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ABSTRACT. We provide a unified approach to fiber dimension of invariant
subspaces in vector-valued analytic function spaces. Based on an elementary
observation on linear equations, it is shown that the fiber dimension is an ad-
ditive invariant for multiplier invariant subspaces in case the function space
admits a complete Nevanlinna–Pick kernel, and a similar approach applies
to give new simple proofs of two important theorems on fiber dimension re-
cently established relating respectively to the cellular indecomposable prop-
erty and the transitive algebra problem.
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INTRODUCTION

Let H be a Hilbert space consisting of analytic functions over some domain
Ω in the m-dimensional complex space Cm. For a fixed positive integer N, we
denote by H ⊗CN the direct sum of N copies of H which can be identified with
a function space consisting of CN-valued functions. Fix an orthonormal base of
CN , any element F in H ⊗CN can be represented as F = ( f1, . . . , fN) where each
fi lies in H, called an entry of F.

The theory of invariant subspaces is one of the central concerns in operator
theory and invariant subspaces in scalar-valued function spaces have been ex-
tensively studied for quite a few decades. We focus in this paper on invariant
subspaces in vector-valued function spaces H ⊗ CN for operators defined on H
which naturally acts on H ⊗CN entry-wise.

Fiber dimension has proved to be an efficient invariant for invariant sub-
spaces in vector-valued analytic function spaces as exhibited in many recent
works. It is shown, as can be seen in [4], [5], [6], [7], [8], [9], [10], to be related to
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operator-theoretic numerical invariants such as Fredholm index, algebraic invari-
ants such as Samuel multiplicity, analytical invariants such as Arveson’s curva-
ture invariant, etc. On the other hand, its definition is naive and under favourable
circumstances, can be accessed via elementary approaches.

DEFINITION 0.1. For a linear subspaceM in H ⊗CN , the fiber dimension of
M, denoted by fd(M), is defined to be

fd(M) = sup
z∈Ω

dimM(z),

hereM(z) = {F(z) : F ∈ M}.
Since any fiber space M(z) lies in CN , the fiber dimension never exceeds

N. As a finite integer defined on spaces of infinite linear dimension, the fiber di-
mension roughly measures the “size” of a subspace sitting inside H ×CN , hence
is essentially a “geometric invariant”. We will collect its basic properties in a later
section.

Calculation of fiber dimension is not as easy as its plain definition seems to
suggest. In particular, it is natural to ask whether, or under what kind of condi-
tions, the fiber dimension enjoys classical properties of our familiar linear dimen-
sion, which is the main theorem of this note.

In the sequel, we assume that the analytic function space H is a Hilbert space
such that point-wise evaluation is bounded. It is well-known that in this case H
admits a reproducing kernel, and is called a reproducing kernel Hilbert space.
Problems on reproducing kernel Hilbert spaces can be accessed by studying prop-
erties of their reproducing kernels as exhibited by a large literatures which is im-
possible for us to list. This paper focuses on reproducing kernel Hilbert spaces
which admit a complete Nevalinna–Pick kernel (NP for short).

The theory of NP kernels partly rises from the problem of interpolation by
multipliers (see [1]). Recall that if φ is a function over Ω such that φ f ∈ H for
all f ∈ H, then φ is called a multiplier of H and the linear operator f → φ f
is necessarily bounded which we denote by Mφ. The set of all multipliers on
H forms an algebra called the multiplier algebra of H. It turns out that in case H
admits a complete NP kernel, a multiplier invariant subspaces of H⊗CN are very
well behaved (here multiplier naturally acts on elements of H ⊗CN entry-wise).

PROPOSITION 0.2 ([6], Lemma 3.4). Let H be a reproducing kernel Hilbert space
over Ω with complete NP kernel andM be a multiplier invariant subspace in H ⊗CN ,
thenM admits a dense subspace consisting of elements with multiplier entries.

The above result is a consequence of the Beurling-type characterization (see
[12]) of multiplier invariant subspaces when H is of complete NP kernel, which
includes, for example, the classical Hardy and Dirichlet space over the unit disc,
but not the Bergman space. This approximating property of multipliers will en-
able us to carry out classical arguments for linear dimension at the level of fiber
dimension.
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We start with the additive property of fiber dimension. To be precise, if
K,M,N are subspaces in H ⊗CN which forms an exact sequence

0→ K S−→M T−→ N → 0

does it follow that fd(M) = fd(K) + fd(N )?
As linear dimension is well-known to be additive for short exact sequences

with linear maps, the answer is apparently no for fiber dimension. In fact, one
can easily find two linearly isomorphic subspaces in H ⊗CN with different fiber
dimensions. For instance, H⊕ H and H⊕ {0} are linearly isomorphic (since H is
infinite dimensional) with fiber dimensions 2 and 1 respectively.

