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ABSTRACT. Let A be an invertible bounded linear operator on a complex Ba-
nach space X. With connection to the Deddens algebras, for a given k ∈ N, we
define the class Dk

A of all bounded linear operators T on X for which the con-
jugation orbits {AnTA−n}n∈Z satisfies some growth conditions. We present
a complete description of the class Dk

A in the case when the spectrum of A
is positive. Individual versions of Katznelson–Tzafriri theorem and their ap-
plications to the Deddens algebras are given. The Hille–Yosida space is used
to obtain local quantitative results related to the Katznelson–Tzafriri theorem.
Some related problems are also discussed.
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1. INTRODUCTION

Let X be a complex Banach space and let B(X) be the algebra of all bounded
linear operators on X. By σ(T), σp(T), r(T), and R(z, T) := (zI − T)−1 respec-
tively, we denote the spectrum, the point spectrum, the spectral radius, and the
resolvent of T ∈ B(X).

Let H be a complex, separable infinite-dimensional Hilbert space and let A
be an invertible operator on H. In [5], Deddens introduced the set

BA :=
{

T ∈ B(H) : sup
n∈N
‖AnTA−n‖ < ∞

}
.

Notice that BA is an algebra with identity (not necessarily closed) which contains
the commutant {A}′ of A. Deddens [5] showed that if A is a positive operator
with the spectral measure E(·), then BA coincides with the nest algebra associ-
ated with the nest {E[0, λ] : λ > 0} (recall that every nest algebra arises in this
manner). In the same paper, Deddens conjectured that the identity BA = {A}′
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holds if the spectrum of A is reduced to {1}. In [19], Roth gave a negative an-
swer to Deddens conjecture. He showed the existence of a quasinilpotent oper-
ator V (the Volterra integration operator) for which BI+V 6= {I + V}′. In [21],
Williams proved that if A ∈ B(X) with σ(A) = {1} and if T ∈ B(X) satisfies the
condition sup

n∈Z
‖AnTA−n‖ < ∞, then AT = TA. In [8], [9], Drissi and Mbekhta

improved Williams result by replacing his condition on A−1 by the weaker con-
dition ‖A−nTAn‖ = o(eε

√
n) (n→ ∞), for every ε > 0.

Let A ∈ B(X) be an invertible operator and k ∈ N. We define the class Dk
A

of all operators T ∈ B(X) for which the conjugation orbit {AnTA−n}n∈Z satisfies
the following growth conditions:

(i) ‖ ATA−1+···+AnTA−n

n ‖ = o(nk) (n→ ∞),
(ii) log+ ‖A−nTAn‖ = o(

√
n) (n→ ∞).

In Section 2, we present a complete description of the class Dk
A in the case

when the spectrum of A is positive. Section 3 contains a local version of the Katz-
nelson–Tzafriri theorem and its application to the Deddens algebras. In Section 4,
a local version of Katznelson–Tzafriri theorem in terms of local Arveson spectrum
is given. Local quantitative results related to the Katznelson–Tzafriri theorem are
given in Section 5.

Throughout the paper, we will denote by X∗1 the closed unit ball of the dual
space X∗ of X. The unit circle in the complex plane will be denoted by Γ, whereas
D indicates the open unit disk. By R− and Z+ respectively, we will denote the
set of all non-positive real numbers and the set of all non-negative integers. D(T)
will denote the domain of the operator T.

2. CONJUGATION ORBITS WITH GROWTH

Let A ∈ B(X) be an invertible operator and k ∈ N. By Ck
A we will denote the

class of all operators T ∈ B(X), whose conjugation orbit {AnTA−n}n∈Z satisfies
the following growth conditions:

(i) ‖AnTA−n‖ = o(nk) (n→ ∞),
(ii) log+ ‖A−nTAn‖ = o(

√
n) (n→ ∞).

The next result gives a complete characterization of the class Ck
A in the case

when the spectrum of A is positive.

THEOREM 2.1. For arbitrary A ∈ B(X) with σ(A) ⊂ (0,+∞), we have

Ck
A =

{
T ∈ B(X) :

k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0

}
.

In particular, C1
A = {A}′.
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For the proof we need some preliminary results.
For arbitrary T ∈ B(X) and x ∈ X, we define ρT(x) to be the set of all λ ∈ C

for which there exists a neighborhood Uλ of λ with u(z) analytic on Uλ having
values in X, such that (zI − T)u(z) = x, ∀z ∈ Uλ. This set is open and contains
the resolvent set ρ(T) of T. By definition, the local spectrum of T at x, denoted
by σT(x) is the complement of ρT(x), so it is a closed subset of σ(T). This object
is most tractable if the operator T has the single-valued extension property (SVEP),
i.e., for every open set U in C, the only analytic function f : U → X for which
the equation (zI − T) f (z) = 0 holds, is the constant function f ≡ 0. In that case,
for every x ∈ X, there exists a maximal analytic extension of R(z, T)x to ρT(x). It
follows that if T has the SVEP, then σT(x) 6= ∅, whenever x 6= 0. It is easy to see
that an operator T ∈ B(X) having spectrum without interior points has the SVEP.

Let T ∈ B(X) and let f : U → C be an analytic function on an open neigh-
borhood U of σ(T). Then, f (σT(x)) ⊆ σf (T)(x) for every x ∈ X, where the equal-
ity occurs if T has SVEP ([15], Theorem 3.3.8). Here, f (T) is defined by the Riesz
functional calculus. Notice also that if T has SVEP, then so does f (T) ([15], Theo-
rem 3.3.6). The local spectral radius rT(x) of T at x ∈ X, is defined by

rT(x) = sup{|λ| : λ ∈ σT(x)}.

It is well known that
rT(x) 6 lim

n→∞
‖Tnx‖1/n,

where the equality occurs if T has SVEP ([15], Proposition 3.3.13).

LEMMA 2.2. Let T ∈ B(X) be an invertible operator. Let k ∈ N and assume that
x ∈ X satisfies the following conditions:

(i) lim
n→∞

‖Tnx‖
nk = 0,

(ii) lim
n→∞

log+ ‖T−nx‖√
n = 0.

Then σT(x) ⊆ Γ.

Proof. It follows from the condition (i) that for sufficiently large n, ‖Tnx‖ 6
nk and therefore,

rT(x) 6 lim
n→∞
‖Tnx‖1/n 6 lim

n→∞
nk/n = 1.

Hence, σT(x) ⊆ D. On the other hand, it follows from the condition (ii) that for
sufficiently large n, ‖T−nx‖ 6 e

√
n. Consequently, we have

rT−1(x) 6 lim
n→∞
‖T−nx‖1/n 6 lim

n→∞
e
√

n/n = 1

and so
{λ−1 : λ ∈ σT(x)} ⊆ σT−1(x) ⊆ D.

Hence, σT(x) ⊆ Γ.
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Recall that an entire function f is said to be of order ρ if

ρ = lim
r→∞

log log M f (r)
log r

,

where

M f (r) = sup{| f (z)| : |z| 6 r} (r > 0).

