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ABSTRACT. Let (A, G, α) be a groupoid dynamical system. We show that
if G is assumed to be measurewise amenable and the section algebra A =
Γ0(G(0),A) is nuclear, then the associated groupoid crossed product is also nu-
clear. This generalizes an earlier result of Green for crossed products by locally
compact groups. We also extend a related result of Kirchberg to groupoids. In
particular, if A is exact and G is amenable, then we show that Ao G is exact.
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1. INTRODUCTION

It has been known for quite some time that the amenability of a locally com-
pact group is intimately connected with the nuclearity of the C∗-algebras asso-
ciated to it. For example, Guichardet observed in [13] that if G is an amenable
group, then the group C∗-algebra C∗(G) is nuclear. Of course this is now sub-
sumed by the well-known fact that the class of nuclear C∗-algebras is stable under
crossed products by amenable groups. This fact seems to have been first proved
by Green in [12].

Just as questions of amenability and nuclearity are often tightly wound to-
gether, the exactness of a group C∗-algebra or crossed product depends greatly on
the properties of the underlying group. For example, if a locally compact group
G is exact in the sense of Kirchberg and Wassermann [18], then its reduced group
C∗-algebra is exact. Since amenable groups are exact, C∗(G) is exact when G is
amenable. This does not hold for arbitrary exact groups — Choi showed in [6]
that C∗r (F2) embeds into the Cuntz algebra O2, and is therefore exact. It follows
that F2 is exact by Theorem 5.2 of [18], but the full group C∗-algebra C∗(F2) is not
exact ([24], Corollary 3.7). More generally, this example shows that the crossed
product of an exact C∗-algebra by an exact group need not be exact. However,
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the corresponding statement holds for the reduced crossed product. It is this fact
that lies at the heart of Proposition 7.1(v) in [16], where Kirchberg shows that the
crossed product of an exact C∗-algebra by an amenable group is exact.

Much attention has been given in recent years to the C∗-algebras that arise
from locally compact groupoids. Operator algebraists have studied groupoid
C∗-algebras, and more recently, groupoid crossed products. It is natural to ask
whether the aforementioned results for group C∗-algebras and crossed products
carry over to the groupoid setting. At least one of them is already known to gen-
eralize — it is shown in Corollary 6.2.14 of [1] that if G is a measurewise amenable
groupoid, then C∗(G) is nuclear. In this paper, we extend Green’s result to group-
oid crossed products by showing that crossed products of nuclear C∗-algebras by
measurewise amenable groupoids are nuclear. We also show that the crossed
product of an exact C∗-algebra by an amenable groupoid is again exact, thus ex-
tending Kirchberg’s result.

The structure of this paper is as follows. In Section 2 we give an overview
of groupoid crossed products and their representations. In Section 3 we outline
some technical results regarding ideals and representations of C0(X)-algebras.
We discuss tensor product dynamical systems in Section 5, and prove the first of
two results on the relationship between tensor products and crossed products.
With Section 6 comes the proof of the nuclearity theorem, and we take up exact-
ness in Section 7.

Throughout we assume that all groupoids and topological spaces are sec-
ond countable and all representations are nondegenerate unless otherwise spec-
ified. If A is a C∗-algebra, then M(A) denotes its multiplier algebra. Finally, we
will frequently make reference to C0(X)-algebras, in the sense of Appendix C of
[25], and their associated upper semicontinuous C∗-bundles. We will always de-
note a C∗-bundle with a script letter (with the exception of H, which is reserved
for Hilbert spaces), and the corresponding Roman letter will represent its section
algebra. Finally, we use ‖ · ‖σ to denote the minimal (or spatial) norm on the al-
gebraic tensor product A� B, and the resulting completion is written as A⊗σ B.

2. GROUPOID CROSSED PRODUCTS

We begin with a brief overview of groupoid crossed products; more de-
tailed treatments can be found in [10] or [20]. Throughout G will denote a lo-
cally compact Hausdorff groupoid. We write G(0) for the unit space of G, and
r, s : G → G(0) denote the range and source maps, respectively. For u ∈ G(0) we
write Gu := r−1({u}) and Gu := s−1({u}). We also assume that G is endowed
with a continuous Haar system λ = {λu}u∈G(0) .
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As with the classical case, groupoid crossed products are built out of C∗-
dynamical systems. Since groupoids naturally act on fibered objects, our dy-
namical systems will not involve C∗-algebras per se, but upper semicontinuous
C∗-bundles over G(0).

DEFINITION 2.1. Let A be an upper semicontinuous C∗-bundle over G(0).
An action of G on A is a family α = {αγ}γ∈G, where:

(i) αγ : As(γ) → Ar(γ) is an isomorphism for all γ ∈ G;

(ii) if (γ, η) ∈ G(2), then αγη = αγ ◦ αη ; and
(iii) the assignment (γ, a) 7→ γ · a = αγ(a) is continuous from G ∗ A → A.

DEFINITION 2.2. A groupoid dynamical system is a triple (A, G, α), where A
is an upper semicontinuous C∗-bundle and α is an action of G on A. We say that
(A, G, α) is separable if A is separable and G is second countable.

REMARK 2.3. We assume throughout that all dynamical systems are sepa-
rable, since many standard tools (e.g. Renault’s disintegration theorem ([20], The-
orem 7.12) are not available in the nonseparable case.

Given a dynamical system (A, G, α), the associated crossed product is built
from a certain algebra of sections. In particular, we consider the space Γc(G, r∗A)
of continuous compactly supported sections, which becomes a ∗-algebra with
respect to the product

f ∗ g(γ) =
∫
G

f (η)αη(g(η−1γ))dλr(γ)(η)

and involution

f ∗(γ) = αγ( f (γ−1)∗).

One can verify that these operations are continuous with respect to the inductive
limit topology, which makes Γc(G, r∗A) into a topological ∗-algebra.

We can equip Γc(G, r∗A) with a norm in the following manner. A represen-
tation of Γc(G, r∗A) on a Hilbert spaceH is a ∗-homomorphism π : Γc(G, r∗A)→
B(H) that is continuous in the inductive limit topology. (A net { fi} converges to
f in the inductive limit topology if fi → f uniformly and the sets supp( fi) are
eventually contained in a fixed compact set K.) For f ∈ Γc(G, r∗A), define

‖ f ‖ = sup{‖π( f )‖ : π is a representation of Γc(G, r∗A)},

which we call the universal norm. The completion of Γc(G, r∗A) with respect to
the universal norm is called the (full) crossed product of A by G, denoted Aoα G.

There is another way of obtaining the universal norm on Γc(G, r∗A), to
which we will need to appeal later. As with group dynamical systems, there
is a notion of covariant representations for groupoid crossed products. However,
they are quite technical, and we will use them only when necessary. If G(0) ∗H is
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an analytic Borel–Hilbert bundle, we define the isomorphism groupoid to be

Iso(G(0) ∗H) = {(u, T, v) : T : H(v)→ H(u) is a unitary}.
This is a groupoid under the operations

(u, T, v)(v, S, w) = (u, TS, w), (u, T, v)−1 = (v, T−1, u),

and it is endowed with a natural Borel structure induced from the Borel sections
of G(0) ∗ H ([25], Section F.6). Thus Iso(G(0) ∗ H) is a Borel groupoid. A unitary
representation of G is just a Borel groupoid homomorphism U : G → Iso(G(0) ∗H).

Now suppose µ is a quasi-invariant Radon measure on G(0), meaning that
the induced measures ν = µ ◦ λ and ν−1 = µ ◦ λ−1 are equivalent. The Radon–
Nikodym derivative dν/dν−1 is denoted by ∆ and called the modular function.
Let H denote the direct integral L2(G(0) ∗ H, µ), and suppose π : A → B(H) is
a C0(G(0))-linear representation. We will frequently use the fact that a C0(G(0))-
linear representation can be decomposed into representations of the fibers of A:

π =
∫

G(0)

⊕
πu dµ(u), πu : Au → B(H(u)),

where the πu are µ-a.e. nondegenerate and unique up to a null set ([10], Propo-
sition 3.99). Finally, we say that the pair (π, U) is covariant if there is a ν-null set
N ⊂ G such that for all γ 6∈ N,

Uγπs(γ)(a) = πr(γ)(αγ(a))Uγ

for all a ∈ As(γ). Given such a covariant representation, there is an associated
representation of Aoα G, called the integrated form of (π, U): for f ∈ Γc(G, r∗A),
h ∈ H, and u ∈ G(0), we have

π oU( f )h(u) =
∫
G

πu( f (γ))Uγ f (s(γ))∆(γ)−1/2 dλu(γ).

Conversely, it is a consequence of Renault’s disintegration theorem ([20], Theo-
rem 7.12) that every representation ofAoα G is equivalent to the integrated form
of a covariant representation. Consequently,

‖ f ‖ = sup{‖π oU( f )‖ : (π, U) is a covariant representation of (A, G, α)}.
Finally, we will need to invest heavily in induced representations of group-

oid crossed products. There are several ways of viewing such representations,
including a covariant “left regular representation”. However, we will usually
opt for the avatar described in Section 2 of [11] (or in Section 4.1 of [23] for Fell
bundles), which relies on Rieffel induction. Suppose (A, G, α) is a groupoid dy-
namical system, and let π : A → B(H) be a representation of the section algebra
A. Then we can form a representation Ind π of A oα G as follows: the space
of sections Z0 = Γc(G, s∗A) is a right pre-Hilbert A-module with respect to the
action

(z · a)(γ) = z(γ)a(s(γ)), z ∈ Z0, a ∈ A, γ ∈ G



NUCLEARITY AND EXACTNESS FOR GROUPOID CROSSED PRODUCTS 217

and the A-valued inner product

〈〈z, w〉〉A(u) =
∫
G

z(ξ)∗w(ξ)dλu(ξ), z, w ∈ Z0, u ∈ G(0).

We letZ denote the completion ofZ0 with respect to the norm induced by 〈〈·, ·〉〉A.
Then Aoα G acts on Z by adjointable operators: for f ∈ Γc(G, r∗A) and z ∈ Z0,

f · z(γ) =
∫
G

α−1
γ ( f (η))z(η−1γ)dλr(γ)(η).

We can then use Rieffel induction to construct the induced representation Ind ρ.
We equip Z �H with the inner product characterized by

(z⊗ h |w⊗ k) = (π(〈〈w, z〉〉A)h | k),

and we denote the completion by Z ⊗A H. Then Ind π acts on Z ⊗A H by

Ind π( f )(z⊗ h) = f · z⊗ h

for f ∈ Γc(G, r∗A), z ∈ Z0, and h ∈ H. If we take π to be faithful, then we can
define the reduced norm on Γc(G, r∗A):

‖ f ‖r = ‖ Ind π( f )‖.

The resulting completion is the reduced crossed product, denoted by Aoα,r G.