On the other hand, if we work in the category of multiplier invariant sub-
spaces, fiber dimension is indeed additive provided that the linear maps occur-
ring in the exact sequence are “module maps”, i.e, S and T commute with action
of all multipliers. We state our result on additivity in the following equivalent
version:

THEOREM 0.3. Let M,N be two multiplier invariant subspaces in H ⊗ CN

where H is an analytic reproducing kernel Hilbert space with complete NP kernel over
Ω. Suppose T is a module map fromM onto N , then

fd(M) = fd(N ) + fd(K).

where K = ker T.

An important ingredient in the proof of Theorem 0.3 is a simple observation
(Lemma 1.1 in next section) on linear equations, which reveals conceptually how
one can deal with fiber dimension in the similar way one treats the linear dimen-
sion. We will adopt the same idea to give new proofs of two important recent
results on fiber dimension. The statements of both results are elementary while
strong consequences in operator theory follow once they are established.

The first result explores how fiber dimension behaves with respect to alge-
braic operation on invariant subspaces.

THEOREM 0.4. Let H be an analytic reproducing kernel Hilbert space with com-
plete NP kernel over Ω, and M1 and M2 be two multiplier invariant subspaces of
H ⊗CN . Then

fd(M1) + fd(M2) 6 fd(M1 ∨M2) + fd(M1 ∩M2).

It is easy to verify (which we leave to the reader) that the converse in-
equality in Theorem 0.4 holds unconditionally so we actually have the equality
fd(M1) + fd(M2) = fd(M1 ∨M2) + fd(M1 ∩M2), which coincides with clas-
sical identity for linear dimension. By establishing this theorem, Cheng and Fang
[5] come to a generalization of the cellular indecomposable property ([13]) origi-
nally introduced by Olin and Thomson. In particular, it implies that if fd(M1) +
fd(M2) > N, then they have nontrivial intersection.

The second result concerns fiber dimension of graph subspaces.
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DEFINITION 0.5. A closed linear subspace M in H ⊗ CN is called a graph
subspace if there exists a positive integer m less than N such that

M = {( f1, . . . , fm, T1F, . . . , TN−mF), F := ( f1, . . . , fm) ∈ D}.

Here D is a linear manifold in H ⊗Cm and Ti are linear maps defined on D.

Roughly speaking, graph subspaces as above have at most m “free vari-
ables”, which provides a different perspective in measuring subspaces, i.e, by the
number of such free variables. On the other hand, the graph subspace can be
viewed as graph of closed operators and implements as an effective tool in the
study of unbounded operators (see [11], [14], [15]). In particular, Cheng, Guo and
Wang give an affirmative answer to the well-known transitive algebra problem
([2], [3]) for operator algebras containing multipliers on H ⊗CN when H admits
complete NP kernel, by proving the following theorem (see Corollary 2.3 and
3.7 of [6]) which bridges the two different perspectives in measuring invariant
subspaces.

THEOREM 0.6. LetM = {( f1, . . . , fm, T1F, . . . , TN−mF), F := ( f1, . . . , fm) ∈
D} be a multiplier invariant graph subspace in H ⊗CN where H is an analytic repro-
ducing kernel Hilbert space with complete NP kernel over Ω, then fd(M) = fd(D).

Theorems 0.4 and 0.6, as key results in [5] and [6] respectively, were both
established by calculating an intermediate invariant called “occupy invariant”,
which is shown to be equal to the fiber dimension by Fang in [7]. After some
algebraic preparation in Section 1, we will give a direct and self-contained proof
of them together with Theorem 0.3 in a uniform way in Section 2.

1. ON LINEAR EQUATIONS

Let AX = 0 be a system of homogeneous linear equations where A is an
m× n matrix and X = (x1, . . . , xn)T be in Cn. Recall that AX = 0 has nontrivial
solutions if and only if d := rank(A) < n and dim K(A) = n− d where K(A) :=
{X ∈ Cn, AX = 0} denotes the solution space.

Our concern in this section is the linear equation A(z)X = 0 where A(z) is
a matrix function over some domain in Cm. We say that A(z) is pure if its entries
are either identically zero or do not vanish anywhere.

It is easy to see that the classical Gaussian elimination method can be done
to A(z) in the same way as to scalar matrices, provided that A(z) is pure and
remains pure after every row operation. The proof of the following lemma is
essentially a repetition of Gauss elimination at the matrix function level.