An entire function f of finite order ρ is said to be of type σ if

σ = lim
r→∞

log M f (r)
rρ .

If the entire function f is of order at most one and type less than or equal to σ, we
say f is of exponential type σ. If the entire function f is of exponential type σ, then
by Levin’s theorem ([16], p. 84),

σ = lim
n→∞
| f (n)(0)|1/n.

If σ = 0, we say that f is of minimal exponential type.
We will need the following result ([22], Corollary 2.2).

LEMMA 2.3. Let f be an entire function of minimal exponential type. Let k ∈ N
and assume that

(i) lim
t→+∞

| f (t)|
tk = 0,

(ii) lim
t→+∞

log+ | f (−t)|√
t

= 0.

Then f is a polynomial of degree 6 k− 1.

The following result is a local version of Theorem 5.1 in [22].

LEMMA 2.4. Assume that T ∈ B(X) has SVEP and σ(T) ⊂ C \R−. Let k ∈ N
and assume that x ∈ X satisfies the following conditions:

(i) lim
n→∞

‖Tnx‖
nk = 0,

(ii) lim
n→∞

log+ ‖T−nx‖√
n = 0,

(iii) σT(x) = {1}.
Then (T − I)kx = 0.

Proof. We have T = eS, where S = log T ([4], Chapter I, Section 7). Notice
that S has SVEP and σS(x) = {0}. For arbitrary ϕ ∈ X∗ with norm one, consider
the entire function f (z) := ϕ(ezSx). From the inequality

| f (z)| 6 e|z|‖S‖‖x‖,

we can see that f is an entire function of order

ρ = lim
r→∞

log log M f (r)
log r

6 lim
r→∞

log(r‖S‖+ log ‖x‖)
log r

= 1.
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Since

lim
n→∞
| f (n)(0)|1/n = lim

n→∞
|ϕ(Snx)|1/n 6 lim

n→∞
‖Snx‖1/n = rS(x) = 0,

by Levin’s theorem ([16], p. 84), f is an entire function of minimal exponential
type.

If t > 0, then from the identity t = n + r, where n ∈ N and 0 6 r < 1, we
can write

| f (t)| = |ϕ(erSenSx)| 6 e‖S‖‖enSx‖ = e‖S‖‖Tnx‖.
This implies

| f (t)|
tk 6

e‖S‖‖Tnx‖
nk ,

so that

lim
t→+∞

| f (t)|
tk = 0.

Further, as −t = −n− r, where t > 0, n ∈ N, and 0 6 r < 1, we can write

| f (−t)| = |ϕ(e−rSe−nSx)| 6 e‖S‖‖T−nx‖
which implies

log+ | f (−t)|√
t

6
‖S‖+ log+ ‖T−nx‖√

n
.

So we have

lim
t→+∞

log+ | f (−t)|√
t

= 0.

By Lemma 2.3, f is a polynomial of degree 6 k − 1. Consequently, we have
ϕ(Skx) = f (k)(0) = 0. This clearly implies that Skx = 0.

Since T = eS, we have

T − I =
∞

∑
n=1

Sn

n!
= S

∞

∑
n=1

Sn−1

n!
= SQ,

where

Q :=
∞

∑
n=1

Sn−1

n!
.

As Skx = 0, we obtain that

(T − I)kx = (SQ)kx = QkSkx = 0.

For a given A ∈ B(X), we denote by LA and RA the left and right multipli-
cation operators on B(X), respectively;

LAT = AT, RAT = TA, T ∈ B(X).

By the Lumer–Rosenblum theorem ([17], Theorem 10), for arbitrary A, B ∈ B(X),

σ(LARB) = {λµ : λ ∈ σ(A), µ ∈ σ(B)}.
Now, we are in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. If T ∈ Ck
A, then we have

lim
n→∞

‖(LARA−1)nT‖
nk = 0 and lim

n→∞

log+ ‖(LARA−1)−nT‖√
n

= 0.

By Lemma 2.2, σLARA−1 (T) ⊆ Γ. On the other hand, by the Lumer–Rosenblum
theorem mentioned above,

σ(LARA−1) = {λµ−1 : λ, µ ∈ σ(A)} ⊂ (0, ∞).

Consequently, the operator LARA−1 has SVEP. Further, as

σLARA−1 (T) ⊆ σ(LARA−1) ⊂ (0, ∞),

we have σLARA−1 (T) = {1}. Applying now Lemma 2.4 to the operator LARA−1

on the space B(X), we get

(LARA−1 − I)kT = 0,

and so
k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0.

For the reverse inclusion, assume that T ∈ B(X) satisfies the preceding equality.
Since

(LARA−1 − I)kT = (LA−1 RA − I)kT = 0,

we can write

‖AnTA−n‖ = ‖(LARA−1)nT‖

=
∥∥∥T +

(
n
1

)
(LARA−1 − I)T + · · ·+

(
n

k− 1

)
(LARA−1 − I)k−1T

∥∥∥
= o(nk) (n→ ∞).

Similarly, we have ‖A−nTAn‖ = o(nk) (n→ ∞). This clearly implies that

log+ ‖A−nTAn‖ = o(
√

n) (n→ ∞).

Hence, T ∈ Ck
A. The proof is complete.

As a consequence of Theorem 2.1 we have the following.

COROLLARY 2.5. If the spectrum of an invertible operator A ∈ B(X) consists of
one point, then

Ck
A =

{
T ∈ B(X) :

k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0

}
.

Proof. Assume that σ(A) = {λ}, where λ 6= 0. If T ∈ Ck
A, then T ∈ Ck

B,
where B := A

λ . Since σ(B) = {1}, by Theorem 2.1 we obtain as required.
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It follows from Corollary 2.5 that if σ(A) consists of one point, then C1
A =

{A}′. Note that if k > 1, then Ck
A 6= {A}′, in general. To see this, let A =(

1 0
1 1

)
and T =

(
0 0
0 1

)
be 2× 2 matrices on 2-dimensional Hilbert space.

Then σ(A) = {1} and

AnTA−n = [I + n(A− I)]T[I − n(A− I)] =
(

0 0
−n 1

)
(n ∈ Z).

So we have

‖AnTA−n‖ = (1 + |n|2)1/2 = o(|n|2) (|n| → ∞).

This shows that T ∈ C2
A \ C1

A, but AT 6= TA.
Let A ∈ B(X) be an invertible operator and k ∈ N. Recall that the class Dk

A
consists of all operators T ∈ B(X) such that:

(i) ‖ ATA−1+···+AnTA−n

n ‖ = o(nk) (n→ ∞),
(ii) log+ ‖A−nTAn‖ = o(

√
n) (n→ ∞).

Clearly, Ck
A ⊆ Dk

A.
The following theorem is the main result of this section.

THEOREM 2.6. For arbitrary A ∈ B(X) with σ(A) ⊂ (0,+∞), we have

Dk
A =

{
T ∈ B(X) :

k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0

}
.