REMARK 2.4. Some authors (such as [23]) define the reduced norm instead
as ‖ f ‖r = sup ‖ Ind π‖, where π ranges over all representations of A. Since in-
duction preserves weak containment, this definition is equivalent to the one given
above. In fact, it suffices to only consider representations lifted from the fibers of
A. For each u ∈ G(0), let ρu be a faithful representation of A(u), and let πu denote
its lift to A. Then

⋂
ker πu = {0}, so

⋂
ker πu = ker π for any faithful represen-

tation π of A. Consequently,

‖ f ‖r = sup
u∈G(0)

‖ Ind πu( f )‖.

REMARK 2.5. We will occasionally need another flavor of induced repre-
sentation. Let (A, G, α) be a separable groupoid dynamical system, and let π be
a nondegenerate representation of A. Using Theorem 8.3.2 of [8], assume that π
is a C0(G(0))-linear representation on a Borel–Hilbert bundle G(0) ∗H with associ-
ated finite Borel measure µ. Let ν−1 =

∫
G(0)

λu dµ, and form the pullback bundle

G ∗s H = s∗(G(0) ∗H). For h ∈ L2(G ∗s H, ν−1), define

(2.1) Lπ( f )h(γ) =
∫
G

πs(γ)(α
−1
γ ( f (η)))h(η−1γ)dλr(γ)(η).

Then Lπ defines an I-norm decreasing representation of Γc(G, r∗A), which ex-
tends to a representation of Aoα G. Furthermore, it is shown in Lemma 2 of [23]
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that the map U : Z ⊗A H → L2(G ∗s H, ν−1) characterized by

U(z⊗ h)(γ) = πs(γ)(z(γ))h(s(γ))

is a unitary intertwining Lπ and Ind π.

3. PRELIMINARIES ON C0(X)-ALGEBRAS

Our first goal is to prove an analogue of Green’s theorem ([12], Propo-
sition 14) for groupoid crossed products. The proof relies on Lemma 2.75 of
[25], so an obvious first step would be to extend this result to groupoid dy-
namical systems. This in turn requires the following: given a groupoid dy-
namical system (A, G, α) and a C∗-algebra B, we need to define new dynami-
cal systems (A ⊗max B, G, α ⊗ id) and (A ⊗σ B, G, α ⊗ id) by allowing G to act
trivially on B. (Recall that ⊗σ denotes the minimal or spatial tensor product.)
For this to even make sense, we need to know that A ⊗max B and A ⊗σ B are
C0(G(0))-algebras, and we need to understand the structure of the corresponding
C∗-bundles A⊗max B and A⊗σ B.

3.1. TENSOR PRODUCTS OF C0(X)-ALGEBRAS. Throughout this section, X will
denote a locally compact Hausdorff space. We begin by recalling some results
of Kirchberg and Wassermann on tensor product bundles [17]. Suppose A is a
C0(X)-algebra with associated upper semicontinuous C∗-bundle A. Let B be a
fixed C∗-algebra, and let ‖ · ‖ν denote either the minimal or maximal C∗-norm on
the algebraic tensor product A� B. Given x ∈ X, let C0,x(X) ⊂ C0(X) denote the
ideal of functions vanishing at x, and put Ix = C0,x(X) · A. Then Ix⊗ν B is an ideal
of A⊗ν B, and the quotient (A⊗ν B)/(Ix ⊗ν B) is isomorphic to Ax ⊗ν(x) B for
some C∗-norm ‖ · ‖ν(x) onAx � B by Proposition 3.7.2 of [5] and Proposition B.30
of [21]. The bundle A ⊗ν B with fibers given by (A ⊗ν B)x = Ax ⊗ν(x) B is an
upper semicontinuous C∗-bundle by Lemma 2.4 of [17].

Unfortunately, the norms ‖ · ‖ν(x) depend on x ∈ X, and we have no control
over how they vary in general. Things are especially nice when working with the
maximal tensor product, since the sequence

0 // Ix ⊗max B // A⊗max B // Ax ⊗max B // 0

is always exact ([21], Proposition B.30). This ensures that

(A⊗max B)x = Ax ⊗max B

for all x ∈ X. It is natural to ask whether the same sort of thing holds for A⊗σ B.
The answer hinges upon the exactness of the sequence

(3.1) 0 // Ix ⊗σ B // A⊗σ B // Ax ⊗σ B // 0,
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which may fail in general. However, it is observed in the proof of Corollary 2.8
in [17], and we prove below, that (3.1) is exact when either A or B is an exact
C∗-algebra.

PROPOSITION 3.1. Let A be a separable C0(X)-algebra and B a C∗-algebra. If
either A or B is exact, then (A⊗σ B)x ∼= Ax ⊗σ B.

Proof. If B is exact, then (3.1) is clearly exact. On the other hand, if A is exact,
then it is subnuclear by Theorem IV.3.4.18 of [3]. As a consequence of Proposi-
tion IV.3.4.7 in [3], nuclear C∗-algebras have Property C of Archbold and Batty [2],
so it follows from Corollary IV.3.4.10 of [3] that A has Property C. The exactness
of (3.1) then follows from Corollary IV.3.4.11 of [3].

The following two propositions deal with representations of maximal tensor
products involving C0(X)-algebras. In both X denotes a second countable locally
compact Hausdorff space.

PROPOSITION 3.2. Let A be a C0(X)-algebra and B a C∗-algebra. Suppose X ∗H
is an analytic Borel–Hilbert bundle over X, µ is a Borel measure on X, and π = πA⊗max
πB is a C0(X)-linear representation of A⊗max B on L2(X ∗H, µ). Then πA is C0(X)-
linear.

Conversely, suppose that πA and πB are representations of A and B, respectively,
on L2(X ∗ H, µ) with commuting ranges, and that πA is C0(X)-linear. Then the repre-
sentation πA ⊗max πB of A⊗max B on L2(X ∗H, µ) is also C0(X)-linear.

Proof. For f ∈ C0(X), a ∈ A, and b ∈ B, we have

π( f · (a⊗ b)) = πA ⊗max πB(( f · a)⊗ b) = πA( f · a)πB(b).

But since π is C0(X)-linear, we also have

π( f · (a⊗ b)) = Tf π(a⊗ b) = Tf πA(a)πB(b),

where Tf ∈ B(L2(X ∗ H, µ)) is given by pointwise multiplication by f . Since πB
is nondegenerate, it follows that πA( f · a) = Tf πA(a), so πA is C0(X)-linear. The
converse is similar.

PROPOSITION 3.3. Let A be a separable C0(X)-algebra and B a separable C∗-
algebra. If X ∗H is an analytic Borel–Hilbert bundle, µ is a finite Borel measure on X, and
πA⊗max πB : A⊗max B→ B(L2(X ∗H, µ)) is a C0(X)-linear representation, then πB
is decomposable. Moreover, if {πA,x}x∈X is a decomposition of πA into representations
of the fibers Ax, and {πB,x}x∈X is a decomposition of πB, then

(3.2) πA ⊗max πB(t) =
∫
X

⊕
πA,x ⊗max πB,x(t(x))dµ(x)

for all t ∈ A⊗max B.

Proof. Since T ∈ L2(X ∗ H, µ) is decomposable if and only if it commutes
with the set ∆(X ∗ H, µ) of diagonal operators ([25], Theorem F.21), we need to
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check that πB(b) ∈ (∆(X ∗H, µ))′ for all b ∈ B. Fix b ∈ B, and let f ∈ C0(X) and
a ∈ A. Then

πA(a)πB(b)Tf = πA ⊗max πB(a⊗ b)Tf = Tf (πA ⊗max πB(a⊗ b))

since πA ⊗max πB is C0(X)-linear, hence decomposable. Continuing, we get

Tf (πA ⊗max πB(a⊗ b)) = Tf πA(a)πB(b) = πA(a)Tf πB(b),

since πA is decomposable. Now since πA is nondegenerate, πB(b)Tf = Tf πB(b),
so πB(b) ∈ (∆(X ∗ H, µ))′ for all b ∈ B. Thus the operators πB(b) are all decom-
posable, so there is a family of maps πB,x : B → B(H(x)) such that πB,x(b) =
πB(b)(x). The proof of Proposition 3.99 in [10] implies that modifying the πB,x
on a µ-null set will yield nondegenerate representations of B for µ-almost all x.

For the second assertion, let {πB,x}x∈X denote a decomposition of πB, and
suppose {πA,x}x∈X is a decomposition of πA into representations of the fibers
Ax. Then for each x ∈ X, πA,x ⊗max πB,x is a representation of (A⊗max B)x =
Ax ⊗max B, and πA,x ⊗max πB,x is nondegenerate for µ-almost all x since πA,x and
πB,x are. Now let {πx}x∈X be a decomposition of πA ⊗max πB, so

πA ⊗max πB(t)h(x) = πx(t(x))h(x)

for all x ∈ X and h ∈ L2(X ∗H, µ). Then we have

πA ⊗max πB(a⊗ b)h(x) = πA(a)πB(b)h(x) = πA,x(a(x))πB,x(b)h(x)

= πA,x ⊗max πB,x(a(x)⊗ b)h(x)

for all a ∈ A, b ∈ B, and h ∈ L2(X ∗H, µ). Since the πx are unique up to a µ-null
set, it follows that πx = πA,x ⊗max πB,x µ-almost everywhere.

3.2. PULLBACKS AND C0(X)-LINEAR HOMOMORPHISMS. Let Y be a locally com-
pact Hausdorff space, and suppose τ : Y → X is continuous. If A is a C0(X)-
algebra with associated upper semicontinuous bundle p : A → X, recall that the
pullback bundle τ∗A over Y is the bundle with total space

τ∗A = {(y, a) ∈ Y×A : p(a) = τ(y)}
and structure map q : τ∗A → Y given by q(y, a) = y. The pullback C∗-algebra is

τ∗A = Γ0(Y, τ∗A).
One can verify ([10], Proposition 3.34) that τ∗A is an upper semicontinuous C∗-
bundle, so τ∗A can be viewed as a C0(Y)-algebra.

It is often helpful to approximate sections of a pullback bundle with “ele-
mentary tensors”. Suppose X and Y are locally compact Hausdorff spaces, A is a
C0(X)-algebra with associated upper-semicontinuous bundle A, and τ : Y → X
is continuous. Given z ∈ Cc(Y) and a ∈ A, we define z⊗ a ∈ Γc(Y, τ∗A) by

z⊗ a(y) = z(y)a(τ(y)).

Then the set
Cc(Y)� A = span{z⊗ a : z ∈ Cc(Y), a ∈ A}
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is dense in Γc(Y, τ∗A) with respect to the inductive limit topology ([10], Corol-
lary 3.45). We prove a similar fact for tensor product bundles. Let B be a C∗-
algebra. Given f ∈ Γc(Y, τ∗A) and b ∈ B, define f ⊗̂ b ∈ Γc(Y, τ∗(A⊗max B)) by

f ⊗̂ b(y) = f (y)⊗ b

using the canonical identification of τ∗(A ⊗max B)y with Aτ(y) ⊗max B. In this
way, Γc(Y, τ∗A)� B can be viewed naturally as a subspace of Γc(Y, τ∗(A⊗max B))
via the embedding f ⊗ b 7→ f ⊗̂ b.

