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ABSTRACT. We give some necessary and sufficient conditions for the possi-
bility to represent a Hermitian operator on an infinite dimensional Hilbert

space (real or complex) in the form
n
∑

i=1
QiPi, where P1, . . . , Pn, Q1, . . . , Qn are

orthogonal projections. We show that the smallest number n = n(c) admit-

ting the representation x =
n(c)
∑

i=1
QiPi for every x = x∗ with ‖x‖ 6 c satisfies

8c + 8
3 6 n(c) 6 8c + 10. This is a partial answer to the question asked by

L.W. Marcoux in 2010.
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1. INTRODUCTION

The research on representing an operator on the Hilbert space as a sum or
a linear combination of orthogonal projections (or idempotents, square-zero op-
erators, commutators of projections and so on) has a long history. We mention
here important papers by Stampfli [8] (who showed that every operator on in-
finite dimensional H is a sum of 8 idempotents), Fillmore [5] (who showed that
every operator on infinite dimensional H is a sum of 64 square-zero operators
and a linear combination of 257 orthogonal projections) and Pearcy and Topping
[7] (who improved these results showing that every operator on infinite dimen-
sional H is a sum of 5 idempotents, a sum of 5 square-zero operators and a linear
combination of 16 orthogonal projections). For a deep survey on this subject see
an expository paper by Marcoux [6].

Note that the sum of orthogonal projections is always a positive operator.
For this reason if we want to represent any operator (or at least any self-adjoint
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operator) as a sum of operators belonging to some class K ⊂ B(H) then we can-
not restrict ourselves to the class of orthogonal projections and we need to con-
sider some other classes. In 2003 Bikchentaev [1] showed that every operator x
on the infinite dimensional Hilbert space H is a sum of compositions of pairs of

projections, i.e. x =
n
∑

i=1
QiPi for some n and orthogonal projections P1, . . . , Pn,

Q1, . . . , Qn. Note that the assumption dim H = ∞ is necessary because every
operator on the finite dimensional Hilbert space has a finite trace and the equal-

ity x =
n
∑

i=1
QiPi implies trace(x) =

n
∑

i=1
trace(QiPi) > 0. To obtain his result

Bikchentaev uses the representation of an operator as a sum of 5 idempotents
(Pearcy–Topping [7]) but he does not estimate the number of summands in his
representation. This problem is explicitly posed by Marcoux [6]: for any c > 0

find possibly small n(c) such that if ‖x‖ 6 c then x =
n(c)
∑

i=1
QiPi for some or-

thogonal projections P1, . . . , Pn(c), Q1, . . . , Qn(c). The first attempt to answer this
question for self-adjoint operators x was presented in [4] where Bikchentaev and
Paszkiewicz show that if ‖x‖ 6 1

12 then the considered representation needs at
most 6 summands, hence n(c) 6 6d12ce ∼ 72c (for self-adjoint operators). Now
we extend the ideas presented in [4] and we show that for self-adjoint operators
x we have 8c + 8

3 6 n(c) 6 8c + 10 (hence n(c) ∼ 8c for large c), see Corollary 2.5.
Moreover, we have the following phenomenon. Let c(n) and C(n) be the

largest positive numbers such that the representation x =
n
∑

i=1
QiPi is possible for

any x satisfying 0 6 x 6 C(n) · 1 or −c(n) · 1 6 x 6 0. Then C(n) ≈ 8c(n)
for large n. Thus it is natural to characterize the operators x = x∗ admitting the

representation x =
n
∑

i=1
QiPi using operator inequalities. We give some simple and

precise, necessary and sufficient conditions of that type, valid for both real and
complex Hilbert spaces. An important tool in our investigation is a description
of the matrix representation of all possible compositions of pairs of projections in
2-dimensional Hilbert space (Lemma 3.1). We will also use the spectral theorem
for self-adjoint, bounded operators.

2. MAIN RESULTS

Now we present the main results of the paper.

THEOREM 2.1. Let H be a real or complex Hilbert space and let n be positive

integer. If x = x∗ ∈ B(H) satisfies x =
n
∑

i=1
QiPi for some orthogonal projections

P1, . . . , Pn, Q1, . . . , Qn then
−n

8
· 1 6 x 6 n · 1.
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One proves that the constants− n
8 and n in this theorem cannot be improved,

more precisely.