In particular, D1
A = {A}′.

For the proof, we need some lemmas.

LEMMA 2.7. Let T ∈ B(X) be an invertible operator. Let k ∈ N and assume that
x ∈ X satisfies the following conditions:

(i) ‖ Tx+···+Tnx
n ‖ = o(nk) (n→ ∞),

(ii) lim
n→∞

log+ ‖T−nx‖√
n = 0.

Then σT(x) ⊆ Γ.

Proof. From the identity

(T − I)
Tx + · · ·+ Tnx

n
=

Tn+1x− Tx
n

,

we have

‖Tn+1x‖ 6 ‖Tx‖+ n(1 + ‖T‖)
∥∥∥Tx + · · ·+ Tnx

n

∥∥∥.

It follows that ‖Tnx‖ = o(nk+1) (n → ∞). By Lemma 2.2, we obtain as re-
quired.

Next, we have the following.
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LEMMA 2.8. Assume that T ∈ B(X) has SVEP and σ(T) ⊂ C \R−. Let k ∈ N
and assume that x ∈ X satisfies the following conditions:

(i) ‖ Tx+···+Tnx
n ‖ = o(nk) (n→ ∞),

(ii) lim
n→∞

log+ ‖T−nx‖√
n = 0,

(iii) σT(x) = {1}.
Then (T − I)kx = 0.

Proof. As in the proof of Lemma 2.7, we have ‖Tnx‖ = o(nk+1) (n → ∞).
By Lemma 2.4, (T − I)k+1x = 0. Consequently, for arbitrary n > k, we can write

Tnx = x +

(
n
1

)
(T − I)x + · · ·+

(
n
k

)
(T − I)kx and

Tx + · · ·+ Tnx

= Tx + · · ·+ Tkx + (n− k)x +
[ ( k + 1

1

)
+ · · ·+

(
n
1

) ]
(T − I)x

+ · · ·+
[ ( k + 1

k

)
+ · · ·+

(
n
k

) ]
(T − I)kx.

A simple application of Stolz theorem shows that

lim
n→∞

(
k + 1

i

)
+ · · ·+

(
n
i

)
nk+1 =

{
0 1 6 i 6 k,

1
(k+1)! i = k.

Now as

lim
n→∞

∥∥∥Tx + · · ·+ Tnx
nk+1

∥∥∥ = 0,

we obtain that (T − I)kx = 0.

We are now able to prove Theorem 2.6.

Proof of Theorem 2.6. If T ∈ Dk
A, then we have∥∥∥ (LARA−1)T + · · ·+ (LARA−1)nT

n

∥∥∥ = o(nk) (n→ ∞) and

lim
n→∞

log+ ‖(LARA−1)−nT‖√
n

= 0.

By Lemma 2.7, σLARA−1 (T) ⊆ Γ. On the other hand, by the Lumer–Rosenblum
theorem,

σ(LARA−1) = {λµ−1 : λ, µ ∈ σ(A)} ⊂ (0, ∞).

Consequently, the operator LARA−1 has SVEP. Further, as

σLARA−1 (T) ⊆ σ(LARA−1) ⊂ (0, ∞),
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we have σLARA−1 (T) = {1}. Applying now Lemma 2.8 to the operator LARA−1

on the space B(X), we get

(LARA−1 − I)kT = 0,

and so
k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0.

For the reverse inclusion, assume that T ∈ B(X) satisfies the preceding equality.
By Theorem 2.1, T ∈ Ck

A. As Ck
A ⊆ Dk

A, we obtain that T ∈ Dk
A. The proof is

complete.

As a consequence of Theorem 2.6 we have the following.

COROLLARY 2.9. If the spectrum of an invertible operator A ∈ B(X) consists of
one point, then

Dk
A =

{
T ∈ B(X) :

k

∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0

}
.

Proof. Assume that σ(A) = {λ}, where λ 6= 0. If T ∈ Dk
A, then T ∈ Dk

B,
where B := A

λ . Since σ(B) = {1}, by Theorem 2.6, we obtain as required.

3. THE ASYMPTOTIC BEHAVIOUR OF CONJUGATION ORBITS

In this section, we present some results related to the asymptotic behaviour
of individual and conjugation orbits of operators on Banach spaces.

Let T ∈ B(X) and x ∈ X be given. Recall that σ(T) ∩ Γ and σT(x) ∩ Γ
respectively, are called unitary spectrum of T and local unitary spectrum of T at x.
An operator T ∈ B(X) is called power bounded if sup

n∈N
‖Tn‖ < ∞. If T is power

bounded, then σ(T) ⊆ D. Furthermore, σT(x) ∩ Γ is the set of all points ξ ∈ Γ to
which the function z 7→ R(z, T)x (|z| > 1) cannot be extended analytically. It is
easy to check that

σ(T) ∩ Γ =
⋃

x∈X
(σT(x) ∩ Γ).

The famous Katznelson–Tzafriri theorem ([13], Theorem 1) asserts that if T
is power bounded, then lim

n→∞
‖Tn+1 − Tn‖ = 0 if and only if σ(T) ∩ Γ ⊆ {1}. Re-

call that Katznelson and Tzafriri deduce their result from the following tauberian
theorem (Theorem 2 of [13] and Theorem 4 of [1]).

THEOREM 3.1. Let F := { f } be a family of analytic functions on D and set

f (z) =
∞

∑
n=0

an( f )zn, f ∈ F .



290 HEYBETKULU MUSTAFAYEV

Assume that the following conditions are satisfied:
(i) There exists a constant C > 0 such that |an( f )| 6 C, for all f ∈ F and n ∈ Z+.

(ii) Every f ∈ F is analytic at each point of Γ \ {1}.
Then,

lim
n→∞

|an+1( f )− an( f )| = 0,

uniformly with respect to f ∈ F .

In p. 378 of [23], J. Zemanek asks the question: Is there a local version
of Katznelson–Tzafriri theorem? The following result was obtained by R. de-
Laubenfels and Vũ Quôc-Phóng ([6], Corollary 3.8).

THEOREM 3.2. Let T be an arbitrary operator on a Banach space X such that

σ(T) ∩ Γ ⊆ {1}. If x ∈
∞⋂

n=1
D(Tn) and the sequence {Tnx}n∈N is bounded, then

lim
n→∞

‖Tn+1x− Tnx‖ = 0.

Note that the local spectrum of T ∈ B(X) at x ∈ X may be very "small"
with respect to its usual spectrum. To see this, let σ be a "small" separate part of
σ(T) and Pσ, the corresponding spectral projection. Then, Xσ := PσXσ is a closed
T-invariant subspace of X and σ(T |Xσ ) = σ. It can be seen that σT(x) ⊆ σ, for
every x ∈ Xσ.

Below we give a local version of the Katznelson–Tzafriri theorem in terms
of local unitary spectra.