PROPOSITION 3.4. The set

Γc(Y, τ∗A)� B = span{ f ⊗̂ b : f ∈ Γc(Y, τ∗A), b ∈ B}

is dense in Γc(Y, τ∗(A⊗max B)) with respect to the inductive limit topology.

Proof. Since Cc(Y)� (A⊗max B) is dense in Γc(Y, τ∗(A⊗max B) with respect
to the inductive limit topology, it suffices to show that we can approximate any
element of Cc(Y)� (A⊗max B) with elements of Γc(Y, τ∗A)� B. Let z ∈ Cc(Y)
and t ∈ A ⊗max B, and choose a sequence {ti} ⊂ A � B that converges to t in
A⊗max B. Given ε > 0, choose i large enough such that ‖ti − t‖max < ε/‖z‖∞.
Then

‖z⊗ ti(y)− z⊗ t(y)‖ = ‖z(y)ti(τ(y))− z(y)t(τ(y))‖ 6 ‖z‖∞‖ti − t‖max < ε

for any y ∈ Y, so z⊗ ti → z⊗ t uniformly. In addition, we clearly have supp(z⊗
ti) ⊂ supp(z) for all i, so z⊗ ti → z⊗ t in the inductive limit topology. Now fix i
and write ti = ∑ aij ⊗ bij. Then for each y ∈ Y,

z⊗ ti(y) = z(y)∑(aij ⊗ bij)(τ(y)) = ∑ z(y)aij(τ(y))⊗ bij

= ∑(z⊗ aij)(τ(y))⊗ bij =
(

∑(z⊗ aij) ⊗̂ bij

)
(y),

so z⊗ ti = ∑(z⊗ aij) ⊗̂ bij ∈ Γc(Y, τ∗A)� B. The result then follows.

We will often work with homomorphisms between C0(X)-algebras. Recall
the following definition.

DEFINITION 3.5. Let A and B be C0(X)-algebras. A homomorphism ϕ :
A→ B is said to be C0(X)-linear if

ϕ( f · a) = f · ϕ(a)

for all f ∈ C0(X) and a ∈ A.

REMARK 3.6. Given two C0(X)-algebras A and B with associated bundles
A and B, there is a correspondence between C0(X)-linear homomorphisms from
A to B and C∗-bundle morphisms from A to B. If ϕ : A → B is a C0(X)-linear
homomorphism, then for each x ∈ X there is a homomorphism ϕx : Ax → Bx
satisfying

(3.3) ϕ(a)(x) = ϕx(a(x))
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for all a ∈ A. Moreover, the ϕx vary continuously with x, and thus glue together
to yield a bundle morphism ϕ̂ : A → B. Conversely, if ψ : A → B is a C∗-bundle
homomorphism, there is a C0(X)-linear homomorphism ψ̌ : A→ B given by

ψ̌(a)(x) = ψ(a(x))

for all a ∈ A. This is the content of Proposition 3.20 in [10], and it is discussed in
Section 3 of [20].

Our next goal is to extend Remark 3.6 to pullbacks of C0(X)-linear homo-
morphisms. We will need to use the following fact from Proposition 3.35 of [10]
and Remark 3.5 of [20]: a section f : Y → τ∗A is continuous if and only if there is
a continuous function f̃ : Y → A such that p( f̃ (y)) = τ(y) and f (y) = (y, f̃ (y))
for all y ∈ Y. Moreover, f̃ vanishes at infinity if and only if f does, and f̃ is
compactly supported if and only if f is.

PROPOSITION 3.7. Let A and B be C0(X)-algebras with upper semicontinuous
bundles A and B, respectively, and suppose ϕ : A → B is a C0(X)-linear homomor-
phism. Let τ : Y → X be a continuous map. Then there is a C0(Y)-linear homomorphism
τ∗ϕ : τ∗A→ τ∗B given by

τ∗ϕ( f )(y) = ϕ̂( f̃ (y))

for all f ∈ τ∗A and y ∈ Y. Moreover, τ∗ϕ carries Γc(Y, τ∗A) into Γc(Y, τ∗B).
Proof. Define τ∗ϕ as above. We first need to check that if f ∈ Γ0(X, τ∗A),

then τ∗ϕ( f ) ∈ Γ0(Y, τ∗B). We know that f̃ (y) ∈ Aτ(y) for all y ∈ Y, so ϕ̂( f̃ (y)) ∈
Bτ(y). Thus τ∗ϕ( f )(y) ∈ τ∗By, and τ∗ϕ( f ) is a section of τ∗B. Since y 7→ ϕ̂( f̃ (y))
from Y → B is continuous, τ∗ϕ( f ) is continuous and vanishes at infinity since f̃
does. Thus τ∗ϕ maps τ∗A into τ∗B.

The only thing left to check is that τ∗ϕ is a C0(Y)-linear homomorphism. If
f , g ∈ τ∗A, it is straightforward to check that ( f + g)∼ = f̃ + g̃, so

τ∗ϕ( f + g)(y) = ϕ̂( f̃ (y)) + ϕ̂(g̃(y)) = τ∗ϕ( f )(y) + τ∗ϕ(g)(y).

A similar argument shows that τ∗ϕ respects multiplication, scalar multiplication,
and adjoints, so τ∗ϕ is a homomorphism. Finally, suppose σ ∈ C0(Y). Then it is
straightforward to check that (σ · f )∼(y) = σ(y) f̃ (y) for all y ∈ Y, so

τ∗ϕ(σ · f )(y) = σ(y)ϕ̂( f̃ (y)) = (σ · τ∗ϕ( f ))(y).

Thus τ∗ϕ is C0(Y)-linear, and we are done.

In light of the natural identification of (τ∗A)y with Aτ(y), we will generally
suppress the tilde in Proposition 3.7, and simply write

τ∗ϕ( f )(y) = ϕ̂( f (y)) = ϕτ(y)( f (y)).
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Since τ∗ϕ is C0(Y)-linear, it admits a fiberwise decomposition as in Remark 3.6.
Moreover, the identifications (τ∗A)y = Aτ(y) and (τ∗B)y = Bτ(y) lend a concrete
description of the homomorphism (τ∗ϕ)y : (τ∗A)y → (τ∗B)y.

PROPOSITION 3.8. For all y ∈ Y and a ∈ (τ∗A)y = Aτ(y), we have

(τ∗ϕ)y(a) = ϕτ(y)(a).

Proof. If y ∈ Y then (τ∗ϕ)y is characterized by

(τ∗ϕ)y( f (y)) = τ∗ϕ( f )(y)

for all f ∈ Γ0(Y, τ∗A). By definition, τ∗ϕ( f )(y) = ϕ̂( f (y)), where we view f (y)
as an element of (τ∗A)y = Aτ(y). But ϕ̂( f (y)) = ϕτ(y)( f (y)), and the result
follows.

3.3. IDEALS AND QUOTIENTS. Exactness for groupoid crossed products natu-
rally involves ideals and quotients of C0(X)-algebras. It is a crucial fact that any
ideal of a C0(X)-algebra is again a C0(X)-algebra, and similarly for quotients.
Moreover, the structures of the associated bundles are fairly predictable. We be-
gin with ideals.

PROPOSITION 3.9. Let A be a C0(X)-algebra and I an ideal of A. Then I is also a
C0(X)-algebra. More precisely, if ΦA : C0(X)→ ZM(A) is a nondegenerate homomor-
phism implementing the action of C0(X) on A, then I is invariant under ΦA(C0(X))
and the action of C0(X) on I is simply the restriction of the action on A.

Proof. Recall that A is a C0(X)-algebra if and only if there is a continuous
map σA : Prim A → X ([25], Theorem C.26) and that there is a homeomorphism
ι of Prim I onto the open subspace {P ∈ Prim A : I 6⊂ P} of Prim A by Proposi-
tion A.27 of [21]. Therefore, σI = σA ◦ ι is continuous from Prim I to X, so I is a
C0(X)-algebra.

Now recall that ZM(A) ∼= Cb(Prim A) by the Dauns–Hofmann theorem,
and under this identification we have ΦA( f ) = f ◦ σA for all f ∈ C0(X). Similarly,
if ΦI : C0(X)→ ZM(I) ∼= Cb(Prim I) implements the C0(X)-action on I, then

ΦI( f ) = f ◦ σI = f ◦ (σA ◦ ι) = ΦA( f ) ◦ ι.

If a ∈ A and P is any primitive ideal of A, we let a(P) denote the image of a in
the primitive quotient A/P. Then we have

(3.4) (ΦA( f ) · a)(P) = ΦA( f )(P)a(P)

for all a ∈ A and P ∈ Prim A. Now suppose that a ∈ I, and let P be any primitive
ideal that contains I. Then a(P) = 0, so for any f ∈ C0(X), (3.4) implies

(ΦA( f ) · a)(P) = 0,

and it follows that ΦA( f ) · a ∈ P. This is true for any primitive ideal containing
I, so ΦA( f ) · a ∈ I. Thus I is invariant under the C0(X)-action on A. Finally, if
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we identify Prim I with {P ∈ Prim A : I 6⊂ P} via ι, then for any P ∈ Prim A not
containing I we have

(ΦI( f ) · a)(P) = ΦI( f )(P)a(P) = ΦA( f )(P)a(P),

so the action of C0(X) on I is simply the restriction of the action on A.

We have now pinned down two of the characterizations of C0(X)-algebras
for ideals. However, we do not yet have a description of the upper semicontinu-
ous C∗-bundle associated to I. The following is based on Proposition 3.3 of [14].

PROPOSITION 3.10. Let A be a C0(X)-algebra with associated upper semicontin-
uous bundle p : A → X, and let I be an ideal in A. For each x ∈ X, let qx : A→ Ax =
A/Jx denote the quotient map onto the fiber over x, and define

Ix = qx(I) = (I + Jx)/Jx.

Then

I = ä
x∈X
Ix and p|I : I → X

define an upper semicontinuous bundle over X with Γ0(X, I) ∼= I.

Proof. Since each Ix is an ideal in Ax, I clearly includes into A. The only
thing that really needs to be checked is the openness of p|I . To do this, we will
use Proposition 1.15 of [25]. Let {xi} be a net in X converging to x ∈ X, and fix
c ∈ Ix. Use Cohen factorization to write c = ab for a ∈ Ax and b ∈ Ix. Since
p : A → X is open, we can pass to a subnet, relabel, and find a net {ai} in A such
that p(ai) = xi for all i and ai → a. Now choose σ ∈ I with σ(x) = b, and put
bi = σ(xi) for all i. Then aibi ∈ Ixi for all i and aibi → a · σ(x) = c. It follows that
p|I is open, and p|I : I → X is an upper semicontinuous C∗-bundle.

We have so far shown that I sits inside A as a subbundle. Since each fiber
Ix is an ideal in Ax, it is clear that Γ0(X, I) sits naturally inside Γ0(X,A) as an
ideal. It is then easy to see that Γ0(X, I) can be identified with I.

The analogous results for quotients of C0(X)-algebras are proven in a simi-
lar fashion. In fact, they are more or less taken care of in Lemma 1.3 of [14].

