, by Proposition 2.6 of [1]], there exists o in T such that B*(T \ o) = T\ {&o}.

We first address the case that By is obtained from B by the deletion of a
single zero of B. In this case, By = %, where b is the Blaschke factor built around
a specific zero of B. Choose distinct points v and w in op = 0p,. Then there are
infinitely many components of T \ ¢p arbitrarily near v (respectively w), that are
arbitrarily short in length and are wrapped by B through at least 27t — ¢ radians,
for any 6 > 0. Indeed, B*({¢ € T\op : |[v—{¢| < ¢}) = T\ {&o}, for any
€ > 0; and similarly with w in place of v. Since b is essentially constant near
v (respectively w), we find that the only unimodular value that B} can omit on
T \ o near v (respectively w) is ( (respectlvely B(w) ) But b(v #+ b(w)’ since

b(v) # b(w). Therefore, Bf (T \ 0p,) = T, which tells us that Cp, has closed range
on A}, for all p and «. The case Bj is obtained from B by adding a zero can be
dealt with in the same way, and so we omit the details here.

What remains is the case that B; is obtained from B by moving a single zero
of B. So, in this case, there is a Blaschke factor b of B that we are replacing with
another Blaschke factor B whose only zero is different from that of b. Therefore,

B1 = %. As before, B* omits some unimodular value ¢, as it ranges over T \ 0p.
B

Since j is nonconstant on 0, we can find distinct points v and w in ¢p such that
the only unimodular value that B might omit near v is distinct from the only one
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that it might omit near w. Whence, B} (T \ 0g,) = T, and, once again, Cp, has
closed range on A}, forall pand «. ®

3. AN EXAMPLE

We now prove Theorem 1.2} which we recall below for the reader’s conve-
nience.

THEOREM 1.2. There exists a uniform Frostman—Blaschke product B such that
the composition operator Cg fails to have closed range on AL (independent of p and «).

The uniform Frostman-Blaschke product B we construct will be shown to
have the property that there does not exist { € T satisfying: B*({) = 1 and B has
an angular derivative at {. The theorem then follows from Lemma

We let supp(y) denote the (closed) support of the measure y and { +—

P.(Q) == ‘14 ljl2 the Poisson kernel on T for evaluation at z.

PROPOSITION 3.1. Let i := M(log(S,)), where S, is a singular inner function

and M(v) := 21, Then v is an inner function. Further, zf§0 € T\ supp(u), then i
has a radial lzmzt at Co that is unimodular, but not equal to 1.

Proof. As defined ¢ is given by
Jr Egdp@) +1
Jr % du(Z) —

where y is singular with respect to m. Now

ngzfg >):Ja@mmo

Hence, z — f ZH ¢ dp(Z) maps D into the left half-plane {v : Re(v) < 0} and,

¥(z) =

7

clearly, M maps the left half-plane univalently onto D. Therefore, ¢ is an analytic
self-map of the unit disk. By Theorem 11.12, p. 257 of [24] and the corollary on
page 166 of the same reference, we see that i is an inner function.

If o € T\ supp(p), then z — % % dp(Q) has analytic continuation across

an open arc of T that contains {y and we find that [ % du(C) is a complex
T

number with zero real part. Therefore, recalling that the preimage of 1 under M
is o0, P*(gp) exists, is unimodular, but ¥*({p) # 1. &

The singular measure p that we work with here has support equal to the
Cantor set S(C), where C is the Cantor ternary set contained in [0, 1] and S(w) :=
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=%, and p will satisfy
3.1) lim Pz, (0) du(Q) = oo,

whenever {y € S(C). By and Proposition 3.1} the function ¢ := M(log(Sy))
will have the properties:

e *({p) exists and is 1, whenever {y € S(C), and

e *({p) exists and is unimodular (but not 1), whenever {y € T \ S(C).

Therefore, not only will i be an inner function — it will never have radial limit
zero. Thus, it can have no nontrivial singular inner factor and must be a Blaschke
product B; see Theorems 8.10 and 11.12 of [24] .

It will not be difficult to see that B fails to have an angular derivative at each
point in S(C). This follows from Lemma [3.2]below and the fact that our singu-
lar measure y has no point masses. Establishing that B is a uniform Frostman-—
Blaschke product (i.e., ¢p is bounded on T) will be more time consuming, but
that is to be expected given the nature of the uniform Frostman condition.

We should note that if I is any component of T \ S(C), then 1 ¢ B(I) (by
our discussion above) and hence B wraps I through no more than 27t radians.
So, Theorem [5.1|in our Addendum tells us that ¢@p is bounded on I. If we knew
that this bound on ¢@p were independent of I, then we could argue that ¢p is
bounded on T. Unfortunately, the proof of Theorem [5.1|does not give that much
information, in our particular case. So, in order to establish that ¢p is bounded
on T, we shall turn to direct estimates.

