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ABSTRACT. We characterize the parts of a vector-valued adjoint shift operator
using operator inequalities and a stability condition. The characterization ap-
plies in a class of weighted shifts containing the classical Hardy shift operator
as well as the full scale of standard weighted Bergman shift operators on the
unit disc. Related operator models form an integral part in recent work on
generalized mathematical systems theory and Bergman inner functions.
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1. INTRODUCTION

Let E be an auxiliary Hilbert space and let w = {wk}k>0 be a positive weight
sequence such that w0 = 1 and lim inf

k→∞
w1/k

k = 1. We consider the space Aw(E) of

all E -valued analytic functions

(1.1) f (z) = ∑
k>0

akzk, z ∈ D,

in the open unit disc D with finite norm

(1.2) ‖ f ‖2
w = ∑

k>0
‖ak‖2wk.

It is straightforward to check that the space Aw(E) is a Hilbert space of E -valued
analytic functions in D in the usual sense of bounded point evaluations

Aw(E) 3 f 7→ f (ζ) ∈ E

at points ζ ∈ D. For notational simplicity we write Aw(D) = Aw(C) in the case
of complex-valued analytic functions.
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The reproducing kernel function for the space Aw(E) is the operator-valued
function Kw : D × D → L(E) defined by the reproducing property that
Kw(·, ζ)e ∈ Aw(E) and

〈 f (ζ), e〉 = 〈 f , Kw(·, ζ)e〉w
for all ζ ∈ D, e ∈ E and f ∈ Aw(E). Here the symbol L(E) denotes the space
of all bounded linear operators on the Hilbert space E . Notice that existence of
the kernel function Kw is ensured by existence of bounded point evaluations as
follows by Riesz representation theorem. It is straightforward to check that the
kernel function has the form

Kw(z, ζ) = kw(ζz)IE , (z, ζ) ∈ D2,

where the function kw is given by the formula

kw(z) = ∑
k>0

1
wk

zk, z ∈ D,

and IE is the identity operator on E .
Another canonical object often associated with the space Aw(E) is the shift

operator which is the operator S = Sw defined by

(S f )(z) = z f (z) = ∑
k>1

ak−1zk, z ∈ D,

for f ∈ Aw(E) given by (1.1). A straightforward calculation using (1.2) shows
that

‖S‖2 = sup
k>0

wk+1
wk

.

We shall be concerned with the case when the operator S is a contraction which
equivalently means that the weight sequence w = {wk}k>0 is decreasing: wk >
wk+1 for k > 0. Observe also that the operator S is a contraction if and only if the
function

(1− z)kw(z) = 1 + ∑
k>1

( 1
wk
− 1

wk−1

)
zk, z ∈ D,

has non-negative Taylor coefficients.
A calculation shows that the adjoint shift operator S∗ acts as

(1.3) (S∗ f )(z) = ∑
k>0

wk+1
wk

ak+1zk, z ∈ D,

on functions f ∈ Aw(E) given by (1.1). In particular, the adjoint shift acts on
reproducing elements by

(1.4) S∗Kw(·, ζ)e = ζKw(·, ζ)e

for ζ ∈ D and e ∈ E . A special property possessed by the adjoint shift operator
is that lim

k→∞
S∗k f = 0 in Aw(E) for every f ∈ Aw(E). It is also evident that the

operator S∗ is a contraction since S is. We shall be concerned in this paper with
a characterization of the parts of the adjoint shift S∗. Recall that an operator A ∈
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L(H) is called a part of an operator B ∈ L(K) if the operator A is unitarily
equivalent to the restriction of B to one of its invariant subspaces. Observe that
A ∈ L(H) is part of B ∈ L(K) if and only if there exists an isometry V ∈ L(H,K)
fromH into K such that VA = BV.

The simplest instance of the above construction is the vector-valued Hardy
space H2(E) which corresponds to the constant weight sequence wk = 1 for k > 0.
The kernel function for the space H2(E) is the function

S(z, ζ) =
1

1− ζz
IE , (z, ζ) ∈ D2,

which is often called the Szegö kernel. The shift operator S on H2(E) is known as
the Hardy shift. A special property of the Hardy shift is that it is an isometry in
the usual sense that ‖S f ‖2 = ‖ f ‖2 for f ∈ H2(E). The shift operator is also pure
in the sense that ⋂

k>0

Sk(H2(E)) = {0}.

The so-called Wold decomposition asserts that these two properties determine
the Hardy shift operator up to unitary equivalence. The Wold decomposition
then leads to a parametrization of the shift invariant subspaces of H2(E) using
operator-valued inner functions as was pointed out by Halmos [15].

An interesting property of the adjoint Hardy shift S∗ is that it constitutes a
universal model for contractions in the class C0·: A bounded linear Hilbert space
operator T ∈ L(H) is a contraction such that lim

k→∞
Tkx = 0 in H for every x ∈ H

if and only if it is unitarily equivalent to the restriction of S∗ to a coinvariant
subspace of H2(E) for some multiplicity E as above. To put this result in explicit
form we need some more terminology.

By a contraction we understand a bounded Hilbert space operator T ∈
L(H) such that ‖Tx‖2 6 ‖x‖2 for all x ∈ H. A contraction T is said to belong
to the class C0· if lim

k→∞
Tk = 0 in the strong operator topology in L(H), that is,

lim
k→∞

Tkx = 0 in H for every x ∈ H. The defect operator for a contraction T is the

operator DT defined by the formula

DT = (I − T∗T)1/2

inL(H), where the positive square root is used. The defect spaceDT is the closure
in H of the range DT(H) of DT . For x ∈ H we consider the DT-valued analytic
function

(1.5) V1x(z) = DT(I − zT)−1x = ∑
k>0

(DTTkx)zk, z ∈ D,

in D.
Let T ∈ L(H) be a contraction. For x ∈ H, the sequence {‖Tkx‖2}k>0

is decreasing and non-negative. By polarization this gives that the operator limit
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lim
k→∞

T∗kTk exists in the weak operator topology in L(H) and, by a classical result,

therefore also in the strong operator topology in L(H) (see Halmos, Problem 120
of [16]). We now introduce the positive operator Q ∈ L(H) characterized by the
formula

(1.6) Q2 = lim
k→∞

T∗kTk

in L(H). Notice that Q = 0 if and only if T belongs to the class C0·.
The space Q is defined as the closure in H of the range Q(H) of Q. Using

(1.6) it is straightforward to check that ‖Qx‖2 = ‖QTx‖2 for x ∈ H. This last
norm equality gives that the map U : Qx 7→ QTx is well-defined and extends
uniquely by continuity to an isometry U ∈ L(Q) such that UQ = QT.

A version of the universal model property of the adjoint Hardy shift S∗ now
says that the map

V =

[
V1
Q

]
: x 7→

[
V1x
Qx

]
defined by (1.5) and (1.6) is an isometry mapping H into the space H2(DT)⊕Q
such that

VT =

[
S∗ 0
0 U

]
V,

where the operator U ∈ L(Q) is as above. Results of this type goes back to
Rota [29], de Branges and Rovnyak [11], Sz.-Nagy and Foias ([33], Section I.10),
and others, and have been of interest in several branches of operator theory such
as dilation theory, characteristic operator functions and mathematical systems
theory (see for instance the survey Ball and Cohen [10]). Related operator models
form an integral part in work on constrained von Neumann inequalities by Badea
and Cassier [7]. We mention here also the St. Petersburg school and the related
study of so-called KΘ model subspaces (see for instance Nikolski [22]).

An interesting scale of spaces much studied over the past thirty years is
the scale of so-called standard weighted Bergman spaces for the unit disc. For
α > −1 we denote by Aα(D) the space of all analytic functions f in D with finite
norm

‖ f ‖2
α =

∫
D

| f (z)|2dAα(z),

where
dAα(z) = (α + 1)(1− |z|2)αdA(z), z ∈ D,

and dA is usual Lebesgue area measure normalized so that the unit disc D is
of unit area. Notice that A0(D) is the unweighted Bergman space and that the
Hardy space H2(D) is the limit case of spaces Aα(D) as α → −1. For an ac-
count of Bergman space theory we refer to the book Hedenmalm, Korenblum
and Zhu [18].
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The standard weighted Bergman space Aα(D) can be put on the above form
Aα(D)=Awα+2(D) for α>−1 with the weight sequence wα ={wα;k}k>0 given by

wα;k =
1

(k+α−1
k )

=
Γ(α)k!