PROPOSITION 2.2. The constant n in Theorem 2.1 cannot be decreased. If dim H
> 2 and n is even then the constant − n

8 in Theorem 2.1 cannot be increased.

If n is odd then − n
8 can be replaced by some greater constant. However, we

have not found its optimal value.
Theorem 2.1 gives some conditions necessary for the representation x =

n
∑

i=1
QiPi. The following theorem shows that these conditions are not sufficient.

THEOREM 2.3. Let H be a real or complex Hilbert space and let n be positive

integer. Suppose that x = x∗ ∈ B(H) satisfies x 6 a · 1 for some a < − (n−2)2

8n . Then

x 6=
n
∑

i=1
QiPi for every orthogonal projections P1, . . . , Pn, Q1, . . . , Qn.

Sufficient conditions are given in the next theorem.

THEOREM 2.4. Let H be a real or complex infinite dimensional Hilbert space and
let n > 4. If x = x∗ ∈ B(H) is an operator satisfying

− (n− 4)2

8n
· 1 6 x 6 (n− 2) · 1 if n is even,

− (n− 5)2

8(n− 1)
· 1 6 x 6 (n− 3) · 1 if n is odd,

then there exist orthogonal projections P1, . . . , Pn, Q1, . . . , Qn such that x =
n
∑

i=1
QiPi.

As a consequence of Theorems 2.3 and 2.4 we obtain the following estimates
for the constants n(c) from the Marcoux’s question.

COROLLARY 2.5. For every c > 0 let n(c) be the smallest number such that for
every x = x∗ on infinite dimensional Hilbert space, satisfying ‖x‖ 6 c the representation

x =
n(c)
∑

i=1
QiPi is possible. Then we have

2 + 4c + 4
√

c2 + c 6 n(c) 6 2d2 + 2c + 2
√

c2 + 2ce.

In particular 8c + 8
3 6 n(c) 6 8c + 10, hence n(c)

c → 8 for c→ ∞.

3. PROOFS

The following two-dimensional result is very useful.

LEMMA 3.1. Let K = R or C, let e1 =
(

1
0
)

and e2 =
(

0
1
)
∈ K2 and let A ⊂ R2

be the set of all pairs (Re(QPe1, e1), Re(QPe2, e2)), where P and Q are one-dimensional
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projections in K2. Then A = {(x, y) ∈ R2 : (x − y)2 6 x + y 6 1}. Moreover,
there exist Borel functions P· and Q· : A → B(K2) such that for every (x, y) ∈ A
the operators Px,y and Qx,y are one-dimensional projections, (Qx,yPx,ye1, e1) = x and
(Qx,yPx,ye2, e2) = y.

Proof. Let (x, y) ∈ A, hence x = Re(QPe1, e1) and y = Re(QPe2, e2) for
some one-dimensional projections P =

( p1
p2

)
(p1, p2) and Q =

( q1
q2

)
(q1, q2) with

p1, p2, q1, q2 ∈ K satisfying ‖(p1, p2)‖ = ‖(q1, q2)‖ = 1. Then

x = Re
(
(1, 0)

( q1
q2

)
(q1, q2)

( p1
p2

)
(p1, p2)

(
1
0
))

= Re(q1 p1(q1 p1 + q2 p2)),

y = Re
(
(0, 1)

( q1
q2

)
(q1, q2)

( p1
p2

)
(p1, p2)

(
0
1
))

= Re(q2 p2(q1 p1 + q2 p2)).

It follows that x + y = |q1 p1 + q2 p2|2 6 ‖(q1, q2)‖2‖(p1, p2)‖2 = 1 and

(x− y)2 6 |(q1 p1 + q2 p2)(q1 p1 − q2 p2)|
2

6 |q1 p1 + q2 p2|2‖(q1, q2)‖2‖(p1,−p2)‖2 = x + y.