LEMMA 3.2. Let u be a finite, positive Borel measure supported in T that is sin-
qular with respect tom. If {o € T, u({Co}) = 0 and lir? J Prgy(8) dp(Z) = oo, then
r—1- T

B(z) := M(log(Su(z))) has nontangential limit equal to 1 at o, yet fails to have an
angular derivative at (o,

Proof. Under a rotation of D), we may assume that {p = 1. So, we are as-
suming that y({1}) = 0 and 111{1 J P:(0) du(g) = oo, from which it follows that
r—=1= 7

B*(1) exists and is 1. Moreover, for0 < r < 1,
1-B(r) -2
=r = fr B -1

Therefore, our goal is reached if we show that

(1—7)/:1_2(1;4(@) —0, asr—1".
T
Note that (1 —r) < |[r— | forall { € T and ﬁ:g‘ tends to zero pointwise on

T\ {1}, as r — 17. Therefore, % < 2 and converges to zero a.e. [u] as
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r — 17, since p({1}) = 0. The bounded convergence theorem now gives us that
(1—r)1{%dy(§) — 0,asr—=1". 1

THE MEASURE. We now construct a finite, positive Borel measure y supported
in T, such that:

(i) p is singular with respect to m;

(ii) the function B := M(log(S,)), as described above, is a uniform Frostman—
Blaschke product;

(iif) B fails to have an angular derivative at each point of op;

(iv) 1 & B*(T \ 0p).
There will then be no point in T where B has an angular derivative and where B*
takes the value 1. By Lemma we find that Cp is not closed-range on any of
the A}-spaces.

The description of our measure y and some estimates are simplified if we
carry the whole story from D to the upper half-plane H* := {w € C : Im(w) > 0}
via T(z) := 1%?,w1th inverse S(w) := %

As usual, we construct the Cantor set, letting C; be the set obtained by delet-
ing from [0, 1] the open interval (%, %), and inductively, for n > 2, letting C,, be
the set obtained from C,,_; by deleting the middle open interval of length 3% from
each component of C;,_1. We call these middle open intervals of length 3%, that are
deleted at the nth step, intervals of the “nth generation,” and note that there are
2"=1 such intervals. Then, C := ﬁ Cy, is the classical Cantor ternary set. Notice

n=1
that C, has 2" components, each of length 3% Let f denote the Cantor ternary
function defined on [0, 1] (cf., Problem 48, p. 50 of [23]]). Then f is nondecreasing

and continuous on [0,1], f(0) =0, f(1) =1, f = Jon [},3], f = Lon [}, 2],
f=3onl[48] f=§on[g, %] and so forth. In fact, for each n if [a,b] is a

component of C,

. . k—1 k
(3.2) there exists k,1 < k < 2", with f(a) = 5 and f(b) = —.

Extend f continuously to all of R by defining f to be identically zero on (—oo,0)
and identically one on (1, +c0). Via the Lebesgue—Stieltjes process (cf., Chapter
12, Section 3 of [23]), f gives rise to a finite, positive Borel measure v on R (indeed,
a probability measure) with support C, such that v((c,d]) = f(d) — f(c) for any
interval (c,d] in R. Since f is continuous on R, v has no point masses Define u
on the Borel subsets E of T by u(E) = v(T(E)), where T(z) := 11+z Then u is
singular with respect to m; indeed, supp(y) = S(C), and u has no point masses.
Before computing our estimates, we isolate a proposition for later use.

PROPOSITION 3.3. Let C be a Blaschke product and let | be an open arc with
distinct endpoints such that | C T \ o¢c. Choose ¢ € T and a € D such that ¥(z) :=
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1= { € T :Im(¢) > 0} onto ], and let A; = p({z € D : Im(z) > 0}).
If C wmps ] through no more than 27t radians, then Ay contains at most one zero of C,
counting multiplicity.

Proof. To see this, note that if C has at least two zeros (counting multiplicity)
in Aj, then C o ¢ is a Blaschke product with at least two zeros in {z € D : Im(z) >
0} and thus C o ¢ wraps {¢ € T : Im(¢) > 0} through more than 27t radians; see
(2.1). Whence, C wraps ] through more than 27 radians, a contradiction. &

Forany ¢ € Tand 6,0 < 6 < m, let ;(#) denote the interior of the closed
convex hull of {¢} U {z : |z| <sin(0/2)}, and call 2;(6) the Stolz region based at
¢ with vertex angle . For 8,0 < 6 < 7, let

U @)

{es(c)

where S(C) is the image of the Cantor set under the map S(w) := ;—Zj
Claim 1. As defined, B = M(log(S,)) is a Blaschke product that fails to
have angular derivative at each point of its spectrum, op. Additionally, B has

only finitely many zeros in W(6), forany 6,0 < 6 < 7.