Γ(α + k)
, k = 0, 1, 2, . . . ,

for α > 0, where Γ denotes the usual Gamma function. Observe that the weight
sequence wα+2 is the sequence of moments

wα+2;k =
∫
D

|z|2kdAα(z), k = 0, 1, . . . ,

for the measure dAα appearing above. Notice also that the kernel function for the
space Awα(D) has the form

Kwα(z, ζ) =
1

(1− ζz)α
, (z, ζ) ∈ D2,

as follows by standard paraphernalia for the binomial series.
A celebrated result by Agler [1], [2] concerns the parts of the adjoint stan-

dard weighted Bergman shift operator for integer weight parameter. Let n ∈ Z+

be a positive integer. An operator T ∈ L(H) is called an n-hypercontraction if

(1.7)
m

∑
k=0

(−1)k
(

m
k

)
T∗kTk > 0

in L(H) for 1 6 m 6 n. Notice that in this terminology a 1-hypercontraction is
a contraction, whereas for n > 2 the class of n-hypercontractions is a subclass of
the class of contractions.

For an n-hypercontraction T ∈ L(H) we consider the defect operator

Dn,T =
( n

∑
k=0

(−1)k
(

n
k

)
T∗kTk

)1/2

in L(H), where the positive square root is used. The defect space Dn,T is the
closure in H of the range Dn,T(H) of the operator Dn,T . For x ∈ H we consider
the Dn,T-valued analytic function

(1.8) Vnx(z) = Dn,T(I − zT)−nx = ∑
k>0

1
wn;k

(Dn,TTkx)zk, z ∈ D,

in D.

THEOREM 1.1 (Agler). Let Sn = Swn , where n ∈ Z+. Let T ∈ L(H). Then the
following holds:

(i) The operator T is part of an operator of the form S∗n⊕U with U an isometry if and
only if T is an n-hypercontraction.

(ii) The operator T is part of an operator of the form S∗n if and only if T is an n-hyper-
contraction in the class C0·.
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Furthermore, when T is an n-hypercontraction, then the map

V =

[
Vn
Q

]
: x 7→

[
Vnx
Qx

]
defined by formulas (1.6) and (1.8) above is an isometry mapping H into the space
Awn(Dn,T)⊕Q such that

VT =

[
S∗n 0
0 U

]
V,

where the operator U ∈ L(Q) is as above.

An important addition to Theorem 1.1 is the result that an operator T ∈
L(H) is an n-hypercontraction if it is a contraction and (1.7) is satisfied with
m = n. Another interesting property of the class of n-hypercontractions is that of
dilation invariance: An operator T ∈ L(H) is an n-hypercontraction if and only
if rT is for 0 < r < 1.

Notice that Theorem 1.1 with n = 1 yields the characterization of the parts
of the adjoint Hardy shift operator discussed above. To further emphasize its
importance, we mention that Theorem 1.1 forms the basis of recent progress on
operator-valued Bergman inner functions, characteristic operator functions and
related mathematical systems theory by the author [23], [25], [26] and Ball and
Bolotnikov [8]. A detailed and straightforward discussion of Theorem 1.1 and
related matters can be found in [24].

We wish to mention here that a rather big branch dealing also with multi-
variable generalizations of Theorem 1.1 has emerged in recent years with con-
tributions by several authors, see for instance [12], [13], [20], [21], [28], [34]. Of
particular mention here are the contributions by Engliš and collaborators [4], [5]
and more importantly the recent work Ball and Bolotnikov [9] which points also
in a direction of interesting applications. However, none of these results is suffi-
ciently strong to allow for a characterization of the parts of an adjoint standard
weighted Bergman shift operator in terms of a finite number of operator inequal-
ities and a C0· condition that goes beyond Theorem 1.1.

The importance of Theorem 1.1 stems from the explicit form of the isome-
try V which describes the embedding. The proof of Theorem 1.1 boils down to
establishing the identity

‖x‖2 = ∑
k>0

1
wn;k
‖Dn,TTkx‖2 + lim

k→∞
‖Tkx‖2

for x ∈ H. The purpose of the present paper is to carry out the analogous con-
structions in the context of a more general weight sequence w = {wk}k>0 sat-
isfying some additional properties that we shall introduce as we go along. In
particular, our results will apply in the full scale of weight sequences wα with
α > 1 and thereby extend the validity of Theorem 1.1 and its addition to the full
scale of standard weighted Bergman spaces in D.
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Let us return to the kernel function kw corresponding to a positive decreas-
ing weight sequence w = {wk}k>0 such that w0 = 1 and lim

k→∞
w1/k

k = 1. We

assume in addition that the kernel function kw is non-vanishing in D: kw(z) 6= 0
for z ∈ D. The reciprocal function 1/kw has now the power series expansion

(1.9)
1

kw(z)
= ∑

k>0
ckzk, z ∈ D,

convergent in the unit disc D. Let T ∈ L(H) be a contraction and consider the
operator quantities

Dw,T(r) = ∑
k>0

rkckT∗kTk

in L(H) for 0 < r < 1. We say that a contraction T ∈ L(H) is a w-hyper-
contraction if it has the property that Dw,T(r) > 0 in L(H) for 0 < r < 1 (see
Definition 2.1). Specializing to the adjoint shift T = S∗ = S∗w in L(Aw(E)) we
check that the operator S∗ is a w-hypercontraction if and only if the kernel func-
tion kw has a certain Property 2.4 (see Corollary 6.3). Subject to Property 2.4 we
show that for T ∈ L(H) a w-hypercontraction, the limit

Dw,T(1) = lim
r→1

Dw,T(r)

exists as a decreasing limit in the strong operator topology in L(H) (see Proposi-
tion 2.6). We next define the higher order defect operator by Dw,T = Dw,T(1)1/2

in L(H), where the positive square root is used (see Definition 2.7).
Subject to also an additional Property 3.4 of the kernel function kw we es-

tablish the operator formula

(1.10) ‖x‖2 = ∑
k>0

1
wk
‖Dw,TTkx‖2 + lim

k→∞
‖Tkx‖2

for x ∈ H (see Theorem 3.7). With (1.10) at hand the characterization of the
parts of S∗ in the spirit of Theorem 1.1 above is more of a standard matter (see
Theorem 7.2 and Corollary 7.3). We establish also a certain universal mapping
property of the embedding provided (see Theorem 7.6). Another easily derived
byproduct is a formula for a related kernel function (see Theorem 7.4).

Subject to also an additional Property 4.2 of the kernel function kw which
is a stronger version of Property 3.4 we show that the number of inequalities
needed for an operator to be a w-hypercontraction can be considerably reduced:
A contraction T ∈ L(H) is a w-hypercontraction if and only if

∑
k>0

ckT∗kTk > 0

in L(H), where the ck’s are as in (1.9) (see Theorem 4.5). We point out that Prop-
erty 4.2 is a slightly stronger form of the assumption of absolute summability of
the coefficients {ck}k>0 in (1.9) which was used in Ball and Bolotnikov [9].
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The results discussed above point at a need to better understand the Proper-
ties 2.4, 3.4 and 4.2 for a kernel function kw appearing in our results. First we wish
to point out that non-vanishing of the kernel function is a non-trivial requirement
(see for instance Section 2 of [24] for an example). Property 2.4 has the nature of a
strengthened form of the positive definiteness property of a kernel function and
seems the easiest to verify (see Proposition 5.1). Properties 3.4 and 4.2 concern
estimates of a reciprocal kernel 1/kw and seem harder to efficiently check. By
formula (1.9) we have that c0/w0 = 1 and

k

∑
j=0

ck−j

wj
= 0

for k > 1. Solving these equations for the ck’s we obtain that c0 = 1 and

cn =
n

∑
k=1

(−1)k ∑
n1+···+nk=n

1
wn1

1
wn2

· · · 1
wnk

for n > 1, where the rightmost sum is taken over all k-tuples (n1, . . . , nk) of posi-
tive integers such that n1 + · · ·+ nk = n. Thus

1
kw(z)

= 1 + ∑
n>1

(
∑

n1+···+nk=n
(−1)k 1

wn1

1
wn2

· · · 1
wnk

)
zn.

These latter formulas suggest that the reciprocal kernel 1/kw carries interesting
arithmetic information related to the sequence w = {wk}k>0.