THEOREM 3.3. Assume that T ∈ B(X) has SVEP and the sequence {Tnx}n∈N is
bounded for some x ∈ X. If σT(x) ∩ Γ ⊆ {1}, then

lim
n→∞

‖Tn+1x− Tnx‖ = 0.

Proof. Consider the function

u(z) :=
∞

∑
n=0

Tnx
zn+1

which is analytic in C \ D and

(zI − T)u(z) = x, ∀z ∈ C \ D.

It follows that σT(x) ⊆ D. Assume that σT(x) ∩ Γ = ∅. Since T has SVEP, we
have

lim
n→∞
‖Tnx‖1/n = rT(x) < 1.

This implies ‖Tnx‖ → 0 (n→ ∞). Hence, we may assume that σT(x) ∩ Γ = {1}.
Let ξ ∈ Γ \ {1}. Since ξ ∈ ρT(x), there exists a neighborhood Uξ of ξ with

v(z) analytic on Uξ having values in X such that

(zI − T)v(z) = x, ∀z ∈ Uξ .
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It follows that
(zI − T)(u(z)− v(z)) = 0,

for all z ∈ U+
ξ , where

U+
ξ := Uξ ∩ {z ∈ C : |z| > 1}.

Since T has SVEP, we obtain that u(z) = v(z) for all z ∈ U+
ξ . This shows that the

function u(z) can be analytically extended to a neighborhood of ξ.
We put

ũ(z) :=
1
z

u(1/z) =
∞

∑
n=0

(Tnx)zn (|z| < 1), and F := { fϕ : ϕ ∈ X∗1},

where fϕ(z) := ϕ(ũ(z)). Thus fϕ, where

fϕ(z) =
∞

∑
n=0

ϕ(Tnx)zn

is a function analytic at each point of Γ \ {1}, for every ϕ ∈ X∗1 . Moreover,

|ϕ(Tnx)| 6 sup
n∈Z+

‖Tnx‖, ∀ϕ ∈ X∗1 n ∈ Z+.

Now, from Theorem 3.1 we can deduce that

lim
n→∞

|ϕ(Tn+1x)− ϕ(Tnx)| = 0,

uniformly with respect to ϕ ∈ X∗1 . This implies lim
n→∞

‖Tn+1x− Tnx‖ = 0.

Note that in contrast with Katznelson–Tzafriri theorem, the condition

lim
n→∞

‖Tn+1x− Tnx‖ = 0

does not imply σT(x) ∩ Γ ⊆ {1}, even if T is power bounded. To see this, let
S be the forward shift on the Hardy space H2; (S f )(z) = z f (z). Its adjoint, the
backward shift is given by

(S∗ f )(z) =
f (z)− f (0)

z
, f ∈ H2.

It is easy to verify that for every f ∈ H2 and λ ∈ Cwith |λ| > 1,

R(λ, S∗) f (z) =
λ−1 f (λ−1)− z f (z)

1− λz
.

Hence, σS∗( f ) ∩ Γ is the set of all points ξ ∈ Γ to which the function f cannot
be extended analytically. Let µ be a positive singular measure on Γ such that
suppµ * {1}. Consider the inner function

θ(z) := exp
(
−
∫
Γ

ζ + z
ζ − z

dµ(ζ)
)

.
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We know ([20], Theorem III.5.1) that suppµ is the set of all points ξ ∈ Γ to which
the function θ cannot be extended analytically. Now as σS∗(θ) =suppµ, we have
σS∗(θ) ∩ Γ * {1}. However, lim

n→∞
‖S∗n f ‖ = 0 for all f ∈ H2.

For an invertible operator A ∈ B(X), we define the Deddens algebra DA as

DA =
{

T ∈ B(X) : sup
n∈N
‖AnTA−n‖ < ∞

}
.

Notice that DA is unital (not necessarily closed) and contains the commutant of
A. We put

RA :=
{

T ∈ B(X) : lim
n→∞

‖AnTA−n‖ = 0
}

.

Recall that the radical RadA of any complex normed algebra A with identity is
defined as

RadA ={a ∈ A : ab is quasinilpotent for all b ∈ A}.

As in [5], it is easy to check that RA is a two-sided ideal in DA that is contained
in the radical of DA .

As a consequence of Theorem 3.3 we have the following.

COROLLARY 3.4. If the spectrum of an invertible operator A ∈ B(X) consists of
one point, then AT − TA is inRA, for every T ∈ DA.

Proof. Since T ∈ DA, we have

sup
n∈N
‖(LARA−1)nT‖ < ∞.

As σ(LARA−1) = {1}, the operator LARA−1 has SVEP and hence, σLARA−1 (T) =

{1}. By Theorem 3.3,

‖An+1TA−n−1 − AnTA−n‖ = ‖(LARA−1)n+1T − (LARA−1)nT‖ → 0 (n→ ∞).

Consequently, we have

‖An(AT − TA)A−n‖ = ‖(An+1TA−n−1 − AnTA−n)A‖ → 0 (n→ ∞).

This shows that AT − TA ∈ RA.

For a given A, B ∈ B(X), we define the class

DA,B :=
{

T ∈ B(X) : sup
n∈N
‖AnTBn‖ < ∞

}
.

Notice that if A is invertible, then DA,A−1 = DA.

PROPOSITION 3.5. Let A, B ∈ B(X) be such that σ(A) ⊆ [1, ∞) and σ(B) ⊆
[1, ∞). Then, for arbitrary T ∈ DA,B,

lim
n→∞

‖An+1TBn+1 − AnTBn‖ = 0.
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Proof. If T ∈ DA,B, then as

sup
n∈N
‖(LARB)

nT‖ < ∞,

we have σLARB(T) ⊆ D. On the other hand, by the Lumer–Rosenblum theorem,

σ(LARB) = {λµ : λ ∈ σ(A), µ ∈ σ(B)} ⊂ [1, ∞).

Consequently, the operator LARB has SVEP and

σLARB(T) ⊆ σ(LARB) ⊂ [1, ∞).

Thus we have σLARB(T) ∩ Γ = {1}. Applying now Theorem 3.3 to the operator
LARB on the space B(X), we obtain as required.

If E is a closed invariant subspace of T ∈ B(X), we will denote by TE (or
T |E) the restriction of T to E. It is easy to check that if T has SVEP, then so does
TE. Recall also that x ∈ X is a cyclic vector of T if span{Tnx : n ∈ Z+} = X. By
l.i.m.nan we will denote a fixed Banach limit of the bounded sequence {an}n∈N.

The following result is well known (see for instance, [14]).

LEMMA 3.6. If T is a power bounded operator on a Banach space X, then there
exist a Banach space Y, a bounded linear operator J : X → Y with dense range, and an
isometry V on Y with the following properties:

(i) V J = JT.
(ii) ‖Jx‖ = l.i.m.n‖Tnx‖, ∀x ∈ X.