Proof of Claim 1. We return to the definition of v and note that, by (3.2), for
x€Candanyn € Z7,

1
(33) v(lx =g x+5)) > 5
From this it follows that inf w — 00, as & — 0. Therefore,
xeC
i6 .
(3.4) nf, W oo, asd 0%,
€

If o € S(C) and 0 < 0 < 7, there exists ¢ > 0, depending only on 6, such that
|00 —z| < c(1—z]) for all z € Qg (). Moreover, if { € T and |arg({/o)| <
1 — |z|, then |{ — {o| < 1 — |z| and hence, for z € O (),

10—z < 12— Zol + 100 — 2| < (e +1)(1 = [z]).

Consequently,

1— |z|? 1

P (Q) == Z ,
O 2 i)

whenever z € (7 (0) and |arg({/{o)| < 1 — |z|. Therefore,

[ @ au > PUEE T Rre@ i) <1 - [alD)

(c+1)2(1 = |z])
whenever z € (2, (0). Hence, by (3.4 ﬂ
(3.5) inf /PZ —> 00, asr—1".
{zeW(0):|z|>r}
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In particular,

lim | Py (§)du(¢) = co if {p € S(C) = supp(p).

r—1-

Propositionand the discussion subsequent to it imply that B(z) = M(log(S,))
is a Blaschke product and since y has no point masses, Lemma |3.2| implies that
B := M(log(S,)) fails to have an angular derivative at each point of cg. By
(3.5), we see that B := M(log(S,)) has no zeros in {z € W(0) : |z| > r}, if
r is sufficiently near 1. So, B has only finitely many zeros in W(#), for any 6,
0 < 6 < 7, completing the proof of Claim 1. 1

ESTIMATES. Notice that, for 7 < 6 < 7, each component of D\ W(6) is a tent-
shaped region that lies over a component I of T \ 5(C), and this region is con-
tained in Aj (as defined in Proposition . Since B* does not assume the value
1 on I, B wraps I through no more than 27 radians and by Proposition [3.3| we
conclude that A; (whence, this tent-shaped set) contains no more than one zero
of B. So, for 7 < 6 < m, finitely many zeros of B lie in W(6) and the other
zeros lie in the components of D\ W(6), at most one (counting multiplicity) per
component. For each (tent-shaped) component of D \ W(7r/2), we now seek to
determine how close to T the zero of B is in the component. Let G be such a com-
ponent (which has base angles equal to ) and let I be the component of T \ S(C)
over which G lies; see Figure 1.

/I

Figure 1.

By the definition of B, if B(z) = 0, then [ P,({) du({) = 1. It turns out that
T

understanding what this means per component is sufficient to give us the final
ingredient we need here: that ¢p is bounded on T.

The estimates are easier if we carry everything over to the upper half-plane
H* (and R) under our mapping T(z) := i%,‘ where 1 < |T’(z)| < 2 for z near
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S(C). The components of [0,1] \ C are our focus here, of which there are 2"~ of
length - 3 for n E Z*. Reading from the left, the first of the 2"~! components of
length 37 is (31,, ) 37 ). Foreachn € 7t , we estimate the value of Yn, Wwhere

._ . Y
Yn := sup {y € (0 ,3,,) : /[0’1] 17325 2 dv(x) < 1},

l y . . . . i
and x — (VDA the Poisson kernel on R for evaluation at the point 57 +

iy in H*. We ignore the factor of 1 in the definition of the Poisson kernel, since
this only affects our estimate by a multiple of a universal constant. Moreover,
notice that a point 57 + iy is in the component of H \ T(W(7/2)) that lies over
the interval (3,1, 3n) onlyif 0 < y < 3,1 and 1 < t < 2; though the choice of ¢ in
this range is not important to our estimates. Now,

¥y ¥y . it v Y
[‘/] (x — 1/3n)2+]/2 dv(x) > 1/9n+y2 v([o, 3”]) T oon 1/9n+y2 B 2n/9n+2ny2’
0,1

which is “near” 1 when y is near 2;. In fact, h(y) :=
A2" )

W is an increasing

— A, asn — oo. Thus, y, is
essentially no greater than 2 gn; that is, v,/ (W) is bounded above, independent
of n. Thls tells us that the zero w of Bo S (where S = T~!) that lies over the
interval (s, %), but is not in T(W(7r/2)), occurs at a height no greater than 3%,
approximately.

By the self-similarity of C, f and hence v, we find that the same “height
estimate” holds for the other components of [0 1]\ C of length 5. In fact, suppose
that I is a component of [0,1] \ C of length and that n > N. Let s be the left-
hand endpoint of I and let ¢ be its right- hand endpoint. By the self-similarity of
C, there is a copy of CN [0, %] attached to the left of I at s and to the right of I
at t. Therefore, we can rework our estimates above at s, and analogously at t, to
show that, if the zero of B o S that lies over I\ T(W(7r/2)) has real part within 5
of either s or ¢, then the height of that zero (over I) is essentially no greater than
3—2. We isolate this observation for future reference:

function on [0, 57) and, for any A >0, h(%-

Claim 2. Let I be a component of [0,1] \ C of length with endpoints s and
t. If n > N and the real part of the zero w of Bo S that 11es over I\ T(W(m/2)) is
within 3% of s or t, then the imaginary part of w is essentially no greater than g—z.
Thus, there exist My > 1 and cy > 1 (independent of I) such that

Im(w) < min(My|s — Re(w)|?, Mp|t — Re(w)|?).