PROPOSITION 3.11 ([14], Lemma 1.3). Let A be a C0(X)-algebra with the action
implemented by the homomorphism ΦA : C0(X) → ZM(A). If I is an ideal of A, then
A/I is a C0(X)-algebra, and the action ΦA/I : C0(X)→ ZM(A/I) is characterized by

ΦA/I( f ) · (a + I) = (ΦA( f ) · a) + I

for all f ∈ C0(X) and a ∈ A. Moreover, if A/I denotes the upper semicontinuous
C∗-bundle associated to A/I, then (A/I)x is isomorphic to Ax/Ix for all x ∈ X.
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4. TENSOR PRODUCT SYSTEMS

Let us return now to the situation where (A, G, α) is a separable groupoid
dynamical system and B is a separable C∗-algebra. The results of Section 3.1 guar-
antee that A⊗max B and A⊗σ B are C0(X)-algebras whenever A is, and that the
fibers ofA⊗max B andA⊗σ B are easy to understand. This will make it relatively
straightforward to define actions of G on A⊗max B and A⊗σ B. For A⊗max B,
this amounts to defining a family α⊗ id = {αγ ⊗max id}γ∈G of fiberwise isomor-
phisms. Under the identification (A⊗max B)u = Au ⊗max B, we have

αγ ⊗max id : As(γ) ⊗max B→ Ar(γ) ⊗max B,

which is an isomorphism by Proposition B.30 of [21]. It is then clear that

αγη ⊗max id = (αγ ◦ αη)⊗max id = (αγ ⊗max id) ◦ (αη ⊗max id)

whenever (γ, η) ∈ G(2). Similarly, if we assume that A is exact then Proposi-
tion 3.1 implies that (A⊗σ B)u is identified with Au ⊗σ B, and we get an isomor-
phism

αγ ⊗ id : As(γ) ⊗σ B→ Ar(γ) ⊗σ B

by Proposition B.13 of [21]. It is again straightforward to see that

αγη ⊗ id = (αγ ⊗ id) ◦ (αη ⊗ id)

whenever (γ, η) ∈ G(2). Therefore, G acts on both A⊗max B and A⊗σ B in the
obvious way, at least in a purely algebraic sense. It remains to check that γ ·
t = (αγ ⊗max id)(t) defines a continuous action of G on A⊗max B, and similarly
for the action γ · t = (αγ ⊗ id)(t) on A ⊗σ B. With a little work, this follows
from the fact that the action α of G on A is continuous. Indeed, the proofs of the
following theorems are restrictions of the one found on page 919 of [19] (as noted
in Section 4 of [4]).

THEOREM 4.1. Let (A, G, α) be a separable groupoid dynamical system, and let B
be a separable C∗-algebra.

(i) The assignment
γ · c = (αγ ⊗max id)(c)

defines a continuous action of G onA⊗max B, so (A⊗max B, G, α⊗max id) is a separa-
ble groupoid dynamical system.

(ii) If A is exact, then
γ · c = (αγ ⊗ id)(c)

defines a continuous action of G on A ⊗σ B, and (A ⊗σ B, G, α ⊗ id) is a separable
groupoid dynamical system.

Proof. If A is exact, then Proposition 3.1 guarantees that (A⊗σ B)u ∼= Au⊗σ

B for all u ∈ G(0), and hence that αγ ⊗ id is an isomorphism for all γ ∈ G. The
continuity of the action is then proven in exactly the same way as forA⊗max B.
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We will end this section with a generalization of Lemma 2.75 in [25]. Recall
that Proposition 3.4 guarantees there is a natural embedding of Γc(G, r∗A) � B
into Γc(G, r∗(A⊗max B)), and that the image is dense with respect to the inductive
limit topology. We now show that this embedding extends to an isomorphism of
(Aoα G)⊗max B onto (A⊗max B)oα⊗id G.

THEOREM 4.2. Let (A, G, α) be a separable dynamical system, and suppose B is a
separable C∗-algebra. There is a natural isomorphism

Φ : (Aoα G)⊗max B→ (A⊗max B)oα⊗id G,

given on elementary tensors by

Φ( f ⊗ b) = f ⊗̂ b,

for f ∈ Γc(G, r∗A) and b ∈ B.

We will give a proof based on the first part of Green’s proof of Proposi-
tion 14 in [12]. The calculations are naturally more complicated when dealing
with groupoids, so we will prove two lemmas first, and then tackle the proof of
the main theorem.

LEMMA 4.3. Let (A, G, α) be a separable groupoid dynamical system, and let B
be a separable C∗-algebra. Suppose (π, U) is a covariant representation of (A ⊗max
B, G, α⊗ id), and write π = πA ⊗max πB, where πA and πB are representations of A
and B, respectively. Then (πA, U) is a covariant representation of (A, G, α).

Proof. Let µ and G(0) ∗ H denote the quasi-invariant measure and Borel–
Hilbert bundle associated to (π, U). Since πA ⊗max πB is a C0(G(0))-linear rep-
resentation of A⊗max B, we know from Proposition 3.2 that πA is C0(G(0))-linear,
hence decomposable, and from Proposition 3.3 that πB is decomposable. Fur-
thermore, (πA ⊗max πB)u = πA,u ⊗max πB,u is a decomposition of πA ⊗max πB.
Let ν = µ ◦ λ denote the measure on G induced from µ via the Haar system.
The covariance of (π, U) means that there is a ν-null set N ⊂ G such that for all
γ 6∈ N,

(4.1) UγπA,s(γ)(a(s(γ)))πB,s(γ)(b) = πA,r(γ)(αγ(a(s(γ))))πB,r(γ)(b)Uγ,

for a ∈ A and b ∈ B. Recall that there is a µ-null set E ⊂ G(0) such that πB,u is
nondegenerate for all u 6∈ E, and we can take E to be Borel. Put V = r−1(E) ∪
s−1(E). We claim that ν(V) = 0. Since χr−1(E) is a positive Borel function, ([10],
Proposition 3.109), implies that u 7→ λu(r−1(E)) is Borel, and

ν(r−1(E)) =
∫

G(0)

λu(r−1(E))dµ(u).

Observe that λu(r−1(E)) can only be nonzero when u ∈ r(r−1(E)) = E. But
µ(E) = 0, so ν(r−1(E)) = 0. Since µ is quasi-invariant, ν−1(r−1(E)) = 0 as well.
But then ν(s−1(E)) = ν−1(r−1(E)) = 0, and it follows that ν(V) = 0.
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Define Ñ = N ∪ V. Then Ñ is ν-null, the equation (4.1) holds for all γ 6∈
Ñ, and the representations πB,s(γ) and πB,r(γ) are nondegenerate for all γ 6∈ Ñ.
Consequently,

UγπA,s(γ)(a(s(γ))) = πA,r(γ)(αγ(a(s(γ))))Uγ

for all γ 6∈ Ñ, and (πA, U) is a covariant representation.

LEMMA 4.4. Let (A, G, α) be a separable groupoid dynamical system, B a sepa-
rable C∗-algebra, and (π, U) a covariant representation of (A⊗max B, G, α⊗ id). If ν
denotes the measure on G induced by µ, then for ν-almost all γ,

(4.2) UγπB,s(γ)(b) = πB,r(γ)(b)Uγ

for all b ∈ B. As a result, πB commutes with the integrated form πA oU.

Proof. As we have already seen, the covariance of (π, U) means that there
is a ν-null set N ⊂ G such that (4.1) holds for all γ 6∈ N, a ∈ A, and b ∈ B.
Furthermore, the proof of Lemma 4.3 guarantees that there is a ν-null Ñ ⊂ G
such that for all γ 6∈ Ñ, (4.1) holds and the representations πA,s(γ) and πA,r(γ) are
nondegenerate. It follows that for all γ 6∈ Ñ,

UγπB,s(γ)(b) = πB,r(γ)(b)Uγ

for all b ∈ B, and the first claim is proven.
For the second assertion, we need to explicitly compute with the integrated

form of (πA, U). Let f ∈ Γc(G, r∗A) and b ∈ B. Then for any h, k ∈ L2(G(0) ∗H, µ),

(πA oU( f )πB(b)h | k)

=
∫
G

(πA,r(γ)( f (γ))UγπB,s(γ)(b)h(s(γ)) | k(r(γ)))∆(γ)−1/2 dν(γ)

=
∫
G

(πA,r(γ)( f (γ))πB,r(γ)(b)Uγh(s(γ)) | k(r(γ)))∆(γ)−1/2 dν(γ)

by (4.2). Now continuing and using the fact that πA and πB commute, we have

=
∫
G

(πB,r(γ)(b)πA,r(γ)( f (γ))Uγh(s(γ)) | k(r(γ)))∆(γ)−1/2 dν(γ)

=
∫
G

(πA,r(γ)( f (γ))Uγh(s(γ)) |πB,r(γ)(b)
∗k(r(γ)))∆(γ)−1/2 dν(γ)

= (πA oU( f )h |πB(b)∗k) = (πB(b)(πA oU)( f )h | k).

This holds for all h, k ∈ L2(G(0) ∗H, µ), so πB and πA oU commute.

Proof of Theorem 4.2. Let ρ be a faithful representation of (A⊗max B)oα⊗id
G. Then by Renault’s disintegration theorem, ρ is equivalent to the integrated
form of a covariant representation (π, U) on a direct integral L2(G(0) ∗ H, µ), so
we can assume ρ = π o U. Moreover, we can write π = πA ⊗max πB, where πA
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and πB are representations of A and B, respectively, on L2(G(0) ∗H, µ) with com-
muting ranges. Hence ρ = (πA ⊗max πB)o U. By Lemma 4.3, (πA, U) is a co-
variant representation of (A, G, α), and πB commutes with πA oU by Lemma 4.4.
Thus we can form the representation L = (πA oU)⊗max πB of (Aoα G)⊗max B,
which we claim has the same range as ρ.

Since Γc(G, r∗A)� B is dense in (A⊗max B)oα⊗id G by Proposition 3.4, the
range of ρ is generated by elements of the form ρ( f ⊗̂ b) for f ∈ Γc(G, r∗A) and
b ∈ B. On such an elementary tensor, we have

ρ( f ⊗̂ b)h(u) =
∫
G

πu( f (γ)⊗ b)Uγh(s(γ))∆(γ)−1/2 dλu(γ)

=
∫
G

πA,u( f (γ))πB,u(b)Uγh(s(γ))∆(γ)−1/2 dλu(γ)

= πB(b)
∫
G

πA,u( f (γ))Uγh(s(γ))∆(γ)−1/2 dλu(γ)

= πB(b)πA oU( f )h(u) = (πA oU)⊗max πB( f ⊗ b)h(u),

for any h ∈ L2(G(0) ∗H, µ). Thus

(πA ⊗max πB)oU( f ⊗̂ b) = (πA oU)⊗max πB( f ⊗ b) = L( f ⊗ b)

for all f ∈ Γc(G, r∗A) and b ∈ B. Since (Aoα G)⊗max B is generated by elemen-
tary tensors of this form, it follows that ρ and L have the same range.