(iii) σ(V) ⊆ σ(T).

The triple (Y, J, V) will be called the limit isometry associated with T. Notice
that Jx = 0 if and only if lim

n→∞
‖Tnx‖ = 0. Notice also that if x ∈ X is a cyclic

vector of T, then Jx is a cyclic vector of V. Moreover, we have

(3.1) σV(Jx) ⊆ σT(x), ∀x ∈ X.

Next, we have the following.

PROPOSITION 3.7. Assume that a power bounded operator T on a Banach space
X has SVEP. Let x ∈ X and assume that

(i) σT(x) ∩ Γ ⊆ {1},
(ii) the orbit {Tnx : n ∈ Z+} is relatively weakly compact.

Then, the sequence {Tnx}n∈N converges.

Proof. Let (Y, J, V) be the limit isometry associated with T. By Theorem 3.3,

0 = lim
n→∞

‖Tn+1x− Tnx‖ = lim
n→∞

‖Tn+1+kx− Tn+kx‖

= ‖JTk+1x− JTkx‖, ∀k ∈ Z+.

So we have JTk+1x = JTkx for all k ∈ Z+. It follows that

Jx = J
Tx + · · ·+ Tnx

n
.
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By the Krein–Shmulyan theorem, the sequence { Tx+···+Tnx
n }n∈N is relatively we-

akly compact and therefore it has a weak cluster point y. By the mean ergodic
theorem,

Tx + · · ·+ Tnx
n

→ y (n→ ∞).

Consequently, we have J(x − y) = 0, which means that lim
n→∞

‖Tn(x − y)‖ = 0.

Since Ty = y, we obtain that Tnx → y (n→ ∞).

Recall that T ∈ B(X) is said to be almost periodic if for every x ∈ X, the or-
bit OT(x) := {Tnx : n ∈ Z+} is relatively compact in X. De Leeuw–Glicksberg
decomposition theorem ([7], Theorem 4.11) states that if T is an almost periodic
operator on X, then X has the decomposition X = Xp u X0 into a direct topolog-
ical sum, where Xp = span{x ∈ X : ∃ξ ∈ Γ, Tx = ξx} and

X0 =
{

x ∈ X : lim
n→∞

‖Tnx‖ = 0
}

.

As an application, we have the following.

PROPOSITION 3.8. Let T be a power bounded operator on a Banach space X such
that σp(T) ∩ Γ ⊆ {1}. If the orbit {Tn+1x− Tnx : n ∈ Z+} is relatively compact for
some x ∈ X, then the sequence {Tn+1x− Tnx}n∈N converges.

Proof. Let E be the closure of the linear span of all x ∈ X for which the
orbit OT(x) is relatively compact. Then, E is a closed T-invariant subspace and
TE is an almost periodic operator. Since Tx − x ∈ E, by de Leeuw–Glicksberg
decomposition theorem, Tx− x = y + z, where y ∈ span{x ∈ E : ∃ξ ∈ Γ, Tx =
ξx} and lim

n→∞
‖Tnz‖ = 0. Since σp(T) ∩ Γ ⊆ {1}, then either Ty = y or y = 0.

Now, from the identity

Tn+1x− Tnx = Tny + Tnz

we obtain that Tn+1x− Tnx → y (n→ ∞).

For a given T ∈ B(X), we denote by ZT the set of all x ∈ X such that
sup

n∈Z+
‖Tnx‖ < ∞. Clearly, ZT is a linear (in general, non-closed) manifold invari-

ant under T. Let ‖ · ‖ZT be the norm in ZT defined by

‖x‖ZT = sup
n∈Z+

‖Tnx‖.

Then, (1) ZT is a Banach space under the norm ‖ · ‖ZT ; (2) T |ZT is a contraction;
(3) the canonical embedding id : ZT → X is continuous, and (4) σ(T |ZT ) ⊆ σ(T)
(see, [6]). The space ZT is called the Hille–Yosida space of T.

Next, we have the following.

PROPOSITION 3.9. Assume that T ∈ B(X) has SVEP and x ∈ X satisfies the
following conditions:
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(i) sup
n∈Z+

‖Tnx‖ < ∞,

(ii) σT(x) ∩ Γ ⊆ {1},
(iii) the sequence {Ti+1x+···+Ti+nx

n }n∈N converges uniformly with respect to i, as n→∞.
Then, the sequence {Tnx}n∈N converges.

Proof. By Theorem 3.3,

lim
n→∞

‖Tn+1x− Tnx‖ = 0.

Let ZT be the Hille–Yosida space of T. Then, T |ZT is a contraction and the pre-
ceding identity can be written as

lim
n→∞

‖(T |ZT )
n+1x− (T |ZT )

nx‖ZT = 0.

Since the limit

lim
n→∞

Ti+1x + · · ·+ Ti+nx
n

= yi

exists uniformly with respect to i, it follows that yi does not depend on i, yi = y
for all i. Indeed, for a given ε > 0 and for sufficiently large n, we can write∥∥∥yi −

Ti+1x + · · ·+ Ti+nx
n

∥∥∥ <
ε

3
,
∥∥∥yi+1 −

Ti+2x + · · ·+ Ti+1+nx
n

∥∥∥ <
ε

3
, and∥∥∥Ti+1+nx− Ti+1x

n

∥∥∥ <
ε

3
.

Then, we have

‖yi+1 − yi‖ 6
∥∥∥yi+1 −

Ti+2x + · · ·+ Ti+1+nx
n

∥∥∥+ ∥∥∥yi −
Ti+1x + · · ·+ Ti+nx

n

∥∥∥
+
∥∥∥Ti+1+nx− Ti+1x

n

∥∥∥ < ε.

Clearly, Ty = y, so that y ∈ ZT and

sup
i>0

∥∥∥Ti+1x + · · ·+ Ti+nx
n

− Tiy
∥∥∥→ 0 (n→ ∞).

This means that

(T |ZT )x + · · ·+ (T |ZT )
nx

n
→ y (n→ ∞)

in ZT . As in the proof of Proposition 3.7, we have

lim
n→∞

‖(T |ZT )
nx− y‖ZT = 0.

It follows that Tnx → y (n→ ∞).

As an application of Proposition 3.9 we have the following.
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THEOREM 3.10. Let A ∈ B(X) be an invertible operator with one point spectrum
and T ∈ DA. If the sequence{Ai+1TA−i−1 + · · ·+ Ai+nTA−i−n

n

}
n∈N

converges uniformly with respect to i, as n→ ∞, then T has the form

T = S + Q,

where S ∈ {A}′ and Q ∈ RA.

Proof. As T ∈ DA, we have sup
n∈N
‖(LARA−1)nT‖ < ∞ and σ(LARA−1) = {1}.