In fact, ¢g = log(4) 5 1 ffices here.

log(3)
Let {by}3>, be the zeros of B o S that are not contained in T(W(7r/2)). B

our work above, each component of H* \ T(W(7/2)) contains at most one of
these zeros (counting multiplicity). So, the worst case scenario is that each of
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these components contains precisely one zero in the list {by };> ;, which we here-
after assume. We define ¢3 on R by

[e9)

=l
We first proceed to give a bound for ¢ (0).
Now, there is a subsequence {by, }o° ; of {bx};>;, such that by lies over the
interval (3,, , % 2). By our first estimate above, there is a constant ¢; > 1 such that

Im(b
Z |bkn < 12

n=1 n

For n € Z7, let {by(,i)}i>, be the subsequence of {;}{2, with terms satisfying
3% < Re(byni)) < 3,}—,1 Again by our first estimate above, there is a constant
¢y = 1, independent of 1, such that

i Im (b (n5)) < 3" izj.znﬂ: _ 2" 2 4l o

S bk = AT T T
Thus, there is a constant c3 > 2 such that
o) 2n
q)B(O) X0 Z 37 = 2c3
n=1

We now work to show that ¢ is bounded on the Cantor set C.

For x € C and n € Z*, consider those zeros (among {b;};> ) that lie over
components of [0,1] \ C of length 5; there are 2”1 such zeros in this nth genera-
tion. By the geometry of Cy,, exactly one of these 2" ! zeros is nearest to x. We let
by, (x) denote this particular zero. By Claim 2,

w w C- 1—co\n
|x — by, (x)] < Tx— by, ()] <M0n;1(3 )",

which converges independent of x, since ¢y > 1. Forany x € C and n € Z*, we
distinguish certain collections of zeros (among {by}¢ ;): Let I;(x™) be the set of
zeros of the nth generation in the list {by } 2 ; with real part less than x and I, (xT)
the set of zeros with real part greater than x.

Let

< My - (317%0)" and so Z

. _ Im(by .
qoB,n(x ) = Z |X E b) and q)B,n(er) =

bkEIn

m(by)

beln(x+) |x — byl

We focus on the collection In(x+) the analysis for I, (x~) being simﬂar We con-
sider only I,,(x™) \ {b,(x)}, since we have already shown that Z W is
bounded, independent of x.

If n =1, then L,(x) \ {bg, (x)} = @, so assume n > 2. By the geometry of
Cn, there is a component | of [0,1] \ C,,_1 between x and the real parts of the zeros
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in I, (x™) \ {b, (x)}. Let v denote the right-hand endpoint of J; see Figure 2 for
n=2.
0 X v 1
~— - —— — —_— — —_— —
—_———
J Figure 2.
Then we find that
m(by)
|X*b | < ¢E,n(v+)'
be€ln(x*), bibe, (1) k

Notice that ¢3(0) = Y ¢3,(0") and so, inherent in the (upper) bound we found
n=1 "

h?(l""),where/\ =Y Ay < oo
beel,(0+) K n=1
The (crude) upper bound A, is obtained by assuming that, for all by in I,,(0),
Im(by) is at least g—z and |by| is no smaller than the left-hand endpoint of the com-
ponent of [0, 1] \ C, over which by lies There are 2"~ ! left-hand endpoints of these
components of [0,1] \ C, of length 3, designated by s,(1),5,(2),...,5,(2" 1),
working left to right. We now show that ¢} (vF) < Ay

for ¢3(0), is abound A, for g3 ,(0) =

Now, for all by in I,(v"), Im(by) < g—:z and |v — by| is at least the distance
from v to the left-hand endpoint of the component of [0, 1] \ Cy, over which by lies.
So, in order to establish that ¢ , (v*) < Ay, we need only show:

If there are j zeros in I, (v"), the jth (left to right) lies over
(3.6) a component of [0,1] \ C,, with left endpoint

a distance from v greater than or equal to s, (j).