Since ρ is faithful and its range is the same as that of L, it makes sense to de-
fine a homomorphism Φ : (Aoα G)⊗max B→ (A⊗max B)oα⊗id G by Φ = ρ−1 ◦
L. Note that Φ is surjective and has the desired form on elementary tensors sim-
ply by definition. To see that Φ is an isomorphism, we will construct an explicit
inverse. Suppose M is a faithful representation of (Aoα G) ⊗max B on a direct
integral L2(G(0) ∗ K, µ′). Then we can decompose M as M = (ρA o V)⊗max ρB,
where ρB and ρA o U have commuting ranges. Note that on elementary tensors
we have

M((z ⊗̂ a)⊗ b) = ρA(a)V(z)ρB(b) = ρB(b)ρA(a)V(z),

so ρA and ρB have commuting ranges. Thus we can define a representation ρ =
(ρA ⊗max ρB) o V of (A ⊗max B) oα⊗id G. By the same arguments as before, ρ
and M have common range, and we can define Ψ : (A⊗max B)oα⊗id G → (Aoα

G) ⊗max B by Ψ = M−1 ◦ ρ. Then clearly Ψ ◦ Φ and Φ ◦ Ψ act as the identity
on elementary tensors, so Φ is an isomorphism with Ψ = Φ−1. Furthermore, it
is easy to see that any other such isomorphism would need to agree with Φ on
elementary tensors, hence everywhere. Thus Φ is natural and unique.

In Section 6 we will prove an analogue of Theorem 4.2 for reduced crossed
products and spatial tensor products. It will follow in part from Theorem 4.2,
along with some tools that we will obtain in the next section.
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5. NUCLEARITY

The goal of this section is to prove the first of our two main theorems, which
gives sufficient conditions for a groupoid crossed product to be nuclear.

THEOREM 5.1. Let (A, G, α) be a separable groupoid dynamical system, and sup-
pose A is nuclear and G is measurewise amenable. Then Aoα G is nuclear.

There are a few issues that we need to clear up. Suppose (A, G, α) is a sep-
arable groupoid dynamical system. To prove that Aoα G is nuclear, we need to
show that (Aoα G)⊗max B = (Aoα G)⊗σ B for any C∗-algebra B. This could
be problematic if B is not separable. In particular, we need to consider the tensor
product dynamical system (A ⊗max B, G, α ⊗ id), which we can only construct
under the assumption that B is separable. It would not be feasible to work with a
nonseparable C∗-algebra B, so we need to somehow restrict to the separable case.
The following clever trick is due to Dana Williams and Roger Smith.

PROPOSITION 5.2. Let A be a C∗-algebra. Suppose that for any separable C∗-
algebra B, A� B has a unique C∗-norm. Then A is nuclear.

Proof. Suppose that C is a non-separable C∗-algebra for which A⊗max C 6=
A⊗σ C. Then there is some element

n
∑

i=1
ai ⊗ ci ∈ A� C such that∥∥∥∑ ai ⊗ ci

∥∥∥
σ
<
∥∥∥∑ ai ⊗ ci

∥∥∥
max

.

Put B = C∗({c1, . . . , cn}). Then B is a separable C∗-subalgebra of C. Let ‖ · ‖γ

denote the restriction of ‖ · ‖max from A � C to A � B. Since the restriction of
‖ · ‖σ to A� B agrees with the spatial norm on A� B, we have∥∥∥∑ ai ⊗ ci

∥∥∥
σ
<
∥∥∥∑ ai ⊗ ci

∥∥∥
γ

,

and ‖ · ‖γ is distinct from the spatial norm on A� B. In other words, B is a sepa-
rable C∗-algebra for which A� B has multiple C∗-norms, and we are done.

We can now safely assume that B is separable. Under this assumption, there
are faithful representations ρA and ρB of A and B, respectively, on separable Hilbert
spacesHA andHB. Moreover, ([8], Theorem 8.3.2) allows us to assume that there
is a Borel–Hilbert bundle G(0) ∗H and a finite Borel measure µ on G(0) such that ρA
is a C0(G(0))-linear representation of A onHA = L2(G(0) ∗H, µ). We then define

πA = ρA ⊗ 1HB and πB = 1HA ⊗ ρB.

Then πA and πB are faithful representations of A and B on L2(G(0) ∗ H, µ)⊗HB
with commuting ranges. Thus there is an induced representation π = πA ⊗max
πB of A ⊗max B on L2(G(0) ∗ H, µ)⊗HB. Moreover, since we are assuming A is
nuclear, π is actually faithful.
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In the following results, we will need to use the fact that π can be viewed
as a C0(G(0))-linear representation on a certain direct integral. The key to doing
so is Proposition II.1.11 of [9], which guarantees that there is an analytic Borel–
Hilbert bundle G(0) ∗ (H ⊗ HB) whose fibers are simply H(x) ⊗ HB, and that
L2(G(0) ∗H, µ)⊗HB is naturally isomorphic to L2(G(0) ∗ (H⊗HB), µ). Therefore,
we will frequently identifyHA⊗HB withH = L2(G(0) ∗ (H⊗HB), µ). Moreover,
Proposition 3.2 tells us that π is a C0(G(0))-linear representation on H under this
identification.

It is critical to verify that the induction process plays nicely with tensor
products. The first step is to show that Ind πA and (Ind ρA) ⊗ 1HB are unitar-
ily equivalent. Since ρA : A → B(HA), Ind ρA acts on Z ⊗A HA, where Z is the
completion of Γc(G, s∗A) described at the end of Section 2. Thus Ind ρA ⊗ 1HB
acts on (Z ⊗A HA)⊗HB. On the other hand, πA : A→ B(HA ⊗HB), so Ind πA
acts on Z ⊗A (HA ⊗HB).

PROPOSITION 5.3. There is an isometry U of (Z0�HA)�HB ontoZ0� (HA�
HB) characterized on elementary tensors by

(5.1) (z⊗ h)⊗ k 7→ z⊗ (h⊗ k), z ∈ Z0, h ∈ HA, k ∈ HB,

which then extends to a unitary U : (Z ⊗A HA)⊗HB → Z ⊗A (HA ⊗HB). Fur-
thermore, U intertwines the representations Ind πA and (Ind ρA)⊗ 1HB .

Proof. Define U on elementary tensors as in (5.1) and extend by linearity to
all of (Z0 �HA)�HB. Suppose z1, z2 ∈ Z , h1, h2 ∈ HA, and k1, k2 ∈ HB. Then
we have

(z1 ⊗ (h1 ⊗ k1) | z2 ⊗ (h2 ⊗ k2)) = (πA(〈〈z2, z1〉〉A)(h1 ⊗ k1) | h2 ⊗ k2)

= ((ρA ⊗ 1HB)(〈〈z2, z1〉〉A)(h1 ⊗ k1) | h2 ⊗ k2)

= (ρA(〈〈z2, z1〉〉A)h1 | h2)(k1 | k2).

The first factor is precisely the inner product of z1⊗ h1 and z2⊗ h2 in Z0�HA, so

(z1 ⊗ (h1 ⊗ k1) | z2 ⊗ (h2 ⊗ k2)) = (z1 ⊗ h1 | z2 ⊗ h2)(k1 | k2)

= ((z1 ⊗ h1)⊗ k1 | (z2 ⊗ h2)⊗ k2).

Thus U : (Z0�HA)�HB → Y0� (HA�HB) is isometric. It is clearly surjective,
so it extends to a unitary (also denoted U) from (Z ⊗A HA) ⊗ HB onto Z ⊗A
(HA ⊗HB).

Now let f ∈ Γc(G, r∗A), z ∈ Z0, h ∈ HA, and k ∈ HB. Then

Ind πA( f ) ·U((z⊗ h)⊗ k) = Ind πA( f )(z⊗ (h⊗ k)) = f · z⊗ (h⊗ k)

= U(( f · z⊗ h)⊗ k) = U(Ind ρA( f )(z⊗ h)⊗ k)

= U · (Ind ρA ⊗ 1HB)( f )((z⊗ h)⊗ k),

so U intertwines Ind πA and Ind ρA ⊗ 1HB .
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REMARK 5.4. In the proof of Theorem 5.1, we will also need a representation
of (Aoα G)⊗max B on Z ⊗A (HA ⊗HB). Of course we can do this by producing
a representation π̃B of B onZ ⊗A (HA⊗HB) whose range commutes with that of
Ind πA. Form the representation 1Z⊗H ⊗ ρB of B on (Z ⊗AHA)⊗HB and define

π̃B(b) = U(1Z⊗HA ⊗ ρB(b))U∗

for all b ∈ B, where U is the unitary from Proposition 5.3. Note then that

π̃B(b)(z⊗ (h⊗ k)) = U(1Z⊗HA ⊗ ρB(b))U∗(z⊗ (h⊗ k))

= U((z⊗ h)⊗ ρB(b)k)= z⊗ (h⊗ ρB(b)k)= z⊗ πB(b)(h⊗ k).

It is also straightforward to verify that Ind πA and π̃B have commuting ranges: if
a ∈ Aoα G and b ∈ B, then

Ind πA(a)π̃B(b) = U(Ind ρA(a)⊗ 1HB)(1Z⊗HA ⊗ ρB(b))U∗

= U(1Z⊗HA ⊗ ρB(b))(Ind ρA(a)⊗ 1HB)U
∗ = π̃B(b) Ind ρA(a).

Therefore, there is a representation Ind πA⊗max π̃B of (AoαG)⊗maxB on Z⊗AH.

We have thus far considered only induced representations of Aoα G, but
we will also need to look at representations of (A⊗max B)oα⊗id G. In particular,
we need to work with Ind(πA ⊗max πB). This representation acts on the Hilbert
space Y ⊗A⊗B H, where Y is the completion of the pre-imprimitivity bimodule
Y0 = Γc(G, s∗(A⊗max B)) described in Section 2. Our final claim before we prove
the main theorem is the following.

LEMMA 5.5. There is an isometry V : Y0�H → Z0�H, which is characterized
on elementary tensors by

( f ⊗̂ b)⊗ h 7→ f ⊗ πB(b)h

for f ∈ Γc(G, s∗A), b ∈ B, and h ∈ H. This isometry then extends to a unitary
V : Y ⊗A⊗B H → Z ⊗A H.

Proof. We know from Proposition 3.4 that elementary tensors of the form
f ⊗̂ b span a dense subspace of Y0 = Γc(G, s∗(A ⊗max B)) with respect to the
inductive limit topology. We claim that this implies density with respect to the
norm topology on Y . To see this, suppose {yi} is a net in Y0 that converges to
y ∈ Y with respect to the inductive limit topology. Then

‖yi − y‖2
A = ‖〈〈yi − y, yi − y〉〉A‖ = sup

u∈G(0)
‖〈〈yi − y, yi − y〉〉A(u)‖

6 sup
u∈G(0)

∫
G

‖(yi − y)(ξ)∗(yi − y)(ξ)‖dλu(ξ)

= sup
u∈G(0)

∫
G

‖yi(ξ)− y(ξ)‖2 dλu(ξ).
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Let ε > 0. Since yi → y in the inductive limit topology, there is a compact set K
such that supp(yi), supp(y) ⊂ K and ‖yi(ξ)− y(ξ)‖ < ε1/2 for sufficiently large
i. Therefore, for sufficiently large i, we have

‖yi − y‖2
A < ε · sup

u∈G(0)
λu(K).