Consequently, the operator LARA−1 has SVEP and therefore, σLARA−1 (T) = {1}.
Moreover, the sequence{ (LARA−1)i+1T + · · ·+ (LARA−1)i+nT

n

}
n∈N

converges uniformly with respect to i, as n→ ∞. By Proposition 3.9,

AnTA−n = (LARA−1)nT → S (n→ ∞),

for some S ∈ B(X). It can be seen that S ∈ {A}′ and Q := T − S ∈ RA.

4. LOCAL ARVESON SPECTRUM

In this section, we present a local version of the Katznelson–Tzafriri theorem
in terms of the local Arveson spectrum. Moreover, we establish some connections
between the local Arveson spectrum and the local unitary spectrum.

Recall that the classical Wiener algebraA is the space of all continuous func-
tions f on Γ for which

‖ f ‖ := ∑
n∈Z
| f̂ (n)| < ∞,

where f̂ (n) is the nth Fourier coefficient of f . Given a closed set S in Γ, there are
two distinguished closed ideals of A with hull equal to S, namely

JS := { f ∈ A : supp f ∩ S = ∅},

is the smallest closed ideal whose hull is S and

IS := { f ∈ A : f (s) = 0, ∀s ∈ S}

is the largest closed ideal whose hull is S. The set S is a set of synthesis if JS = IS.
It is well known ([12], Chapter V, Section 4) that every closed countable subset of
Γ is a set of synthesis.
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An invertible operator T on a Banach space X is called doubly power bounded
if sup

n∈Z
‖Tn‖ < ∞. If T is doubly power bounded, then for arbitrary f ∈ A, we can

define f (T) ∈ B(X), by
f (T) = ∑

n∈Z
f̂ (n)Tn.

Then, h : f 7→ f (T) is a continuous homomorphism and the spectral mapping
property σ( f (T)) = f (σ(T)) ( f ∈ A) holds for this calculus. It easily follows
that if σ(T) is a set of synthesis, then f (T) = 0 if and only if f vanishes on σ(T).

We denote by A+ the Banach algebra of all functions

f (z) =
∞

∑
n=0

f̂ (n)zn

analytic on D and satisfying

‖ f ‖ :=
∞

∑
n=0
| f̂ (n)| < ∞.

If ϕ ∈ A∗+ and ϕ̂(n) := 〈ϕ, zn〉 (n ∈ Z+), then the duality being implemented by
the formula

〈ϕ, f 〉 =
∞

∑
n=0

ϕ̂(n) f̂ (n).

Moreover, ‖ϕ‖ = sup
n∈Z+

|ϕ̂(n)|. If T is a power bounded operator on X, then for

arbitrary f ∈ A+, we can define f (T) ∈ B(X), by

f (T) =
∞

∑
n=0

f̂ (n)Tn.

Then, h : f 7→ f (T) is a continuous homomorphism and the spectral mapping
property σ( f (T)) = f (σ(T)) ( f ∈ A+) holds for this calculus.

Let T ∈ B(X) and let x ∈ X be such that sup
n∈Z+

‖Tnx‖ < ∞, that is, x ∈ ZT ,

where ZT is the Hille–Yosida space of T. Since T |ZT is a contraction, for any

f =
∞
∑

n=0
f̂ (n)zn ∈ A+, we can define x f ∈ ZT , by

x f = f (T |ZT )x (=
∞

∑
n=0

f̂ (n)Tnx).

Then, f 7→ x f is a continuous homomorphism;

‖x f ‖ 6 ‖x‖ZT‖ f ‖, ∀ f ∈ A+.

It follows that
IT(x) := { f ∈ A+ : x f = 0}

is a closed ideal of A+. We define the local Arveson spectrum spT(x) of T at x, as
the hull in A+ of the ideal IT(x).
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PROPOSITION 4.1. Let T ∈ B(X) and let x ∈ X be such that sup
n∈Z+

‖Tnx‖ < ∞.

Then, we have
σT(x) ⊆ spT(x).

Proof. Assume that there exists λ0 ∈ σT(x), but λ0 /∈ spT(x). Then, there is
f ∈ A+ such that x f = 0, but f (λ0) 6= 0. Notice that x ∈ ZT , where ZT is the
Hille–Yosida space of T. Let E be the closed linear span of {Tnx : n ∈ Z+} in
ZT . As f (T |ZT )x = x f = 0, we have f (T |E)x = 0 for all x ∈ E and therefore,
f (T |E) = 0. By the spectral mapping property,

f (σ(T |E)) = σ( f (T |E)) = 0.

Since σT|ZT
(x) ⊆ σ(T |E), the function f vanishes on σT|ZT

(x). Now, let us show
that σT(x) ⊆ σT|ZT

(x). If λ ∈ ρT|ZT
(x), then there is a neighborhood Uλ of λ with

u(z) analytic on Uλ having values in ZT such that

x = (zIZT
− T |ZT )u(z) = zu(z)− Tu(z), ∀z ∈ Uλ.

If J : ZT → X is the canonical embedding, then, Ju(z) is an analytic function on
Uλ having values in X. Consequently, we can write

x = Jx = zJu(z)− TJu(z) = (zI − T)Ju(z), ∀z ∈ Uλ.

This shows that λ ∈ ρT(x). Consequently, f vanishes on σT(x). As λ0 ∈ σT(x),
we obtain that f (λ0) = 0. This contradicts f (λ0) 6= 0.

Next, we have the following result without SVEP.

THEOREM 4.2. Let T ∈ B(X) and let x ∈ X be such that sup
n∈Z+

‖Tnx‖ < ∞. If

spT(x) ∩ Γ ⊆ 1, then
lim

n→∞
‖Tn+1x− Tnx‖ = 0.

For the proof, we need some facts. For ϕ ∈ A∗+ and f ∈ A+, define

(4.1) ϕ+(z) :=
∞

∑
n=0

ϕ̂(n)
zn (|z| > 1)

and

ϕ̂(−n) :=
∞

∑
k=0

ϕ̂(k) f̂ (k + n) (n ∈ N).

Since |ϕ̂(−n)| 6 ‖ϕ‖‖ f ‖, the function ϕ−(z) defined by

(4.2) ϕ−(z) =
∞

∑
n=1

ϕ̂(−n)zn

is analytic on D.
The following result is contained in Chapter 4, Theorem 10 of [18].
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LEMMA 4.3. Let ϕ ∈ A∗+ and f ∈ A+. Assume that the functions ϕ+(z) and
ϕ−(z) are defined as in (4.1) and (4.2) , respectively. If

∞

∑
n=0

f̂ (n)ϕ̂(n + k) = 0 ∀k ∈ Z+,

then

Φ(z) :=

{
ϕ+(z) |z| > 1,
ϕ−(z)
f (z) |z| < 1,

is an analytic function on the complex plane possible expectation of zero set of f .

The following result is a consequence of Theorem 3.1.

LEMMA 4.4. Let I be a nontrivial closed ideal ofA+ such that hull(I)∩ Γ ⊆ {1}
and let F ={ϕ} be a uniformly bounded family in I⊥. Then,

ϕ̂(n + 1)− ϕ̂(n)→ 0 (n→ ∞),

uniformly with respect to ϕ ∈ F .