As indicated above Properties 2.4, 3.4 and 4.2 are satisfied in the case of stan-
dard weight sequences w = wα with α > 0 (see Corollary 5.5). More generally, we
show that Properties 2.4, 3.4 and 4.2 hold when the kernel function kw is a finite
product of (radial complete) Nevanlinna–Pick kernels (see Proposition 5.4).

2. POSITIVITY CONDITIONS AND DEFECT OPERATORS

In this section we introduce the class of w-hypercontractions and prove ex-
istence of higher order defect operators.

Recall that by a contraction we mean a bounded Hilbert space operator T ∈
L(H) such that ‖Tx‖2 6 ‖x‖2 for all x ∈ H. The defect operator for a contraction
T is the operator DT defined by the formula

DT = (I − T∗T)1/2

in L(H), where the positive square root is used. Observe that

‖DTx‖2 = ‖x‖2 − ‖Tx‖2

for x ∈ H. For background information on contractions we refer to [33]; see
also [14].



PARTS OF ADJOINT WEIGHTED SHIFTS 257

As before, let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing

in D. For a contraction T ∈ L(H) we shall consider the operator quantities

Dw,T(r) = ∑
k>0

rkckT∗kTk, 0 < r < 1,

in L(H), where the ck’s are as in (1.9). Notice that the sum defining Dw,T(r) is
absolutely summable in operator norm since kw is non-vanishing in D.

DEFINITION 2.1. By a w-hypercontraction we mean a contraction T ∈ L(H)
such that Dw,T(r) > 0 in L(H) for 0 < r < 1.

An important property inherent in the definition of w-hypercontractions is
that of dilation invariance.

PROPOSITION 2.2. Let w = {wk}k>0 be a positive decreasing weight sequence
with w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing

in D. If T ∈ L(H) is a w-hypercontraction, then so is rT for 0 6 r < 1.

The result is evident by Definition 2.1.
Assume that the function kw is non-vanishing in D and let r, s ∈ [0, 1]. We

shall make use of power series expansions of the form

(2.1)
kw(rz)
kw(sz)

= ∑
k>0

ak(r, s)zk, |z| < min( 1
r , 1

s ).

Notice that a0(r, s) = 1. A calculation shows that

(2.2) ak(r, s) =
k

∑
j=0

rj

wj
ck−jsk−j

for k > 0, where the ck’s are as in (1.9).
Operator formulas of the following type will play an important role in our

analysis.

LEMMA 2.3. Let w = {wk}k>0 and kw be as in Proposition 2.2. Let T ∈ L(H)
be a contraction and r, s ∈ [0, 1). Then

(2.3) Dw,T(r) = ∑
k>0

ak(s, r)T∗kDw,T(s)Tk

in L(H), where the ak(s, r)’s are as in (2.1).

Proof. Identifying Taylor coefficients in (2.1) we have that

ckrk =
k

∑
j=0

ak−j(s, r)cjsj
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for k > 0. A calculation shows that

∑
k>0

ak(s, r)T∗kDw,T(s)Tk = ∑
j,k>0

ak(s, r)cjsjT∗(j+k)T j+k

= ∑
m>0

( m

∑
j=0

am−j(s, r)cjsj
)

T∗mTm =∑
k>0

ckrkT∗kTk =Dw,T(r),

which yields (2.3). Observe that changes of order of summation are permitted by
absolute convergence.

Observe that (2.3) is equivalently formulated that, for x ∈ H,

〈Dw,T(r)x, x〉 = ∑
k>0

ak(s, r)〈Dw,T(s)Tkx, Tkx〉.

We think of the operator formula (2.3) as the result of so-called hereditary
functional calculus applied to the function identity

1
kw(rz)

=
kw(sz)
kw(rz)

1
kw(sz)

,

see for instance [8], [9].
We denote by kw,r the dilated function defined by kw,r(z) = kw(rz) for z ∈

D. We shall be concerned with non-vanishing kernels kw having the following
additional property of positive definiteness:

PROPERTY 2.4. The function kw/kw,r has non-negative Taylor coefficients for 0 <
r < 1.

In terms of the coefficients in (2.1) Property 2.4 means that ak(1, r) > 0 for
all k > 0 and 0 < r < 1. In view of Schur’s theorem on Schur products of positive
matrices we can think of Property 2.4 as a strengthened form of the positive def-
initeness property of a kernel function (see Aronszajn, Section I.8 of [6]; see also
Shimorin [30]).

We now return to the operator quantities Dw,T(r).

LEMMA 2.5. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing in

D and satisfies Property 2.4. Let T ∈ L(H) be a contraction such that Dw,T(s) > 0 in
L(H) for some 0 < s < 1. Then Dw,T(r) > Dw,T(s) in L(H) for 0 < r < s.

Proof. Recall Lemma 2.3. Property 2.4 gives that the coefficients in the power
series expansion (2.1) are non-negative when r > s: ak(r, s) > 0 for k > 0 if
0 < s < r 6 1. Observe also that T∗kDw,T(s)Tk > 0 in L(H) for k > 0 since
Dw,T(s) > 0 in L(H) by assumption. The conclusion of the lemma now follows
by (2.3).

We now return to w-hypercontractions.
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PROPOSITION 2.6. Let w = {wk}k>0 be a positive decreasing weight sequence
with w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing

in D and satisfies Property 2.4. Let T ∈ L(H) be a w-hypercontraction. Then the
operators Dw,T(r) decrease with r ∈ (0, 1). As a consequence the limit

(2.4) Dw,T(1) = lim
r→1

Dw,T(r)

exists in the strong operator topology in L(H).

Proof. By Lemma 2.5 we have that Dw,T(r) > Dw,T(s) > 0 in L(H) for
0 < r < s < 1. Passing to the limit we have that lim

r→1
〈Dw,T(r)x, x〉 exists for

every x ∈ H, and a polarization argument gives (2.4) with convergence in the
weak operator topology. By a classical result, monotonicity allows us to conclude
that (2.4) holds with convergence in the strong operator topology (see Halmos,
Problem 120 of [16]).

We remark that part of the conclusion of Proposition 2.6 is that

0 6 Dw,T(s) 6 Dw,T(r) 6 I

in L(H) if 0 < r < s < 1.
Proposition 2.6 leads to a natural notion of higher order defect operator for

a w-hypercontraction.

DEFINITION 2.7. For T ∈ L(H) a contraction such that the limit (2.4) exists
and is positive we set Dw,T = Dw,T(1)1/2 in L(H), where the positive square root
is used.

We observe that 0 6 Dw,T 6 I in L(H) under the assumptions of Proposi-
tion 2.6.

Notice that DT = Dw1,T in the terminology of Definition 2.7.
We notice also that Lemma 2.5 simplifies the positivity conditions for a w-

hypercontraction.

COROLLARY 2.8. Let w = {wk}k>0 and kw be as in Proposition 2.6. Let T ∈
L(H) be a contraction such that Dw,T(rk) > 0 in L(H) for some sequence rk → 1,
0 < rk < 1. Then the operator T ∈ L(H) is a w-hypercontraction, that is, Dw,T(r) > 0
in L(H) for all 0 < r < 1.

The result is a straightforward consequence of Lemma 2.5.
Proposition 2.6 restates as follows using the defect operators from Defini-

tion 2.7.

COROLLARY 2.9. Let w = {wk}k>0 and kw be as in Proposition 2.6. Let T ∈
L(H) be a w-hypercontraction. Then D2

w,rT > D2
w,T in L(H) for 0 < r < 1 and

lim
r→1

Dw,rT = Dw,T in the strong operator topology in L(H).
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Proof. Recall that the operator rT is a w-hypercontraction for 0 < r < 1 (see
Proposition 2.2). The inequality D2

w,rT > D2
w,T is a restatement of Proposition 2.6.

The last limit assertion that lim
r→1

Dw,rT = Dw,T SOT follows from Proposition 2.6

by an approximation argument (see Halmos, Problem 126 of [16]).

3. STRIPPED ISOMETRIC EMBEDDING

The purpose of the present section is to establish our basic isometry result
(1.10) in Theorem 3.7 below. The proof of Theorem 3.7 is accomplished by first
expressing the first order defect operator DT in terms of the higher order defect
operator Dw,T in Lemma 3.6. We now proceed to details.

LEMMA 3.1. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing in D
and satisfies Property 2.4. Let T ∈ L(H) be a w-hypercontraction. Then, for x ∈ H,

‖Dw,Tx‖2+ ∑
k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTkx‖2 6 ‖DTx‖2.