A slight modification of Lemma 1.23 in [10] shows that sup
u∈G(0)

λu(K) is finite, so it

follows that yi → y in norm.
Thanks to this claim, it will suffice to compute with elementary tensors. Let

f1, f2 ∈ Y0, b1, b2 ∈ B, and h1, h2 ∈ H. Then

(V(( f1 ⊗̂ b1)⊗ h1) |V(( f2 ⊗̂ b2)⊗ h2)) = (( f1 ⊗ πB(b1)h1) | ( f2 ⊗ πB(b2)h2))

= (πA(〈〈 f2, f1〉〉A)πB(b1)h1 |πB(b2)h2)

= (πA(〈〈 f2, f1〉〉A)πB(b∗2 b1)h1 | h2)

= (π(〈〈 f2, f1〉〉A ⊗ b∗2 b1)h1 | h2),

where we have used the fact that πA and πB commute. Now for each u ∈ G(0),

π(〈〈 f2, f1〉〉A ⊗ b∗2 b1)(u) = πu(〈〈 f2, f1〉〉A(u)⊗ b∗2 b1)

= πA,u(〈〈 f2, f1〉〉A(u))πB,u(b∗2 b1),

where

πA,u(〈〈 f2, f1〉〉A(u))=πA,u

( ∫
G

f2(ξ)
∗ f1(ξ)dλu(ξ)

)
=
∫
G

πA,u( f2(ξ)
∗ f1(ξ))dλu(ξ).

Now

π(〈〈 f2, f1〉〉A ⊗ b∗2 b1)(u) =
∫
G

πA,u( f2(ξ)
∗ f1(ξ))πB,u(b∗2 b1)dλu(ξ)

=
∫
G

πu(( f2(ξ)⊗ b2)
∗( f1(ξ)⊗ b1))dλu(ξ)

= πu

( ∫
G

( f2 ⊗̂ b2)(ξ)
∗( f1 ⊗̂ b1)(ξ)dλu(ξ)

)
= π(〈〈 f2 ⊗ b2, f1 ⊗ b1〉〉A⊗B)(u).

Therefore,

(V(( f1 ⊗̂ b1)⊗ h1) |V(( f2 ⊗̂ b2)⊗ h2)) = (π(〈〈 f2 ⊗̂ b2, f1 ⊗̂ b1〉〉A⊗B)h1 | h2)

= (( f1 ⊗̂ b1)⊗ h1 | ( f2 ⊗̂ b2)⊗ h2),

so V is an isometry. Since πB is nondegenerate, V is clearly surjective and thus
extends to a unitary V : Y ⊗H → Z ⊗H.
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Proof of (5.1). Let ρA : A → B(HA) and ρB : B → B(HB) be the faithful
representations of A and B described above, and let πA = ρA ⊗ 1HB and πB =
1HA ⊗ ρB. Then πA and πB are faithful, and since A is nuclear, the representation
π = πA ⊗max πB of A⊗max B on H = HA ⊗HB is faithful. Moreover, since G is
measurewise amenable, the induced representation Ind π of (A⊗max B)oα⊗id G
on Y ⊗A⊗B H is also faithful as a consequence of Theorem 1 of [22].

Recall from Theorem 4.2 that there is an isomorphism Φ : (Aoα G) ⊗max
B → (A ⊗max B) oα⊗id G, so Ind π ◦ Φ is a faithful representation of (A oα

G) ⊗max B. We claim that the unitary V of Lemma 5.5 intertwines this repre-
sentation with Ind πA ⊗max π̃B. Let f ∈ Γc(G, r∗A), y ∈ Y0, b, c ∈ B, and h ∈ H.
Then

Ind πA ⊗max π̃B( f ⊗ b)V((y ⊗̂ c)⊗ h) = Ind πA( f )π̃B(b)(y⊗ πB(c)h)

= Ind πA( f )(y⊗ πB(bc)h)

= f · y⊗ πB(bc)h = V(( f · y ⊗̂ bc)⊗ h).

Recall that

f · y(γ) =
∫
G

α−1
γ ( f (η))y(η−1γ)dλr(γ)(η),

so

( f · y ⊗̂ bc)(γ) = f · y(γ)⊗ bc =
∫
G

α−1
γ ( f (η))y(η−1γ)⊗ bc dλr(γ)(η)

=
∫
G

(α−1
γ ( f (η))⊗ b)(y(η−1γ)⊗ c)dλr(γ)(η)

=
∫
G

(α⊗ id)−1
γ ( f ⊗̂ b(η))(y ⊗̂ c(η−1γ))dλr(γ)(η)

= ( f ⊗̂ b) · (y ⊗̂ c)(γ).

Therefore,

V(( f · y ⊗̂ bc)⊗ h) = V(( f ⊗̂ b) · (y ⊗̂ c)⊗ h) = V · Ind π( f ⊗̂ b)((y ⊗̂ c)⊗ h)

= V · Ind π ◦Φ( f ⊗̂ b)((y ⊗̂ c)⊗ h).

Since the tensors of the form (y ⊗̂ c) ⊗ h span a dense subspace of Y ⊗A⊗B H,
Ind πA⊗max π̃B( f ⊗ b)V = V Ind π ◦Φ( f ⊗̂ b). Similarly, Γc(G, r∗A)� B is dense
in Γc(G, r∗(A⊗max B)) with respect to the inductive limit topology, so it follows
that V intertwines Ind πA ⊗max π̃B and Ind π ◦Φ. Thus Ind πA ⊗max π̃B is faith-
ful.

Now let κ : (Aoα G)⊗max B → (Aoα G)⊗σ B be the canonical quotient
map. Then we have

(Ind ρA ⊗ 1HB)⊗max
(
1Z⊗HA ⊗ ρB

)
= (Ind ρA ⊗ ρB) ◦ κ.
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We have already seen that the unitary U of Proposition 5.3 intertwines Ind ρA ⊗
1HB with Ind πA and 1Z⊗HA ⊗ ρB with π̃B, so the left hand side is equivalent to
Ind πA ⊗max π̃B. This representation is faithful, as is Ind ρA ⊗ ρB, which forces κ
to be injective. Thus

(Aoα G)⊗max B = (Aoα G)⊗σ B

for any separable C∗-algebra B. By Proposition 5.2, this is enough to guarantee
that Aoα G is nuclear.

6. EXACTNESS

With the nuclearity theorem out of the way, we now aim to prove a related
theorem on exactness for groupoid crossed products. It is a generalization of a
theorem of Kirchberg, who showed in Proposition 7.1(v) of [16] that the crossed
product of an exact C∗-algebra by an amenable group is again exact. His proof
hinges upon the fact that the reduced crossed product of an exact C∗-algebra by an
exact group is exact. We will do the same here for groupoids.

One of the ingredients that we will need is the promised analogue of Theo-
rem 4.2 for reduced crossed products. It will mostly follow from the earlier result
for full crossed products, but there are still some technical details to resolve.

THEOREM 6.1. There is a natural isomorphism

Ψ : (A⊗σ B)oα⊗id,r G → (Aoα,r G)⊗σ B

which is characterized on elementary tensors by

Ψ( f ⊗̂ b) = f ⊗ b

for f ∈ Γc(G, r∗A) and b ∈ B.

The plan is to show that Ψ is induced from the isomorphism Φ of Theo-
rem 4.2 via the natural quotient map κ : A⊗max B → A⊗σ B. We first need to
know that κ is a G-equivariant homomorphism, so that it induces a map κ o id :
(A⊗max B)oα⊗id G → (A⊗σ B)oα⊗id G. There does not seem to be any mention
of G-equivariant homomorphisms in the literature yet, so we will develop some
facts.

Suppose (A, G, α) and (B, G, β) are groupoid dynamical systems. Naïvely,
a G-equivariant homomorphism ϕ : A → B should commute with the actions
of G on A and B. Since we really need to work with the fibers of A and B, it is
necessary that ϕ induce fiberwise homomorphisms. The natural way to do this
is to require that ϕ be a C0(G(0))-linear homomorphism, in which case we can
appeal to Remark 3.6. Thus ϕ induces homomorphisms ϕu : Au → Bu for all
u ∈ G(0), and we can use these to define G-equivariance.
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DEFINITION 6.2. Let G be a locally compact Hausdorff groupoid, and let
(A, G, α) and (B, G, β) be dynamical systems. A C0(G(0))-linear homomorphism
ϕ : A→ B is called G-equivariant if

ϕr(γ)(αγ(a)) = βγ(ϕs(γ)(a))

for all γ ∈ G and a ∈ As(γ).

As in Corollary 2.48 of [25] for groups, we would like to show that any G-
equivariant homomorphism induces a homomorphism between the associated
crossed products in a natural way. Recall that Propositions 3.7 and 3.8 guarantee
that there is a homomorphism r∗ϕ : r∗A→ r∗B characterized by

r∗ϕ( f )(γ) = ϕr(γ)( f (γ))

for all f ∈ Γ0(G, r∗A) ∼= r∗A and γ ∈ G. Furthermore, r∗ϕ takes compactly sup-
ported sections to compactly supported sections. It shouldn’t be surprising that
the restriction of r∗ϕ to Γc(G, r∗A) is a homomorphism that extends to Aoα G.

PROPOSITION 6.3. Let (A, G, α) and (B, G, β) be groupoid dynamical systems,
and let ϕ : A → B be a G-equivariant homomorphism. Then there is a homomorphism
ϕ o id : Aoα G → Boβ G, which takes Γc(G, r∗A) into Γc(G, r∗B), and

(6.1) ϕ o id( f )(γ) = ϕr(γ)( f (γ))

for f ∈ Γc(G, r∗A).
Proof. Define ϕ o id on Γc(G, r∗A) as in (6.1). We have already observed

that ϕ o id is linear and maps into Γc(G, r∗B), and we claim now that it is a ho-
momorphism. If f , g ∈ Γc(G, r∗A), then we have

(ϕ o id( f )) ∗ (ϕ o id(g))(γ) =
∫
G

ϕ o id( f )(η)βη(ϕ o id(g)(η−1γ))dλr(γ)(η)

=
∫
G

ϕr(η)( f (η))βη(ϕr(η−1γ)(g(η−1γ)))dλr(γ)(η)

=
∫
G

ϕr(η)( f (η))βη(ϕs(η)(g(η−1γ)))dλr(γ)(η).