Proof. For arbitrary ξ ∈ Γ \ {1}, there is f ∈ I such that f (ξ) 6= 0. Notice
also that if ϕ ∈ I⊥, then

0 = 〈ϕ, zk f 〉 =
∞

∑
n=0

f̂ (n)ϕ̂(n + k) = 0 ∀k ∈ Z+.

By Lemma 4.3, the function

ϕ+(z) :=
∞

∑
n=0

ϕ̂(n)
zn (|z| > 1)

can be analytically extended to a neighborhood of ξ. On the other hand, the set
{ϕ̂(n) : ϕ ∈ F , n ∈ Z+} is uniformly bounded. Applying now Theorem 3.1 to

the family {ϕ̃+(z) : ϕ ∈ F}, where ϕ̃+(z) =
∞
∑

n=0
ϕ̂(n)zn (z ∈ D), we obtain as

required.

Now, we are in a position to prove Theorem 4.2.

Proof of Theorem 4.2. For a given ψ ∈ X∗1 , define a functional ϕ on A, by

〈ϕ, f 〉 = 〈ψ, x f 〉, f ∈ A+.

Then, ‖ϕ‖ 6 sup
n∈Z+

‖Tnx‖, ϕ ∈ IT(x)⊥, and ϕ̂(n) = ψ(Tnx) (n ∈ Z+). Moreover,

as hullIT(x) = spT(x), we have hullIT(x) ∩ Γ ⊆ {1}. Since

ϕ̂(n + 1)− ϕ̂(n) = ψ(Tn+1x− Tnx),

from Lemma 4.4 we can deduce that ψ(Tn+1x − Tnx) → 0 (n → ∞), uniformly
with respect to ψ ∈ X∗1 . Consequently, we have lim

n→∞
‖Tn+1x− Tnx‖ = 0.
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Let A(D) be the disc algebra and

I1 := { f ∈ A(D) : f (1) = 0}.

Recall [10] that if I+ is a closed ideal of A+ with hull(I) ∩ Γ = {1}, then I+ =
θ I1 ∩ A+, where θ is the greatest common divisor of the inner factors of all non-
zero functions in I+.

Under the hypotheses of Proposition 4.1, we have

(4.3) σT(x) ∩ Γ ⊆ spT(x) ∩ Γ.

The following example shows that σT(x) ∩ Γ 6= spT(x) ∩ Γ, in general. To see
this, let µ be a positive singular measure on Γ such that suppµ 6= Γ and let

θ(z) := exp
(
−
∫
Γ

ξ + z
ξ − z

dµ(ξ)
)

be an inner function. As we have noted above, σS∗(θ) ∩ Γ =suppµ 6= Γ, where
S∗ is the backward shift on the Hardy space H2. On the other hand, it is easy to
check that

IS∗(θ) = { f ∈ A+ : f (S∗)θ = 0} = {0}.
Consequently, spS∗(θ) = D, so that spS∗(θ) ∩ Γ = Γ.

The following question arises naturally. Under what conditions the inclu-
sion occurs in (4.3). Before stating the next result, we will make an observation.

LEMMA 4.5. Let T be a power bounded operator on a Banach space X and let E be
a closed T-invariant subspace of X. Then, for every x ∈ E, we have

σTE(x) ∩ Γ = σT(x) ∩ Γ.

Proof. Let x ∈ E. Clearly, σT(x) ⊆ σTE(x) and so

σT(x) ∩ Γ ⊆ σTE(x) ∩ Γ.

For the reverse inclusion, let π : X → X�E be the canonical mapping and ξ ∈
ρT(x) ∩ Γ. Then, there exists a neighborhood Uξ of ξ with u(z) analytic on Uξ

having values in X such that (zI − T)u(z) = x on Uξ . Notice that

u(z) = R(z, T)x =
∞

∑
n=0

z−n−1Tnx ∈ E,

for all z ∈ Uξ with |z| > 1. Therefore, we have πu(z) = 0 for all z ∈ Uξ with
|z| > 1. By uniqueness theorem, πu(z) = 0 for all z ∈ Uξ . Hence, u(z) ∈ E for all
z ∈ Uξ . Consequently, we can write

(zIE − TE)u(z) = x, ∀z ∈ Uξ .

This shows that ξ ∈ ρTE(x) ∩ Γ.

The following result was proved in Lemma 1.3 of [14].
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LEMMA 4.6. Let V be an isometry on a Banach space X. If x ∈ X is a cyclic vector
of V, then

σ(V) ∩ Γ = σV(x) ∩ Γ.

For a closed subset S of Γ, we put A(S) := A�IS, I+S := IS ∩ A+, and
A+(S) := A+�I+S . If S is countable and closed, then the map h : A+(S)→ A(S)
defined by h( f + I+S ) = f + IS is an isometric isomorphism ([12], Chapter XI,
Section 7).

Recall that T ∈ B(X) is said to be of class C1 if lim
n→∞

‖Tnx‖ = 0 implies that
x = 0.

We have the following.

PROPOSITION 4.7. Let T be a power bounded operator of class C1 on a Banach
space X and x ∈ X. If σT(x) ∩ Γ is countable, then

σT(x) ∩ Γ = spT(x) ∩ Γ.

Proof. Assume that the inclusion in (4.3) is proper; there exists ξ ∈ spT(x)∩
Γ, but ξ /∈ σT(x) ∩ Γ. By regularity of the algebra A, there is a function g ∈ A
such that g vanishes on σT(x) ∩ Γ and g(ξ) 6= 0. If S := {σT(x) ∩ Γ} ∪ {ξ}, then
as we have noted above, A+(S) = A(S). It follows that there exists f ∈ A+

such that f = g on {σT(x) ∩ Γ} ∪ {ξ}. Consequently, f vanishes on σT(x) ∩ Γ
and f (ξ) 6= 0.

Let E be the closed linear span of {Tnx : n ∈ Z+} and let (Y, J, V) be the
limit isometry associated with TE. By (3.1),

σV(Jx) ∩ Γ ⊆ σTE(x) ∩ Γ.

Taking into account Lemma 4.5, we have

σV(Jx) ∩ Γ ⊆ σT(x) ∩ Γ.

Since Jx is a cyclic vector of V, by Lemma 4.6, we can write

σ(V) ∩ Γ = σV(Jx) ∩ Γ ⊆ σT(x) ∩ Γ.

As σ(V) ∩ Γ is countable, V is invertible and hence

σ(V) ⊆ σT(x) ∩ Γ.

Further, since σ(V) is a set of synthesis and f vanishes on σ(V), we have f (V) =
0. On the other hand, by Lemma 3.6,

JTx = V Jx, ∀x ∈ E,

which implies
J f (T)x = f (V)Jx = 0.

Consequently, we have
lim

n→∞
‖Tn f (T)x‖ = 0.