Now, let (x, y) ∈ R2 be such that (x − y)2 6 x + y 6 1. If (x, y) = (0, 0)
then we consider one-dimensional projections P0,0 =

(
1 0
0 0
)

and Q0,0 =
(

0 0
0 1
)

and
we have (Q0,0P0,0e1, e1) = (Q0,0P0,0e2, e2) = 0. Hence (0, 0) ∈ A. If (x, y) 6= (0, 0)
then for s := x + y and d := x− y we have s > 0, s− d2 > 0 and 1

s − 1 > 0 and
we can define

Px,y =


1+d+

√
(s−d2)

( 1
s−1
)

2

√
s−d2−d

√
1
s−1

2
√

s−d2−d
√

1
s−1

2

1−d−
√
(s−d2)

( 1
s−1
)

2

 ,

Qx,y =


1+d−

√
(s−d2)

( 1
s−1
)

2

√
s−d2+d

√
1
s−1

2
√

s−d2+d
√

1
s−1

2

1−d+

√
(s−d2)

( 1
s−1
)

2

 .

It is easy to check that Px,y = (Px,y)∗, Qx,y = (Qx,y)∗, det(Px,y) = det(Qx,y) =
0 and trace(Px,y) = trace(Qx,y) = 1, hence Px,y and Qx,y are one-dimensional
projections. Moreover (Qx,yPx,ye1, e1)=x and (Qx,yPx,ye2, e2)=y, hence (x, y)∈A.

The maps A 3 (x, y) 7→ Px,y and A 3 (x, y) 7→ Qx,y are continuous every-
where besides (0, 0), hence they are Borel maps, as required.

The first consequence of Lemma 3.1 is Theorem 2.1. First we need the fol-
lowing

COROLLARY 3.2. Let K = R or C. If e ∈ K2 satisfies ‖e‖ = 1 and if P, Q are
one-dimensional projections in K2 then − 1

8 6 Re(QPe, e) 6 1.

Proof. Without loss of generality (we can choose an appropriate coordinate
system) it is enough to consider the case e = e1 =

(
1
0
)
. Then the set of possible

values of Re(QPe, e) is {x : (x, y) ∈ A for some y ∈ R} = [− 1
8 , 1].
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Proof of Theorem 2.1. Let H be a Hilbert space over the field K with K = C
or R.

If dim H = 1 then the only projections in H are 0 and 1. It follows that if

x =
n
∑

i=1
QiPi then x = m · 1 for some m = 0, . . . , n. In the sequel we assume that

dim H > 2.
Now, we fix e ∈ H and i ∈ {1, . . . , n}. Let p, q be one-dimensional pro-

jections such that pe = Pie and qe = Qie. Moreover, let r be two-dimensional
projection satisfying p 6 r and q 6 r and let U : K2 → H be an isometry satisfy-
ing UU∗ = r. Then

(QiPie, e) = (Pie, Qie) = (pe, qe) = (rpre, qre)

= (UU∗pUU∗e, qUU∗e) = (Pe′, Qe′) = (QPe′, e′),

where P = U∗pU and Q = U∗qU are one-dimensional projections in K2 and
e′ = U∗e ∈ K2. If e′ 6= 0, then

(QiPie, e) = (QPe′, e′) =
(

QP
e′

‖e′‖ ,
e′

‖e′‖

)
· ‖e′‖2.

Since ‖e′‖ 6 ‖e‖ and (by Corollary 3.2) − 1
8 6 Re

(
QP e′
‖e′‖ , e′

‖e′‖

)
6 1 we obtain

− 1
8 · ‖e‖2 6 Re(QiPie, e) 6 ‖e‖2. If e′ = 0, then (QiPie, e) = (QPe′, e′) = 0 and

the last inequality is also satisfied.

Summing the obtained inequalities with i=1, . . . , n and using
n
∑

i=1
Re(QiPie, e)

= Re(xe, e) = (xe, e) we get − n
8 · ‖e‖2 6 (xe, e) 6 n · ‖e‖2, which implies that the

self-adjoint operator x satisfies − n
8 · 1 6 x 6 n · 1.

Another consequence of Lemma 3.1 is Proposition 2.2.