Since ϕ is G-equivariant, this becomes

=
∫
G

ϕr(γ)( f (η))ϕr(η)(αη(g(η−1γ)))dλr(γ)(η)

=
∫
G

ϕr(γ)( f (η)αη(g(η−1γ)))dλr(γ)(η) = ϕr(γ)( f ∗ g(γ)) = ϕ o id( f ∗ g)(γ),

so ϕ o id is multiplicative. Similarly, if f ∈ Γc(G, r∗A), we have

ϕ o id( f ∗)(γ) = ϕr(γ)(αγ( f (γ−1)∗)) = βγ(ϕs(γ)( f (γ−1)∗))

= βγ(ϕ o id( f )(γ−1)∗) = ϕ o id( f )∗(γ).
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Therefore, ϕ o id is a ∗-homomorphism.
The only thing left to check is that ϕo id extends toAoα G. We will do this

by showing that it is bounded with respect to the I-norm (Equation 4.2 of [20]) on
Γc(G, r∗A). If f ∈ Γc(G, r∗A), then∫

G

‖ϕ o id( f )(γ)‖dλu(γ) =
∫
G

‖ϕr(γ)( f (γ))‖dλu(γ) 6
∫
G

‖ f (γ)‖dλu(γ)

for all u ∈ G(0). A similar computation shows that
∫
G
‖ϕ o id( f )(γ)‖dλu(γ) 6∫

G
‖ f (γ)‖dλu(γ), so it follows that ‖ϕ o id( f )‖I 6 ‖ f ‖I . Thus ϕ o id is I-norm

decreasing, so it extends to a homomorphism ϕ o id : Aoα G → Boβ G.

We will now apply this machinery to a very particular homomorphism. Let
(A, G, α) be a separable groupoid dynamical system, and let B be a separable
C∗-algebra. Let κ : A⊗max B→ A⊗σ B be the canonical quotient map.

PROPOSITION 6.4. The homomorphism κ : A⊗max B → A⊗σ B is G-equivari-
ant, so it induces a homomorphism κo id : (A⊗max B)oα⊗id G → (A⊗σ B)oα⊗id G.

Proof. It is easy to verify that κ is C0(G(0))-linear, for on elementary tensors

κ( f · (a⊗max b)) = κ( f · a⊗max b) = f · a⊗σ b = f · κ(a⊗max b)

for any f ∈ C0(G(0)). (Here we write a⊗max b and a⊗σ b to emphasize where each
elementary tensor lives.) Thus κ admits a fiberwise decomposition κu : Au ⊗max
B → Au ⊗σ B by Remark 3.6. We claim that for each u ∈ G(0), κu is nothing more
than the canonical quotient map Au ⊗max B→ Au ⊗σ B. If a ∈ A and b ∈ B, then
for any u ∈ G(0) we have by definition

κu(a(u)⊗max b) = κu((a⊗max b)(u)) = κ(a⊗max b)(u).

The right hand side is (a ⊗σ b)(u) = a(u) ⊗σ b, so κu is the desired homomor-
phism.

It remains to verify that κ is indeed G-equivariant. Let γ ∈ G, a ∈ As(γ),
and b ∈ B. Then we have

κr(γ)(αγ ⊗max id(a⊗max b)) = κr(γ)(αγ(a)⊗max b) = αγ(a)⊗σ b

= αγ ⊗σ id(a⊗σ b) = αγ ⊗σ id(κs(γ)(a⊗max b)).

Thus κ respects the G-actions on A and B. It then follows from Proposition 6.3
that κ induces a homomorphism κoid : (A⊗maxB)oα⊗idG→ (A⊗σB)oα⊗idG.

Now let ρA and ρB be faithful separable representations of A and B on Hil-
bert spacesHA andHB, respectively, and put πA = ρA⊗ 1HB and πB = 1HA ⊗ ρB.
We can assume that there is an analytic Borel–Hilbert bundle G(0) ∗H and a finite
Borel measure µ on G(0) such that ρA is a C0(G(0))-linear representation of A on
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L2(G(0) ∗H, µ). Then ρA is decomposable, and we have

πA = ρA ⊗ 1HB =
∫

G(0)

⊕
ρA,u ⊗ 1HB dµ(u),

so πA is decomposable as well, with πA,u = ρA,u ⊗ 1HB . With this setup in place,
the first result we need to establish is that

Ind(ρA ⊗ ρB) ◦ (κ o id) = Ind(πA ⊗max πB).

We already know that Ind(πA ⊗max πB) acts on the Hilbert space Y ⊗A⊗maxB H,
where Y is a completion of the Hilbert module Y0 = Γc(G, s∗(A⊗max B)). On the
other hand, Ind(ρA ⊗ ρB) acts on W ⊗A⊗σ B H, where W arises as a completion
ofW0 = Γc(G, s∗(A⊗σ B)). We need to reconcile this somehow.

LEMMA 6.5. There is an isometry T : Y0 � H → W0 � H, characterized on
elementary tensors by

T(y⊗ h) = s∗κ(y)⊗ h

for y ∈ Y0 and h ∈ H. This isometry extends to a unitary T : Y ⊗A⊗maxB H →
W ⊗A⊗σ B H, which intertwines Ind(ρA ⊗ ρB) ◦ (κ o id) and Ind(πA ⊗max πB).

Proof. Define T on elementary tensors as above. Then for y1, y2 ∈ Y0 and
h1, h2 ∈ H, we have

(T(y1 ⊗ h1) | T(y2 ⊗ h2))

= (s∗κ(y1)⊗ h1 | s∗κ(y2)⊗ h2) = (ρA ⊗ ρB(〈〈s∗κ(y2), s∗κ(y1)〉〉A⊗σ B)h1 | h2)

=
∫
G

((ρA ⊗ ρB)u(〈〈s∗κ(y2), s∗κ(y1)〉〉A⊗σ B(u))h1(u) | h2(u))dµ(u).

Now

〈〈s∗κ(y2), s∗κ(y1)〉〉A⊗σ B(u)=
∫
G

κs(ξ)(y2(ξ))
∗κs(ξ)(y1(ξ))dλu(ξ)

=κu

( ∫
G

y2(ξ)
∗y1(ξ)dλu(ξ)

)
=κu(〈〈y2, y1〉〉A⊗maxB(u)),

so

(T(y1 ⊗ h1) | T(y2 ⊗ h2)) = (ρA ⊗ ρB ◦ κ(〈〈y2, y1〉〉A⊗maxB)h1 | h2)

= (πA ⊗max πB(〈〈y2, y1〉〉A⊗maxB)h1 | h2)

= (y1 ⊗ h1 | y2 ⊗ h2).

Therefore T is isometric. It is clearly surjective, so it then extends to a unitary
T : Y ⊗A⊗maxB H → W ⊗A⊗σ B H.

All that is left is the verification that T intertwines Ind(ρA ⊗ ρB) ◦ (κ o id)
and Ind(πA ⊗max πB). Let f ∈ Γc(G, s∗A), w ∈ W0, b, c ∈ B, and h ∈ H. Then

Ind(ρA ⊗ ρB) ◦ (κ o id)( f ⊗̂ b)T((w ⊗̂ c)⊗ h) = κ o id( f ⊗̂ b) · s∗κ(w ⊗̂ c)⊗ h,
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where

κ o id( f ⊗̂ b) · s∗κ(w ⊗̂ c)(γ)

=
∫
G

(α⊗ id)−1
γ (κ o id( f ⊗̂ b)(η))w ⊗̂ c(η−1γ)dλr(γ)(η)

=
∫
G

(α⊗ id)−1
γ (κr(γ)( f (γ)⊗max b))(w(η−1γ)⊗ c)dλr(γ)(η)

=
( ∫

G

α−1
γ ( f (η))w(η−1γ)dλr(γ)(η)

)
⊗ bc

= f · w(γ)⊗ bc = κs(γ)( f · w(γ)⊗max bc).

Thus

κ o id( f ⊗̂ b) · s∗κ(w ⊗̂ c)⊗ h = s∗κ( f · w ⊗̂ bc)⊗ h = T(( f · w ⊗̂ bc)⊗ h).

We have seen in previous calculations that

Ind(πA ⊗max πB)( f ⊗̂ b)((w ⊗̂ c)⊗ h) = ( f · w ⊗̂ bc)⊗ h,

so we have shown

Ind(ρA ⊗ ρB) ◦ (κ o id)( f ⊗̂ b) · T = T · Ind(πA ⊗max πB)( f ⊗̂ b).

The point of the previous lemma is the following: the image of Ind(ρA⊗ ρB)
is a concrete realization of (A⊗σ B)oα⊗id,r G, so we have a natural identification
of (A ⊗σ B) oα⊗id,r G with the image of Ind(πA ⊗max πB). A similar (though
easier) result is given below.

LEMMA 6.6. With all notation as above, we have a natural identification of the
image of (Ind πA)⊗max π̃B with (Aoα,r G)⊗σ B.

Proof. The image of Ind πA can be identified with Aoα,r G, and we know
that Ind πA and (Ind ρA)⊗ 1HB are equivalent by Proposition 5.3. We also know
from Remark 5.4 that π̃B = 1Z⊗HA ⊗ ρB, so if κ′ : (Aoα G) ⊗max B → (Aoα

G)⊗σ B denotes the canonical map, we have

(Ind πA)⊗max π̃B = (Ind ρA)⊗ ρB ◦ κ′.

Since ρB is a faithful representation of B, we see that the image of (Ind ρA)⊗ ρB
is naturally identified with (Aoα,r G)⊗σ B. The result then follows.

Proof of Theorem 6.1. Again by Theorem 4.2 and Lemma 5.5 there is a natu-
ral isomorphism Φ : (A⊗max B)oα⊗id G → (Aoα G)⊗max B and a unitary V :
Y ⊗A⊗B H → Z ⊗A H that together intertwine the representations Ind(πA ⊗max
πB) and (Ind πA) ⊗max π̃B. Therefore, the previous two lemmas imply that we
can identify (A ⊗σ B) oα⊗id,r G and (A oα,r G) ⊗σ B (which are the images of
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Ind(πA ⊗max πB) and (Ind ρA)⊗ ρB, respectively). Therefore, we obtain a com-
mutative diagram

(A⊗max B)oα⊗id G Φ //

Ind(πA⊗maxπB)

��

(Aoα G)⊗max B

(Ind πA)⊗maxπ̃B
��

(A⊗σ B)oα⊗id,r G Ψ // (Aoα,r G)⊗σ B

with Ψ denoting the aforementioned identification. It is then clear that Ψ has the
desired properties.

Recall that a locally compact group G is exact if whenever (A, G, α) is a dy-
namical system and I is a G-invariant ideal in A, the sequence

0 // I oα|I ,r G // A oα,r G // A/I oαI ,r G // 0

of reduced crossed products is exact. We would like to generalize this notion and
study exact groupoids.

Throughout this discussion, let (A, G, α) be a separable groupoid dynamical
system. Suppose I is an ideal in A. We need to develop a criterion for when
I is invariant under the action of G on A, which will ensure that we can build
dynamical systems (I , G, α|I) and (A/I , G, αI). This requires I and A/I to be
equipped with C0(G(0))-algebra structures, which was shown in Propositions 3.9
and 3.11.

DEFINITION 6.7. The ideal I is said to be G-invariant if for all γ ∈ G, we
have

αγ(Is(γ)) = Ir(γ).

REMARK 6.8. Note that the previous definition implies that the restriction
α|I = {αγ|Is(γ)

}γ∈G yields an action of G on I , and that the inclusion map ι : I →
A is G-equivariant. Furthermore, for each γ ∈ G we get an isomorphism

αI
γ : (A/I)s(γ) → (A/I)r(γ).