Notice that the nearest zero in I,(v") to v has real part separated from v
by a component of C,, and the other zeros in I,(v") have real parts separated
from v by an odd number of components of C, and a string of components of
[0,1] \ Cy; similarly for I,,(0"). Since the components of C, have the same length,
in order to show that holds, it suffices to show that the sum of the lengths of
the first | components of [0,1] \ C, is less than or equal to the sum of the lengths
of any I consecutive components of [0,1] \ Cy, for 1 < < 2" — 1 — the number
of components of [0,1] \ C,. The next result asserts this and does so in consid-
erable generality, where the nth generation intervals have (common) length «;,
and are arranged within the interval [0, 1] like the generations of intervals that
are deleted to form the Cantor ternary set. We require a, > w41 > 0 for all n and

1

[ee)
Yy 2" 1y, < 1. In our current setting, &), = 31
n=1
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LEMMA 3.4. Forn > 1, let ay be the length of an interval of generation n and
consider the collection of 2" — 1 intervals of generations less than or equal to n, arranged
within [0, 1] by their various lengths:

Ky Uy —1, &, &yn—2,8n, Xy 1, %ny Ayy—3, &n, Kyp—1, &n, Xyp—2,%ny e oo, Uy, Ky 1, Ky

Forany k, 1 < k < 2" —1, let L, (k) denote the list above with the first k — 1 terms
deleted. Then, for any such k, and any i, 1 < i < 2" — k, the sum of the first i terms in
the list above (i.e., in Ly, (1)) is less than or equal to the sum of the first i terms of L, (k).

Proof. Our proof here really only depends on the inequality: 0 < a; < ap,
whenever p < g are positive integers. We observe that the conclusion trivially
holds for n = 1. We proceed by induction and assume that the conclusion holds
for some value of n — 1, where n > 2. We work to show that the conclusion holds
for n. Again, the arrangement of the pertinent intervals for nth case is:

Ky &pp—1,&ny, Kpn—2,&pn, Xyp—1,&n, Xp—3,&n, Ky—1, &, Xn—2,&pn, o oo, &y, Kyy—1, K.
We choose k, 1 <k <2"—1andi, 1 <i<2"—k Leto,(i) denote the sum of
the first i terms in the list L, (k). If i is odd, then 0,1 (i) = ZHan + 0,1 1( N
i is even, then 0,1 (i) = 20(,1 + 0y-11(%). The value of 0, x(i) depends on k and i.
Suppose first that k and 7 are both odd. In this case,

. i+1 i—1
Un,k(l) 2 Oén-i-O' 1 k+1< )

If k is odd and i is even, then 0,4 (i) = 4oy + o,

N

1 (£). Ifkis even and i is

1,5
odd, then by shifting one of the intervals in o, (%) to the &y, summand we

=Y
have 0, (i) = 5= Dcn+(7 1;((”51) > l+1txn—|—(7n 1k (121) since 0 < a; < ap
whenever p < g. Finally, if both k and i are even, then oui(i) = San+ 0, 1k (5).
By our induction hypothesis, we find 0;,1(i) < 0,,(i) for all n € Z+ and all
integers k and i satisfying 1 < k < 2" —1land 1 < i < 2" — k, completing our
proof. 1

COMPLETING THE ESTIMATES. By Lemma [3.4] and the discussion preceding it,
we have ¢}, (v7) < Ay. Therefore,

Im(bk)
| — b |

<Ay, and similarly Z
b €Ly (x+) b by, (%) b€ n(x™), by #by, (x)

Consequently,

= Im(by) = Im(by, (x))
+ N TR NI
; bkEIn(er)Zbk#hk (x) |x o bk|) HZ=1 |x - bkn (x)‘

< 2A+MO Z(31—C0)1’l,

n=1
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independent of x € C. It follows that ¢* is bounded on [0, 1] and indeed on all of
R, which implies B is a uniform Frostman-Blaschke product. By Proposition 3.1]
and Lemma B has the property that no point { € T satisfies B*({) = 1 and
B has an angular derivative at {. By Lemma Cp is not closed-range on any
Af-space.

4. AN IMPROVEMENT ON A THEOREM OF VASJUNIN

We now establish Theorem[I.1} which constitutes an improvement of a the-
orem of Vasyunin. In what follows, when we list zeros of a Blaschke product, we
do so according to multiplicity.

PROPOSITION 4.1. Let B be a Blaschke product with zeros {a,}n. Let {a};}, be
chosen in D, so that a;, = 0 if a, = 0, and Z—i = t with t > 1 otherwise. If B is the
Blaschke product with zeros {aj;; }u, then ¢z < ¢@p on T. Therefore, if B is a uniform
Frostman—Blaschke product, then so is B.

Proof. If 0 < s < r < 1, then by elementary methods one finds that g({) :=

2
Ig:i{z attains its maximum value on T at { = 1. It follows that, for all { in T,
1—r 1-s
C—rl T 1C—sl

which gives the result. &

The next two results are well known. We provide proofs for the sake of
completeness.

