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ABSTRACT. Let E be a countable directed graph. We show that for the algebra
C∗(E) the properties of being AF-embeddable, quasidiagonal, stably finite,
and finite are equivalent and that these properties hold if and only if no cycle
in E has an entrance. In this case, we present a construction, in the spirit of
the Drinen–Tomforde desingularization, that allows one to embed C∗(E) into
a AF graph algebra.
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1. INTRODUCTION

In [7], Pimsner and Voiculescu argued the irrational rotation algebras Aθ can
be embedded into an AF C∗-algebra. Since then, there has been an interest in char-
acterizing the C∗-algebras which are AF-embeddable; especially crossed prod-
ucts. Pimsner [6] and Brown [2], repsectively, have solved the AF-embeddability
question for algebras of the form C(X) o Z for a compact metric space X and
AoZ for an AF-algebra A. See Chapter 8 of [3] for a survey on AF-embeddability.

The general AF-embeddability problem is still largely unsolved. There are
only two known obstructions to AF-embeddability; namely exactness and qua-
sidiagonality. A C∗-algebra A is said to be exact, if the functor B 7→ A ⊗min B
preserves short exact sequences. A C∗-algebra is called quasidiagonal if there are
sequences of finite dimensional C∗-algebras Fn and completely positive contrac-
tive maps ϕn : A→ Fn such that

‖ϕn(ab)− ϕn(a)ϕn(b)‖ → 0 and ‖ϕn(a)‖ → ‖a‖

for every a, b ∈ A. See Chapters 3 and 7 of [3] for an introduction to exactness
and quasidiagonality.

Both quasidiagonality and exactness are preserved by taking subalgebras,
and AF-algebras enjoy both properties. Hence every AF-embeddable C∗-algebra
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is exact and quasidiagonal. It is conjectured in [1] that the converse is true. Black-
adar and Kirchberg also ask if every stably finite nuclear C∗-algebra is quasidiag-
onal. Hence in particular, the conjecture is that stable finiteness, quasidiagonality,
and AF-embeddability are equivalent for nuclear C∗-algebras. The main result of
this paper verifies this conjecture for graph C∗-algebras. In particular, we have

THEOREM 1.1. For a countable graph E, the following are equivalent:
(i) C∗(E) is AF-embeddable;

(ii) C∗(E) is quasidiagonal;
(iii) C∗(E) is stably finite;
(iv) C∗(E) is finite;
(v) no cycle in E has an entrance.

2. GRAPH C∗-ALGEBRAS

By a graph we mean a quadruple E = (E0, E1, r, s), where E0 and E1 are
countable sets called the vertices and edges of E, and r, s : E1 → E0 are functions
called the range and source maps. Given a graph E, a Cuntz–Krieger E-family in a
C∗-algebra A is a collection

{pv, se : v ∈ E0, e ∈ E1} ⊆ A

such that the pv are pairwise orthogonal projections, the se are partial isometries
with pairwise orthogonal ranges, and the following hold:

(i) s∗e se = ps(e) for all e ∈ E1,
(ii) ses∗e 6 pr(e) for all e ∈ E1, and

(iii) pv = ∑
e∈r−1(v)

ses∗e whenever v ∈ E0 with 0 < |r−1(v)| < ∞.

Let C∗(E) denote the universal C∗-algebra generated by a Cuntz–Krieger E-family.
See [8] for an introduction to graph C∗-algebras.

If E is a graph and n > 1, a path in E is a list of edges α = (αn, . . . , α1) such
that r(αi) = s(αi+1) for each 1 6 i < n. Define r(α) = r(αn) and s(α) = s(α1).

Let En denote the set of paths of length n in E and E∗ =
∞⋃

n=0
En the paths of finite

length in E. In particular, the vertices of E are considered to be paths of length 0.
Given α = (αn, . . . , α1), define sα = sαn · · · sα1 . It can be shown that

C∗(E) = span{sαs∗β : α, β ∈ E∗ with s(α) = s(β)}.

A cycle in E is a path α ∈ En with n > 1 such that r(α) = s(α). We say
α has an entrance if |r−1(r(αi))| > 1 for some i. The structure of the algebra
C∗(E) is closely related to the structure of the cycles in E. By Theorem 1.1, the
AF-embeddability of C∗(E) is also characterized by the cycles in E.
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We recall two results about graph C∗-algebras. Theorem 2.1 is from Kumjian,
Pask, and Raeburn in the row-finite case and Drinen and Tomforde in general (see
Theorem 2.4 of [5] and Corollary 2.13 of [4]). Theorem 2.2 is Szymański’s gener-
alization of the Cuntz–Krieger uniqueness theorem (see Theorem 1.2 of [9]).

