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ABSTRACT. Inarecent work, we initiated the study of Borel equivalence rela-
tions defined on the Polish space SA(H) of self-adjoint operators on a Hilbert
space H, focusing on the difference between bounded and unbounded oper-
ators. In this paper, we show how the difficulty of specifying the domains
of self-adjoint operators is reflected in Borel complexity of associated equiv-
alence relations. More precisely, we show that the equality of domains, re-
garded as an equivalence relation on SA(H), is continously bireducible with

the orbit equivalence relation of the standard Borel group ¢*°(N) on RN, More-
over, we show that generic self-adjoint operators have purely singular contin-
uous spectrum equal to R.

KEYWORDS: Unbounded self-adjoint operators, Borel equivalence relations.
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1. INTRODUCTION

In the recent paper [1], the authors have studied Borel complexity of var-
ious equivalence relations defined on the space SA(H) of all (not necessarily
bounded) self-adjoint operators on a separable and infinite-dimensional Hilbert
space H equipped with the strong resolvent topology (SRT). One major differ-
ence between bounded and unbounded operators is that due to the domain prob-
lems, SA(H) is not even a vector space: recall that the sum of self-adjoint oper-
ators A, B is defined as the operator C with dom(C) = dom(A) N dom(B) and
Cg := AZ+ B¢, ¢ € dom(C). In general, there is no reason to expect that C is
densely defined even if dom(A), dom(B) are dense. In fact, Israel [7] has shown
that if A € SA(H) has empty essential spectrum, then the set of all unitaries u
satisfying dom(A) Nu - dom(A) = {0} forms a norm dense G4 subset of the uni-
tary group U(H). Thus dom(A + uAu*) = {0} for norm-generic u. Therefore, it
is natural to expect that the domain equivalence relation

AESAH) B o dom(A) = dom(B)

dom
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has a high degree of complexity. In this paper, we determine its exact Borel com-
plexity by showing that EzﬁriH) is an F; (but not K;) equivalence relation, and that
it is continuously bireducible (see Section 2 for the definition) with the /*(N, R)-

orbit equivalence relation E%%T defined on RN by

N
(an)er Eee (bn)pey < sup [ag —by| < oo, (an)5ey, (ba)yey € RY.
neN

Since Rosendal ([12], Proposition 19) has shown that E%&N is universal for K-
SA(H)

equivalence relations, Ej_ "’ also enjoys this property. Moreover, since by this
universality the notorious K, equivalence relation E; (see Section 3) is Borel re-

ducible to Eg?élH), Eiﬁrng) is not Borel reducible to any orbit equivalence relation

of a Borel action of a Polish group, by the Kechris-Louveau theorem ([9], Theo-
rem 4.2). Moreover, we show that the related equivalence relation Ezﬁéﬁ) (unitary
equivalence of domains) given by

SA(H)
dom,u

AE B < Ju unitary [u - dom(A) = dom(B)]

SA(H) <B Ez’;&H) as a

is Borel reducible to a K, equivalence relation, whence E domu S
corollary. Finally, we strengthen our previous genericity result (Theorem 3.17(1)
in [1]]) saying that elements in SA(H) which have essential spectrum R form a
dense G4 set. Namely we prove that elements in SA(H) which have purely sin-
gular continuous spectrum R, forms a dense Gy set in SA(H). This shows that
although every self-adjoint operator can be approximated by diagonal operators
(Weyl-von Neumann theorem), generic self-adjoint operators have rather patho-
logical spectral properties (cf. [2] and [10]). The proof is based on Simon’s won-
derland theorem [14].

2. PRELIMINARIES

We refer the reader to Section 2 of [1] for relevant definitions and nota-
tion. Basic facts about operator theory (respectively descriptive set theory) can
be found in [13] (respectively in [5], [6] or [8]). Below we give some definitions
here for convenience. Let H be a separable infinite-dimensional Hilbert space.

DEFINITION 2.1. The strong resolvent topology (SRT) on the space SA(H) of
all self-adjoint operators on H is the coarsest topology which makes the map
SA(H) > A+ (A—i)~! € B(H) continuous with respect to the strong operator
topology (SOT).