Proof of Proposition 2.2. For any (real or complex) Hilbert space H and P1 =

· · · = Pn = Q1 = · · · = Qn = 1 we have x =
n
∑

i=1
QiPi = n · 1, hence the constant

n cannot be decreased.
Let H = R2 or H = C2 and let n be even. We put

Q1 = Q3 = · · · = Qn−1 = Q−1/8,3/8,

P1 = P3 = · · · = Pn−1 = P−1/8,3/8,

Q2 = Q4 = · · · = Qn =
( 1 0

0 −1
)

Q−1/8,3/8 ( 1 0
0 −1

)
,

P2 = P4 = · · · = Pn =
( 1 0

0 −1
)

P−1/8,3/8 ( 1 0
0 −1

)
.

Since Q−1/8,3/8P−1/8,3/8 =

(
− 1

8 b
c 3

8

)
for some b, c ∈ R, we get that

x =
n

∑
i=1

QiPi =

(
− n

8 0
0 3n

8

)
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is self-adjoint and the constant − n
8 in Theorem 2.1 cannot be increased. For any

H with dim H > 2 the result easily follows from the two-dimensional case.

One more consequence of Lemma 3.1 is Theorem 2.3.

Proof of Theorem 2.3. Aiming at a contradiction we assume that a < − (n−2)2

8n ,

x = x∗ 6 a · 1 and x =
n
∑

i=1
QiPi for some orthogonal projections P1, . . . , Pn,

Q1, . . . , Qn.
For i = 1, . . . , n let mi = inf{Re(QiPie, e) : ‖e‖ = 1}. Without loss of gen-

erality we may assume that m1 = min{m1, . . . , mn}. Clearly nm1 6
n
∑

i=1
mi 6

inf{(xe, e) : ‖e‖ = 1} 6 a, hence m1 6 a
n < − (n−2)2

8n2 .

We put M = sup{Re(Q1P1e, e) : ‖e‖ = 1}. We fix positive ε < (n−2)2

8n2 and
we choose e ∈ H satisfying ‖e‖ = 1 and Re(Q1P1e, e) > M− ε. We have

a > (xe, e) = Re(Q1P1e, e) +
n

∑
i=2

Re(QiPie, e) > M− ε + (n− 1)m1.

Next, we choose f1 ∈ H satisfying ‖ f1‖ = 1 and Re(Q1P1 f1, f1) < m1 + ε. Then
for every f2 ∈ H with ‖ f2‖ = 1 one has

(3.1) a > M− ε + (n− 1)m1 > Re(Q1P1 f2, f2) + (n− 1)Re(Q1P1 f1, f1)− nε.

By Re(Q1P1 f1, f1) < m1 + ε < 0 we have that P1 f1 6= 0 and P1 f1 6= f1, hence
f1 and P1 f1 are linearly independent. Let r be the projection onto span ( f1, P1 f1)
and let p 6 r and q be one-dimensional projections such that p f1 = P1 f1 and
qp = Q1 p. The subspace rH is isometric to R2 (or C2) and we are going to use
Lemma 3.1. We choose f2 ∈ rH satisfying f2 ⊥ f1 and ‖ f2‖ = 1. Since p f1 = P1 f1
and p(P1 f1) = P1(P1 f1) it follows that p f = P1 f for every f ∈ rH. In particular
p f2 = P1 f2, hence qp f2 = Q1P1 f2.

Note that rqr is one-dimensional self-adjoint operator, hence rqr = αq′ for
some 0 6 α 6 1 and one-dimensional projection q′ 6 r. By (3.1) we have

a + nε > Re(Q1P1 f2, f2) + (n− 1)Re(Q1P1 f1, f1)

=Re(qp f2, f2)+(n−1)Re(qp f1, f1)=Re(qrp f2, r f2)+(n−1)Re(qrp f1, r f1)

=Re(rqrp f2, f2) + (n− 1)Re(rqrp f1, f1)

=α[Re(q′p f2, f2) + (n− 1)Re(q′p f1, f1)].

We have a + nε < 0, hence Re(q′p f2, f2) + (n− 1)Re(q′p f1, f1) < 0. Thus

a + nε > α[Re(q′p f2, f2) + (n− 1)Re(q′p f1, f1)]

> Re(q′p f2, f2) + (n− 1)Re(q′p f1, f1).
(3.2)
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On the other hand, by Lemma 3.1 and an elementary computation concerning the
set A defined in that lemma we have

Re(q′p f2, f2)+(n−1)Re(q′p f1, f1)> inf{y+(n−1)x : (x, y)∈A}=− (n−2)2

8n
> a,

which contradicts (3.2) for small enough ε.