PROPOSITION 4.2 ([28]). Let B be a Blaschke product with zeros {a, }n. If Bis a
uniform Frostman—Blaschke product, then the series

Y (1= [au]) log(e/ (1 — |an]))

n

is convergent.
1
Proof. If ¢ > 0, then ch-tt = log((1+c)/c), which is boundedly equiva-

0
lent to log(e/c), independent of c in the range: 0 < ¢ < 1. Furthermore, since
i IC%M dm({) is boundedly equivalent (independent of a,) to
T n

/ %dx = log(e/ (1 — |anl)),

1—|an|
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choosing e for convenience, we see that there is a constant M > 1 such that

< log(e/ (1~ faul)) / 7oy (@) < Mlog(e/ (1~ Janl)),

for all n. So, if B is a uniform Frostman-Blaschke product, then ¢p € L!(m) and
hence

> (1= lan|)log(e/(1 = [ax]))

n

converges. 1

LEMMA 4.3. Let {s,};, be a nonincreasing sequence of positive real numbers. If
e}

Y su converges, then ns,, — 0, as n — .
n=1

e}
Proof. Since ) s, converges, for ¢ > 0, there is a positive integer N such
n=1
that
M )

Z Sp < Z sy <&,

n=N+1 n=N+1

whenever M > N. Therefore, since {s,}’_; is nonincreasing, if M > 2N, then
%SM < eand hence MSy; < 2¢. 1

We turn to the main result of this section, which we recall here for the
reader’s convenience.

THEOREM 1.1. Let {r,}3>_, be a nondecreasing sequence in [0,1). In order
for there to exist a uniform Frostman—Blaschke product B having zeros {a,}5_; with
|an| = ry for all n, it is sufficient that there exists € > 0 such that the series

(4.1) Z (1—ry)log(e/(1—rn))[log(log(3/(1—ry)))]*

is convergent.

Proof of Theorem[I.1} We begin by observing that ¢ : [0,1) — [1,1) defined
by o(x) = ¢*~! provides a one-to-one correspondence between nondecreasing
sequences {r, } in [0, 1) and nondecreasing sequences {s, } in [1,1) givenby s, =
o (rn). Notice that

1—e¥1
1—x
Therefore, under the correspondence s, = o(ry), we have

—1 asx—>1".

i (1 —rn)log(e/(1 —ry))[log(log(3/(1 —ra)))*

n=1
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converges if and only if
2 (1—s,)log(e/ (1 —s,))[log(log(3/(1 —s,)))]° converges.

Thus, the problem carries over to the upper-half plane H*, with a renaming of
terms.
Now, the function

g(x) 1= (1 —x)log(e/ (1 — x))[log(log(3/ (1 — x)))I*
is strictly decreasing on the interval [s,1), if 0 < s < 1 and s sufficiently near 1.
Choose such an s. The convergence of

o)

Y, (1—rn)log(e/ (1 —ru))[log(log(3/ (1 — ra))))*

n=1
implies that r, — 1, as n — oo, and so there are only finitely many values of n
for which r,, < s. Since the product of a finite Blaschke product with a uniform
Frostman—-Blaschke product is itself a uniform Frostman-Blaschke product, we
can bring to bear the observation above and Lemma {4.3| and reduce to the case
that for all n

HD1-r < %;and both
42 (i) {1~ ru}, {(1 — ru) log(e/ (1 — rs))[log(log(3/ (1 — r4)))]}

are nonincreasing.

By the second part of (ii) in (4.2), the convergence of

[e9)

Y (1—ru)log(e/ (1 —r4))[log(log(3/ (1 —ru)))I*

n=1

implies the convergence

Y 2601 — ry) log(e/ (1 — ry))log (log(3/ (1 — r))) ",
k=0
and conversely; cf., Theorem 3.27 of [25]. Since we may delete finitely many of

the terms of the sequence {r, }°° n_1, we may assume that

N =

Aim Y2251 = 1) log(e/ (1 - 1)) llog log(3/(1 — 1)) <
We again build our Blaschke product in H, with zeros over the interval [0,1]
that accumulate on a Cantor-type subset of [0,1] and make our estimates on its
Frostman sum in this context; since the mapping 7 : H" — D defined by 7(w) =
el is locally conformal and almost an isometry for w in H* near the interval [0, 1].
For any nonnegative integer k, let

O = (1 —ry)log(e/ (1 —ry))[log(log(3/(1 —rx)))]"
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We use these d;'s to construct our Cantor-type subset of [0, 1], mimicking the con-

struction of the classical Cantor set. Let £; be the set obtained by deleting from

[0,1] the middle open interval of length dy, and inductively, for k > 2, let & be the

set obtained from &_; by deleting the middle open interval of length &;_; from

each component of &_;. Notice that & has 2¢ components of equal length. We

let B denote the length of each such component. Let £ = () &. This process
k=1

works because 2 2k5, converges to the value A < 2, and it makes £ (to a large

degree) self-similar. Indeed, £ is a compact subset of [0, 1] of Lebesgue measure
at least one-half. See Figure 3 for an illustration of the set remaining after the
second round of deletions, where each of the segments depicted have length S,.
We note that Zkﬁk —1—-A> %, as k — oo. Therefore, there is a constant C > 1
such that, for all nonnegative integers k,

ka
(4.3) = <P < c27k.
0 1
.—<—§1ﬂ_ -~ 50 [N _<—(51—>_.
Figure 3.