SA(H) is Polish with respect to SRT. The domain of A € SA(H) is written
as dom(A).
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DEFINITION 2.2. Let E (respectively F) be equivalence relations on a Polish
space X (respectively Y). We say that E is Borel (respectively continuously) reducible
to F, denoted E <g F (respectively E <. F), if there is a Borel (respectively con-
tinuous) map f: X — Y which is a reduction of E to F (ie., xEy < f(x)Ff(y)
holds for x,y € X). If moreover f is injective, we say that E is Borel (respectively
continuously) embeddable into F, denoted E Ty F (respectively E T, F). We say
that E is Borel (respectively continuously) bireducible with F, if E <g Fand F <g E
(respectively E <. F and F <. E) hold. In this case we write E ~p F (respectively
E~cF).

In the next section we consider the following three equivalence relations.

DEFINITION 2.3. We define E%%o JESAH) ang ESAUD by:

dom dom,u
(i) The equivalence relation Ef £°° on the Polish space RY is the orbit equiva-
lence relation of the action of the standard Borel group (* = (®(N) on RN by
addition. In other words, we have (a,)5_ Eéw (bn)5>y < sup |ay — by| < co for

neN
(an)iq, (bu)yy € R
(i) The equivalence relation E ( ) on SA(H) is given by
A%(mB@deAﬁuMm@)
(iif) The equivalence relation E ( ) on SA(H) is given by
AEdOIEw)B < Ju e U(H) [u-dom(A) = dom(B)].
We also recall a result on operator ranges. Recall that a subspace R C H
is an operator range in H, if R is equal to the range Ran(T) for some T € B(H).

We may choose T to be self-adjoint with 0 < T < 1. In this case, we set H, :=
Er((27"1,27")H (n = 0 1,...). Then H, are mutually orthogonal closed sub-

spaces of H with H = @ H, (by the density of R). {H,,}?°, are called the asso-

=0
ciated subspaces for T (see Section 3 of [4] for details). Since we are only concerned
with dense operator ranges, we state the following result ([4], Theorem 3.3) for
dense operator ranges (in this case the condition (1) of the cited theorem is auto-
matic).

THEOREM 2.4 (Kothe, Fillmore-Williams). Let R, S be dense operator ranges
in H with associated subspaces {Hy }5_, and {Ky }5_,, respectively. Then there exists
u € U(H) such that uR = S, if and only if there exists k > 0 such that for each n > 0
and 1 > 0, one has

dim(Hy @ - - - ® Hy11)

dim (K, @ - - - @ Ky 144),
dim(K, @ - - - @ Kypyy) < di

m(H, @ ® Hyypk),

where we use the convention Hy, = Ky = {0} for m < 0.

<
<
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Finally, for A € SA(H), we denote by 0;,(A), 0ac(A) and osc(A) the set of
eigenvalues, absolutely continuous spectrum, and singular continuous spectrum
of A, respectively (see Section VIL.2 of [11]). We put 0ac(A) = @ (respectively
0sc(A) = Q) if there is no absolutely continuous part (respectively singular con-
tinuous part) of A, and we say that A has purely singular continuous spectrum, if
0p(A) = @ = 7ac(A) holds.

3. MAIN RESULTS

Now we state the main result.

THEOREM 3.1. Eiﬁ(m

o 1s an Fy equivalence relation which is continuously bire-
ducible with EX, .

Before going to the proof, let us state an immediate corollary. We need two
important results. Recall that a subspace of a topological space is called K, or
o-compact, if it is a countable union of compact subsets. First, Rosendal ([12],
Proposition 19) has shown that

THEOREM 3.2 (Rosendal). Eg&j is universal for K, equivalence relations in the
sense that any K, equivalence relation on a Polish space is Borel reducible to E%,N .

Secondly, recall the K, equivalence relation E; on CY (where C = 2V) de-
fined by

(an)%1E1(by)%y < AN € NVn > N [a, = by).

Since C and R are Borel isomorphic, E; may alternatively be defined (when talk-
ing about Borel reducibility) as the tail equivalence relation on RY. Kechris-
Louveau ([9], Theorem 4.2) have shown that E; is an obstruction for a given
equivalence relation to be Borel reducible to orbit equivalence:

THEOREM 3.3 (Kechris-Louveau). E; &g EZ for any Polish group G and Pol-
ish G-space X.