Proof. Let x ∈ H and 0 < r < 1. The function identity

1− rz = (1− rz)kw(rz) · 1
kw(rz)

,

leads by hereditary functional calculus to the operator formula

(3.1) ‖x‖2 − r‖Tx‖2 = 〈Dw,T(r)x, x〉+ ∑
k>1

( 1
wk
− 1

wk−1

)
rk〈Dw,T(r)Tkx, Tkx〉

(compare Lemma 2.3). Passing to the limit in (3.1) as r → 1 using Proposition 2.6
and Fatou’s lemma we have that

‖Dw,Tx‖2 + ∑
k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTkx‖2 6 ‖DTx‖2.

This completes the proof of the lemma.

The following result is well-known but included here for the sake of com-
pleteness.

LEMMA 3.2. Let T ∈ L(H) be a contraction. Then, for x ∈ H,

(3.2) ‖x‖2= ∑
k>0
‖DTTkx‖2 + lim

k→∞
‖Tkx‖2.

Proof. Let x ∈ H. Observe that ‖DTTkx‖2 = ‖Tkx‖2 − ‖Tk+1x‖2 for k > 0.
Summing these equalities we have

n−1

∑
k=0
‖DTTkx‖2 = ‖x‖2 − ‖Tnx‖2
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by cancellation. A passage to the limit as n → ∞ yields the conclusion of the
lemma.

We mention that a classical reference for Lemma 3.2 is Section I.10 of [33].
Notice that Lemma 3.2 says that the map V in Theorem 1.1 is an isometry for
n = 1.

LEMMA 3.3. Let w = {wk}k>0 and kw be as in Lemma 3.1. Let T ∈ L(H) be a
w-hypercontraction. Then, for x ∈ H,

∑
k>0

1
wk
‖Dw,TTkx‖2 + lim

k→∞
‖Tkx‖2 6 ‖x‖2.

Proof. Let x ∈ H. By Lemma 3.1 we have that

‖Dw,TT jx‖2+ ∑
k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTk+jx‖2 6 ‖DTT jx‖2

for j > 0. Summing these inequalities for j > 0 we have by a change of order of
summation that

∑
m>0

1
wm
‖Dw,TTmx‖2 6 ∑

j>0
‖DTT jx‖2.

An application of Lemma 3.2 now yields the conclusion of the lemma.

We shall now make use also of the following additional property of a non-
vanishing kernel function kw in D:

PROPERTY 3.4. The quotients kw,r/kw have uniformly bounded Taylor coefficients
for 0 < r < 1.

In terms of the coefficients in (2.1) Property 3.4 means that |ak(r, 1)| 6 C for
all k > 0 and 0 < r < 1, where C is a finite positive constant.

LEMMA 3.5. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that lim

k→∞
w1/k

k = 1 and assume that the function kw is non-vanishing

in D and satisfies Properties 2.4 and 3.4. Let T ∈ L(H) be a w-hypercontraction and
0 < r < 1. Then

‖DTx‖2+∑
k>1

ak(r, 1)‖DTTkx‖2=‖Dw,Tx‖2+∑
k>1

( rk

wk
− rk−1

wk−1

)
‖Dw,TTkx‖2(3.3)

for x ∈ H, where the ak’s are as in (2.1).

Proof. Let r < s < 1. The function identity

kw(rz)
kw(sz)

(1− z) = (1− z)kw(rz) · 1
kw(sz)
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leads by hereditary functional calculus to the operator identity

∑
k>0

ak(r, s)‖DTTkx‖2= 〈Dw,T(s)x, x〉+∑
k>1

( rk

wk
− rk−1

wk−1

)
〈Dw,T(s)Tkx, Tkx〉(3.4)

for x ∈ H. Indeed, by calculation we have that

〈Dw,T(s)x, x〉+ ∑
k>1

( rk

wk
− rk−1

wk−1

)
〈Dw,T(s)Tkx, Tkx〉

= ∑
k>0

rk

wk
〈Dw,T(s)Tkx, Tkx〉 − ∑

k>0

rk

wk
〈Dw,T(s)Tk+1x, Tk+1x〉

= ∑
k,j>0

rk

wk
sjcj‖Tk+jx‖2 − ∑

k,j>0

rk

wk
sjcj‖Tk+j+1x‖2

= ∑
k,j>0

rk

wk
sjcj‖DTTk+jx‖2 = ∑

m>0
am(r, s)‖DTTmx‖2

for x ∈ H, where the last equality follows by a change of order of summation
using formula (2.2).

We shall next pass to the limit in (3.4) as s→ 1. Notice first that Property 3.4
gives that the coefficients ak(r, s) in (2.1) are uniformly bounded for 0 < r 6 s 6 1:
|ak(r, s)| 6 C for k > 1 and 0 < r 6 s 6 1, where C is a finite positive constant.
Recall also Lemma 3.2. By dominated convergence we now have that

lim
s→1

∑
k>0

ak(r, s)‖DTTkx‖2 = ∑
k>0

ak(r, 1)‖DTTkx‖2

for x ∈ H. Observe also that

lim
s→1
〈Dw,T(s)x, x〉+ ∑

k>1

( rk

wk
− rk−1

wk−1

)
〈Dw,T(s)Tkx, Tkx〉

= ‖Dw,Tx‖2 + ∑
k>1

( rk

wk
− rk−1

wk−1

)
‖Dw,TTkx‖2

for x ∈ H by Proposition 2.6 and dominated convergence. The conclusion of the
lemma now follows by letting s→ 1 in (3.4).

We are now ready for our key lemma.

LEMMA 3.6. Let w = {wk}k>0 and kw be as in Lemma 3.5. Let T ∈ L(H) be a
w-hypercontraction. Then, for x ∈ H,

‖DTx‖2 = ‖Dw,Tx‖2+ ∑
k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTkx‖2.
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Proof. We shall pass to the limit as r → 1 in the result (3.3) of Lemma 3.5.
Let x ∈ H and recall Lemma 3.3. By dominated convergence we have that

lim
r→1

∑
k>1

( rk

wk
− rk−1

wk−1

)
‖Dw,TTkx‖2 = ∑

k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTkx‖2.

By Property 3.4 we have that the coefficients ak(r, 1) in (3.3) are uniformly bounded
for k > 0 and 0 < r < 1: |ak(r, 1)| 6 C for all k > 0 and 0 < r < 1, where C is
a finite positive constant. Observe also that lim

r→1
ak(r, 1) = 0 for k > 1 which eas-

ily follows from (2.1). Lemma 3.2 allows us to apply dominated convergence to
conclude that

lim
r→1

∑
k>1

ak(r, 1)‖DTTkx‖2 = 0.

The conclusion of the lemma now follows by letting r → 1 in (3.3).

We can now establish the stripped isometric embedding.

THEOREM 3.7. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that the function kw is analytic and non-vanishing in D. Assume also that
the function kw has Properties 2.4 and 3.4. Let T ∈ L(H) be a w-hypercontraction.
Then, for x ∈ H,

‖x‖2= ∑
k>0

1
wk
‖Dw,TTkx‖2 + lim

k→∞
‖Tkx‖2.

Proof. Let x ∈ H and recall Lemma 3.2. By Lemma 3.6 we have that

(3.5) ‖DTT jx‖2 = ‖Dw,TT jx‖2+ ∑
k>1

( 1
wk
− 1

wk−1

)
‖Dw,TTk+jx‖2

for j > 0. Summing equalities (3.5) for j > 0 we have that

∑
j>0
‖DTT jx‖2 = ∑

k>0

1
wk
‖Dw,TTkx‖2

by a change of order of summation. By Lemma 3.2 this yields the conclusion of
the theorem.

We mention that the method of proof of Theorem 3.7 using Lemma 3.6 is
adapted from our previous paper ([24], Proposition 7.2).

4. REDUCTION OF POSITIVITY CONDITIONS

In this section we show that the number of inequalities needed for an oper-
ator to be a w-hypercontraction can be considerably reduced provided the kernel
function kw is sufficiently regular.
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LEMMA 4.1. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that the function kw is non-vanishing and analytic in D. Let T ∈ L(H) be
a contraction and 0 < r < 1. Then, for x ∈ H,

lim
k→∞
〈Dw,T(r)Tkx, Tkx〉 = 1

kw(r)
lim
k→∞
‖Tkx‖2.

Proof. Let x ∈ H and notice that

〈Dw,T(r)Tkx, Tkx〉 = ∑
j>0

cjrj‖Tk+jx‖2.