The last consequence of Lemma 3.1 is Theorem 2.4. Its proof is based on the
following proposition:

PROPOSITION 3.3. Let K be a real or complex Hilbert space, z1, z2 ∈ B(K) be two
self-adjoint commuting operators and let z1 =

∫
x(λ)E(dλ) and z2 =

∫
y(λ)E(dλ)

be their spectral representations with a common spectral measure E. Assume that for
every λ ∈ R we have (x(λ), y(λ)) ∈ A, where A is the set defined in Lemma 3.1. Then
z := z1 ⊕ z2 ∈ B(K ⊕ K) satisfies 2z = QP + Q′P′ for some projections P, Q, P′ and
Q′ in K⊕ K.

Proof. Using P·, Q· from Lemma 3.1, for every λ ∈ R we obtain

Px(λ),y(λ) =
(

p11(λ) p12(λ)
p21(λ) p22(λ)

)
and Qx(λ),y(λ) =

(
q11(λ) q12(λ)
q21(λ) q22(λ)

)
,

where pij, qij : R→ R are Borel functions. We define

P=

(∫
p11(λ)E(dλ)

∫
p12(λ)E(dλ)∫

p21(λ)E(dλ)
∫

p22(λ)E(dλ)

)
, Q=

(∫
q11(λ)E(dλ)

∫
q12(λ)E(dλ)∫

q21(λ)E(dλ)
∫

q22(λ)E(dλ)

)
,

P′ =
( 1 0

0 −1
)

P
( 1 0

0 −1
)

and Q′ =
( 1 0

0 −1
)

Q
( 1 0

0 −1
)

.

Using Lemma 3.1 and the von Neumann operator calculus we easily obtain that
P, Q, P′ and Q′ are projections in K⊕ K and

QP + Q′P′ =
(

2
∫

x(λ)E(dλ) 0
0 2

∫
y(λ)E(dλ)

)
= 2z.

We also need the following remark:

REMARK 3.4. Let K be a Hilbert space with dim K = ∞ and let x = x∗ ∈
B(K). Then there exists a projection E on K such that rank E = rank(1 − E) =
dim K and E commutes with x.

Let K be a Hilbert space with dim K 6 ∞ and let F ∈ B(K) be a projection.
Assume that cardinal numbers d1, d2 satisfy d1 + d2 = dim K. Then there exists
a projection E on K such that rank E = d1, rank(1 − E) = d2 and E commutes
with F.

Proof of Theorem 2.4. It is enough to consier the case when n is even. Indeed,

if n is odd then by the even case we present x as
n−1
∑

i=1
QiPi + 00, where 0 is the zero

projection.
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Let n = 2m > 4 be fixed. We will define self-adjoint operators y1, . . . , ym

satisfying x =
m
∑

i=1
yi and such that yi = QiPi + Q′iP

′
i for some projections Pi, Qi,

P′i and Q′i (then the proof will be finished).
We will use the following observation. For y = y∗ ∈ B(H) the existence

of projections P, Q, P′ and Q′ satisfying y = QP + Q′P′ is a consequence of the
following condition: There exist projections Ĝ1, Ĝ2, G̃1 and G̃2 ∈ B(H) satisfying:

(i) Ĝ1 + Ĝ2 + G̃1 + G̃2 = 1, dim Ĝ1 = dim Ĝ2 and dim G̃1 = dim G̃2,
(ii) Ĝ1, Ĝ2, G̃1 and G̃2 commute with y,

(iii) yĜ2 = 0 and 0 6 yĜ1 6 2 · Ĝ1,
(iv) yG̃2 = 2b · G̃2 and 2a · G̃1 6 yG̃1 6 2(1− b) · G̃1,

where a = − (m−2)(m+2)
8m2 and b = (m−2)(3m−2)