Here, Eé stands for the orbit equivalence relation associated with the Borel
G-action. Since there are many orbit equivalence relations that are turbulent (in

the sense of [6]) and Borel reducible to E%&N (e.g. P(N) (1 < p < o0) actions on

RYN), Theorems and [3.3|imply that:

COROLLARY 3.4. Eiﬁrng) is universal for K,-equivalence relations. In particu-

lar, it is unclassifiable by countable structures, not Borel reducible to orbit equivalence
relation of any Polish group action.

Now we prove Theorem 3.1]in few steps.

A(H)

PROPOSITION 3.5. ECS1om is an F, equivalence relation which is not K.
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The proof relies on Douglas’ range inclusion theorem [3] (cf. Theorem 2.1
of [4]).

THEOREM 3.6 (Douglas). Let A,B € B(H). Then Ran(A) C Ran(B) holds if
and only if there exists A > 0 such that AA* < ABB*.

Proof of Proposition[3.5] 1t is clear that T: SA(H)?> > (A,B) — (B,A) €
SA(H)? is a homeomorphism. Define

S :={(A,B) € SA(H)%;,dom(A) C dom(B)}.

Since Eg’:r(nH) = SN 1(8), it suffices to show that S is F, in SA(H)2. For A,B €
SA(H), we have dom(A) = Ran((]A| +1)71),dom(B) = Ran((|B| +1)71).
Therefore Theorem B.6lshows that
dom(A) € dom(B) < 3A > 0[ (JA|+1)"2 < A(|B| +1)72]

& eNVE e H(E (A +1)7%¢) <k (Bl +1)7°0) ],

Therefore S = U [\ Sig where
keEN¢eH

Sk = {(A,B); (¢, (|Al +1)728) <k{¢, (IB| +1)72¢)}.

It is easy to see that SA(H) > A — (|A| +1)72 € B(H) is SRT-SOT continuous,
hence each Sy ¢ is SRT-closed. Therefore S is F,. The last assertion follows from
the fact that SA(H) is not K (it contains a homeomorphic copy of RY) and a well-
known fact: note that if an equivalence relation E on a Polish space X is K, then
X mustbe K,. 1

Proof of Theorem 3.1} Ecsiﬁ‘rng) is F, but not K, by Proposition We show
that E(Sig‘rng) is continuously bireducible with Eg%? . We first show that E(Siz;ng) <c

E%%(,N . Fix a dense countable subset {, }> ; of H. Given A € SA(H), define T, :=
(|A| +1)72. Since T4 is positive and 0 is not an eigenvalue for T4, (¢n, Taln) >
0 for every n € N. Moreover, A — T4 is SRT-SOT continuous by functional
calculus. Therefore we may define a continuous map ¢: SA(H) — RN by

¢(A) = (an(A))yZ1,  an(A) :=10g({Cn, Taln)), A €SA(H), neN.

We show that ¢ is a reduction map. Let A, B € SA(H). By the proof of Proposi-
tion[3.5] we have

dom(A) = dom(B)

< 3C; >03C, >0[CTp < Ta < CT3]

< 3C; >03C >0Vn € N[C1(Cn, TpCn) < (Cn, Taln) < Co(Cn, ToCn) |

< 3C; >03C, >0n e N[logCy < ay(A) —au(B) <logCs |
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< sup |ay(A) —a,(B)| < o0
neN
N
< ¢(A)E ¢(B),

N

which shows that Eil;slH) <c EI}“, .
Next we show that E%RWN <c EES(H) The proof is similar to the first part. Fix

a complete orthonormal system (CONS) {1, }*°_; for H. For each (x,)2_, € RY,
define (¥%,)5; € RY, by

(|xn],0)  (xn >0),

n € N.
(0, [xn])  (xn <0),

(Xon—1,%0n) = {

Thus (1, —%,4, 0,...) is mapped to (1,0,0, %,4 0,0,0,...), etc. Itis easy to see that

RN 5 (x4)54 — (%) € RY is an injective continuous map satisfying

3.1) Sup [x, — yn| < 00 & sup [Ty — Ful <o,  (xn)nsy, (Yn)ney € RY.
neN neN

We define : RN — SA(H) by
= Z{exp(%k},) =13, - ), &= (xn)p=q €R.