We now choose points in H* that correspond (under 7) to the zeros of a
Blaschke product B. One point is chosen for every component of [0,1] \ £, and is
centrally located over that component, and we work our way through the com-
ponents from the larger to the smaller, and from left to right through those that
are of the same length. Indeed, for any positive integer k and any component of
[0,1] \ € of length 6;_1, we choose the point in HT that lies over the center of
that component and has imaginary part equal to 1 — 7,1 and, as before, we call
these 2K—1 points, zeros of the kth generation. Let {w, }*°_, be the sequence of these
distinct points in H. Since {1 — r,,}$°_; is nonincreasing, the sequence

{1=r,1—=1r,1 =13, 1 =14, 1 =14, 1 — 14,1 — 14,1 —1g,...}

is term by term greater than or equal to {1 —r, }$_;. Our goal is to show that this
Blaschke product B is in fact a uniform Frostman-Blaschke product. We can then
apply Proposition[d.1] to find that the Blaschke product that results from moving
the zeros {w,, }*_; (of B) vertically downward so that their imaginary parts (term
by term) correspond to the values of the sequence {1 —r,,}3° ; is itself a uniform
Frostman-Blaschke product.
As before, define ¢ on R by:
Im(wy)
L

Jx = wal’
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Our goal is to show that ¢} is bounded on 5 which implies that ¢ is bounded

on R. We begin by showing that ¢3(0) := Z Im w” converges by breaking the
sum hﬁfwl”) into parts and giving upper bound estimates on each, just as we
n=1 "

did in our first example.

Now, there is a subsequence of {w,}{_; consisting of those zeros that lie
above a leading component of [0,1] \ £ of length J;_;, for some positive in-
teger k. The kth such zero has imaginary part 1 — 71 and modulus greater
than Bj. Therefore, by , this part of the sum ¢}(0) is bounded above by
C E 2K(1 — r5-1), which we know converges. We break the rest of the sum @3 (0)
in]’zo 1countably many sums: the first over those zeros that lie above components
that are to the right of the only component of [0,1] \ £ that has length Jy, the
second over those zeros that lie above components that are between the leading
component of [0,1] \ € of length §; and the only one of length Jy and, for K > 3,
over those zeros that lie above components that are between the leading compo-
nent of [0,1] \ £ of length éx_1 and the leading one of length dx_,. Notice that
the Kth such sum is bounded above by

i ok—k L =T
Bk

k=K
which, by (4.3), is bounded by C Y Zk(l — 7). Therefore, the rest of the sum
k=K
¢3(0) is bounded by:

S co k [<S)
cYy ) (1 —ry)=C Y ) 2°(1—ry)=C Zkzk(l — Iok)-
K=1k=K k=1K=1 k=1

Now, by (i) in , 1—ry < 217 and hence klog(2) < log(e/(1 —ry)). Thus, the
rest of our sum ¢ (0) is bounded by

e Zz ~ ry) log(e/ (1~ 1)),

which, by our hypothesis, converges. Thus ¢} (0) converges. Notice that the
convergence of ¢5(0) only requires that Z (1 —ry)log(e/(1 —rn)) converges.

Yet, to show that ¢} is bounded on &, we seem to need our full hypothesis, that
the series

i 1— 1) log(e/ (1 — ) [log(log(3/ (1 — ra)))

is convergent.
For any x € £ and any k € Z*, let di(x) be the shortest distance from x to
any zero that lies over a component of [0,1] \ £ of length J;_4; i.e., a zero of the
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kth generation. Notice that, since the series

:io 2(1 — ry) log(e/ (1 — ry)) [log(log(3/ (1 — ry)))*

converges and 1 —r,; < % for all n, we have

Y 2%(1 — ry)k[log(k)]*  converges.
k=3

Therefore,

) i converges
=5 27"/ kllog (k)¢ '

which implies that

S:= Z ! k/kk converges.
Forx € &, let A(x) = {k € Z" : di(x) > } and let B(x) = Z* \ A(x). Clearly,
Z 1y <8 < oo

[ee]
Claim. There is a constant I’ > 1 such that 7 := I’ Z

n=2

is an
n log l+s

upper bound for )
keB(x) dk( )

, independent of x in £.

Proof of Claim. Recall that 28, — 1 — A > %, as k — oo, where fy is the
(common) length of any component of &. So, for sufficiently large k, 38, > 217 >

Bx. If k € B(x), then di(x) < % Let Ji(x) be the closed interval (among the
2k components of &, each of length f;) that contains x. It now follows from this
that x must be within a distance of %length( Jk(x)) from an endpoint “a” of J(x),
provided k is sufficiently large, and the “sufficiently large” is independent of x.
Moreover, the endpoint a is closer (than x) to the zero of the kth generation that
is closest to x. Let [ be the next largest integer in B(x). Then d;(x) < 2%’ and x is
simultaneously within ?length(Ji(x)) of a and length(J;(x)) of an endpoint “b”
of J;(x) — the component of £ containing x; see Figure 4 below for an illustration
of things here. As before, b is closer (than x) to the zero of the /th generation that
is closest to x. Indeed, b is an endpoint of a component of [0,1] \ & of length §; 1,
distinguishing it from a, which is an endpoint of a component of [0,1] \ & of
length ;1. Therefore, a is separated from any component of [0,1] \ & of length
61—1, and hence from b, by at least one component of &;. So, the distance from a
to b is at least 8; and we have

kﬁk 1engfh]k( ) = la—b|l =B
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provided k is sufficiently large. Therefore, if k is sufficiently large, then