8m2 .
Indeed, by (i) we have dim Ĝ1 = dim Ĝ2 and we may identify K̂ :≈ Ĝ1H ≈

Ĝ2H and then we may treat the operators z1 = yĜ2
2 = 0 and z2 = yĜ1

2 as the self-
adjoint operators in B(K̂) (here we also use (ii)). Clearly z1 and z2 commute, hence
they have the spectral representations z1 =

∫
x(λ)E(dλ) and z2 =

∫
y(λ)E(dλ)

with a common spectral measure E. Clearly x(λ) = 0 and (by (iii)) 0 6 y(λ) 6 1
for every λ. It follows that for every λ ∈ R we have (x(λ), y(λ)) ∈ A. By Propo-
sition 3.3 we obtain y(Ĝ1 + Ĝ2) = 2(z1 ⊕ z2) = Q̂P̂ + Q̂′ P̂′ for some projections
P̂, Q̂, P̂′, Q̂′ 6 Ĝ1 + Ĝ2.

Similarly, using (i), (ii) and (iv), we obtain y(G̃1 + G̃2) = Q̃P̃+ Q̃′ P̃′ for some
projections P̃, Q̃, P̃′, Q̃′ 6 G̃1 + G̃2. Indeed, after identification K̃ :≈ G̃1H ≈ G̃2H

we have y(G̃1+G̃2)
2 =

∫
x(λ)E(dλ)⊕

∫
y(λ)E(dλ) with x(λ) = b and a 6 y(λ) 6

1 − b (by (iv)). It follows that (x(λ), y(λ)) ∈ A for every λ ∈ R (the special
choice of the constants a and b plays a role here) and by Proposition 3.3 we obtain
y(G̃1 + G̃2) = Q̃P̃ + Q̃′ P̃′.

Finally (by (i)) we have

y = y(Ĝ1 + Ĝ2) + y(G̃1 + G̃2) = QP + Q′P′

for the projections P = P̃ + P̂, Q = Q̃ + Q̂, P′ = P̃′ + P̂′ and Q′ = Q̃′ + Q̂′.

It remains to define self-adjoint operators y1, . . . , ym satisfying x =
m
∑

i=1
yi

and (i)–(iv) for appropriate Ĝ1, Ĝ2, G̃1 and G̃2 (depending on i). We start by

picking projections E1, . . . , Em in H such that
m
∑

i=1
Ei = 1, dim Ei = dim H and Ei

commutes with x for every i. (Here we use Remark 3.4 m− 1 times.) Next, we
define F = supp (x − 2b · 1)+ and F⊥ = 1 − F (here y+ = y+|y|

2 for y = y∗).
Clearly F and F⊥ commute with x and with projections Ei.

Next, for each i we define Ĝi1 = (1− Ei)F and G̃i1 = (1− Ei)F⊥. Then we
apply Remark 3.4 for K = Ei H, d1 = dim Ĝi1 and d2 = dim G̃i1 (clearly d1 + d2 =

dim(1− Ei) = dim Ei). We obtain projections Ĝi2 and G̃i2 = Ei − Ĝi2 commuting
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with EiF and satisfying dim Ĝi2 = d1 = dim Ĝi1 and dim G̃i2 = d2 = dim G̃i1.
Clearly condition (i) is satisfied.

We have that 2m projections Ĝi1 = (1 − Ei)F, G̃i1 = (1 − Ei)F⊥ (with
i = 1, . . . , m) mutually commute, because F, E1, . . . , Em commute. The 2m pro-
jections Ĝi2, G̃i2 are mutually orthogonal, hence they commute. Finally, each of
the projections Ĝi2, G̃i2 commute with E1, . . . , Em and F thus they commute with
each of 2m projections Ĝi1, G̃i1. It follows that each pair of 4m projections Ĝi1, G̃i1,
Ĝi2 and G̃i2 (with i = 1, . . . , m) commute. Moreover, for any given i the opera-
tor (1− Ei)x commutes with the projections Ĝi1 = (1− Ei)F, G̃i1 = (1− Ei)F⊥,
Ĝi2 6 Ei and G̃i2 6 Ei.

We define yi’s as follows:

(3.3) yi = 2b · G̃i2 +
1

m− 1
· (1− Ei)x− 2b

m− 1
·∑

j 6=i
G̃j2.