Passing to the limit as k→ ∞ we have that

lim
k→∞
〈Dw,T(r)Tkx, Tkx〉 =

(
∑
j>0

cjrj
)

lim
k→∞
‖Tkx‖2 =

1
kw(r)

lim
k→∞
‖Tkx‖2

by (1.9), which yields the conclusion of the lemma.

We denote by A+(D) the space of all analytic functions

f (z) = ∑
k>0

akzk, z ∈ D,

in D with finite norm

‖ f ‖A+ = ∑
k>0
|ak|.

The space A+(D) has the structure of a commutative Banach algebra under point-
wise multiplication of functions and is commonly called the Wiener algebra in
view of a classical result by Norbert Wiener (see for instance Theorem XXX.2.5
of [14]).

We shall now make use also of the following additional property of a non-
vanishing kernel function kw in D:

PROPERTY 4.2. The reciprocal kernel 1/kw belongs to A+(D) and the quotients
kw,r/kw for 0 < r < 1 form a uniformly bounded family in A+(D).

In terms of the coefficients in (2.1) Property 4.2 means that

∑
k>0
|ak(r, 1)| 6 C

for 0 < r < 1, where C is a finite positive constant. Notice that Property 4.2
implies Property 3.4.

Let us denote by `1 the space of all sequences a = {ak}k>0 of complex num-
bers with finite norm

‖a‖`1 = ∑
k>0
|ak|.
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Following usual practice we denote by c0 the space of all sequences a = {ak}k>0
of complex numbers such that lim

k→∞
ak = 0 equipped with the norm

‖a‖c0 = max
k>0
|ak|.

Recall that the space `1 is the dual of the space c0 by means of the standard pairing

(a, b) = ∑
k>0

akbk,

where a ∈ c0 and b = {bk}k>0 ∈ `1. In this way the space `1 becomes naturally
equipped by a weak∗ topology.

Recall the coefficients ak(r, s) from (2.1).

LEMMA 4.3. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that the function kw is analytic and non-vanishing in D. Assume also that
the function kw has Properties 2.4 and 4.2. Then

lim
s→1
{ak(r, s)}k>0 = {ak(r, 1)}k>0

in the weak∗ topology of `1 for 0 < r < 1. Furthermore,

lim
r→1
{ak(r, 1)}k>0 = δ

in the weak∗ topology of `1, where δ = {δk}k>0 is the sequence given by δ0 = 1 and
δk = 0 for k > 1.

Proof. Recall the well-known result that a sequence {bn}n>1 in `1, where
bn = {bnk}k>0, converges to b0 = {b0k}k>0 weak∗ in `1 if and only if sup

n>1
‖bn‖`1 <

+∞ and lim
n→∞

bnk =b0k for k>0. The lemma is an easy consequence of this fact.

We can now prove our key lemma.

LEMMA 4.4. Let w = {wk}k>0 be a positive decreasing weight sequence such that
the function kw is analytic and non-vanishing in D. Assume also that the function kw
has Properties 2.4 and 4.2. Assume that T ∈ L(H) is a contraction such that

Dw,T(1) = ∑
k>0

ckT∗kTk > 0

in L(H). Then, for x ∈ H and 0 < r < 1,

〈Dw,T(r)x, x〉 − 1
kw(r)

lim
k→∞
‖Tkx‖2 > ∑

k>0
ak(1, r)〈Dw,T(1)Tkx, Tkx〉.

Proof. Let 0 < r < t < s < 1. The function identity

kw(tz)
kw(sz)

1
kw(rz)

=
kw(tz)
kw(rz)

1
kw(sz)
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leads by hereditary functional calculus to the operator formula

(4.1) ∑
k>0

ak(t, s)〈Dw,T(r)Tkx, Tkx〉 = ∑
k>0

ak(t, r)〈Dw,T(s)Tkx, Tkx〉

for x ∈ H. We shall next pass to the limit in (4.1) as s→ 1.
Observe first that

(4.2) lim
s→1

∑
k>0

ak(t, r)〈Dw,T(s)Tkx, Tkx〉 = ∑
k>0

ak(t, r)〈Dw,T(1)Tkx, Tkx〉

for x ∈ H since Dw,T(s) → Dw,T(1) SOT in L(H) as s → 1 and the coefficients
ak(t, r) in (4.2) decay rapidly as k→ ∞.

We shall next turn our attention to the left hand side in (4.1). Let x∈H and let

L =
1

kw(r)
lim
k→∞
‖Tkx‖2

be the limit from Lemma 4.1. We rewrite the left hand side in (4.1) as

∑
k>0

ak(t, s)〈Dw,T(r)Tkx, Tkx〉 = ∑
k>0

ak(t, s)(〈Dw,T(r)Tkx, Tkx〉 − L) + L ∑
k>0

ak(t, s).

Observe first that

∑
k>0

ak(t, s) =
kw(t)
kw(s)

→ 0

as s→ 1 for t ∈ [0, 1) fixed, which easily follows by (2.1) since kw(1) = ∑
k>0

1/wk =

+∞. By Lemma 4.1 the sequence {〈Dw,T(r)Tkx, Tkx〉 − L}k>0 belongs to c0. Pass-
ing to the limit as s→ 1 using Lemma 4.3 we have that

(4.3) lim
s→1

∑
k>0

ak(t, s)〈Dw,T(r)Tkx, Tkx〉 = ∑
k>0

ak(t, 1)(〈Dw,T(r)Tkx, Tkx〉 − L).

By (4.1), (4.2) and (4.3) we conclude that, for x ∈ H,

(4.4) ∑
k>0

ak(t, 1)(〈Dw,T(r)Tkx, Tkx〉 − L) = ∑
k>0

ak(t, r)〈Dw,T(1)Tkx, Tkx〉.

We shall next pass to the limit in (4.4) as t→ 1. Let x ∈ H. Notice that

lim
t→1

∑
k>0

ak(t, 1)(〈Dw,T(r)Tkx, Tkx〉 − L) = 〈Dw,T(r)x, x〉 − L

by Lemma 4.3 since the sequence {〈Dw,T(r)Tkx, Tkx〉 − L}k>0 belongs to c0 by
Lemma 4.1. Observe also that ak(t, r) > 0 for t > r and k > 0 by Property 2.4. An
application of Fatou’s lemma to (4.4) as t → 1 now yields the conclusion of the
lemma.

We can now simplify the defining property of a w-hypercontraction.
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THEOREM 4.5. Let w = {wk}k>0 be a positive decreasing weight sequence with
w0 = 1 such that the function kw is analytic and non-vanishing in D. Assume also that
the function kw has Properties 2.4 and 4.2. Assume that T ∈ L(H) is a contraction such
that

(4.5) ∑
k>0

ckT∗kTk > 0

in L(H), where the ck’s are as in (1.9). Then T is a w-hypercontraction.

Proof. By Lemma 4.4 we have that Dw,T(r) > 0 in L(H) for 0 < r < 1. This
yields the conclusion of the theorem.

We remark that the sum in (4.5) is absolutely summable since 1/kw ∈ A+(D)
and T is a contraction.

5. EXAMPLES OF KERNEL FUNCTIONS

The purpose of this section is to provide some examples of kernel functions
kw satisfying Properties 2.4, 3.4 and 4.2 or combinations thereof. In particular,
we shall check that Properties 2.4, 3.4 and 4.2 are satisfied in the case of standard
weight sequences w = wα with α > 0 (see Corollary 5.5).

Notice first that Properties 2.4 and 4.2 are both stable with respect to point-
wise product of functions: If k j is a non-vanishing analytic function inD satisfying
Property 2.4 (Property 4.2) for j = 1, 2, then so is the product k = k1k2.

An easy criteria for checking Property 2.4 goes as follows.

PROPOSITION 5.1. Let k be a non-vanishing analytic function in D with k(0) = 1
such that the function s = log k has non-negative Taylor coefficients in D. Then k/kr
has non-negative Taylor coefficients in D for 0 < r < 1.

Proof. Let 0 < r < 1. Since k = es we have that

k(z)
k(rz)

= exp(s(z)− s(rz)) = ∑
n>0

1
n!
(s(z)− s(rz))n

for z ∈ D. It is straightforward to check that the function s− sr has non-negative
Taylor coefficients. This yields the conclusion of the proposition.