Since T is of class C1, we obtain f (T)x = 0. This shows that f ∈ IT(x). As ξ ∈
spT(x), finally we obtain that f (ξ) = 0. This contradicts f (ξ) 6= 0.
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5. LOCAL QUANTITATIVE RESULTS

In this section, we present some quantitative results related to the Katznel-
son–Tzafriri theorem (for related results see, [2]).

For σ > 0, we put

Λσ := {eiθ ∈ Γ : |θ| 6 σ}.

The main result of this section is the following.

THEOREM 5.1. Let T ∈ B(X) be such that σ(T) ∩ Γ ⊆ Λσ. Then, for arbitrary
x ∈ X, the following assertions hold:

(i) If σ < π, then

lim
n→∞
‖Tn+1x− Tnx‖ 6 2 tan(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

(ii) If σ 6 π
2 , then

lim
n→∞
‖Tn+2x− Tnx‖ 6 4 sin(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

For the proof, we need some preliminary results. For a given σ > 0, we
denote by Bσ, the set of all bounded on the real line entire functions of exponential
type 6 σ. Then, Bσ is a Banach space [11] under the norm given by

‖ f ‖σ = sup
z∈C

(e−σ|Imz|| f (z)|).

The Phragmen–Lindelöf theorem implies that

‖ f ‖σ = sup
t∈R
| f (t)|, ∀ f ∈ Bσ.

The following inequality of Bernstein type is well known [11]. If f ∈ Bσ,
where 0 6 σh 6 π

2 , then

sup
t∈R
| f (t + h)− f (t− h)| 6 2 sin σh‖ f ‖σ.

In particular, for every f ∈ Bσ we have the following inequalities:

| f (1)− f (0)| 6 2 sin(σ/2)‖ f ‖σ, if σ 6 π and

| f (1)− f (−1)| 6 2 sin σ‖ f ‖σ, if σ 6
π

2
.

On the other hand, by Cartwright theorem ([3], Chapter 10 and [11]), the inequal-
ity

‖ f ‖σ 6
1

cos(σ/2)
sup
n∈Z
| f (n)|
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holds for every f ∈ Bσ (σ < π). Consequently, we have

| f (1)− f (0)| 6 2 tan(σ/2)
(

sup
n∈Z
| f (n)|

)
, ∀ f ∈ Bσ (σ < π) and(5.1)

| f (1)− f (−1)| 6 4 sin(σ/2)
(

sup
n∈Z
| f (n)|

)
, ∀ f ∈ Bσ (σ 6

π

2
).(5.2)

Let V be an invertible isometry on a Banach space. Notice that if σ(V) = Γ,
then ‖V − I‖ = 2. If σ(V) is a proper subset of Γ, then we may assume that σ(V)
is contained in the arc Λσ, where 0 6 σ < π (any proper closed subset of Γ can be
rotated so as to lie inside some such Λσ). Then V = eS for some S ∈ B(X), where
σ(S) ⊆ [−iσ, iσ].

For a given ϕ ∈ B(X)∗ with norm one, consider the entire function f (z) :=
ϕ(ezS). Let us show that f ∈ Bσ. The inequality

| f (z)| 6 e|z|‖S‖

gives us that the order of f is less than or equal to 1. Since the nth derivative of
f at zero is ϕ(Sn), by Levin’s theorem ([16], p. 84), the type of f is less than or
equal to

lim
n→∞

‖Sn‖1/n (= r(S)).

As σ(S) ⊆ [−iσ, iσ], the type of the function f is less than or equal to σ. It remains
to show that f is bounded on the real line. Indeed, if t ∈ R, then t = n + r, where
n ∈ Z and |r| < 1. Since ‖enS‖ = 1 (n ∈ Z), we have

| f (t)| = |ϕ(e(n+r)S)| 6 ‖enS‖‖erS‖ 6 e‖S‖.

Now, applying (5.1) and (5.2) to the function f , we obtain the following inequali-
ties:

‖V − I‖ 6 2 tan(σ/2) (σ < π) and(5.3)

‖V2 − I‖ = ‖V −V−1‖ 6 4 sin(σ/2) (σ 6
π

2
).(5.4)

We need also the following result.

LEMMA 5.2. Let T be a contraction on a Banach space X and let x ∈ X be such
that σT(x) ∩ Γ ⊆ Λσ. Then, the following assertions hold:

(i) If σ < π, then

lim
n→∞
‖Tn+1x− Tnx‖ 6 2 tan(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

(ii) If σ 6 π
2 , then

lim
n→∞
‖Tn+2x− Tnx‖ 6 4 sin(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

Proof. Let E be the closed linear span of {Tnx : n ∈ Z+} and let (Y, J, V) be
the limit isometry associated with TE. As in the proof of Proposition 4.7, we have

σ(V) ∩ Γ ⊆ σT(x) ∩ Γ.
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On the other hand, the condition σT(x) ∩ Γ ⊆ Λσ implies that σ(V) ∩ Γ 6= Γ
and therefore V is invertible. Consequently, we have σ(V) ⊆ Λσ. Now, from the
identities

(V − I)Jx = J(Tx− x), (V2 − I)Jx = J(T2x− x),
and from the inequalities (5.3) and (5.4), we can write

lim
n→∞
‖Tn+1x− Tnx‖ = ‖J(Tx− x)‖ = ‖(V − I)Jx‖

6 2 tan(σ/2)
(

lim
n→∞

‖Tnx‖
)

(σ < π), and

lim
n→∞
‖Tn+2x− Tnx‖ = ‖J(T2x− x)‖ = ‖(V2 − I)Jx‖

6 ‖V2 − I‖‖Jx‖ 6 4 sin(σ/2)
(

lim
n→∞

‖Tnx‖
)

(σ 6
π

2
).

We are now able to prove Theorem 5.1.

Proof of Theorem 5.1. (i) Let x ∈ X. We may assume that sup
n∈Z+

‖Tnx‖ < ∞,

that is, x ∈ ZT , where ZT is the Hille–Yosida space of T. Then, T |ZT is a contrac-
tion and

σT|ZT
(x) ∩ Γ ⊆ σ(T |ZT ) ∩ Γ ⊆ σ(T) ∩ Γ ⊆ Λσ.

By Lemma 5.2,

lim
n→∞

‖(T |ZT )
n+1x− (T |ZT )

nx‖ZT 6 2 tan(σ/2)
(

lim
n→∞

‖Tnx‖ZT

)
= 2 tan(σ/2)

(
lim

n→∞
sup
k>0
‖Tn+kx‖

)
= 2 tan(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

On the other hand, as

‖(T |ZT )
n+1x− (T |ZT )

nx‖ZT = sup
k>0
‖Tn+k+1x− Tn+kx‖,

we obtain that

lim
n→∞
‖Tn+1x− Tnx‖ 6 2 tan(σ/2)

(
lim

n→∞
‖Tnx‖

)
.

The proof of (ii) is similar.
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