LEMMA 1.1. Let Γ be an algebra (linear space which is closed under multiplica-
tion) of analytic functions over Ω containing all constant functions. Let A(z) be an
analytic m× n matrix-valued function with entries in Γ and d be a fixed positive integer
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less than n such that for every z ∈ Ω, rankA(z) = d. Then there exists n− d Cn-valued
functions {Fi(z)}n−d

i=1 with entries in Γ and an open subset ∆ in Ω such that for every z
in ∆, {Fi(z)}n−d

i=1 are linearly independent and A(z)Fi(z) = 0, 1 6 i 6 n− d.

Proof. We do Gaussian elimination on A(z) in such a way: Take an open
subset Ω1 of Ω on which A(z) is pure (such an Ω1 exists since all entries are
analytic). After an elimination, one get a matrix function A1(z) with analytic
entries on Ω1. Then take Ω2 ⊆ Ω1 on which A1(z) is pure and do elimination
again.

Proceeding like this, one eventually reduces A(z) into a so-called row ech-
elon matrix function Ã(z) with pure analytic entries on some open subset ∆ of
Ω. In particular, Ã(z) has d nonzero rows since rankA(z) = d for all z ∈ Ω, and
according to the elimination process, entries of Ã(z) lie in the fraction field of Γ.
We can take the n− d free variables to be constant linearly independent vectors,
then Ã(z)X = 0 recursively determines n − d Cn-valued functions {Fi(z)}n−d

i=1
with entries in the fraction field of Γ.

Since linear equations are homogeneous, an appropriate multiplication by
denominators of entries of Fi, which lie in Γ and do not vanish on ∆ by purity,
yields the desired result.

REMARK 1.2. {Fi(z)}n−d
i=1 might not be linearly independent at every point

in Ω, while on the other hand, A(z)Fi(z) = 0, i = 1, 2, . . . , n − d holds for all
points in Ω by analyticity.

COROLLARY 1.3. Let Γ be as in Lemma 1.1 and G1, . . . , Gk be CN-valued func-
tions with entries in Γ such that G1(z), . . . , Gk(z) are linearly dependent for every
z ∈ Ω, then there exist functions a1, . . . , ak in Γ and an open subset Ω′ of Ω such

that
k
∑

i=1
aiGi = 0 identically on Ω and a1(z), . . . , ak(z) do not vanish simultaneously

for every z ∈ Ω′.

Proof. By the assumption of the corollary, the rank of the coefficient matrix,

say A(z), of the equation
k
∑

i=1
aiGi(z) = 0 in variables a1, . . . , ak is less than k for

each z. Let k′ = max
z∈Ω

rankA(z), then k′ < k by the linear dependence assumption,

and rankA(z) = k′ for all z except for an analytic variety (by Lemma 1.4 below).
Now we can chose an open subset on which rankA(z) = k′ for every z and the
conclusion follows from Lemma 1.1 (with m = N, n = k, d = k′ in Lemma 1.1) and
Remark 1.2 by taking a1, . . . , ak to be the entries of an arbitrarily chosen solution
in {Fi(z)}k−k′

i=1 produced by Lemma 1.1.

We will apply the above lemma by taking Γ to be the multiplier algebra of
an analytic function space in the next section.

The following lemma is well-known and we record it for later reference.



324 LI CHEN

LEMMA 1.4. If F1(z), . . . , Fn(z) are analytic CN-valued functions over Ω such
that they are linearly independent at some z0 ∈ Ω, then they are linearly independent for
all z in Ω except for an analytic variety.

As a consequence, in case H is an analytic function space, fiber dimension
of a linear spaceM in H ⊗CN is achieved on a dense open subset in Ω since we
can take z0 to be any point where the supremum in Definition 0.1 is attained.

2. COMPLETION OF PROOFS

We gather some basic properties of fiber dimension, which can be immedi-
ately deduced from its definition (also see [5] or [9]).

LEMMA 2.1. Let H be a Hilbert space consisting of analytic functions over Ω such
that point-wise evaluation is bounded on H. LetM be a linear subspace (not necessarily
closed) of H ⊗CN and L be any dense linear subspace inM. Then

(i) If dim(M(z)) 6 k for all z in some open subset of Ω, then fd(M) 6 k.
(ii)M(z) = L(z) for every z hence fd(L) = fd(M).

(iii) If fd(M) = k, there exists {Fi}k
i=1 in L such that {Fi(z)}k

i=1 are linearly inde-
pendent for all z lying in some open subset of Ω.