For applications of Proposition 5.1 it is useful to have available the loga-
rithm of the Szegö kernel:

log
( 1

1− z

)
= ∑

n>1

1
n

zn

for z ∈ D. As a consequence of Proposition 5.1 we see that all kernels of the form

kwα(z) =
1

(1− z)α
, z ∈ D,
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with α > 0 satisfy Property 2.4.
Let k be a non-vanishing analytic function in D with non-negative Taylor

coefficients normalized by k(0) = 1. We say that k is of NP type if its reciprocal
has a power series expansion of the form

(5.1)
1

k(z)
= 1− ∑

k>1
bkzk

for some numbers bk > 0 for k > 1. Kernels of NP type have attracted renewed
interest because of their use in the study of Nevanlinna–Pick interpolation, see
for instance the book Agler and McCarthy [3]. Solving for k in (5.1) we see that a
function k is of NP type if and only if it has the form

(5.2) k(z) =
1

1− ϕ(z)
, z ∈ D,

for some analytic function ϕ in D with non-negative Taylor coefficients such that
ϕ(0) = 0 and |ϕ(z)| < 1 for z ∈ D. As a consequence of the representation
formula (5.2) we have that the class of NP type functions is invariant under pull-
back with analytic functions ϕ in D having non-negative Taylor coefficients such
that ϕ(0) = 0 and |ϕ(z)| < 1 for z ∈ D.

An old theorem of Th. Kaluza says that a kernel function

kw(z) = ∑
k>0

1
wk

zk, z ∈ D,

with w0 = 1 and wk > 0 for k > 1 is of NP type if the weight sequence w =
{wk}k>0 is log-concave, that is, wk−1wk+1 6 w2

k for k > 1 (see Hardy, Theo-
rem IV.22 of [17] or Szegö, Subsection 1.2 of [32]). Applications of Kaluza’s the-
orem show that the kernels kwα for 0 < α 6 1 and the kernel function for the
Dirichlet space

k0(z) =
1
z

log
( 1

1− z

)
= ∑

n>0

1
n + 1

zn, z ∈ D,

are all of NP type. We mention in passing that the above kernel kwα is not of NP
type when α > 1.

PROPOSITION 5.2. Let k be an NP type function. Then 1/k ∈ A+(D) and∥∥∥1
k

∥∥∥
A+

= 2− 1
k(1)

6 2,

where k(1) = lim
x→1−

k(x) along positive real numbers.

Proof. Passing to the limit in (5.1) we have

1
k(1)

= 1− ∑
k>1

bk,

which yields the conclusion of the proposition.
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We next observe that the class of NP type functions is preserved under the
quotient operation k 7→ k/kr.

PROPOSITION 5.3. Let k be an NP type function and 0 < r < 1. Then the
quotient k/kr is an NP type function.

Proof. An application of Proposition 5.1 using the representation formula
(5.2) shows that the function k/kr has non-negative Taylor coefficients.

We next verify that the function kr/k − 1 has non-positive Taylor coeffi-
cients. By (5.1) we have that

k(rz)
k(z)

− 1 = k(rz)
( 1

k(z)
− 1

k(rz)

)
= −k(rz) ∑

k>1
(1− rk)bkzk,

which proves the claim since the property of non-negativity of coefficients is pre-
served under pointwise multiplication of functions (see Schur’s theorem, Sec-
tion I.8 of [6]).

We next provide examples of weight sequences satisfying Properties 2.4
and 4.2.

PROPOSITION 5.4. Let w = {wk}k>0 be a positive weight sequence such that the
associated kernel function kw has the form

(5.3) kw(z) = k1(z) · · · kn(z), z ∈ D,

where k j is an NP type function for 1 6 j 6 n. Then the function kw has Properties 2.4
and 4.2.

Proof. A straightforward application of Proposition 5.1 shows that kw has
Property 2.4. By Propositions 5.2 and 5.3 we have that ‖kw,r/kw‖A+ 6 2n for
0 < r < 1 which follows by the Banach algebra property of A+(D). This shows
that kw has Property 4.2.

We record that the Bergman kernels for standard weights satisfy Proper-
ties 2.4 and 4.2.

COROLLARY 5.5. The functions kwα for α > 0 all have Properties 2.4 and 4.2.

Proof. The function kwα is a finite product of NP type functions. The result
follows by Proposition 5.4.

We close this section by giving an example of a positive decreasing weight
sequence w = {wk}k>0 with w0 = 1 and lim

k→∞
w1/k

k = 1 such that the kernel

function kw satisfies Properties 2.4 and 3.4 but 1/kw 6∈ A+(D) which violates the
regularity assumption from Ball and Bolotnikov [9]. Notice that yet Theorem 3.7
applies for such a weight sequence w = {wk}k>0.

Consider the function

k(z) =
1 + z
1− z

, z ∈ D,
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which is the kernel function kw for the weight sequence w = {w}k>0 given by
w0 = 1 and wk = 1/2 for k > 1. An application of Proposition 5.1 shows that k
satisfies Property 2.4. It is evident that the function 1/k has a single pole at the
point z = −1, so that 1/k 6∈ A+(D). Moreover, a calculation shows that

k(rz)
k(z)

= 1 + 2
1− r
1 + r ∑

k>1
((−1)k − rk)zk

for z ∈ D and 0 < r < 1. As a consequence, the function k has Property 3.4.
We mention that further elaborations on Kaluza’s theorem can be found in

Shimorin [31].

6. THE OPERATOR MODEL

Let E be an auxiliary Hilbert space and let w = {wk}k>0 be a positive de-
creasing weight sequence with w0 = 1 such that the kernel function kw is analytic
and non-vanishing in D. The purpose of this section is to discuss some basic prop-
erties of the adjoint shift S∗ = S∗w on Aw(E). In particular, we shall show that S∗

is a w-hypercontraction if and only if the kernel function kw has Property 2.4 (see
Corollary 6.3).

Recall the action of powers of the adjoint shift

(6.1) S∗k f (z) = ∑
j>0

wj+k

wj
aj+kzj, z ∈ D,

on functions f ∈ Aw(E) given by (1.1). Formula (6.1) is straightforward to check
from (1.3) or (1.4). As a consequence of (6.1) we have that S∗k f = 0 whenever
f ∈ Aw(E) is a polynomial of degree less than k. By approximation we have that
lim
k→0

S∗k f = 0 in Aw(E) for every f ∈ Aw(E) since S is a contraction. We conclude

that the operator S∗ belongs to the class C0· in the sense that lim
k→∞

S∗k = 0 in the

strong operator topology.
Recall formula (1.9) defining the numbers {ck}k>0. Homogeneity consider-

ations make evident that the defect operators

Dw,S∗(r) = ∑
k>0

rkckSkS∗k

for 0 < r < 1 act as Fourier multipliers on Aw(E) (see for instance [19], [27]). We
next calculate this Fourier multiplier action in more detail.

PROPOSITION 6.1. Let w = {wk}k>0 be a positive decreasing weight sequence
with w0 = 1 such that the kernel function kw is analytic and non-vanishing in D. Let
S = Sw be the shift operator on Aw(E). Then

Dw,S∗(r) f (z) = ∑
k>0

wk

( k

∑
j=0

cjrj 1
wk−j

)
akzk, z ∈ D,
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for f ∈ Aw(E) given by (1.1) and 0 < r < 1.

Proof. By (6.1) we have that

‖S∗k f ‖2
w = ∑

j>0

w2
j+k

wj
‖aj+k‖2

for k > 0. Now

〈Dw,S∗(r) f , f 〉w = ∑
k>0

rkck‖S∗k f ‖2
w = ∑

k,j>0
rkck

w2
j+k

wj
‖aj+k‖2

= ∑
m>0

w2
m

( m

∑
k=0

ckrk

wm−k

)
‖am‖2,

and a polarization argument yields the conclusion of the proposition.

Observe that the result of Proposition 6.1 can be stated as

(6.2) Dw,S∗(r) f (z) = ∑
k>0

wkak(1, r)akzk, z ∈ D,

for f ∈ Aw(E) given by (1.1) using the coefficients {ak(1, r)}k>0 from (2.1).
We next record the action of Dw,S∗(r) on reproducing elements.

COROLLARY 6.2. Let w, kw and S = Sw be as in Proposition 6.1. Then

〈Dw,S∗(r)Kw(·, ζ)e, Kw(·, z)e′〉w =
kw(ζz)
kw(rζz)

〈e, e′〉

for 0 < r < 1, ζ, z ∈ D and e, e′ ∈ E .

The result follows by Proposition 6.1 using the explicit form of the repro-
ducing kernel.