Under the natural identification of (A/I)u with Au/Iu, this action is just

αI
γ(a(s(γ)) + Is(γ)) = αγ(a(s(γ))) + Ir(γ).

In other words, the quotient map q : A→ A/I is G-equivariant.

Since the maps ι and q are G-equivariant, Proposition 6.3 guarantees that
they yield maps ι o id : I oα|I G → Aoα G and q o id : Aoα G → (A/I)oαI G.
Furthermore, it is shown in Lemma 6.3.2 of [1] that the sequence

(6.2) 0 // I oα|I G
ιoid // Aoα G

qoid // A/I oαI G // 0
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is exact. This fact also follows from Theorem 3.7 of [14], which is a more general
statement about Fell bundle C∗-algebras. Things are more interesting if we con-
sider the reduced crossed product. Before going any further, we need to show
that ι and q induce homomorphisms at the level of reduced crossed products.

LEMMA 6.9. Let (A, G, α) and (B, G, β) be separable groupoid dynamical sys-
tems, and let ϕ : A → B be a G-equivariant homomorphism. Given u ∈ G(0), suppose ρ
is a nondegenerate separable representation of B(u) on a Hilbert space H, π = ρ ◦ q is
the corresponding representation of B onH, and letHess denote the essential subspace of
the possibly degenerate representation π ◦ ϕ. Then L2(Gu,H, λu)⊗Hess is the essential
subspace of Lπ ◦ (ϕ o id). Moreover,

L(π◦ϕ)ess = (Lπ ◦ (ϕ o id))ess.

Proof. Clearly L2(Gu, λu)⊗Hess embeds isometrically into L2(Gu, λu)⊗H.
For any h ∈ L2(Gu, λu)⊗Hess, we have

Lπ ◦ (ϕ o id)( f )h(γ) =
∫
G

ρ(β−1
γ (ϕr(η)( f (η))))h(η−1γ)dλr(γ)(η)

=
∫
G

ρ(ϕs(γ)(α
−1
γ ( f (η))))h(η−1γ)dλr(γ)(η)

=
∫
G

ρ ◦ ϕu(α
−1
γ ( f (η)))h(η−1γ)dλr(γ)(η)

=
∫
G

(π ◦ ϕ)u(α
−1
γ ( f (η)))h(η−1γ)dλr(γ)(η)=Lπ◦ϕ( f )h(γ).

Thus L2(Gu, λu)⊗Hess is invariant for Lπ ◦ (ϕ o id). Now suppose that g⊗ k ∈
(L2(Gu, λu)⊗Hess)⊥. Then in particular,

(g⊗ k | g⊗ h) = (g | g)(k | h) = 0

for all h ∈ Hess, so k ∈ H⊥ess. Therefore,

Lπ ◦ (ϕ o id)( f )(g⊗ k)(γ) =
∫
G

ρ(β−1
γ (ϕ o id( f )(η)))g(η−1γ)k dλr(γ)(η)

=
∫
G

g(η−1γ)(π ◦ ϕ)u(α
−1
γ ( f (η)))k dλr(γ)(η) = 0

since k is in the zero space of π ◦ ϕ. Thus L2(Gu, λu)⊗Hess is a nondegenerate
invariant subspace for Lπ ◦ (ϕ o id), and this representation vanishes on its or-
thogonal complement. Therefore, L2(Gu, λu)⊗Hess = (L2(Gu, λu)⊗H)ess, and
the computations above show that Lπ ◦ (ϕ o id) = Lπ◦ϕ on this subspace.

PROPOSITION 6.10. Let (A, G, α) and (B, G, β) be separable groupoid dynami-
cal systems, and let ϕ : A → B be a G-equivariant homomorphism. Then there is a
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homomorphism ϕ o id : Aoα,r G → Boβ,r G taking Γc(G, r∗A) into Γc(G, r∗B) and
satisfying

ϕ o id( f )(γ) = ϕr(γ)( f (γ))

for f ∈ Γc(G, r∗A).
Proof. We know from Proposition 6.3 that such a map ϕo id : Γc(G, r∗A)→

Γc(G, r∗B) exists, and that it is a ∗-homomorphism. Therefore, we just need to see
that it extends to a map between the reduced crossed products. For each u ∈ G(0),
let ρu be a faithful representation of B(u), and let πu be its lift to B. Then each
πu ◦ ϕ is a representation of A, so we clearly have

‖ Ind(πu ◦ ϕ)( f )‖ 6 ‖ f ‖r

for all f ∈ Γc(G, r∗A). However, Lemma 6.9 tells us that Ind(πu ◦ ϕ)( f ) =
(Ind πu) ◦ (ϕ o id)( f ), so

‖ϕ o id( f )‖r = sup
u∈G(0)

‖(Ind πu) ◦ (ϕ o id)( f )‖ = sup
u∈G(0)

‖ Ind(πu ◦ ϕ)( f )‖ 6 ‖ f ‖r

for all f ∈ Γc(G, r∗A). Thus ϕoid is bounded with respect to the reduced norms
on Γc(G, r∗A) and Γc(G, r∗B), so it extends to a map ϕoid : Aoα,r G→Boβ,rG.

Since q o id maps Γc(G, r∗A) onto Γc(G, r∗(A/I) by Lemma 6.3.2 of [1],
q o id has dense range and is thus surjective. It is also true that ι o id gives an
embedding of I oα,r G into Aoα,r G as an ideal. To see this, let {ρu} be a family
of faithful representations of the fibers of A, and let πu denote the lift of ρu to
A for all u. Then each πu ◦ ι is a (possibly degenerate) representation of I, and
Lemma 6.9 tells us that

‖ Ind(πu ◦ ι)( f )‖ = ‖(Ind πu) ◦ (ι o id)( f )‖

for all f ∈ Γc(G, r∗I). However, πu ◦ ι is just the lift of ρu ◦ ιu to I, and the latter
is a faithful representation of I(u). Therefore,

‖ f ‖r = sup
u∈G(0)

‖ Ind(πu ◦ ι)( f )‖ = sup
u∈G(0)

‖(Ind πu) ◦ (ι o id)( f )‖ = ‖ι o id( f )‖r

for all f ∈ Γc(G, r∗I), so ιo id is isometric. We also have im(ιo id) ⊂ ker(qo id),
so we get a sequence

(6.3) 0 // I oα|I ,r G
ιoid // Aoα,r G

qoid // A/I oαI ,r G // 0.

However, (6.3) not exact in general. Gromov has famously produced examples of
groups for which (6.3) fails to be exact. There are more tractable (but still compli-
cated) examples of groupoids that cause (6.3) to go bad. Given the unfortunate
existence of such groupoids, it makes sense to single out the ones for which (6.3)
is always exact.
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DEFINITION 6.11. A second countable locally compact groupoid G is said
to be exact if whenever (A, G, α) is a separable groupoid dynamical system and I
is a G-invariant ideal in A, the sequence

(6.4) 0 // I oα|I ,r G
ιoid // Aoα,r G

qoid // A/I oαI ,r G // 0.

is short exact.

Note that we have the following immediate corollary to Lemma 6.3.2 of [1]
when G is measurewise amenable.

COROLLARY 6.12. If G is a measurewise amenable second countable locally com-
pact Hausdorff groupoid, then G is exact.

Proof. If G is measurewise amenable and (A, G, α) is a separable dynamical
system, then the sequence (6.2) coincides with (6.4). But this sequence of full
crossed products is exact, so it follows that G is exact.

We now have almost all of the pieces in place to prove the promised exact-
ness theorem. However, note that all the work that we have done so far applies
only to separable C∗-algebras. Since we will need to take spatial tensor products
with short exact sequences of arbitrary C∗-algebras, we seem to be in some trou-
ble. We had a similar problem for the nuclearity theorem, which we were able to
circumvent via Proposition 5.2. Fortunately, a similar trick will work here. For
brevity, we will say that a C∗-algebra A is separably exact if whenever

0 // I ι // B
q // B/I // 0

is a short exact sequence of separable C∗-algebras, the sequence

0 // I
ι⊗id // B

q⊗id // B/I // 0

is exact. Our aim is to show that A is exact if and only if it is separably exact.
For the proof we will need an alternative characterization of exactness, which
was observed by Kirchberg in Theorem 1.1 of [15]: a C∗-algebra A is exact if and
only if

(6.5) 0 // K(H)⊗σ A
ι⊗id // B(H)⊗σ A

q⊗id // B(H)/K(H)⊗σ A // 0

is exact, whereH is a separable infinite-dimensional Hilbert space.

PROPOSITION 6.13. If a C∗-algebra A is separably exact, then it is exact.

Proof. Suppose A is an inexact C∗-algebra. Then the sequence (6.5) is not
exact. Therefore, there is an x ∈ ker(q⊗ id) that does not belong to K(H)⊗σ A.
We can approximate x by a sequence {ti}, where each

ti = ∑ Tij ⊗ aij
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is a sum of elementary tensors. Let B be the separable C∗-subalgebra of B(H)
generated by the Tij and K(H). Since B⊗σ A sits naturally inside B(H)⊗σ A as
a C∗-subalgebra, we have x ∈ B⊗σ A. Then we obtain a sequence

0 // K(H)⊗σ A
ι⊗id // B⊗σ A

q⊗id // B/K(H)⊗σ A // 0

which is not exact by construction, since q ⊗ id is simply the restriction of the
original quotient map to B⊗σ A. Therefore, x ∈ B⊗σ A implies that ker(q⊗ id) 6=
K(H)⊗σ A, and A cannot be separably exact.

THEOREM 6.14. Let (A, G, α) be a separable groupoid dynamical system with A
exact and G exact. Then the reduced crossed product Aoα,r G is exact.

Proof. By Proposition 6.13 it is enough to consider separable C∗-algebras.
Let

0 // I // B // B/I // 0

be a short exact sequence of separable C∗-algebras. By Theorem 6.1, we have an
isomorphism (Aoα,r G)⊗σ B ∼= (A⊗σ B)oα⊗id,r G. It is easy to see that A⊗σ I
is α⊗ id-invariant, so Theorem 6.1 also yields isomorphisms

(Aoα,r G)⊗σ I ∼= (A⊗σ I)oα⊗id,r G and

(Aoα,r G)⊗σ B/I ∼= (A⊗σ B/I)oα⊗id,r G.

It is straightforward to check that the diagram

0 // (Aor G)⊗σ I //

��

(Aor G)⊗σ B //

��

(Aor G)⊗σ B/I //

��

0

0 // (A⊗σ I)or G // (A⊗σ B)or G // (A⊗σ B/I)or G // 0

commutes, so we have an isomorphism of short exact sequences. It suffices to
consider the exactness of the second one. Since A is exact, the sequence

0 // A⊗σ I // A⊗σ B // A⊗σ B/I // 0

is exact. Since G is assumed to be exact, this sequence remains exact after taking
the reduced crossed product by G. Consequently, Aoα,r G is exact.

COROLLARY 6.15. Let (A, G, α) be a separable groupoid dynamical system with
A exact and G measurewise amenable. Then Aoα G is exact.

Proof. Since G is amenable,Aoα G = Aoα,r G, and the latter is exact by the
previous theorem.
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