Proof. (ii) is trivial since point evaluation is bounded. (i) follows from Lem-
ma 1.4 and (iii) follows from (ii) and Lemma 1.4.

Now we are prepared to give the proofs of all theorems which we arrange
in the order of Theorems 0.4, 0.6 and 0.3.

First we give the proof of Theorem 0.4. In the following proof, we actually
reduce the theorem to a standard exercise in linear algebra of constructing a base
for the intersection of two linear subspaces from a given base of each one, which
can be achieved by solving a linear equation and results in Section 1 apply.

Proof of Theorem 0.4. The theorem is trivially true if fd(M1) + fd(M2) 6
fd(M1 ∨M2) and it suffices to consider the case

fd(M1) + fd(M2) > fd(M1 ∨M2) = fd(M1 +M2).

Suppose fd(M1) = m, fd(M2) = n. By Lemma 2.1(iii) and Proposition 0.2,
there are {F1, . . . , Fm} ⊆ M1 and {G1, . . . , Gn} ⊆ M2 such that all Fi’s and Gj’s
are of multiplier entries and for every z in an open subset ∆, {F1(z), . . . , Fm(z)}
and {G1(z), . . . , Gn(z)} are linearly independent.

By appropriately shrinking ∆, we may assume the fiber dimension ofM1 +
M2 is achieved for all points in ∆ by Lemma 1.4. Now {F1(z), . . . , Fm(z)} ∪
{G1(z), . . . , Gn(z)} spans M1(z) +M2(z) = (M1 +M2)(z) whose dimension
is fd(M1 ∨M2), hence the rank of the coefficient matrix for the following linear
equation

x1F1(z) + · · ·+ xmFm(z) + y1G1(z) + · · ·+ ynGn(z) = 0
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in m + n variables x1, . . . , xm, y1, . . . , yn equals fd(M1 ∨M2) for every z ∈ ∆.
By Lemma 1.1 and Remark 1.2, there exists l := m + n− fd(M1 ∨M2) func-

tions {Ci(z)}l
i=1 valuing in Cm+n with multiplier entries ai

1(z), . . . , ai
m(z), bi

1(z),
. . . , bi

n(z) such that {Ci(z)}l
i=1 are linearly independent in an open subset ∆′ of ∆

and for every 1 6 i 6 l

ai
1(z)F1(z) + · · ·+ ai

m(z)Fm(z) + bi
1(z)G1(z) + · · ·+ bi

n(z)Gn(z) = 0

holds on the whole domain Ω.
SinceM1 andM2 are multiplier invariant subspaces, the following l CN-

valued functions

Hi := ai
1F1 + · · ·+ ai

mFm = −bi
1G1 − · · · − bi

nGn, i = 1, . . . , l

lie inM1∩M2. By linear independence of {F1(z), . . . , Fm(z)}, {G1(z), . . . , Gn(z)}
and {C1(z), . . . , Cl(z)} when z ∈ ∆′, it is easy to check as a routine exercise that
{Hi(z)}l

i=1 are linearly independent for every z ∈ ∆′, which means fd(M1 ∩
M2) > l.

Next we give the proof of Theorem 0.6. As the (closed) subspace M in
Theorem 0.6 is multiplier invariant, D is a linear manifold (not necessarily closed)
invariant by Mφ, and each Ti, though not necessarily bounded, commutes with
Mφ for every multiplier φ. Under the notation of the theorem, we write TF :=
(T1F, . . . , TN−mF) for short, then any element in M is of the form (F, TF) with
φ(TF) = T(φF) for every multiplier φ.

Proof of Theorem 0.6. Suppose fd(D) = d. It trivially holds that fd(M) >
fd(D) and it remains to show

fd(M) 6 fd(D).

By Lemma 2.1(iii) and Proposition 0.2, there exist F1, . . . , Fd in D such that every
Fi is of multiplier entries and {F1(z), . . . , Fd(z)} form a base of D(z) for z in some
open subset ∆ (though D may not be closed, elements with multiplier entries are
dense inM, thus their first m entries form a dense subspace of D).

Let (G, TG) be any element inM with multiplier entries. We show that the
d + 1 vectors (G(z), TG(z)), (Fi(z), TFi(z)), i = 1, . . . , d are linearly dependent for
all z in some open subset of ∆. This means that fiber dimension of the dense
subspace ofM consisting of elements with multiplier entries is no greater than d
by Lemma 2.1(i), which will complete the proof by Lemma 2.1(ii).