It is easy to verify that x =
m
∑

i=1
yi and yi commutes with Ĝi1, G̃i1, Ĝi2 and G̃i2

(hence(ii) is satisfied).
By (3.3) we have

(3.4) yi = 0 · Ĝi2 +
x− 2b · D

m− 1
· Ĝi1 + 2b · G̃i2 +

x− 2b · D
m− 1

· G̃i1,

where D := ∑
j 6=i

G̃j2 6 ∑
j 6=i

Ej = Ĝi1 + G̃i1 is a projection and it commutes with Ĝi1

and G̃i1.
We will verify conditions (iii) and (iv). By (3.4), x 6 (n− 2) · 1 = 2(m− 1) · 1,

b > 0 and DĜi1 > 0 (DĜi1 is a projection) we obtain

yiĜi1 =
x− 2b · D

m− 1
· Ĝi1 =

xĜi1
m− 1

− 2b · DĜi1
m− 1

6 2 · Ĝi1.

Since Ĝi1 is a subprojection of F (which is the support of (x− 2b · 1)+) we obtain
that (x− 2b · 1)Ĝi1 > 0 thus

yiĜi1 =
x− 2b · D

m− 1
· Ĝi1 =

x− 2b · 1
m− 1

· Ĝi1 +
2b

m− 1
· (1− D)Ĝi1 > 0.

By (3.4) we also have yiĜi2 = 0, hence (iii) is satisfied.
Since G̃i1 is a subprojection of F⊥, hence (x− 2b · 1)G̃i1 6 0. Consequently

(by (3.4))

yiG̃i1 =
x− 2b · D

m− 1
· G̃i1 =

2b
m− 1

· G̃i1 +
x− 2b · 1

m− 1
· G̃i1 −

2b
m− 1

· DG̃i1

6
2b

m− 1
· G̃i1 6 2(1− b) · G̃i1.
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Here we used the inequality b
m−1 6 1− b, which is valid for b = (m−2)(3m−2)

8m2 . By

x > − (n−4)2

8n · 1 = − (m−2)2

4m · 1 we obtain

yiG̃i1 =
x− 2b · D

m− 1
· G̃i1 =

x
m− 1

· G̃i1 −
2b

m− 1
· G̃i1 +

2b
m− 1

· (1− D)G̃i1

> − (m− 2)2

4m(m− 1)
· G̃i1 −

2b
m− 1

· G̃i1 = a · G̃i1.

By (3.4) we have yiG̃i2 = 2b · G̃i2, hence (iv) is satisfied.

Proof of Corollary 2.5. By Theorem 2.3 we have c 6 (n(c)−2)2

8n(c) . Solving this

inequality on n(c) we obtain 2 + 4c + 4
√

c2 + c 6 n(c).
Now, let n = 2d2 + 2c + 2

√
c2 + 2ce. Then n > 4 is even and it satisfies

c 6 (n−4)2

8n . Hence, by Theorem 2.4, we know that every x = x∗ satisfying ‖x‖ 6 c

admits the representation x =
n
∑

i=1
QiPi. Thus n(c) 6 2d2 + 2c + 2

√
c2 + 2ce.

The second part of the corollary follows by the inequalities

d2 + 4c + 4
√

c2 + ce > 8c +
8
3

and 2d2 + 2c + 2
√

c2 + 2ce 6 8c + 10

for c > 0.

4. FINAL REMARKS

We do not know any estimates for the number n(c) for not necessarily Her-
mitian operators. It seems that finding such estimates might be easier for complex
Hilbert spaces. This belief is based on the possibility to represent any operator as
x + iy with self-adjoint x and y, which is possible only in the complex case.

Bikchentaev generalized his result about the representation x =
n
∑

i=1
QiPi in

B(H) to wide classes of C∗-algebras, in particular he considered properly infinite
von Neumann algebras ([2], [3]). We believe that all the results proved in our
paper can also be generalized from B(H) to any properly infinite von Neumann
algebra.
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E-mail address: adampasz@math.uni.lodz.pl

Received June 17, 2014; revised January 13, 2015.


	1. INTRODUCTION
	2. MAIN RESULTS
	3. PROOFS
	4. FINAL REMARKS
	REFERENCES