We mention that Corollary 6.2 is alternatively proved using the standard
formula (1.4) for the action of the adjoint shift on reproducing elements.

COROLLARY 6.3. Let w, kw and S = Sw be as in Proposition 6.1. Then the adjoint
shift S∗ is a w-hypercontraction if and only if the kernel function kw has Property 2.4.

Proof. Let 0 < r < 1. By Proposition 6.1 we have that

〈Dw,S∗(r) f , f 〉w = ∑
k>0

ak(1, r)w2
k‖ak‖2

for f ∈ Aw(E) given by (1.1). Varying f ∈ Aw(E) we see that Dw,S∗(r) > 0 if and
only if ak(1, r) > 0 for k > 0. This yields the conclusion of the corollary.

We next discuss the operator limit lim
r→1

Dw,S∗(r).

COROLLARY 6.4. Let w, kw and S = Sw be as in Proposition 6.1. Then

‖Dw,S∗(r)‖ = sup
k>0

wk|ak(1, r)|
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for 0 < r < 1. Furthermore, when these operator norms stay bounded, we have that the
operator limit

Dw,S∗(1) = lim
r→1

Dw,S∗(r)

exists in the strong operator topology and equals the orthogonal projection of Aw(E) onto
the subspace of constant functions. As a consequence Dw,S∗ f = f (0) for f ∈ Aw(E).

Proof. The formula for the norm of Dw,T(r) is evident by the Fourier multi-
plier formula (6.2) for Dw,T(r) provided by Proposition 6.1. Recall that lim

r→1
ak(1, r)

= 0 for k > 1 by (2.1), which gives that lim
r→1

Dw,S∗(r) f = f (0) for every polyno-

mial f ∈ Aw(E). By approximation we have that lim
r→1

Dw,S∗(r) f = f (0) in Aw(E)
for every f ∈ Aw(E).

We use the notation H(k) for the Hilbert space of analytic functions in D
with kernel function K(z, ζ) = k(ζz) for z, ζ ∈ D. Notice that Property 2.4 of kw
ensures that the space H(kw/kw,r) exists for 0 < r < 1 (see Aronszajn, Section I.2
of [6]).

PROPOSITION 6.5. Let w = {wk}k>0 be a positive decreasing weight sequence
with w0 = 1 such that the kernel function kw is analytic and non-vanishing in D and
satisfies Property 2.4. Then the spaceH(kw/kw,r) is contractively embedded into Aw(D)
for 0 < r < 1.

Proof. Let 0< r<1. By Corollary 6.3 the operator S∗ is a w-hypercontraction,
which by Proposition 2.6 leads to the operator inequality that Dw,S∗(r) 6 I in
L(Aw(D)). By the Fourier multiplier formula (6.2) from Proposition 6.1 this gives
that wkak(1, r) 6 1 for k > 0. These latter inequalities yield the conclusion of the
proposition (see for instance Shimorin [30] or Aronszajn, Section I.7 of [6] for
related matters).

REMARK 6.6. Observe that ‖Dw,S∗(r)‖ = 1 for 0 < r < 1 if in addition the
kernel function kw has Property 2.4. Indeed, this follows from Corollary 6.3 and
Proposition 2.6 by standard spectral theory.

We record also that(
∑
k>0

λkSk ArS∗k
)

f (z) = ∑
k>0

wk

( k

∑
j=0

rj

wj
λk−j

)
akzk, z ∈ D,

for f ∈ Aw(E) given by (1.1) and 0 < r < 1, where

Ar f (z) = ∑
k>0

rkakzk, z ∈ D,

are the Abel summability operators.
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7. EMBEDDING IN THE OPERATOR MODEL

Let w = {wk}k>0 be a positive decreasing weight sequence with w0 = 1
such that the kernel function kw is analytic and non-vanishing in D and satisfies
Property 2.4. Let T ∈ L(H) be a w-hypercontraction, and recall the notion of
higher order defect operator Dw,T from Proposition 2.6 and Definition 2.7. We
now define the higher order defect space Dw,T as the closure in H of the range
Dw,T(H) of the operator Dw,T .

For x ∈ H we shall consider the Dw,T-valued analytic function Vwx defined
by the following formula, for z ∈ D:

(7.1) Vwx(z) = Dw,Tkw(zT)x = ∑
n>0

1
wn

(Dw,TTnx)zn.

PROPOSITION 7.1. Let w = {wk}k>0 be a positive decreasing weight sequence
with w0 = 1 such that the kernel function kw is analytic and non-vanishing in D and
satisfies Property 2.4. Let T ∈ L(H) be a w-hypercontraction. Then the map

Vw : x 7→ Vwx

defined by (7.1) is a contraction mapping H into the space Aw(Dw,T) such that VwT =
S∗Vw, where S = Sw is the shift operator on Aw(Dw,T). Furthermore, for x ∈ H,

‖Vwx‖2
w + lim

k→∞
‖Tkx‖2 6 ‖x‖2.

Proof. The norm bound for the map Vw : H → Aw(Dw,T) is a restatement
of Lemma 3.3. We proceed to prove the intertwining relation VwT = S∗Vw. Let
x ∈ H. By formula (1.3) for the action of the adjoint shift we have that, for z ∈ D,

S∗Vwx(z)=∑
k>0

wk+1
wk

1
wk+1

(Dw,TTk+1x)zk = ∑
k>0

1
wk

(Dw,TTk+1x)zk =VwTx(z).

Recall the preliminaries about contractions from Section 1. We now inwoke
Property 3.4.

THEOREM 7.2. Let w = {wk}k>0 be a positive decreasing weight sequence such
that the kernel function kw is analytic and non-vanishing in D and satisfies Properties 2.4
and 3.4. Let T ∈ L(H) be a w-hypercontraction. Then the map

V =

[
Vw
Q

]
: x 7→

[
Vwx
Qx

]
defined by (7.1) and (1.6) is an isometry mappingH into the space Aw(Dw,T)⊕Q such
that

VT =

[
S∗ 0
0 U

]
V,

where S = Sw is the shift operator on Aw(Dw,T) and the operator U ∈ L(Q) is as in
Section 1.
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Proof. The first part that the map V : H → Aw(Dw,T) ⊕Q is an isometry
is a restatement of Theorem 3.7. The intertwining relations S∗Vw = VwT and
QT = UQ are proved in Proposition 7.1 and Section 1, respectively.

Recall the terminology that an operator T ∈ L(H) is said to belong to the
class C0· if lim

k→∞
Tk = 0 in the strong operator topology in L(H) (see Section II.4

of [33]).

COROLLARY 7.3. Let w = {wk}k>0 and kw be as in Theorem 7.2. Let T ∈ L(H)
be a w-hypercontraction in the class C0·. Then the map

Vw : x 7→ Vwx

defined by (7.1) is an isometry mapping H into the space Aw(Dw,T) such that VwT =
S∗Vw, where S = Sw is the shift operator on Aw(Dw,T).

Proof. By (1.6) the operator Q vanishes since T ∈ L(H) is a contraction in
the class C0·. The result follows by Theorem 7.2.

Recall that the reproducing kernel function for a Hilbert space H of E -
valued analytic functions in D is the operator-valued function KH : D × D →
L(E) defined by the reproducing property that KH(·, ζ)e ∈ H and

〈 f (ζ), e〉 = 〈 f , KH(·, ζ)e〉

for all e ∈ E , f ∈ H and ζ ∈ D.
We next consider the kernel function KVw(H) for the subspace Vw(H) of the

space Aw(Dw,T).

THEOREM 7.4. Let w = {wk}k>0 and kw be as in Theorem 7.2. Let T ∈ L(H) be
a w-hypercontraction in the class C0·. Then the kernel function KVw(H) for the subspace
Vw(H) of Aw(Dw,T) has the following form, for z, ζ ∈ D:

KVw(H)(z, ζ) = Dw,Tkw(zT)kw(ζT)∗Dw,T .

Proof. Let f ∈ Aw(Dw,T) be an element of the form f = Vwx for some x ∈ H.
Let e ∈ Dw,T . By Corollary 7.3 we have that

〈 f (ζ), e〉= 〈x, kw(ζT)∗Dw,Te〉= 〈Vwx, Vwkw(ζT)∗Dw,Te〉w = 〈 f , Vwkw(ζT)∗Dw,Te〉w

for ζ ∈ D. This yields the conclusion of the theorem.