THEOREM 2.1. For a countable graph E, C∗(E) is AF if and only if E has no
cycles.

THEOREM 2.2. Suppose E is a graph, A is a C∗-algebra, and { p̃v, s̃e} ⊆ A is a
Cuntz–Kreiger E-family. If p̃v 6= 0 for every v ∈ E0 and σ(s̃α) ⊇ T for every entry-less
cycle α ∈ E∗, then the induced morphism C∗(E)→ A defined by pv 7→ p̃v and se 7→ s̃e
is injective.

We also need a simple lemma about the UHF algebra M2∞ .

LEMMA 2.3. There is a unitary t ∈ M2∞ with σ(t) = T.

Proof. Let (en
jk) be a system of matrix units for M2n and consider the embed-

dings M2n ↪→ M2n+1 given by en
jk 7→ en+1

2j−1,2k−1 + en+1
2j,2k for 1 6 j, k 6 2n. Set

hn :=
2n

∑
k=1

k
2n en

kk ∈ M2n ⊆ M2∞ ,

It is easy to see that (hn)∞
n=1 converges to a self-adjoint element h ∈ M2∞ with

σ(h) = [0, 1]. Now, t := e2πih is a unitary with σ(t) = T.

3. PROOF OF THEOREM 1.1

We are now ready to prove our main result. Starting with a graph E sat-
isfying condition (v), we will replace each cycle in E with a Bratteli diagram
of the UHF algebra M2∞ to build a new graph F such that C∗(F) is AF and
C∗(E) ⊆ C∗(F). The idea of the proof is motivated by the Drinen–Tomforde
desingularization process introduced in [4].

Proof of Theorem 1.1. It is well-known that (i) implies (ii) and (ii) implies (iii)
(see Propositions 7.1.9, 7.1.10, and 7.1.15 of [3]) and it is obvious that (iii) implies
(iv). To see (iv) implies (v), note that if α, β ∈ E∗ are distinct paths with s(α) =
r(α) = r(β), then we have

s∗αsα = ps(α) and sαs∗α � sαs∗α + sβs∗β 6 ps(α).

So ps(α) is an infinite projection and C∗(E) is infinite.
Now suppose (v) holds. Let B be the graph

v • • · · ·
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Then pvC∗(E)pv ∼= M2∞ . Choose a unitary t ∈ pvC∗(E)pv with σ(t) = T as in
Lemma 2.3. Choose a cycle (en, . . . , e1) ∈ E∗ with ei 6= ej for each i 6= j and set
ui = s(ei). Define a graph F by

F0 = E0 ∪ B0, F1 = (E1 \ {e1, . . . , en}) ∪ B1 ∪ { f1, . . . , fn}

and extend the range and source maps by r( fi) = ui and s( fi) = v.
For example, the cycle on the left below, will become the graph on the right.

A more complicated example is handled below.

u1

u1 u2 u2

v • · · ·

u4 u3 u3

u4

e1

e2

f1

f2

f3

f4

e4

e3

Define s̃ei = s fi+1
ts∗fi
∈ C∗(F) for each i = 1, . . . , n. Since no cycle in E has

an entrance, we have r−1
F (ui) = { fi}. Hence

s̃∗ei
s̃ei = s fi

s∗fi
= pui and s̃ei s̃

∗
ei
= s fi+1

s∗fi+1
= pui+1 .

Moreover,

σ(s̃en s̃en−1 · · · s̃e1) = σ(s f1 tns∗f1
) = σ(s∗f1

s f1 tn) = σ(tn) = T∪ {0}.

Now, by Theorem 2.2, there is an inclusion C∗(E) ↪→ C∗(F) given by

pv 7→ pv for v ∈ E0 and se 7→
{

s̃e e ∈ {e1, . . . , en},
se e ∈ E1 \ {e1, . . . , en}.

Note that since no cycle in E has an entrance, the cycles in the graph E are
disjoint. Thus by applying the construction above to every cycle in E, we may
build a graph F with no cycles and an embedding C∗(E) ↪→ C∗(F). Since F has
no cycles, C∗(F) is AF by Theorem 2.1 and hence C∗(E) is AF-embeddable.

EXAMPLE 3.1. Consider the graph E shown below:
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u1 u2 x w1

w2

u4 u3 y w3

There are two cycles in E given by the (ui) and the (wi). Applying the
construction above to both cycles yields the graph F given below:

u1

w1

u2 x

· · · • v1 w2 v2 • · · ·

u3 y

w3

u4

REMARK 3.2. In the proof of Theorem 1.1, we may replace M2∞ with any
AF algebra A which contains a unitary t with full spectrum, and we may replace
B with any Bratteli diagram for A.
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