It is easy to see that ¥ is continuous, and
Ty(a) = (P(a) +1)~ 2 exp(—%n) (1, - Yin, & = (xn)5y € RY.

We show that ¢ is a reduction map. Given & = (x,)%_ 1, = (yx)>; € RY, we
have (by (3.1))
dom(lp(zx)) = dom(w(ﬁ)) < 3C;>03C >0 [ClT(p(/S) < T‘P(“) < Csz(‘B) ]

< 3dC; >03C, >0VneN

[Crexp(—n) < exp(—Xn) < Caexp(—Vn) |
& sup |y — Xp| < 00
neN
]RN
< DCEeoo IB,

whence E%%oN <c ES‘S&H). This shows that E%%,N is continuously bireducible with
ESA(H)' 1

dom

As another corollary to Theorem 3.1} we prove that Ei?rgi) <B Ezﬁrng). This
SA(H)

is done by showing that E;_ ' is Borel reducible to a K, equivalence relation.
Regard N* := NU {oo} as a one-point compactification of N={1,2,...}. Thus N*
is homeomorphlc to {1;n e NfU{0} byn — 1 (n € N) and oo ~— 0. Consider
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the compact Polish space X := [] (N*U {0}), and define X, := {(an)ffzo €
n=0

X, Yoa, = oo}. Then X is a (dense) G; subspace of X, whence Polish.

DEFINITION 3.7. Define an equivalence relation Ex on X as follows:
(an)5_oEs(bn)5 if and only if there exists k > 0 such that for each I > 0 and
n=0,

I+k I+k

Z byyj and anﬂ S Z Aptj-

0 ]——k j=—k

MN

Here, weregard a, = b, =0 (n < 0)andoo+n=n+00 = co+ 00 = o0 (n € N).

PROPOSITION 3.8. Ey is a K, equivalence relation, and E doéﬂ ) ~p Ex|x, (<
( )

Eyx). In particular, E is Borel reducible to a K, equivalence relation.

We omit the proof of the next easy lemma.

LEMMA 3.9. Forn,m € NU{0}(n < m), themap X > (a)p>, — Z ar € N*
is continuous.

LEMMA 3.10. Let a,b € R,a < b, and let I = (a,b),[a,b) or (a,b]. Then the
map SA(H) > A+ rank(E4(I)) € N* is Borel.

Proof. We show the case of I = [4,b). Let
Sy :={A € SA(H); rank(E4([a,1))) <n} (neNU{0}),
Seo := {A € SA(H); rank(E4([a,b))) = co}.
Then by a similar argument to the proof of Proposition 3.18 in [1] (especially that
S,k defined there is SRT-closed), it can be shown that S;; is SRT-closed. Therefore

{A € SA(H);rank(E4([a,b))) =n} = S, \ S;—1 (n = 1) and Sy are Borel. Then
Seo = SA(H) \ Uy>0 Sn is Borel too. Thus the map A +— rank(E,(I)) is Borel. 1

Proof of Proposition[3.8] It is easy to see that dom(A) = dom(|A[+1) for
every A € SA(H), and dom(A) = Ran((|A| +1)~!). The associated subspaces
for Ty = (|A| +1)7!

Hy(Ta) = Er, (27" 1,2")H, n>0.
Note that for A € 0(A),

(A +D) e @™ L2 ere (1 -2" 1 - 2" u 2" —1,2" T —1).
=:1yUJy

Let dy(A) := rank(Ex(—1,1)) and d,(A) := dimH,(T4) = rank(Ex(I.)) +
rank(E4(Jn)) (n > 1). By LemmaB.10} d,,: SA(H) — N* is Borel for each n > 0.
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o0
Now, note that Ey = |J Ej, where
k=0

00 1 I+k I+k
Ej = m {((ﬂﬂ)fzo:O/ (bn)zo:o)? Zan+z X Z bn+] and anﬂ X Z an+j}~
I,n=0 i=0 j=—k j=—k