Since fd(D) = d, the rank of d + 1 vectors F1(z), . . . , Fd(z), G(z) is d for
every z ∈ ∆. As all Fi and G are of multiplier entries, there exists by Corollary 1.3
an open subset ∆′ in ∆ and multipliers ψ and φi, i = 1, . . . , d solving the linear

equation ψG +
d
∑

i=1
φiFi = 0 for every z ∈ ∆′ (which means ψG +

d
∑

i=1
φiFi = 0

identically) such that φi, ψ do not vanish simultaneously at any λ ∈ ∆′.
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As multipliers commute with T, we have ψTG+
d
∑

i=1
φiTFi = T

(
ψG+

d
∑

i=1
φiFi

)
= 0 which in turn yields

d
∑

i=1
φi(Fi, TFi) + ψ(G, TG) = 0. As φi, ψ do not vanish

simultaneously at any λ ∈ ∆′, specifying the last identity pointwise completes
the proof.

Finally we complete the proof of Theorem 0.3.

Proof of Theorem 0.3. Suppose fd(K) = k, fd(M) = m, let n = m − k and
we need to show fd(N ) = n. First we prove fd(N ) 6 n. LetM1 be the dense
linear subspace ofM consisting of elements with multiplier entries. Then TM1
is dense inN and it suffices, by Lemma 2.1(i), to show for any F1, . . . , Fn+1 inM1
and any z in some open subset, (TF1)(z), . . . , (TFn+1)(z) are linearly dependent.

As K is also a multiplier invariant subspace, we can take G1, . . . , Gk in K
with multiplier entries such that G1(z), . . . , Gk(z) are linearly independent for z
in some open subset ∆. Since dimM(z) is at most m(= k + n) for z ∈ ∆, by
Corollary 1.3 there exist k + n + 1 multipliers a1, . . . , an+1, b1, . . . , bk such that

(2.1)
n+1

∑
i=1

aiFi +
k

∑
j=1

bjGj = 0

identically and a1(z), . . . , an+1(z), b1(z), . . . , bk(z) do not vanish simultaneously
for z in some open subset ∆′ of ∆. Moreover, linear independence of G1(z), . . . ,
Gk(z) combined with (2.1) implies that a1(z), . . . , an+1(z) do not vanish simulta-
neously for z ∈ ∆′.

Since T is a module map, applying T to (2.1) yields
n+1

∑
i=1

aiTFi = 0,

hence (TF1)(z), . . . , (TFn+1)(z) are linearly dependent for z ∈ ∆′ since a1(z), . . . ,
an+1(z) do not vanish simultaneously for z ∈ ∆′, as desired.

It remains to show that fd(N ) > n. To this end, let L = M	K be the
orthogonal complement ofK inM. Then T is injective on Lwith TL = N , hence
by open mapping theorem, the linear space

L1 = {F ∈ L : TF has multiplier entries}
is dense in L.

Since fiber dimension of M and K can be achieved everywhere except an
analytic variety, dim(M(z)	K(z)) = m− k = n for z in some dense open set.
On the other hand,

M(z)	K(z) = {PM(z)	K(z)F(z) : F ∈ L}
for every z ∈ Ω hence

M(z)	K(z) = {PM(z)	K(z)F(z) : F ∈ L1}
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since L1 is dense in L. So we have

dim{PM(z)	K(z)F(z) : F ∈ L1} = n

for z in some dense open subset of Ω. Next we show if fd(N ) < n, then there
exists an open subset Ω′ such that dim{PM(z)	K(z)F(z) : F ∈ L1} < n for z ∈ Ω′,
which is a contradiction, and the proof will be complete.

Assume fd(N ) < n, then since TL1 is dense in N , fd(TL1) = fd(N ) < n
which means for any n elements F1, . . . , Fn in L1 and any z ∈ Ω, (TF1)(z), . . . ,
(TFn)(z) are linearly dependent. By Corollary 1.3, there exist multipliers c1, . . . , cn
such that

n

∑
i=1

ci(TFi) = T
n

∑
i=1

ciFi = 0

and c1(z), . . . , cn(z) do not vanish simultaneously for z in some open subset Ω′

of Ω.
Now

n
∑

i=1
ciFi ∈ K hence

n
∑

i=1
ci(z)Fi(z) ∈ K(z). So

n

∑
i=1

PM(z)	K(z)ci(z)Fi(z) = 0

for every z ∈ Ω. As c1(z), . . . , cn(z) do not vanish simultaneously for z ∈ Ω′, this
means {PM(z)	K(z)Fi(z)}n

i=1 are linearly dependent for z ∈ Ω′. As F1, . . . , Fn are
arbitrarily chosen, we have dim{PM(z)	K(z)F(z)|F ∈ L1} < n for z ∈ Ω′.
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