We mention that formulas for kernel functions similar to the result of Theo-
rem 7.4 play an important role in recent work by Ball and Bolotnikov [8], [9].

We shall next turn our attention to canonical features of the map

V : H → Aw(Dw,T)⊕Q

constructed in Theorem 7.2 above. First we need a lemma.
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LEMMA 7.5. Let w = {wk}k>0 be a positive decreasing weight sequence such that
the kernel function kw is analytic and non-vanishing in D. Let E and Q1 be Hilbert
spaces and U1 ∈ L(Q1) an isometry. Let T ∈ L(H) be a bounded operator, and assume
that there exists an isometry

W =

[
W1
W2

]
: H → Aw(E)⊕Q1

fromH into the space Aw(E)⊕Q1 such that

WT =

[
S∗ 0
0 U1

]
W,

where S = Sw is the shift operator on Aw(E). Then the operator T ∈ L(H) is a
contraction such that

(7.2) lim
k→∞
‖Tkx‖2 = ‖W2x‖2

for x ∈ H. Furthermore, for x ∈ H and 0 < r < 1,

(7.3) 〈Dw,T(r)x, x〉 = 〈Dw,S∗(r)W1x, W1x〉w +
1

kw(r)
‖W2x‖2.

Proof. It is evident that T is a contraction since it is part of a contraction. Let
x ∈ H. Since the map W is an isometry we have that

‖Tkx‖2 = ‖WTkx‖2 = ‖S∗kW1x‖2
w + ‖Uk

1W2x‖2,

where the last equality follows using the intertwining relation. Since U1 ∈ L(Q1)
is an isometry we conclude that

(7.4) ‖Tkx‖2 = ‖S∗kW1x‖2
w + ‖W2x‖2

for x ∈ H and k > 0. Letting k → ∞ in (7.4) we obtain (7.2) since S∗ belongs to
the class C0·, see Section 6.

We consider next the operator quantities Dw,T(r). By (7.4) we have that

〈Dw,T(r)x, x〉 = ∑
k>0

ckrk‖Tkx‖2 = ∑
k>0

ckrk‖S∗kW1x‖2
w + ∑

k>0
ckrk‖W2x‖2

= 〈Dw,S∗(r)W1x, W1x〉w +
1

kw(r)
‖W2x‖2

for x ∈ H and 0 < r < 1, which yields (7.3).

We next inwoke also Property 2.4 of the kernel function kw.

THEOREM 7.6. Let w = {wk}k>0 be a positive decreasing weight sequence such
that the kernel function kw is analytic and non-vanishing in D and satisfies Property 2.4.
Let E and Q1 be Hilbert spaces and U1 ∈ L(Q1) an isometry. Let T ∈ L(H) be a
bounded operator, and assume that there exists an isometry

W =

[
W1
W2

]
: H → Aw(E)⊕Q1



276 ANDERS OLOFSSON

fromH into Aw(E)⊕Q1 such that

WT =

[
S∗ 0
0 U1

]
W,

where S = Sw is the shift operator on Aw(E). Then T ∈ L(H) is a w-hypercontraction
and there exist isometries Ŵ1 : Dw,T → E and Ŵ2 : Q → Q1 such that the operators
W1 and W2 have the form

W1x(z) = Ŵ1Vwx and W2x = Ŵ2Qx

for x ∈ H, where the map Vw is given by (7.1) and Q is as in Section 1.

Proof. We first show that T is a w-hypercontraction and derive formula (7.5)
below. Recall from Lemma 7.5 that T is a contraction satisfying (7.3). Since kw
has Property 2.4 we have by Corollary 6.3 that S∗ is a w-hypercontraction, that is,
Dw,S∗(r) > 0 for 0 < r < 1. By (7.3) we conclude that T is a w-hypercontraction.
Passing to the limit in (7.3) as r → 1 using Proposition 2.6 we obtain that

‖Dw,Tx‖2 = ‖Dw,S∗W1x‖2

for x ∈ H since lim
r→1

kw(r) = +∞. By Corollary 6.4 we have that, for x ∈ H,

(7.5) ‖Dw,Tx‖2 = ‖W1x(0)‖2.

The map Ŵ1 : Dw,T → E is defined by

Ŵ1Dw,Tx = W1x(0)

for x ∈ H. By (7.5) this gives a well-defined map which by continuity extends
uniquely to an isometry Ŵ1 : Dw,T → E .

We next derive the representation formula for the map W1. Let x ∈ H and
consider the function f = W1x in Aw(E). Consider also the power series expan-
sion of f given by (1.1) and recall the action of powers of the adjoint shift given
by (6.1). By the intertwining relation for W1 we have W1Tkx = S∗k f , and an eval-
uation at the origin gives that Ŵ1Dw,TTkx = (W1Tkx)(0) = wkak for k > 0. We
now solve for the function f to obtain that, for z ∈ D,

f (z) = ∑
k>0

akzk = ∑
k>0

1
wk

(Ŵ1Dw,TTkx)zk = Ŵ1Vwx(z).

The map Ŵ2 : Q → Q1 is defined by Ŵ2 : Qx 7→W2x for x ∈ H. By (7.2) the
map Ŵ2 is well-defined and extends by continuity uniquely to an isometry from
the space Q into Q1 such that W2x = Ŵ2Qx for x ∈ H. This completes the proof
of the theorem.

We point out that the result of Theorem 7.6 has the interpretation of a uni-
versal mapping property for the map V : H → Aw(Dw,T)⊕Q from Theorem 7.2
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above. In fact, Theorem 7.6 says that the diagram

H W−→ Aw(E)⊕Q1
V
y Ŵ ↗

Aw(Dw,T)⊕Q
is commutative, where

Ŵ =

[
Ŵ1 0
0 Ŵ2

]
with Ŵ1 extended to functions f in Aw(Dw,T) by the formula (Ŵ1 f )(z) = Ŵ1 f (z)
for z ∈ D.

COROLLARY 7.7. Let w = {wk}k>0, kw and T ∈ L(H) be as in Theorem 7.6.
Then the map

V =

[
Vw
Q

]
: x 7→

[
Vwx
Qx

]
defined by (7.1) and (1.6) is an isometry fromH into the space Aw(Dw,T)⊕Q.

Proof. In the notation of Theorem 7.6 we have that

‖x‖2 = ‖Wx‖2 = ‖Ŵ1Vwx‖2
w + ‖Ŵ2Qx‖2 = ‖Vwx‖2

w + ‖Qx‖2

for x ∈ H since Ŵ1 : Dw,T → E and Ŵ2 : Q → Q1 are isometries.

8. BACK TO STANDARD WEIGHTS

Let us return to the scale of standard weights. The purpose of this section
is to further comment on the case of intermediate positivity conditions for hyper-
contractions.

Recall from Section 5 that standard weight sequences w = wα satisfy Proper-
ties 2.4, 3.4 and 4.2 for α > 0. Furthermore, a calculation using Stirling’s formula
and the reflection formula for the Gamma function shows that

lim
k→∞

(−1)k+1
(

α

k

)
kα+1 =

Γ(α + 1) sin(πα)

π

for α > 0 (see for instance Proposition 1.2 of [27]).

THEOREM 8.1. Let α > 1. Let T ∈ L(H) be a contraction such that

∑
k>0

(−1)k
(

α

k

)
T∗kTk > 0

in L(H). Then

∑
k>0

(−1)k
(

β

k

)
T∗kTk > 0

in L(H) for 1 < β < α.



278 ANDERS OLOFSSON

Proof. Let 1 < β < α and 0 < r < 1. The function identity

(1− rz)β =
1

(1− rz)α−β
(1− rz)α

leads by hereditary functional calculus to the operator formula

∑
k>0

(−1)k
(

β

k

)
rkT∗kTk =∑

m>0

(
m+α−β−1

m

)
rmT∗m

(
∑
k>0

(−1)k
(

α

k

)
rkT∗kTk

)
Tm.(8.1)

By Theorem 4.5 and Corollary 5.5 the operator T is a wα-hypercontraction, so that

∑
k>0

(−1)k
(

α

k

)
rkT∗kTk > 0

in L(H). Passing to the limit in (8.1) as r → 1 using Fatou’s lemma and domi-
nated convergence we conclude that

∑
k>0

(−1)k
(

β

k

)
T∗kTk > ∑

m>0

(
m + α− β− 1

m

)
T∗m

(
∑
k>0

(−1)k
(

α

k

)
T∗kTk

)
Tm

in L(H). This last inequality yields the conclusion of the theorem.
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