It is immediate to see that Eyx is K, because each Ej is a closed subset of the
compact space X x X by Lemma 3.9}

Define a Borel map ¢: SA(H) — Xy by (p( ) = (du(A))5. Since H is
A(H)

dom,u

byTheorem ThereforeE IEW) <B Ex|x, < Ex. Toshow Ex|x, < ESA) et

dom,u ’

Xox = {(an)yg € Xo;#{n € NU{0};a, = oo} =k}, ke N"U{0}.

infinite-dimensional, ¢(A) € X,. Moreover, AESA P Bifand onlyif ¢(A )Ez(p( )

Note that each X is a Borel subset of Xj: it is enough to see that XO k= U Xo,i

i=0
is closed in X. Butif a; = (a,;)5, € Xok tends to o = (a,)", € Xo, then if

Any = -+ =day, = © (1 < ny < --- < np), then by assumption there exists iy
such that for each i > ip a;, = -+ = a3, = 00,80 p < k. Therefore a € ??o,k, and

Xo,k is closed.
Now define for each k € N* U {0} a Borel map ¢: Xy, — SA(H) by the
following:

Case k = 0.
Fix a CONS {¢, }>_; for H. For a = (a,);>_, € Xo,0, define
[ee]
Pola) =Y (2"% = 1)en(a),
n=0
where the projection e, o(«) is inductively defined as follows: epo(«) is the pro-
jection onto span{¢y, ..., Cﬂo} (if ap > 1) and ep (@) = 0 otherwise, and for k > 0,
ex41,0(a) := projection onto span{Zay4...4a+1/ - - s Cagttaptap,, ;i g1 =1,
and ex10() := 0 otherwise Then it is easy to see that p: Xoo — SA(H) is
continuous, and Ty, (4) Z 27"y, o(a). In particular, the rank of the associated
subspace for Ty ) is dn(lpo( )) =a, (n=0).
Casel < k < oo.

Leta = (a,);>_ € Xox, and suppose that a,, = -+ =a, =00 (13 < --- <
1) (for k = co case this means that n; < n, < --- is an infinite sequence) and
ay < oo (n ¢ {ny,...,n}). Fix another CONS {5, {pn;n > 1,1 < p < k} for H,
and define y(«) € SA(H) by

Pe(a) == 30 (22— Denula),

n=0
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where the projection e, x(«) is defined as follows: define (b,)5", € Xo induc-
tively by

b = { ap ({10 < OO), bk+1 — {bk + 41 (ak—i-l < OO), k>0,

0 (a=o0), bk (ak11 = 0),
and then put ey («) = projection onto span{#y, ..., 1, } if ag < 00, and e (&) :=
projection onto span{{ ;}?°, if ap = co. Forn > 1, put

0 (an = 0)/
en k() := 1 projection onto span{n, . 11,...,p,} (0 <a, < o),
projection onto span{{,;}; (n=mnp).

Again ¢ : Xox — SA(H) is continuous, and d, (Y, (a)) = a, (n > 0).
Finally define ¢: Xo — SA(H) by ¢|x,, := ). Then since each X is Borel
and i is continuous on X, 1 is Borel. Moreover, since d, ((«)) = a,(n > 0) for

every & = (a,);, € Xo, it follows that aExp < p(a)E iﬁr(rﬁ)lp(ﬁ) fora, B € Xj.

This shows that Ex|x, < ESA u) Therefore Ex|x, ~p E SAMH) 1 o1ds. n

dom, dom,u

COROLLARY 3.11. E A u) <p E ( )holds

Proof. By Proposition . Theorems and it holds that E Or(n u) <p
ERY o ESAUD -y
e ~eLtdom -

. SA(H) SA(H)
REMARK 3.12. It is not clear whether E dom  SBE dom.i holds.

4. GENERIC A HAS PURELY SINGULAR CONTINUOUS SPECTRUM R

In Theorem 3.17 (1) of [1], we have shown a genericity result that the set
{A € SA(H); 0ess(A) = R} is dense Gs in SA(H). In this last section, we show
that generic self-adjoint operators in fact have much more pathological spectral
property:

THEOREM 4.1. Theset G := {A € SA(H);0p(A) = 0ac(A) = D, 05c(A) =
R} is dense Gy in SA(H).