18 1

K2k 7 2l
So, k + log k is essentially a lower bound for I. With this in mind, let k,, be the nth
integer in the set B(x), listed in increasing size. By the analysis above, we find
that the rate that k,, grows, with n, is governed (in lower bound) by the recurrence
relation: k1 = k, + log(ky). This recurrence relation gives

kpi1 =k + 10g(k1k2k3 cekp).

Since k, > n, it follows that log(kikaks - - - ky,) is essentially bounded below by
nlog(n). So we find that that k,, grows (with n) at least as fast as nlog(n). Now
d, (x) is the distance from x to the zero of the k,th generation that is nearest to x
and so has value at least half the length of any component of [0,1] \ £ of length
Ok, —1- Therefore,

O, -1 Ok
de (x) > = >
kn( )/ 5 7

Moreover, 1 — 1y, < zTn and &, := (1 —ry)log(e/ (1 — ry))[log(log(3/(1 —
r51)))]¢. Coupling these things with our lower bound estimate for k;,, namely

nlog(n), we find that - (2;‘(3 is essentially bounded above by

1 1
nlog(n)[log(nlog ()] ™ n[log(n)]1+<’
independent of x in £, which establishes our claim.

the interval Ji(x)

Ji(x) Figure 4.

Our analysis now mimics that of the first example in this paper. For any x € £
and n € Z*, we let I,(x™) be the collection of all zeros of the nth generation
whose real parts are less that x and let I,(x™) be the collection of all zeros of the
nth generation whose real parts are greater than x. This time we let w;, (x) denote
the zero of the nth generation that is nearest to x. Applying Lemma 3.4]as before,

we find that twice R := C Z 2K(1 — 7o) + log Z 2K(1 — 7o) log(e/ (1 —rx)),
which is our (crude) upper bound for ¢3(0), prov1des us an upper bound for:

(oo

X — W;
wi€ly (x%),w;#w), (x) ’ J|
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independent of x € £. Therefore, S + 7 + 2R is an upper bound for ¢} on . It
follows that ¢ is bounded on [0,1] and indeed on all of R. Thus, B is a uniform
Frostman-Blaschke product with zeros satisfying (4.1). 1

5. ADDENDUM

We conclude with a result that has bearing on Frostman-Blaschke products,
in general.

THEOREM 5.1. If Bisa Blaschke product and I is a component of T \ op satisfying:

[ 1a() dm (@) < e,
1

then @p is bounded on the closure of I.

Proof. Since ¢p is continuous on I (see Lemma 4.2 of [7]), it is bounded on
compact subsets of I. Therefore, we need only show that ¢p is bounded on the
closure of I, near the endpoints of I. Let « and  denote the endpoints of I. If
a = B, then I is the circle, o consists of a single point and we would have:
J hg(Z) dm(g) = oo; see the proof of Proposition 3.5 of [3]. Let v be a chord of T
I

that has one endpoint equal to & and the other endpoint — call it # — satisfies:

(i) 7¢I, and

(if) # is much closer to « than it is to .

Now D\ 7 has two components, U and V. Let V be the component for which the
closure contains I; see Figure 5 below.

1 u

Figure 5.

Let {ay, };° ; be the “subsequence” of {a,}7’ ; contained in V. If & is a cluster
point of {a,, } ,, then [ hp({) dm({) = oo, contradicting our hypothesis (see the
1
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proof of Proposition 3.5in [3]]). Thus, there exists 6 > 0 such that | — a,, | > ¢ for

_‘a k|2
all k, and so Z |"‘7

| converges. Indeed, for { € I sufficiently near «, one
g

can find a bound on

i 1 — |ay, |

Let {a;; };2, be the * subsequence of {an} >, complementary to {ank }eoq- Thus,

forallk,ay € DN U and so (i) and (ii) tell us that the pole of z
b

aj;k) is much closer to « than it is to 8. So, since f xl—z dyx=1— % > 2171, whenever

—ay, |
7‘27% E (namely,

a

0<a<bandb > 24 (ie, the pole of x — = is at least twice the distance from b
than it is from a), we can find a constant C (1ndependent of k) such that

|zx—a C/|§—a* m(g).
So,

Since
o 1 |2

Z _a*| Z|D€—{Il*|

forall € I, we conclude that ¢p is bounded on the closure of I near a. A
symmetric argument gives us the same for 8, and our proof is complete. 1
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