The proof relies on the surprising theorem of Simon (which he calls “won-
derland theorem”).

DEFINITION 4.2 ([14]). Let (X, d) be a metric space of self-adjoint operators
on H. X is called a regular metric space, if d is complete and generates a topology
stronger than or equal to SRT.

THEOREM 4.3 (Simon’s wonderland theorem). Let (X, d) be a regular metric
space of self-adjoint operators on H. Suppose that for some open interval (a,b),
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(i) {A € X; A has purely continuous spectrum on (a,b)} is dense in X.
(ii) {A € X; A has purely singular spectrum on (a,b)} is dense in X.
(iii) {A € X; A has (a,b) in its spectrum} is dense in X.
Then {A € X;(a,b) C 0sc(A), (a,b)N0op(A) = D, (a,b) Noac(A) = @} is
dense Gs in X.
First we prove the density.
PROPOSITION 4.4. The set {A € SA(H);0p(A) = 0ac(A) = @} is a dense in
SA(H).

LEMMA 4.5. Let H be an infinite-dimensional separable Hilbert space. There ex-

ists a sequence { Ap }5° 1 C SA(H) with purely singular continuous spectrum, such that
SRT
Ay = 1p.

Proof. Let y be a singular continuous probability measure on R. We identify
H = L[%(R,u), and define A, to be the multiplication by f,, where f,(x) =
%x +1 (x € R,n € N). Then each A, has purely singular continuous spectrum,

and Ay, R 1 by Lebesgue dominated convergence theorem. 1

Proof of Proposition[d.4, Let A € SA(H) and let V be an SRT-open neighbor-
hood of A. By Weyl-von Neumann theorem, there exists Ay € V of the form

Ag = Z an(Gn, - )Cn, where {a, }37 ; C Rand {,};, is an orthonormal basis

for H. Let en be the orthogonal projection of H onto C¢,, (n € N). Letk € N.
Choose a sequence of disjoint subsets 11( ),Iék),..., (k) of N'\ {1 2,...,k} such

that |11(k>| = |I§k)| = ... = |I]Ek>| = o and N\ {1,...,k} = ) Then for

each 1 < i < Kk, let e( ) be the projection of H onto the closed linear span of

{&m;m € I } which is of infinite-rank. Define a new operator Ay € SA(H)

by Ay = Z apen + Z anenk). Then Ay kg Ap (SRT), so that there exists
n=

ko e N such that Ak, 6 V holds. Now let H; (1 < i < ko) be the range of
e + e( 0) , which is infinite-dimensional. Thus by Lemma we may find a se-
quence {Aim}%":l C SA(H;) with 0 (A; ) = Oac(Ap,i) = @ (m € N) such that

k
Aim — (el i1p, (SRT) for each 1 < i < ko. Let Ay, := 609 Aim € SA(H) (m € N).

i=1
It follows that A, "= Ay, = Z ai(e; + e( )) € V (SRT), so that there exists

mp € N such that A, € V. Smce Up(AmO) = Oac(Am,) = @ and V is arbitrary,
the claim follows. 1
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Proof of Theorem[4.1] For each n € N define
Gun:={A €SA(H);0p(A)N(—n,n) = 0ac(A)N(—n,n) =D, (—n,n) C 0sc(A)}.

Since G = [\ Gy, it suffices to show that each G, is dense G5 in SA(H). We
neN
see that assumptions of Theorem (4.3 are satisfied for X = SA(H) with (a,b) =

(—n,n):
(i) and (ii). The sets

{A € SA(H); A has purely continuous spectrum on (—n,n)} and
{A € SA(H); A has purely singular spectrum on (—n,n)}

are dense in SA(H), by Proposition

(iii). By Theorem 3.17 (1) of [1], the set SAg,(H) = {A € SA(H); 0ess(A) =
R} is a dense G subset of SA(H). In particular, {A € SA(H); (—n,n) C 0(A)}is
dense in SA(H).

Therefore by Theorem Gy is dense Gs in SA(H) for every n € N, which
finishes the proof. 1
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